• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一個(gè)高粘彈的陰離子蠕蟲(chóng)膠束體系

    2013-09-17 06:58:42謝丹華趙劍曦魏西蓮
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:化學(xué)系福州大學(xué)大學(xué)化學(xué)

    謝丹華 趙劍曦,* 劉 琳 游 毅 魏西蓮

    (1福州大學(xué)化學(xué)化工學(xué)院,膠體與界面化學(xué)研究所,福州350108;2聊城大學(xué)化學(xué)化工學(xué)院化學(xué)系,山東聊城252059)

    1 Introduction

    Upon the addition of salts,cationic cetyltrimethylammonium halides(C16TAX)in aqueous solution can self-assembly into flexible threadlike(wormlike)micelles with the length even on the order of a few microns.1,2At high concentrations these wormlike micelles entangle each other to form a transient network,which sharply increases the viscoelasticity of the solution.Comparatively,anionic wormlike micelles have advantage over cationic counterparts in many applications,including enhanced oil recovery.3Moreover,anionic systems tend to be biodegradable and less toxic compared with cationic ones.But the formation of anionic wormlike micelles is not common since the addition of salts often interacts strongly with anionic surfactant and results in precipitate.Therefore,only a few anionic wormlike micelles were formed by conventional singlechain surfactants such as sodium alkyl sulfate4-9or sodium dodecyltrioxylene sulfate10-14in the presence of additives.What?s more,these anionic micelles were not as long as the cationic ones and hence the anionic systems often followed a poor property(low viscoelasticity).For example,in the reported anionic wormlike micellar system consisted of SDS,the zero-shear viscosity of the solution only had a very low value of~1 Pa·s.5

    Many efforts have been made to overcome this difficulty,in which the most valuable test was for the gemini surfactants.For example,Acharya et al.15tried to construct the wormlike micelles using a carboxylate gemini surfactant that has no spacer(designated as GS)mixed with the nonionic surfactants with a short poly(oxyethylene)chain(CmEn,where m,n=12,3;12,4;16,4;respectively).They found that C12E3very effectively promoted the formation of long wormlike micelles and as a result,the maximum viscosity of the solution attained about 104Pa·s.Recently,we reported a novel anionic wormlike micelle system constructed by carboxylate gemini surfactants with an azobenzene spacer(designated as Cm(azo)Cm,where m represented the number of the carbon atoms in each alkyl tail and was 10,12,and 14,respectively,see Scheme 1(a)).16,17The azobenzene spacer has a stretched length of more than 1 nm,which makes the head-group of Cm(azo)Cmincluding two carboxyl groups and a spacer quite large.This seems to say that Cm(azo)Cmis hard to form threadlike aggregates with a low surface curvature according to the molecular packing theory.18Very interestingly,however,all these surfactants formed wormlike micelles.The mechanism has been attributed to the rigid characteristic of the azobenzene spacer,which restrained the two alkyl tails within a gemini molecule drawing close and yielded the pseudo volume between them and thus increased the packing parameter,P.16,17This finding strongly suggests that the gemini surfactants with a long rigid spacer may be good candidates for forming anionic wormlike micelles.

    Scheme 1 Chemical structures of carboxylate gemini surfactants with long rigid spacer

    Very recently,we synthesized a new family of carboxylate gemini surfactants also with a long aromatic spacer,O,O?-bis(sodium 2-alkylcarboxylate)-p-dibenzenediol,referred to as Cm?2Cm(m=10,12,14,Scheme 1(b)).Surprisingly,we found that C12?2C12followed a new mechanism of aggregation different from general core-shell micelle formation.19In dilute solution,C12?2C12formed large network-like aggregates.This behavior was attributed to an extending configuration of C12?2C12with the two alkyl tails stretching towards the solution due to the rigidity of the long spacer.Thus the large network-like aggregate formation was an inevitable outcome of spontaneously reducing the energy of the system.Due to the columnar-like molecular geometry of C12?2C12,the network-like aggregates were very easily transformed into rod-like micelles with slightly increasing surfactant concentration and finally the wormlike micelles were formed.By this mechanism of aggregation,a new approach to constructing highly viscoelastic anionic wormlike micellar systems is perhaps revealed.In this paper,we report the wormlike micellar solution formed by C14?2C14that has the longest alkyl tails in this family so as to further understand this new constructing way.

    2 Experimental

    2.1 Materials

    Sodium bromide(NaBr,purity>99%,Beijing Chemical Reagents Co.)was used as received.The water used was Milli-Q grade with a resistivity of 18.2 MΩ·cm.

    O,O?-bis(sodium 2-tetradecylcarboxylate)-p-dibenzenediol(referred to as C14?2C14)was synthesized in our laboratory according to the following routes(Scheme 2).All reagents used were purchased from Sinopharm Chemical Reagent Co.,Ltd.(China).

    Methyl 2-bromotetradecanoate was prepared according to our previous work.17

    Synthesis of MC14?2C14M.The potassium carbonate(9.7 g,70 mol)was added to a three-necked flask with 20 mL N,N-dimethylformamide(DMF).4,4?-Biphenol(3.7 g,20 mmol)was dissolved in 10 mL DMF,and then this solution was added to the mixture dropwise.Methyl 2-bromotetradecanoate(19.3 g,60 mmol)was added into the mixture secondly.The mixture was reacted under stirring at 80°C overnight.The mixture was poured into 70 mL ice-water and extracted with petroleum ether(3×60 mL).The combined organic layers were washed with deionized water.The petroleum ether was removed under reduced pressure.The crude product was recrystallized from petroleum ether three times to give MC14?2C14M as white powder.

    Scheme 2 Synthetic route of C14?2C14

    Synthesis of C14?2C14.A mixture of MC14?2C14M(6.4 g,9.6 mmol)and sodium hydroxide(0.92 g,23 mmol)in 500 mL of 95%ethanol was refluxed overnight.The resulting mixture was cooled to room temperature and centrifuged to afford the white precipitate.The precipitate was washed with ethanol several times and dried in vacuum to give the target compound as white powder.The final yield was 36.6%according to the quality of 4,4?-biphenol.

    1H NMR(400 Hz,D2O)for C14?2C14: δ,7.56(d,J=7.6 Hz,4H,H-Ar),6.92(d,J=7.6 Hz,4H,H-Ar),4.47(br,2H,CH),1.90(m,4H,CH2),1.43-1.19(m,4H,CH2),1.05-0.82(m,36H,CH2),0.43(t,J=6.4 Hz,6H,CH3).

    Anal.Calcd.for(C40H60Na2O6)(%):C,70.35;H,8.86;Found:C,69.99;H,8.65.

    2.2 Rheological measurements

    Rheological measurements were performed on a stress controlled rheometer(AR2000ex,TAinstruments,USA)with conical concentric cylinders.The cone was made of standard ETC steel with the diameter of 40 mm and cone angle of 2°.The gap between the center of the cone and plate was 50 μm.At a designed temperature,the sample was kept for 5 min on the plate to reach the equilibrium before testing.A strain sweep was performed at a frequency of 6.28 rad·s-1(1 Hz)before the test.A strain value was then decided to make sure of the sample in the linear viscoelastic region during the following oscillatory measurements.

    2.3 Cryogenic transmission electron microscopy(cryo-TEM)

    Cryo-TEM samples were prepared in a controlled environment vitrification system(CEVS)at 28°C.A micropipet was used to load 5 μL surfactant solution onto a lacey support TEM grid,which was held by tweezers.The excess solution was blotted with a piece of filter paper and the thin film was suspended on the mesh hole.After waiting for about 10 s to relax any stresses induced during the blotting,the samples were quickly plunged into a reservoir of liquid ethane(cooled by the nitrogen)at its melting temperature.The vitrified samples were then stored in the liquid nitrogen until they were transferred to a cryogenic sample holder(Gatan 626)and examined with a JEM 2200FS TEM(200 keV)at about-174°C.The phase contrast was enhanced by underfocus.The images were recorded on a Gatan multiscan CCD and processed with Digital Micrograph.

    2.4 Dynamic light scattering

    Dynamic light scattering(DLS)of micellar solutions was measured with a Brookhaven Instrument which was composed of a BI-200SM goniometer,a BI-9000AT digital correlator(522 channels)and a photomultiplier detector.The He-Ne laser with 15 mW power and 632.8 nm wavelength was used as the light source.The measurement temperature was controlled by a thermostatic circulator(Poly-sceience,USA)with an accuracy of ±0.01 °C.All solutions were filtered through 0.22 μm Millipore filters into cylindrical light-scattering cells(od=25 mm).

    The intensity-intensity time correlation function G(2)(t,q)in the self-beating mode was measured,where t is decay time and q is scattering vector and equals to 4πn/λsin(θ/2).The G(2)(t,q)was transformed into the electric field-electric field time correlation function g(1)(t,q)by Siegert formula:

    where A is the baseline,β is a parameter depending on the coherence of the detection.The g(1)(t,q)was further related to the characteristic line-width(Γ)distribution G(Γ)by

    The G(Γ)can be obtained by a Laplace inversion of g(1)(t,q)using the CONTIN program.The average line-width<Γ> was calculated according to

    Furthermore,the apparent translational diffusive coefficient Dappcan be related to <Γ> as Dapp=<Γ>/q2.Thus,the apparent hydrodynamic radius of aggregate(Rh,app)was obtained from the Stokes-Einstein equation

    where kBis the Boltzmann constant,T is absolute temperature,and η0is the solvent viscosity.

    3 Results and discussion

    3.1 Characteristic of wormlike micelles at 25°C

    Fig.1 (a)Appearance of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)aqueous system at 25 °C,(b)the cryo-TEM image,and(c)its variations of G?(filled symbols),G?(open symbols)with sweep frequency ω

    The aqueous system of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)at 25 °C has a gel-like appearance(Fig.1a).This is due to the formation of wormlike micelles,which entangle each other into a transient network as seen in the cryo-TEM image(Fig.1b).The result of frequency sweep measurement(Fig.1c)shows high elasticity,where elastic modulus G?exceeds viscous modulus G?at sweep frequency ω>0.1 rad·s-1.This system very well follows the Maxwell fluid behavior with a single stress relaxation time(τR)20as fitted(solid lines in Fig.1c)by the equations:

    The corresponding Cole-Cole plot,i.e.,elastic modulus G? against viscous modulus G?(Fig.1c,insert),shows a perfect semicircular shape at low and medium frequencies,which is another indication for the Maxwell fluid behavior.

    The τRis estimated as ωc-1,where ωcis the frequency at which two moduli are equal.21On the increase in ω,the G?attains a limiting value called a plateau modulus,G?∞.The living polymer model proposed by Granek and Cates20revealed two time scales of stress relaxation,namely,reptation time(τrep),which corresponds to the curvilinear diffusion of a chain of the mean length along its own contour,and breaking time(τb).When breaking occurs over the time scale of reptation(τb<<τrep),as in a typical wormlike micellar system,the chain undergoes many breakages and recombinations before a chain segment relaxes by reptation.Thus the stress relaxation is characterized by a new time scale given by τR=(τbτrep)1/2,and the solution behaves as a Maxwell fluid with single relaxation time τR.The average scission time for the micelle,τb,is approximately equal to the inverse of ω corresponding to the minimum of G??minin the high-frequency region.For the present system,the estimated τbis ~0.105 s.This value allows us to estimate τrep~1.35×103s using τR(11.9 s),satisfying the expectation of τb<<τrep.20

    The micellar contour length(L)can be estimated by the relation20

    where leis the average length between two entanglement points and G??minis the minimum at G?at high-frequency region.For a given le,L is inversely proportional to the ratio G??min/G?∞.Thus,a smaller G??min/G?∞r(nóng)esults in a longer L.So far,the smallest G??min/G?∞r(nóng)eported was 0.014 yielded in the mixed system of carboxylate gemini surfactant with no spacer(GS)and C12E3.15In this case,Acharya et al.15have stressed that the added C12E3played a very important role in promoting micellar growth.Another small G??min/G?∞was 0.016 obtained from the system of traditional cationic surfactant having an unsaturated tail as long as 22 carbon atoms.22For the present system,the G??min/G?∞is about 0.022.Even though this value is not as low as those mentioned above,it is produced in an anionic wormlike micellar system only upon the addition of simple salt and hence is very rare.

    As a comparison,a typical value of le(80-150 nm)for wormlike micelles can be adopted15and thus L corresponds to roughly 3.6-6.8 μm for the present system at 25 °C.This length is indeed greatly longer than that of cetyltrimethylammonium bromide(C16TABr)micelle in the presence of 1.5 mol·L-1NaBr.23

    3.2 Zero-shear viscosity at 25°C

    Fig.2 Variations of viscosity(η)with the shear rate at 25 °C

    Fig.2 shows the viscosity versus steady shear rate curve for the aqueous system of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1).The viscosity keeps unchanged at low shear rate re-gion and then decreases with increasing the shear rate(the shear thinning behavior)after a critical shear rate,rc.The shear thinning behavior can be taken as an evidence for the formation of wormlike micelles,24which well corresponds to the indication of dynamic viscoelastic measurements.According to the Carreau model,the zero-shear viscosity η0is obtained to be 1.10×104Pa·s,meaning the relative viscosity of the wormlike micellar solution(ηr,given by η0/ηs,where ηsis the viscosity of the solvent,water)to be as high as 107.This is a very large value comparable with that obtained from the mixed system of gemini surfactant(GS)and C12E3.15

    3.3 Mechanism of wormlike micelle formation

    As seen in Sections 3.1 and 3.2,C14?2C14can form wormlike micelles in aqueous solution,which is similar to the behavior of C14(azo)C14as reported previously.17

    Fig.3(left row)shows the intensity-fraction distribution of C14?2C14measured by DLS,in which the aggregates at 5 and 10 mmol·L-1show quite large size(~100 nm in apparent hydrodynamic radius,Rh,app)and narrow distribution.With increasing the surfactant concentration(C),the mean Rhincreases obviously at C≥20 mmol·L-1,indicating the rapid growth of micelles.This behavior is very analogous to that of C12?2C12which is another member of this family.Thus,as revealed in our previous work,19C14?2C14must form large network-like aggregates after the critical micelle concentration(cmc),and these network-like aggregates can be very easily transformed into rod-like micelles with slightly increasing the surfactant concentration and finally the wormlike micelles are formed.

    However,it is very surprising that C14(azo)C14shows the aggregation behavior different from C14?2C14,although this surfactant also has a long aromatic spacer in its molecular structure.Fig.3(right row)shows the scattering intensity of C14(azo)C14only distributes at small Rhvalues(0.1-15 nm)but a very wide range(polydispersity in size).The two cases(C14?2C14and C14(azo)C14)reflect the complicacy of gemini surfactants in self-assembly and sometimes these surfactants show completely different behaviors although their molecular structures are similar.A good understanding for their mechanisms needs further and deep investigations.

    3.4 Effect of temperature

    Fig.3 Intensity-fraction distributions measured at a detector angle θ=90°and analyzed by CONTIN model for C14?2C14(left row)and C14(azo)C14(right row)at different concentrations

    Fig.4 Viscoelastic spectra(a)and the normalized Cole-Cole plots(b)at different temperatures

    Fig.4a shows the viscoelastic spectra of this system at different temperatures.On the raise in temperature,the rheological behavior still shows semicircular shape in the Cole-Cole plots(Fig.4b)over the range of low and medium frequencies.Similarly,the characteristic parameters described above can be obtained according to living polymer model.20For those cases where the G?does not give a constant limiting value,the G?∞may be estimated from the modulus value at ωc,using the relation G?∞=2G?max,where G?maxis the viscosity modulus at shear frequency ωc.21As seen from Table 1,the τRmonotonically decreases over the entire temperature range,but G?∞shows an initial enhancement at low temperatures followed by a subsequent decrease at higher temperatures.Since τRassociates with the micellar length,15the decrease in τRindicates the wormlike micelles become shorter with increasing temperature.This is consistent with the estimation for the length from the ratio of G?min/G?∞,which gives out the values of gradual decrease in L(Table 1).For the wormlike micellar system undergoing stress relaxation by reptation,G?∞generally depends on the number density of the aggregates.15The initial increase in G?∞over the temperature range of 25-40°C suggests that the enhanced thermal motion promotes the contact between the micelles and thus yields more entanglements,which makes the system more viscoelastic.The following decrease in G?∞above 40 °C must be due to the shorter micelles as discussed above.

    The zero-shear viscosity drown from Fig.5 has a value of 17.6 Pa·s at 70 °C,namely,its relative viscosity is 1.8×104.In general,with increasing temperature to 60 °C,the ηrof wormlike micellar solution falls to a value below 104.There are few,if any,examples of micellar solutions showing high viscosities(ηr>104)above 60 °C.The typical cases are the wormlike micel-lar solutions formed by cationic surfactants,erucyl bis(hydroxyethyl)methylammonium chloride(EHAC)and erucyl trimethylammonium chloride(ETAC),as reported by Raghavan and Kaler.22The both surfactants bear a quite long(C22)tail.Relying on the help of sodium salicylate or sodium chloride,the both systems retain high viscosity(ηr>104)up to ca 90 °C.Compared with EHAC or ETAC,C14?2C14only has short tails(12 carbon atoms in each tail,Scheme 1(b)).Even so,the relative viscosity ηrstill attains a rather large value at 70 °C.This is very rare for the anionic wormlike micelle systems.

    Table 1 Characteristic parameters of the wormlike micellar systems of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)at different temperatures

    Fig.5 Variations of viscosity(η)with the shear rate at different temperatures

    3.5 Flow activation energy

    The variation of η0and τRwith temperature can be empirically described by Arrhenius relationships,indicating exponential reductions in these quantities:25,26

    where Eais the flow activation energy,R is the gas constant,and A is a pre-exponential factor.Semilogarithmic plots of η0and τRvs 1/T(Fig.6)fall on straight lines within experimental error,being consistent with Eqs.(8)and(9).The slope gives out the flow activation energy Eato be(141±5)kJ·mol-1.This value is comparable to that reported for other wormlike micelles.22,24

    Fig.6 Arrhenius plots of the zero-shear viscosity(η0)and the relaxation time(τR)vs 1/T

    4 Conclusions

    The present study exhibited an excellent anionic wormlike micelle system formed by carboxylate gemini surfactant C14?2C14.This result again demonstrates that the gemini surfactants are very good candidates for the construction of wormlike micelles and also strongly suggests that based on the gemini surfactants,an effective approach may be developed to construct the anionic wormlike micelle systems with excellent viscoelastic properties.

    (1) Dreiss,C.A.Soft Matter 2007,3,956.and references therein.doi:10.1039/b705775j

    (2) Yang,J.Curr.Opin.Colloid Interface Sci.2002,7,276.and references therein.doi:10.1016/S1359-0294(02)00071-7

    (3) Maitland,G.C.Curr.Opin.Colloid Interface Sci.2000,5,301.doi:10.1016/S1359-0294(00)00069-8

    (4) Magid,L.J.;Li,Z.;Butler,P.D.Langmuir 2000,16,10028.doi:10.1021/la0006216

    (5) Hassan,P.A.;Raghavan,S.R.;Kaler,E.W.Langmuir 2002,18,2543.doi:10.1021/la011435i

    (6) Arleth,L.;Bergstrom,M.;Pedersen,J.S.Langmuir 2002,18,5343.doi:10.1021/la015693r

    (7) Nakamura,K.;Shikata,T.Langmuir 2006,22,9853.doi:10.1021/la061031w

    (8)Acharya,D.P.;Sato,T.;Kaneko,M.;Singh,Y.;Kunieda,H.J.Phys.Chem.B 2006,110,754.doi:10.1021/jp054631x

    (9)Lu,T.;Xia,L.G.;Wang,X.D.;Wang,A.Q.;Zhang,T.Langmuir 2011,27,9815.doi:10.1021/la2018709

    (10) Mu,J.H.;Li,G.Z.Chem.Phys.Lett.2001,345,100.doi:10.1016/S0009-2614(01)00799-0

    (11) Mu,J.H.;Li,G.Z.Colloid Polym.Sci.2001,279,872.doi:10.1007/s003960100508

    (12)Mu,J.H.;Li,G.Z.;Jia,X.L.;Wang,H.X.;Zhang,G.Y.J.Phys.Chem.B 2002,106,11685.doi:10.1021/jp014096a

    (13) Mu,J.H.;Li,G.Z.;Wang,Z.W.Rheol.Acta 2002,41,493.doi:10.1007/s00397-002-0246-y

    (14)Mu,J.H.;Li,G.Z.;Wang,Z.W.;Zheng,L.Q.;Liao,G.Z.;Huang,L.J.Disper.Sci.Technol.2001,22,421.doi:10.1081/DIS-100107851

    (15)Acharya,D.P.;Kunieda,H.;Shiba,Y.;Aratani,K.J.Phys.Chem.B 2004,108,1790.

    (16) Song,B.L.;Hu,Y.F.;Zhao,J.X.J.Colloid Interface Sci.2009,333,820.doi:10.1016/j.jcis.2009.02.030

    (17) Song,B.L.;Hu,Y.F.;Song,Y.M.;Zhao,J.X.J.Colloid Interface Sci.2010,341,94.

    (18) Israelachvili,J.N.;Mitchell,D.J.;Ninham,B.W.Journal of the Chemical Society-Faraday Transactions II 1976,72,1525.doi:10.1039/f29767201525

    (19) Xie,D.H.;Zhao,J.X.Langmuir 2013,29,545.

    (20) Granek,R.;Cates,M.E.J.Chem.Phys.1992,96,4758.doi:10.1063/1.462787

    (21) Oda,R.;Narayanan,J.;Hassan,P.A.;Manohar,C.;Salkar,R.A.;Kern,F.;Candau,S.J.Langmuir 1998,14,4364.doi:10.1021/la971369d

    (22) Raghavan,S.R.;Kaler,E.W.Langmuir 2001,17,300.doi:10.1021/la0007933

    (23) Khatory,A.;Lequeux,F.;Kern,F.;Candau,S.J.Langmuir 1993,9,1456.doi:10.1021/la00030a005

    (24) Shrestha,R.G.;Shrestha,L.K.;Aramaki,K.J.Colloid Interface Sci.2007,311,276.doi:10.1016/j.jcis.2007.02.050

    (25) Candau,S.J.;Hirsch,E.;Zana,R.;Delsanti,M.Langmuir 1989,5,1225.doi:10.1021/la00089a018

    (26) Fischer,P.;Rehage,H.Langmuir 1997,13,7012.doi:10.1021/la970571d

    猜你喜歡
    化學(xué)系福州大學(xué)大學(xué)化學(xué)
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    福州大學(xué)喜迎建校60周年
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    基于SCIE的大學(xué)化學(xué)學(xué)科文獻(xiàn)計(jì)量學(xué)研究——以河南大學(xué)為例
    信息技術(shù)在大學(xué)化學(xué)專業(yè)英語(yǔ)教學(xué)中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    楊梅酮的抗氧化活性
    關(guān)于《大學(xué)化學(xué)》編輯部新網(wǎng)頁(yè)開(kāi)通的通知
    国产在线视频一区二区| 丝袜美足系列| 国产精品 国内视频| 一边亲一边摸免费视频| 青春草国产在线视频| av卡一久久| 男女边吃奶边做爰视频| 国产熟女午夜一区二区三区 | 国产av精品麻豆| 99热全是精品| 亚洲一级一片aⅴ在线观看| 91精品一卡2卡3卡4卡| 亚洲久久久国产精品| 人妻 亚洲 视频| 久久精品国产亚洲av天美| 亚洲av福利一区| 十八禁高潮呻吟视频| 免费大片18禁| 桃花免费在线播放| 性高湖久久久久久久久免费观看| 亚洲国产成人一精品久久久| 欧美日韩国产mv在线观看视频| 久久97久久精品| av播播在线观看一区| 国产av码专区亚洲av| 妹子高潮喷水视频| 亚洲欧美日韩另类电影网站| 中国国产av一级| 久久人人爽人人爽人人片va| 亚洲综合色惰| 波野结衣二区三区在线| 我的老师免费观看完整版| 这个男人来自地球电影免费观看 | 中文字幕人妻丝袜制服| 免费高清在线观看日韩| 丁香六月天网| 国产熟女午夜一区二区三区 | 久久久久久久久久久久大奶| 国产 精品1| 少妇猛男粗大的猛烈进出视频| 免费观看的影片在线观看| 在线 av 中文字幕| av在线app专区| 在线观看人妻少妇| 午夜精品国产一区二区电影| 色94色欧美一区二区| 在现免费观看毛片| av天堂久久9| 伊人久久精品亚洲午夜| 青春草国产在线视频| 免费黄色在线免费观看| 精品卡一卡二卡四卡免费| 18在线观看网站| 午夜福利网站1000一区二区三区| av专区在线播放| 成年av动漫网址| 啦啦啦中文免费视频观看日本| 国产成人精品一,二区| 狂野欧美白嫩少妇大欣赏| 国产免费福利视频在线观看| 国产深夜福利视频在线观看| 美女国产高潮福利片在线看| 爱豆传媒免费全集在线观看| 精品一区二区三卡| 九色亚洲精品在线播放| 久久久久精品性色| 人人妻人人添人人爽欧美一区卜| 免费大片黄手机在线观看| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 久久久久久人妻| 性色avwww在线观看| 制服人妻中文乱码| 国产欧美日韩综合在线一区二区| 国产亚洲av片在线观看秒播厂| 国产成人精品婷婷| 精品午夜福利在线看| 一区二区av电影网| 成人黄色视频免费在线看| 国产女主播在线喷水免费视频网站| 欧美xxⅹ黑人| 亚洲精品视频女| 日韩一本色道免费dvd| 亚洲第一av免费看| 成年美女黄网站色视频大全免费 | 一级毛片电影观看| 久久久久视频综合| 少妇人妻 视频| 精品一区在线观看国产| 黑人欧美特级aaaaaa片| av国产久精品久网站免费入址| av福利片在线| 日韩欧美精品免费久久| 亚洲国产成人一精品久久久| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 国产国拍精品亚洲av在线观看| 日本av手机在线免费观看| 国产 精品1| 天天影视国产精品| 久久久久久久久久人人人人人人| 欧美人与性动交α欧美精品济南到 | 人妻人人澡人人爽人人| 最近2019中文字幕mv第一页| 午夜91福利影院| 午夜免费鲁丝| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的| 国产免费又黄又爽又色| 在线天堂最新版资源| 亚洲熟女精品中文字幕| av一本久久久久| 美女cb高潮喷水在线观看| 黑人巨大精品欧美一区二区蜜桃 | 精品久久久久久电影网| 国产精品女同一区二区软件| 狂野欧美白嫩少妇大欣赏| tube8黄色片| 亚洲人成77777在线视频| 国产精品一国产av| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 免费观看a级毛片全部| 桃花免费在线播放| 亚洲伊人久久精品综合| 夜夜骑夜夜射夜夜干| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 男女啪啪激烈高潮av片| 在线观看三级黄色| 美女cb高潮喷水在线观看| 久久精品国产鲁丝片午夜精品| 不卡视频在线观看欧美| 日韩中字成人| 一级二级三级毛片免费看| 天美传媒精品一区二区| 午夜激情av网站| 九九爱精品视频在线观看| 久久这里有精品视频免费| 日本-黄色视频高清免费观看| 精品久久久久久久久亚洲| 777米奇影视久久| 少妇猛男粗大的猛烈进出视频| 韩国高清视频一区二区三区| 人妻 亚洲 视频| 欧美日韩视频精品一区| 国产av国产精品国产| 亚洲国产精品成人久久小说| 天天影视国产精品| 久久国产精品大桥未久av| 国产精品99久久久久久久久| 亚洲美女搞黄在线观看| 黄色配什么色好看| 国产成人精品婷婷| 久久精品国产亚洲网站| 国产亚洲av片在线观看秒播厂| 黄色一级大片看看| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 亚洲精品日本国产第一区| 一级爰片在线观看| 亚洲国产精品一区二区三区在线| av免费在线看不卡| 国产精品熟女久久久久浪| 久久久久国产精品人妻一区二区| 熟女人妻精品中文字幕| 最近手机中文字幕大全| 少妇猛男粗大的猛烈进出视频| 国产精品嫩草影院av在线观看| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av天美| videosex国产| 国产午夜精品久久久久久一区二区三区| a级毛片免费高清观看在线播放| 成人国产av品久久久| h视频一区二区三区| 中文字幕人妻丝袜制服| 色94色欧美一区二区| 亚洲色图 男人天堂 中文字幕 | 黄色欧美视频在线观看| videosex国产| 国产日韩一区二区三区精品不卡 | 一区二区三区精品91| 欧美精品一区二区大全| 最近中文字幕2019免费版| 国产伦理片在线播放av一区| 免费播放大片免费观看视频在线观看| 国产精品久久久久久av不卡| 十八禁高潮呻吟视频| 久久毛片免费看一区二区三区| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 日本wwww免费看| 嫩草影院入口| 免费黄色在线免费观看| 老司机影院成人| 大话2 男鬼变身卡| 久久精品国产a三级三级三级| 欧美xxxx性猛交bbbb| 性色av一级| 熟女人妻精品中文字幕| 久久 成人 亚洲| 狂野欧美激情性xxxx在线观看| 精品少妇久久久久久888优播| 嫩草影院入口| 在线观看国产h片| 久久99热这里只频精品6学生| 精品人妻偷拍中文字幕| 国产av精品麻豆| 亚洲无线观看免费| 日韩一区二区三区影片| 亚洲欧美日韩卡通动漫| 一本久久精品| 王馨瑶露胸无遮挡在线观看| 午夜激情久久久久久久| 纵有疾风起免费观看全集完整版| 免费高清在线观看日韩| 精品人妻在线不人妻| 国产色爽女视频免费观看| 18禁动态无遮挡网站| 色视频在线一区二区三区| 成人无遮挡网站| 久久99热6这里只有精品| 春色校园在线视频观看| 国产亚洲一区二区精品| 久久午夜综合久久蜜桃| 人人妻人人澡人人爽人人夜夜| 在线观看人妻少妇| 亚洲少妇的诱惑av| 国产伦理片在线播放av一区| 国产 精品1| 久久精品夜色国产| av不卡在线播放| 好男人视频免费观看在线| xxxhd国产人妻xxx| 免费观看无遮挡的男女| 大香蕉97超碰在线| 久久久久网色| 国产精品久久久久久精品古装| 精品亚洲成国产av| 免费看不卡的av| 亚洲经典国产精华液单| 亚洲综合色网址| 国产成人免费无遮挡视频| 97精品久久久久久久久久精品| 日本91视频免费播放| 韩国av在线不卡| 日韩伦理黄色片| 99久久中文字幕三级久久日本| 日韩大片免费观看网站| 精品人妻在线不人妻| 在线播放无遮挡| 久久久久国产网址| 人妻夜夜爽99麻豆av| 成人黄色视频免费在线看| 国产乱人偷精品视频| 麻豆乱淫一区二区| 成人国语在线视频| 成人国产麻豆网| 免费av中文字幕在线| 欧美少妇被猛烈插入视频| 在线观看三级黄色| 国产免费一区二区三区四区乱码| 日本爱情动作片www.在线观看| 另类精品久久| 九九在线视频观看精品| 欧美国产精品一级二级三级| 999精品在线视频| 老司机影院毛片| 七月丁香在线播放| 性色avwww在线观看| 久久久国产欧美日韩av| 22中文网久久字幕| 亚洲av中文av极速乱| 亚洲激情五月婷婷啪啪| 黄色怎么调成土黄色| 另类精品久久| 丝袜在线中文字幕| 乱人伦中国视频| 天堂中文最新版在线下载| 亚洲精品乱码久久久久久按摩| 国国产精品蜜臀av免费| 久久韩国三级中文字幕| 日韩亚洲欧美综合| 久热久热在线精品观看| 老熟女久久久| 亚洲第一区二区三区不卡| 搡女人真爽免费视频火全软件| av天堂久久9| 99九九在线精品视频| 国产亚洲精品久久久com| 最近2019中文字幕mv第一页| 亚洲精品中文字幕在线视频| 亚洲精品国产av成人精品| 久久精品国产亚洲网站| 人妻 亚洲 视频| 国产成人精品一,二区| 欧美人与善性xxx| 你懂的网址亚洲精品在线观看| 夜夜爽夜夜爽视频| 99热6这里只有精品| 欧美成人午夜免费资源| 成人午夜精彩视频在线观看| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 成年av动漫网址| 日本黄大片高清| av一本久久久久| 中文乱码字字幕精品一区二区三区| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久久免| 欧美激情极品国产一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 2021少妇久久久久久久久久久| 一个人免费看片子| 天天躁夜夜躁狠狠久久av| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩综合久久久久久| 日本黄大片高清| 成人黄色视频免费在线看| 国产精品偷伦视频观看了| 国产极品粉嫩免费观看在线 | 91精品一卡2卡3卡4卡| 夜夜看夜夜爽夜夜摸| 汤姆久久久久久久影院中文字幕| 日韩不卡一区二区三区视频在线| 一级毛片电影观看| 丰满少妇做爰视频| 久久精品国产亚洲av天美| 国产精品一区二区在线观看99| 国产 一区精品| 高清黄色对白视频在线免费看| 免费看光身美女| 国产在线免费精品| 久久亚洲国产成人精品v| 欧美激情 高清一区二区三区| 亚洲中文av在线| 欧美日韩一区二区视频在线观看视频在线| 日韩av不卡免费在线播放| 成人国语在线视频| 日韩av免费高清视频| 91精品伊人久久大香线蕉| 欧美性感艳星| 多毛熟女@视频| 国国产精品蜜臀av免费| 我的女老师完整版在线观看| 最黄视频免费看| av在线播放精品| 老司机影院成人| 在线精品无人区一区二区三| freevideosex欧美| 日韩av免费高清视频| 日韩欧美精品免费久久| 国产深夜福利视频在线观看| 人妻夜夜爽99麻豆av| 亚洲综合色网址| 久久 成人 亚洲| 精品人妻熟女av久视频| 高清不卡的av网站| 99久久精品国产国产毛片| videos熟女内射| 十八禁高潮呻吟视频| 高清视频免费观看一区二区| 亚洲第一区二区三区不卡| 国产高清不卡午夜福利| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 国产免费福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品熟女久久久久浪| 亚洲国产欧美日韩在线播放| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 久久ye,这里只有精品| 国产亚洲一区二区精品| 永久免费av网站大全| 男男h啪啪无遮挡| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 婷婷色av中文字幕| 欧美亚洲 丝袜 人妻 在线| 在线观看www视频免费| 少妇的逼水好多| 国产国语露脸激情在线看| 最近2019中文字幕mv第一页| 黑丝袜美女国产一区| 婷婷色综合大香蕉| 我要看黄色一级片免费的| 考比视频在线观看| 日韩不卡一区二区三区视频在线| 嫩草影院入口| 麻豆成人av视频| 日韩中字成人| 国产乱来视频区| 久久狼人影院| 久久久国产欧美日韩av| 熟女av电影| 亚洲精品亚洲一区二区| 赤兔流量卡办理| 看非洲黑人一级黄片| 日韩精品免费视频一区二区三区 | 亚洲欧美成人精品一区二区| 欧美xxⅹ黑人| 久久影院123| 婷婷成人精品国产| 亚洲中文av在线| 一级,二级,三级黄色视频| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 一区在线观看完整版| 日日爽夜夜爽网站| 熟女av电影| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| 精品久久久噜噜| 欧美日韩成人在线一区二区| 一本一本综合久久| 免费高清在线观看日韩| 国产一区二区在线观看av| 国产一级毛片在线| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| 亚洲图色成人| 丰满饥渴人妻一区二区三| 永久网站在线| 日本av手机在线免费观看| 国产成人aa在线观看| kizo精华| 制服丝袜香蕉在线| 五月开心婷婷网| 视频区图区小说| 日本爱情动作片www.在线观看| 999精品在线视频| 你懂的网址亚洲精品在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产av玫瑰| 国产老妇伦熟女老妇高清| 老熟女久久久| 考比视频在线观看| 欧美日韩成人在线一区二区| 天美传媒精品一区二区| 啦啦啦啦在线视频资源| 欧美老熟妇乱子伦牲交| 国产伦精品一区二区三区视频9| 99九九在线精品视频| 91精品国产九色| 国产高清不卡午夜福利| 桃花免费在线播放| 国产av国产精品国产| 亚洲精华国产精华液的使用体验| 日韩一本色道免费dvd| 少妇被粗大猛烈的视频| 亚洲av二区三区四区| 中国美白少妇内射xxxbb| 精品一区二区三卡| 内地一区二区视频在线| 欧美变态另类bdsm刘玥| 日韩一本色道免费dvd| 亚洲精品色激情综合| 国产亚洲精品久久久com| 哪个播放器可以免费观看大片| 久久99精品国语久久久| 久热这里只有精品99| 熟女av电影| 免费播放大片免费观看视频在线观看| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| 男人操女人黄网站| 能在线免费看毛片的网站| h视频一区二区三区| 亚洲精品视频女| 国产精品一区二区在线不卡| 国产精品国产三级国产专区5o| 日韩,欧美,国产一区二区三区| 一区二区av电影网| 最近2019中文字幕mv第一页| 国产在线视频一区二区| 少妇人妻 视频| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 精品久久久久久久久亚洲| 国产精品熟女久久久久浪| 午夜福利,免费看| 亚洲伊人久久精品综合| 男人爽女人下面视频在线观看| 91精品三级在线观看| 一区二区av电影网| 久久国内精品自在自线图片| av在线老鸭窝| 欧美日韩综合久久久久久| 亚洲精品色激情综合| 秋霞在线观看毛片| av在线老鸭窝| 欧美亚洲 丝袜 人妻 在线| 色哟哟·www| 亚洲av不卡在线观看| 精品酒店卫生间| 国产精品免费大片| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 午夜免费观看性视频| 色哟哟·www| 丁香六月天网| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 精品亚洲成国产av| 男人添女人高潮全过程视频| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 自拍欧美九色日韩亚洲蝌蚪91| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 男人操女人黄网站| 曰老女人黄片| 一级毛片黄色毛片免费观看视频| 国精品久久久久久国模美| 九草在线视频观看| 毛片一级片免费看久久久久| 国产精品一区二区在线观看99| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 午夜福利影视在线免费观看| 国产av精品麻豆| 久久97久久精品| 日日啪夜夜爽| 日韩中字成人| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 99久国产av精品国产电影| 亚洲人成77777在线视频| 青青草视频在线视频观看| 欧美97在线视频| 精品久久国产蜜桃| 国产av一区二区精品久久| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 另类亚洲欧美激情| 中国国产av一级| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 亚洲三级黄色毛片| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 日本午夜av视频| 成人二区视频| 亚洲精品,欧美精品| 久久久精品区二区三区| 日本与韩国留学比较| 婷婷色综合www| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 欧美精品高潮呻吟av久久| 一本—道久久a久久精品蜜桃钙片| 国产乱人偷精品视频| www.色视频.com| 18禁动态无遮挡网站| av在线观看视频网站免费| 免费观看的影片在线观看| 女性生殖器流出的白浆| 激情五月婷婷亚洲| 女的被弄到高潮叫床怎么办| 色网站视频免费| 国国产精品蜜臀av免费| 中文字幕亚洲精品专区| 午夜日本视频在线| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 超色免费av| xxxhd国产人妻xxx| 三级国产精品欧美在线观看| 2021少妇久久久久久久久久久| av福利片在线| 国产日韩欧美亚洲二区| 国产精品人妻久久久影院| 18禁观看日本| 人成视频在线观看免费观看| 国产成人a∨麻豆精品| 精品一品国产午夜福利视频| 亚洲精品乱码久久久久久按摩| av不卡在线播放| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 99久久人妻综合| 午夜日本视频在线| 欧美日韩国产mv在线观看视频| 不卡视频在线观看欧美| 午夜福利视频精品| 尾随美女入室| 美女国产高潮福利片在线看| 国产av码专区亚洲av| 美女内射精品一级片tv| 亚洲成人av在线免费| 久久99热这里只频精品6学生| kizo精华| 国产亚洲欧美精品永久| 欧美精品高潮呻吟av久久| 成人黄色视频免费在线看| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 久久久久久久久久久免费av| 18禁在线无遮挡免费观看视频| 我的老师免费观看完整版| 老司机亚洲免费影院| 亚洲欧洲国产日韩|