• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一個(gè)高粘彈的陰離子蠕蟲(chóng)膠束體系

    2013-09-17 06:58:42謝丹華趙劍曦魏西蓮
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:化學(xué)系福州大學(xué)大學(xué)化學(xué)

    謝丹華 趙劍曦,* 劉 琳 游 毅 魏西蓮

    (1福州大學(xué)化學(xué)化工學(xué)院,膠體與界面化學(xué)研究所,福州350108;2聊城大學(xué)化學(xué)化工學(xué)院化學(xué)系,山東聊城252059)

    1 Introduction

    Upon the addition of salts,cationic cetyltrimethylammonium halides(C16TAX)in aqueous solution can self-assembly into flexible threadlike(wormlike)micelles with the length even on the order of a few microns.1,2At high concentrations these wormlike micelles entangle each other to form a transient network,which sharply increases the viscoelasticity of the solution.Comparatively,anionic wormlike micelles have advantage over cationic counterparts in many applications,including enhanced oil recovery.3Moreover,anionic systems tend to be biodegradable and less toxic compared with cationic ones.But the formation of anionic wormlike micelles is not common since the addition of salts often interacts strongly with anionic surfactant and results in precipitate.Therefore,only a few anionic wormlike micelles were formed by conventional singlechain surfactants such as sodium alkyl sulfate4-9or sodium dodecyltrioxylene sulfate10-14in the presence of additives.What?s more,these anionic micelles were not as long as the cationic ones and hence the anionic systems often followed a poor property(low viscoelasticity).For example,in the reported anionic wormlike micellar system consisted of SDS,the zero-shear viscosity of the solution only had a very low value of~1 Pa·s.5

    Many efforts have been made to overcome this difficulty,in which the most valuable test was for the gemini surfactants.For example,Acharya et al.15tried to construct the wormlike micelles using a carboxylate gemini surfactant that has no spacer(designated as GS)mixed with the nonionic surfactants with a short poly(oxyethylene)chain(CmEn,where m,n=12,3;12,4;16,4;respectively).They found that C12E3very effectively promoted the formation of long wormlike micelles and as a result,the maximum viscosity of the solution attained about 104Pa·s.Recently,we reported a novel anionic wormlike micelle system constructed by carboxylate gemini surfactants with an azobenzene spacer(designated as Cm(azo)Cm,where m represented the number of the carbon atoms in each alkyl tail and was 10,12,and 14,respectively,see Scheme 1(a)).16,17The azobenzene spacer has a stretched length of more than 1 nm,which makes the head-group of Cm(azo)Cmincluding two carboxyl groups and a spacer quite large.This seems to say that Cm(azo)Cmis hard to form threadlike aggregates with a low surface curvature according to the molecular packing theory.18Very interestingly,however,all these surfactants formed wormlike micelles.The mechanism has been attributed to the rigid characteristic of the azobenzene spacer,which restrained the two alkyl tails within a gemini molecule drawing close and yielded the pseudo volume between them and thus increased the packing parameter,P.16,17This finding strongly suggests that the gemini surfactants with a long rigid spacer may be good candidates for forming anionic wormlike micelles.

    Scheme 1 Chemical structures of carboxylate gemini surfactants with long rigid spacer

    Very recently,we synthesized a new family of carboxylate gemini surfactants also with a long aromatic spacer,O,O?-bis(sodium 2-alkylcarboxylate)-p-dibenzenediol,referred to as Cm?2Cm(m=10,12,14,Scheme 1(b)).Surprisingly,we found that C12?2C12followed a new mechanism of aggregation different from general core-shell micelle formation.19In dilute solution,C12?2C12formed large network-like aggregates.This behavior was attributed to an extending configuration of C12?2C12with the two alkyl tails stretching towards the solution due to the rigidity of the long spacer.Thus the large network-like aggregate formation was an inevitable outcome of spontaneously reducing the energy of the system.Due to the columnar-like molecular geometry of C12?2C12,the network-like aggregates were very easily transformed into rod-like micelles with slightly increasing surfactant concentration and finally the wormlike micelles were formed.By this mechanism of aggregation,a new approach to constructing highly viscoelastic anionic wormlike micellar systems is perhaps revealed.In this paper,we report the wormlike micellar solution formed by C14?2C14that has the longest alkyl tails in this family so as to further understand this new constructing way.

    2 Experimental

    2.1 Materials

    Sodium bromide(NaBr,purity>99%,Beijing Chemical Reagents Co.)was used as received.The water used was Milli-Q grade with a resistivity of 18.2 MΩ·cm.

    O,O?-bis(sodium 2-tetradecylcarboxylate)-p-dibenzenediol(referred to as C14?2C14)was synthesized in our laboratory according to the following routes(Scheme 2).All reagents used were purchased from Sinopharm Chemical Reagent Co.,Ltd.(China).

    Methyl 2-bromotetradecanoate was prepared according to our previous work.17

    Synthesis of MC14?2C14M.The potassium carbonate(9.7 g,70 mol)was added to a three-necked flask with 20 mL N,N-dimethylformamide(DMF).4,4?-Biphenol(3.7 g,20 mmol)was dissolved in 10 mL DMF,and then this solution was added to the mixture dropwise.Methyl 2-bromotetradecanoate(19.3 g,60 mmol)was added into the mixture secondly.The mixture was reacted under stirring at 80°C overnight.The mixture was poured into 70 mL ice-water and extracted with petroleum ether(3×60 mL).The combined organic layers were washed with deionized water.The petroleum ether was removed under reduced pressure.The crude product was recrystallized from petroleum ether three times to give MC14?2C14M as white powder.

    Scheme 2 Synthetic route of C14?2C14

    Synthesis of C14?2C14.A mixture of MC14?2C14M(6.4 g,9.6 mmol)and sodium hydroxide(0.92 g,23 mmol)in 500 mL of 95%ethanol was refluxed overnight.The resulting mixture was cooled to room temperature and centrifuged to afford the white precipitate.The precipitate was washed with ethanol several times and dried in vacuum to give the target compound as white powder.The final yield was 36.6%according to the quality of 4,4?-biphenol.

    1H NMR(400 Hz,D2O)for C14?2C14: δ,7.56(d,J=7.6 Hz,4H,H-Ar),6.92(d,J=7.6 Hz,4H,H-Ar),4.47(br,2H,CH),1.90(m,4H,CH2),1.43-1.19(m,4H,CH2),1.05-0.82(m,36H,CH2),0.43(t,J=6.4 Hz,6H,CH3).

    Anal.Calcd.for(C40H60Na2O6)(%):C,70.35;H,8.86;Found:C,69.99;H,8.65.

    2.2 Rheological measurements

    Rheological measurements were performed on a stress controlled rheometer(AR2000ex,TAinstruments,USA)with conical concentric cylinders.The cone was made of standard ETC steel with the diameter of 40 mm and cone angle of 2°.The gap between the center of the cone and plate was 50 μm.At a designed temperature,the sample was kept for 5 min on the plate to reach the equilibrium before testing.A strain sweep was performed at a frequency of 6.28 rad·s-1(1 Hz)before the test.A strain value was then decided to make sure of the sample in the linear viscoelastic region during the following oscillatory measurements.

    2.3 Cryogenic transmission electron microscopy(cryo-TEM)

    Cryo-TEM samples were prepared in a controlled environment vitrification system(CEVS)at 28°C.A micropipet was used to load 5 μL surfactant solution onto a lacey support TEM grid,which was held by tweezers.The excess solution was blotted with a piece of filter paper and the thin film was suspended on the mesh hole.After waiting for about 10 s to relax any stresses induced during the blotting,the samples were quickly plunged into a reservoir of liquid ethane(cooled by the nitrogen)at its melting temperature.The vitrified samples were then stored in the liquid nitrogen until they were transferred to a cryogenic sample holder(Gatan 626)and examined with a JEM 2200FS TEM(200 keV)at about-174°C.The phase contrast was enhanced by underfocus.The images were recorded on a Gatan multiscan CCD and processed with Digital Micrograph.

    2.4 Dynamic light scattering

    Dynamic light scattering(DLS)of micellar solutions was measured with a Brookhaven Instrument which was composed of a BI-200SM goniometer,a BI-9000AT digital correlator(522 channels)and a photomultiplier detector.The He-Ne laser with 15 mW power and 632.8 nm wavelength was used as the light source.The measurement temperature was controlled by a thermostatic circulator(Poly-sceience,USA)with an accuracy of ±0.01 °C.All solutions were filtered through 0.22 μm Millipore filters into cylindrical light-scattering cells(od=25 mm).

    The intensity-intensity time correlation function G(2)(t,q)in the self-beating mode was measured,where t is decay time and q is scattering vector and equals to 4πn/λsin(θ/2).The G(2)(t,q)was transformed into the electric field-electric field time correlation function g(1)(t,q)by Siegert formula:

    where A is the baseline,β is a parameter depending on the coherence of the detection.The g(1)(t,q)was further related to the characteristic line-width(Γ)distribution G(Γ)by

    The G(Γ)can be obtained by a Laplace inversion of g(1)(t,q)using the CONTIN program.The average line-width<Γ> was calculated according to

    Furthermore,the apparent translational diffusive coefficient Dappcan be related to <Γ> as Dapp=<Γ>/q2.Thus,the apparent hydrodynamic radius of aggregate(Rh,app)was obtained from the Stokes-Einstein equation

    where kBis the Boltzmann constant,T is absolute temperature,and η0is the solvent viscosity.

    3 Results and discussion

    3.1 Characteristic of wormlike micelles at 25°C

    Fig.1 (a)Appearance of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)aqueous system at 25 °C,(b)the cryo-TEM image,and(c)its variations of G?(filled symbols),G?(open symbols)with sweep frequency ω

    The aqueous system of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)at 25 °C has a gel-like appearance(Fig.1a).This is due to the formation of wormlike micelles,which entangle each other into a transient network as seen in the cryo-TEM image(Fig.1b).The result of frequency sweep measurement(Fig.1c)shows high elasticity,where elastic modulus G?exceeds viscous modulus G?at sweep frequency ω>0.1 rad·s-1.This system very well follows the Maxwell fluid behavior with a single stress relaxation time(τR)20as fitted(solid lines in Fig.1c)by the equations:

    The corresponding Cole-Cole plot,i.e.,elastic modulus G? against viscous modulus G?(Fig.1c,insert),shows a perfect semicircular shape at low and medium frequencies,which is another indication for the Maxwell fluid behavior.

    The τRis estimated as ωc-1,where ωcis the frequency at which two moduli are equal.21On the increase in ω,the G?attains a limiting value called a plateau modulus,G?∞.The living polymer model proposed by Granek and Cates20revealed two time scales of stress relaxation,namely,reptation time(τrep),which corresponds to the curvilinear diffusion of a chain of the mean length along its own contour,and breaking time(τb).When breaking occurs over the time scale of reptation(τb<<τrep),as in a typical wormlike micellar system,the chain undergoes many breakages and recombinations before a chain segment relaxes by reptation.Thus the stress relaxation is characterized by a new time scale given by τR=(τbτrep)1/2,and the solution behaves as a Maxwell fluid with single relaxation time τR.The average scission time for the micelle,τb,is approximately equal to the inverse of ω corresponding to the minimum of G??minin the high-frequency region.For the present system,the estimated τbis ~0.105 s.This value allows us to estimate τrep~1.35×103s using τR(11.9 s),satisfying the expectation of τb<<τrep.20

    The micellar contour length(L)can be estimated by the relation20

    where leis the average length between two entanglement points and G??minis the minimum at G?at high-frequency region.For a given le,L is inversely proportional to the ratio G??min/G?∞.Thus,a smaller G??min/G?∞r(nóng)esults in a longer L.So far,the smallest G??min/G?∞r(nóng)eported was 0.014 yielded in the mixed system of carboxylate gemini surfactant with no spacer(GS)and C12E3.15In this case,Acharya et al.15have stressed that the added C12E3played a very important role in promoting micellar growth.Another small G??min/G?∞was 0.016 obtained from the system of traditional cationic surfactant having an unsaturated tail as long as 22 carbon atoms.22For the present system,the G??min/G?∞is about 0.022.Even though this value is not as low as those mentioned above,it is produced in an anionic wormlike micellar system only upon the addition of simple salt and hence is very rare.

    As a comparison,a typical value of le(80-150 nm)for wormlike micelles can be adopted15and thus L corresponds to roughly 3.6-6.8 μm for the present system at 25 °C.This length is indeed greatly longer than that of cetyltrimethylammonium bromide(C16TABr)micelle in the presence of 1.5 mol·L-1NaBr.23

    3.2 Zero-shear viscosity at 25°C

    Fig.2 Variations of viscosity(η)with the shear rate at 25 °C

    Fig.2 shows the viscosity versus steady shear rate curve for the aqueous system of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1).The viscosity keeps unchanged at low shear rate re-gion and then decreases with increasing the shear rate(the shear thinning behavior)after a critical shear rate,rc.The shear thinning behavior can be taken as an evidence for the formation of wormlike micelles,24which well corresponds to the indication of dynamic viscoelastic measurements.According to the Carreau model,the zero-shear viscosity η0is obtained to be 1.10×104Pa·s,meaning the relative viscosity of the wormlike micellar solution(ηr,given by η0/ηs,where ηsis the viscosity of the solvent,water)to be as high as 107.This is a very large value comparable with that obtained from the mixed system of gemini surfactant(GS)and C12E3.15

    3.3 Mechanism of wormlike micelle formation

    As seen in Sections 3.1 and 3.2,C14?2C14can form wormlike micelles in aqueous solution,which is similar to the behavior of C14(azo)C14as reported previously.17

    Fig.3(left row)shows the intensity-fraction distribution of C14?2C14measured by DLS,in which the aggregates at 5 and 10 mmol·L-1show quite large size(~100 nm in apparent hydrodynamic radius,Rh,app)and narrow distribution.With increasing the surfactant concentration(C),the mean Rhincreases obviously at C≥20 mmol·L-1,indicating the rapid growth of micelles.This behavior is very analogous to that of C12?2C12which is another member of this family.Thus,as revealed in our previous work,19C14?2C14must form large network-like aggregates after the critical micelle concentration(cmc),and these network-like aggregates can be very easily transformed into rod-like micelles with slightly increasing the surfactant concentration and finally the wormlike micelles are formed.

    However,it is very surprising that C14(azo)C14shows the aggregation behavior different from C14?2C14,although this surfactant also has a long aromatic spacer in its molecular structure.Fig.3(right row)shows the scattering intensity of C14(azo)C14only distributes at small Rhvalues(0.1-15 nm)but a very wide range(polydispersity in size).The two cases(C14?2C14and C14(azo)C14)reflect the complicacy of gemini surfactants in self-assembly and sometimes these surfactants show completely different behaviors although their molecular structures are similar.A good understanding for their mechanisms needs further and deep investigations.

    3.4 Effect of temperature

    Fig.3 Intensity-fraction distributions measured at a detector angle θ=90°and analyzed by CONTIN model for C14?2C14(left row)and C14(azo)C14(right row)at different concentrations

    Fig.4 Viscoelastic spectra(a)and the normalized Cole-Cole plots(b)at different temperatures

    Fig.4a shows the viscoelastic spectra of this system at different temperatures.On the raise in temperature,the rheological behavior still shows semicircular shape in the Cole-Cole plots(Fig.4b)over the range of low and medium frequencies.Similarly,the characteristic parameters described above can be obtained according to living polymer model.20For those cases where the G?does not give a constant limiting value,the G?∞may be estimated from the modulus value at ωc,using the relation G?∞=2G?max,where G?maxis the viscosity modulus at shear frequency ωc.21As seen from Table 1,the τRmonotonically decreases over the entire temperature range,but G?∞shows an initial enhancement at low temperatures followed by a subsequent decrease at higher temperatures.Since τRassociates with the micellar length,15the decrease in τRindicates the wormlike micelles become shorter with increasing temperature.This is consistent with the estimation for the length from the ratio of G?min/G?∞,which gives out the values of gradual decrease in L(Table 1).For the wormlike micellar system undergoing stress relaxation by reptation,G?∞generally depends on the number density of the aggregates.15The initial increase in G?∞over the temperature range of 25-40°C suggests that the enhanced thermal motion promotes the contact between the micelles and thus yields more entanglements,which makes the system more viscoelastic.The following decrease in G?∞above 40 °C must be due to the shorter micelles as discussed above.

    The zero-shear viscosity drown from Fig.5 has a value of 17.6 Pa·s at 70 °C,namely,its relative viscosity is 1.8×104.In general,with increasing temperature to 60 °C,the ηrof wormlike micellar solution falls to a value below 104.There are few,if any,examples of micellar solutions showing high viscosities(ηr>104)above 60 °C.The typical cases are the wormlike micel-lar solutions formed by cationic surfactants,erucyl bis(hydroxyethyl)methylammonium chloride(EHAC)and erucyl trimethylammonium chloride(ETAC),as reported by Raghavan and Kaler.22The both surfactants bear a quite long(C22)tail.Relying on the help of sodium salicylate or sodium chloride,the both systems retain high viscosity(ηr>104)up to ca 90 °C.Compared with EHAC or ETAC,C14?2C14only has short tails(12 carbon atoms in each tail,Scheme 1(b)).Even so,the relative viscosity ηrstill attains a rather large value at 70 °C.This is very rare for the anionic wormlike micelle systems.

    Table 1 Characteristic parameters of the wormlike micellar systems of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)at different temperatures

    Fig.5 Variations of viscosity(η)with the shear rate at different temperatures

    3.5 Flow activation energy

    The variation of η0and τRwith temperature can be empirically described by Arrhenius relationships,indicating exponential reductions in these quantities:25,26

    where Eais the flow activation energy,R is the gas constant,and A is a pre-exponential factor.Semilogarithmic plots of η0and τRvs 1/T(Fig.6)fall on straight lines within experimental error,being consistent with Eqs.(8)and(9).The slope gives out the flow activation energy Eato be(141±5)kJ·mol-1.This value is comparable to that reported for other wormlike micelles.22,24

    Fig.6 Arrhenius plots of the zero-shear viscosity(η0)and the relaxation time(τR)vs 1/T

    4 Conclusions

    The present study exhibited an excellent anionic wormlike micelle system formed by carboxylate gemini surfactant C14?2C14.This result again demonstrates that the gemini surfactants are very good candidates for the construction of wormlike micelles and also strongly suggests that based on the gemini surfactants,an effective approach may be developed to construct the anionic wormlike micelle systems with excellent viscoelastic properties.

    (1) Dreiss,C.A.Soft Matter 2007,3,956.and references therein.doi:10.1039/b705775j

    (2) Yang,J.Curr.Opin.Colloid Interface Sci.2002,7,276.and references therein.doi:10.1016/S1359-0294(02)00071-7

    (3) Maitland,G.C.Curr.Opin.Colloid Interface Sci.2000,5,301.doi:10.1016/S1359-0294(00)00069-8

    (4) Magid,L.J.;Li,Z.;Butler,P.D.Langmuir 2000,16,10028.doi:10.1021/la0006216

    (5) Hassan,P.A.;Raghavan,S.R.;Kaler,E.W.Langmuir 2002,18,2543.doi:10.1021/la011435i

    (6) Arleth,L.;Bergstrom,M.;Pedersen,J.S.Langmuir 2002,18,5343.doi:10.1021/la015693r

    (7) Nakamura,K.;Shikata,T.Langmuir 2006,22,9853.doi:10.1021/la061031w

    (8)Acharya,D.P.;Sato,T.;Kaneko,M.;Singh,Y.;Kunieda,H.J.Phys.Chem.B 2006,110,754.doi:10.1021/jp054631x

    (9)Lu,T.;Xia,L.G.;Wang,X.D.;Wang,A.Q.;Zhang,T.Langmuir 2011,27,9815.doi:10.1021/la2018709

    (10) Mu,J.H.;Li,G.Z.Chem.Phys.Lett.2001,345,100.doi:10.1016/S0009-2614(01)00799-0

    (11) Mu,J.H.;Li,G.Z.Colloid Polym.Sci.2001,279,872.doi:10.1007/s003960100508

    (12)Mu,J.H.;Li,G.Z.;Jia,X.L.;Wang,H.X.;Zhang,G.Y.J.Phys.Chem.B 2002,106,11685.doi:10.1021/jp014096a

    (13) Mu,J.H.;Li,G.Z.;Wang,Z.W.Rheol.Acta 2002,41,493.doi:10.1007/s00397-002-0246-y

    (14)Mu,J.H.;Li,G.Z.;Wang,Z.W.;Zheng,L.Q.;Liao,G.Z.;Huang,L.J.Disper.Sci.Technol.2001,22,421.doi:10.1081/DIS-100107851

    (15)Acharya,D.P.;Kunieda,H.;Shiba,Y.;Aratani,K.J.Phys.Chem.B 2004,108,1790.

    (16) Song,B.L.;Hu,Y.F.;Zhao,J.X.J.Colloid Interface Sci.2009,333,820.doi:10.1016/j.jcis.2009.02.030

    (17) Song,B.L.;Hu,Y.F.;Song,Y.M.;Zhao,J.X.J.Colloid Interface Sci.2010,341,94.

    (18) Israelachvili,J.N.;Mitchell,D.J.;Ninham,B.W.Journal of the Chemical Society-Faraday Transactions II 1976,72,1525.doi:10.1039/f29767201525

    (19) Xie,D.H.;Zhao,J.X.Langmuir 2013,29,545.

    (20) Granek,R.;Cates,M.E.J.Chem.Phys.1992,96,4758.doi:10.1063/1.462787

    (21) Oda,R.;Narayanan,J.;Hassan,P.A.;Manohar,C.;Salkar,R.A.;Kern,F.;Candau,S.J.Langmuir 1998,14,4364.doi:10.1021/la971369d

    (22) Raghavan,S.R.;Kaler,E.W.Langmuir 2001,17,300.doi:10.1021/la0007933

    (23) Khatory,A.;Lequeux,F.;Kern,F.;Candau,S.J.Langmuir 1993,9,1456.doi:10.1021/la00030a005

    (24) Shrestha,R.G.;Shrestha,L.K.;Aramaki,K.J.Colloid Interface Sci.2007,311,276.doi:10.1016/j.jcis.2007.02.050

    (25) Candau,S.J.;Hirsch,E.;Zana,R.;Delsanti,M.Langmuir 1989,5,1225.doi:10.1021/la00089a018

    (26) Fischer,P.;Rehage,H.Langmuir 1997,13,7012.doi:10.1021/la970571d

    猜你喜歡
    化學(xué)系福州大學(xué)大學(xué)化學(xué)
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    福州大學(xué)喜迎建校60周年
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    基于SCIE的大學(xué)化學(xué)學(xué)科文獻(xiàn)計(jì)量學(xué)研究——以河南大學(xué)為例
    信息技術(shù)在大學(xué)化學(xué)專業(yè)英語(yǔ)教學(xué)中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    楊梅酮的抗氧化活性
    關(guān)于《大學(xué)化學(xué)》編輯部新網(wǎng)頁(yè)開(kāi)通的通知
    卡戴珊不雅视频在线播放| 欧美另类一区| 这个男人来自地球电影免费观看 | 久久国产乱子免费精品| av网站免费在线观看视频| 国产精品.久久久| 午夜福利,免费看| 午夜免费男女啪啪视频观看| 国产淫语在线视频| 久久久a久久爽久久v久久| 中文在线观看免费www的网站| 纯流量卡能插随身wifi吗| 国产精品久久久久久精品古装| 少妇人妻精品综合一区二区| a级毛色黄片| 久久久久久久国产电影| 纯流量卡能插随身wifi吗| 乱人伦中国视频| 内地一区二区视频在线| 亚洲精品456在线播放app| 免费看日本二区| 丝袜在线中文字幕| 欧美丝袜亚洲另类| 国产乱来视频区| 亚洲精品456在线播放app| av线在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲av片在线观看秒播厂| 高清在线视频一区二区三区| 91成人精品电影| 国产高清三级在线| 日韩一区二区视频免费看| 亚洲三级黄色毛片| 成人午夜精彩视频在线观看| 国产精品国产av在线观看| 麻豆成人av视频| 久久精品国产亚洲av涩爱| 国产精品.久久久| 精品熟女少妇av免费看| 我的老师免费观看完整版| 在线观看av片永久免费下载| 亚洲真实伦在线观看| 最新中文字幕久久久久| 99久久精品热视频| 国产成人精品婷婷| 欧美国产精品一级二级三级 | tube8黄色片| 久久精品熟女亚洲av麻豆精品| 日韩电影二区| 人妻 亚洲 视频| 日韩成人伦理影院| 一个人看视频在线观看www免费| 黄色配什么色好看| 波野结衣二区三区在线| 国产黄片美女视频| 久久人妻熟女aⅴ| 久久免费观看电影| 久久99蜜桃精品久久| 婷婷色综合大香蕉| 国产精品秋霞免费鲁丝片| 亚洲内射少妇av| 一级二级三级毛片免费看| 校园人妻丝袜中文字幕| 一级毛片我不卡| 水蜜桃什么品种好| 久久精品夜色国产| 国产成人aa在线观看| 一级黄片播放器| 免费看av在线观看网站| 如何舔出高潮| 极品少妇高潮喷水抽搐| 大又大粗又爽又黄少妇毛片口| 国产成人一区二区在线| 精品人妻熟女毛片av久久网站| 久久久久久久久久人人人人人人| 黄色日韩在线| 亚洲精品视频女| 日韩精品有码人妻一区| 亚洲一级一片aⅴ在线观看| 多毛熟女@视频| 偷拍熟女少妇极品色| 好男人视频免费观看在线| 在现免费观看毛片| 国产视频内射| 乱码一卡2卡4卡精品| 国产伦在线观看视频一区| 人妻制服诱惑在线中文字幕| 国产有黄有色有爽视频| 久久热精品热| 国产一区二区在线观看日韩| 国产男人的电影天堂91| 欧美性感艳星| 日日爽夜夜爽网站| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放 | 久久久午夜欧美精品| 美女主播在线视频| 极品人妻少妇av视频| 女人精品久久久久毛片| 亚洲内射少妇av| 亚洲一区二区三区欧美精品| 久久99蜜桃精品久久| 成人国产av品久久久| 91精品伊人久久大香线蕉| 国产在视频线精品| 水蜜桃什么品种好| 久久精品国产亚洲av天美| 久久久久久久亚洲中文字幕| 亚洲精华国产精华液的使用体验| 大香蕉久久网| 在线看a的网站| 自拍偷自拍亚洲精品老妇| 人人妻人人澡人人看| 国产成人免费观看mmmm| 亚洲精品国产成人久久av| 好男人视频免费观看在线| 亚洲精品国产av成人精品| 亚洲国产色片| 热re99久久精品国产66热6| 中文字幕人妻熟人妻熟丝袜美| 国产成人一区二区在线| 一级毛片黄色毛片免费观看视频| 午夜福利在线观看免费完整高清在| 深夜a级毛片| 日韩三级伦理在线观看| 天堂8中文在线网| 国产在视频线精品| 超碰97精品在线观看| 欧美精品高潮呻吟av久久| 中文资源天堂在线| 精品熟女少妇av免费看| 久久精品久久久久久噜噜老黄| 高清av免费在线| 人人妻人人添人人爽欧美一区卜| 国产成人a∨麻豆精品| 亚洲av免费高清在线观看| 亚洲av综合色区一区| 亚洲国产精品国产精品| 午夜免费男女啪啪视频观看| 免费av不卡在线播放| 边亲边吃奶的免费视频| 免费观看a级毛片全部| 成人国产av品久久久| 国产精品久久久久久av不卡| 少妇人妻精品综合一区二区| 日本91视频免费播放| 亚洲在久久综合| 国产av精品麻豆| 只有这里有精品99| 少妇人妻久久综合中文| 一级毛片电影观看| 久久97久久精品| 女性被躁到高潮视频| 国产91av在线免费观看| h视频一区二区三区| 国产精品一区二区在线观看99| 美女大奶头黄色视频| 亚洲欧洲国产日韩| 一级毛片久久久久久久久女| 一本大道久久a久久精品| 国产欧美日韩一区二区三区在线 | 欧美老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 丰满人妻一区二区三区视频av| 视频中文字幕在线观看| 国产黄色视频一区二区在线观看| 国产在线一区二区三区精| 人妻 亚洲 视频| 精品熟女少妇av免费看| 最黄视频免费看| 国产亚洲最大av| 麻豆成人午夜福利视频| 亚洲不卡免费看| 人人妻人人看人人澡| 日本-黄色视频高清免费观看| 久久精品国产自在天天线| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 国产在线一区二区三区精| 一个人看视频在线观看www免费| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区免费开放| 草草在线视频免费看| 国产伦精品一区二区三区视频9| 亚洲精品乱久久久久久| 国产精品欧美亚洲77777| 国模一区二区三区四区视频| 久热久热在线精品观看| 国产伦在线观看视频一区| 日韩人妻高清精品专区| 菩萨蛮人人尽说江南好唐韦庄| 天堂8中文在线网| 亚洲精品第二区| 美女中出高潮动态图| 亚洲av二区三区四区| av播播在线观看一区| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 久久久久久久国产电影| 国产伦理片在线播放av一区| 亚洲av中文av极速乱| 亚洲内射少妇av| 我要看黄色一级片免费的| 国产一级毛片在线| 日日摸夜夜添夜夜添av毛片| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 久久热精品热| 男女边吃奶边做爰视频| 精品一区二区三区视频在线| 中文字幕久久专区| 一级毛片黄色毛片免费观看视频| 看非洲黑人一级黄片| 噜噜噜噜噜久久久久久91| 下体分泌物呈黄色| 在线观看一区二区三区激情| 人人妻人人澡人人爽人人夜夜| 国产极品粉嫩免费观看在线 | 国产极品粉嫩免费观看在线 | 精品国产乱码久久久久久小说| 有码 亚洲区| 日韩欧美精品免费久久| 99久久人妻综合| 成人亚洲欧美一区二区av| 精品国产一区二区久久| 校园人妻丝袜中文字幕| 天堂俺去俺来也www色官网| 少妇的逼水好多| 天天操日日干夜夜撸| 亚洲av福利一区| 丰满少妇做爰视频| 99久久人妻综合| 波野结衣二区三区在线| 亚洲怡红院男人天堂| 黄色怎么调成土黄色| 久久人人爽人人片av| a级一级毛片免费在线观看| 两个人的视频大全免费| 一级片'在线观看视频| 春色校园在线视频观看| 极品教师在线视频| 国产精品99久久久久久久久| 亚洲天堂av无毛| 成人18禁高潮啪啪吃奶动态图 | 丰满乱子伦码专区| 国产老妇伦熟女老妇高清| 精品久久久噜噜| 免费观看在线日韩| 亚洲国产欧美在线一区| 免费观看的影片在线观看| 观看免费一级毛片| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 国产成人a∨麻豆精品| 极品教师在线视频| 亚洲在久久综合| 69精品国产乱码久久久| 日本av手机在线免费观看| 色视频www国产| 久久久久久久久久成人| av播播在线观看一区| 色视频在线一区二区三区| 超碰97精品在线观看| 精品少妇黑人巨大在线播放| 亚洲欧美精品专区久久| 免费大片18禁| 国产精品一二三区在线看| 中国美白少妇内射xxxbb| av播播在线观看一区| 久久人人爽av亚洲精品天堂| 在线观看www视频免费| 亚洲欧美日韩东京热| 观看av在线不卡| 91精品国产国语对白视频| 亚洲国产成人一精品久久久| 免费大片黄手机在线观看| 成人国产麻豆网| 高清欧美精品videossex| av在线老鸭窝| 欧美区成人在线视频| 女人精品久久久久毛片| 一本一本综合久久| 大又大粗又爽又黄少妇毛片口| 欧美xxⅹ黑人| 国产精品欧美亚洲77777| 国产中年淑女户外野战色| 久久亚洲国产成人精品v| 成人毛片60女人毛片免费| 日韩强制内射视频| 久久人人爽人人片av| 欧美精品高潮呻吟av久久| 日本黄大片高清| 日韩中文字幕视频在线看片| 五月天丁香电影| 国产精品国产av在线观看| 最新的欧美精品一区二区| 一级毛片久久久久久久久女| 国产精品国产三级国产专区5o| 欧美+日韩+精品| 久久国产乱子免费精品| 18禁在线无遮挡免费观看视频| 亚洲国产精品国产精品| 少妇高潮的动态图| 美女国产视频在线观看| 国产在视频线精品| 国产欧美日韩精品一区二区| 国产精品国产三级专区第一集| 色哟哟·www| 中文乱码字字幕精品一区二区三区| 免费人成在线观看视频色| 亚洲av欧美aⅴ国产| 亚洲精品国产色婷婷电影| 欧美成人精品欧美一级黄| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看| 男人爽女人下面视频在线观看| 人人妻人人看人人澡| 五月伊人婷婷丁香| 最近手机中文字幕大全| 青春草视频在线免费观看| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 亚洲图色成人| 精品熟女少妇av免费看| 91久久精品国产一区二区三区| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 亚洲av.av天堂| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| av福利片在线| 一本大道久久a久久精品| 另类亚洲欧美激情| 欧美日韩视频精品一区| 99久久精品一区二区三区| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 水蜜桃什么品种好| 高清视频免费观看一区二区| 色婷婷av一区二区三区视频| 国产成人aa在线观看| 精品人妻熟女毛片av久久网站| 亚洲av成人精品一二三区| 亚洲欧美清纯卡通| 两个人免费观看高清视频 | 久久人人爽人人片av| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 午夜福利,免费看| 国产伦精品一区二区三区视频9| 丝袜脚勾引网站| 国产成人freesex在线| 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 丝袜脚勾引网站| 国产欧美亚洲国产| 黑人高潮一二区| 天堂俺去俺来也www色官网| 国产精品一区二区在线观看99| 成人影院久久| 久久精品国产亚洲av天美| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 久久久a久久爽久久v久久| 国产黄色免费在线视频| 久久午夜福利片| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 最近2019中文字幕mv第一页| 国产在线免费精品| 国产亚洲91精品色在线| 在线观看www视频免费| 夫妻性生交免费视频一级片| 国产亚洲91精品色在线| 国产精品伦人一区二区| 日本免费在线观看一区| 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 精品熟女少妇av免费看| 9色porny在线观看| 观看免费一级毛片| av播播在线观看一区| 一本大道久久a久久精品| 日日摸夜夜添夜夜添av毛片| 国产成人91sexporn| 国产精品国产三级国产专区5o| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久| 一级av片app| 男的添女的下面高潮视频| 国产黄片视频在线免费观看| 国产淫语在线视频| av免费观看日本| 高清不卡的av网站| 国产无遮挡羞羞视频在线观看| 精品亚洲成a人片在线观看| 一本一本综合久久| 国产亚洲91精品色在线| 国产精品福利在线免费观看| 日本免费在线观看一区| 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 国产在线一区二区三区精| 中文天堂在线官网| 中文字幕av电影在线播放| 午夜免费观看性视频| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| 亚洲性久久影院| 国产一区亚洲一区在线观看| 在线亚洲精品国产二区图片欧美 | 高清午夜精品一区二区三区| 丰满迷人的少妇在线观看| 久久国产精品男人的天堂亚洲 | 免费黄网站久久成人精品| 日本-黄色视频高清免费观看| 久久97久久精品| 免费看不卡的av| 亚洲欧美成人综合另类久久久| 51国产日韩欧美| 成人亚洲欧美一区二区av| 国产精品女同一区二区软件| 精品亚洲成a人片在线观看| 日本与韩国留学比较| 日本欧美国产在线视频| 国产毛片在线视频| 欧美精品国产亚洲| 三上悠亚av全集在线观看 | 高清不卡的av网站| 美女中出高潮动态图| 日本av免费视频播放| 日本欧美国产在线视频| 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 日本91视频免费播放| 成人黄色视频免费在线看| 久久久久精品性色| 大香蕉久久网| 国产视频首页在线观看| av在线app专区| 美女主播在线视频| 少妇 在线观看| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 亚洲精品一二三| 爱豆传媒免费全集在线观看| 18禁动态无遮挡网站| 蜜臀久久99精品久久宅男| 男人和女人高潮做爰伦理| 国产av精品麻豆| 91久久精品国产一区二区成人| 亚洲人成网站在线观看播放| 久久久久视频综合| 亚洲av不卡在线观看| 久久99精品国语久久久| 国产成人精品一,二区| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 成年av动漫网址| 高清在线视频一区二区三区| 美女大奶头黄色视频| 午夜老司机福利剧场| 黄色配什么色好看| 成人特级av手机在线观看| 新久久久久国产一级毛片| 观看av在线不卡| 久久精品国产亚洲网站| 成年美女黄网站色视频大全免费 | 一区二区三区免费毛片| 欧美激情极品国产一区二区三区 | 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 日韩电影二区| 亚洲国产精品专区欧美| 亚洲国产欧美日韩在线播放 | 男人和女人高潮做爰伦理| 黄色一级大片看看| 久久久久人妻精品一区果冻| 在线观看免费视频网站a站| 国产精品国产三级国产av玫瑰| 久久久久久久大尺度免费视频| 国产精品国产三级专区第一集| 亚洲精品日本国产第一区| 在线天堂最新版资源| 91精品伊人久久大香线蕉| a级片在线免费高清观看视频| 2018国产大陆天天弄谢| 老女人水多毛片| 少妇人妻久久综合中文| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 寂寞人妻少妇视频99o| 日日摸夜夜添夜夜爱| 亚洲欧美日韩东京热| 亚洲国产精品一区三区| 少妇被粗大的猛进出69影院 | 中文字幕亚洲精品专区| av播播在线观看一区| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 国产精品熟女久久久久浪| 国产精品久久久久久久电影| 亚洲成人手机| 亚洲经典国产精华液单| 国产免费视频播放在线视频| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 男女国产视频网站| 久久狼人影院| 亚洲自偷自拍三级| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人妻| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 蜜臀久久99精品久久宅男| 狂野欧美白嫩少妇大欣赏| 国产永久视频网站| 国产精品99久久99久久久不卡 | 97在线人人人人妻| 久久精品国产自在天天线| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 一级av片app| 国产一区二区在线观看日韩| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 免费看日本二区| 免费观看a级毛片全部| 丝袜在线中文字幕| 婷婷色综合大香蕉| 国产91av在线免费观看| 欧美日韩精品成人综合77777| 国产无遮挡羞羞视频在线观看| 国产精品国产三级专区第一集| 韩国高清视频一区二区三区| 久久久午夜欧美精品| 国产乱来视频区| 中文欧美无线码| 国产日韩欧美视频二区| 国产亚洲5aaaaa淫片| 韩国高清视频一区二区三区| av播播在线观看一区| 久久精品久久久久久久性| 如日韩欧美国产精品一区二区三区 | 国产成人午夜福利电影在线观看| 激情五月婷婷亚洲| 精品一品国产午夜福利视频| 国产国拍精品亚洲av在线观看| 美女中出高潮动态图| 黑人猛操日本美女一级片| 欧美高清成人免费视频www| 多毛熟女@视频| 赤兔流量卡办理| 久久ye,这里只有精品| 国产伦在线观看视频一区| 久久99热这里只频精品6学生| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看| 国产成人免费无遮挡视频| h日本视频在线播放| 亚洲综合精品二区| 男女免费视频国产| 亚洲精品日本国产第一区| 日韩人妻高清精品专区| 99热6这里只有精品| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 纯流量卡能插随身wifi吗| 少妇人妻 视频| 中文在线观看免费www的网站| 亚洲国产欧美在线一区| 久热这里只有精品99| 国产高清国产精品国产三级| 日韩成人伦理影院| 人人澡人人妻人| 亚洲中文av在线| 好男人视频免费观看在线| 插逼视频在线观看| 欧美精品亚洲一区二区| 婷婷色麻豆天堂久久| 性色av一级| 又大又黄又爽视频免费| 成年av动漫网址| 桃花免费在线播放| 中文字幕久久专区| 在线观看国产h片| 国产在线免费精品| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 97精品久久久久久久久久精品| 中文欧美无线码| 亚洲美女搞黄在线观看| 大码成人一级视频| a级一级毛片免费在线观看| 美女xxoo啪啪120秒动态图| 国产精品.久久久| 大香蕉97超碰在线| 亚洲一区二区三区欧美精品| 国产精品久久久久久久久免| 日韩制服骚丝袜av| 青春草视频在线免费观看| 我要看日韩黄色一级片| 九草在线视频观看| 免费观看的影片在线观看|