• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚乙二醇-四氧化三鐵納米粒子復(fù)合材料的結(jié)構(gòu)、物理性質(zhì)及應(yīng)用

    2013-09-17 06:58:38宋樂新邵志成
    物理化學(xué)學(xué)報 2013年7期
    關(guān)鍵詞:三鐵志成物理化學(xué)

    夏 娟 宋樂新,,* 黨 政 邵志成

    (1中國科學(xué)技術(shù)大學(xué)材料科學(xué)與工程系,中國科學(xué)院能量轉(zhuǎn)換材料重點實驗室,合肥230026;2中國科學(xué)技術(shù)大學(xué)化學(xué)系,合肥230026)

    1 Introduction

    Polymer materials,for their low price and good plasticity,were widely applied in many fields,such as conductive films,optical films,biosensors.1-3However,poor thermal stability,low heat transfer capability,and poor mechanical properties often limit their applications.Extensive studies have been carried out on polymer/inorganic particle composites in order to overcome these constraints.4-7It was found that the incorporation of inorganic particles as filler into a polymer as carrier resulted in significant improvement in physical properties of polymers,such as controlled electrical resistivity,better stiffness,enhanced strength,and improved thermal stability.5-9Various polymer/inorganic composites have been considered to be more promising materials due to a unique combination of desirable organic and inorganic characteristics.8-10For example,graphite or metal powders and thermoplastic polymers such as polyethylene glycol(PEG),or thermosetting polymers such as epoxy resin,can be blended to achieve specific properties,e.g.,anti-static interference,lump absorbent,magnetic activity,and corrosion-resistant character.11-13

    Nanometer-scale inorganic particles occupy a larger surface area and consequently lead to an increased fraction of polymer chains interacting with the inorganic particles.14,15Fe3O4nanoparticles may be a good filler for its magnetic properties which have many applications in science and engineering.16,17Although there were many attempts in the past to prepare and characterize polymers/Fe3O4composites,18there were a few reports on the combination between nano-sized Fe3O4particles and a polymer.19PEG,a semicrystalline thermoplastic polymer,is soluble in both aqueous and organic solvents,and has been extensively studied both experimentally and theoretically.20-23

    In this paper,PEG was used as a carrier polymer and Fe3O4nanoparticles were used as a filler to combine the two kinds of materials by adjusting their initial amounts,and to produce a series of useful composites.Initially,Fe3O4nanoparticles(diameter<40 nm)with a unique octadecahedral structure were synthesized in the presence of β-cyclodextrin(CD)24,25and characterized.Subsequently,a series of composites consisting of different amounts of Fe3O4nanoparticles embedded in a PEG matrix were prepared.Finally,the physical properties of the composites,including crystallization behaviors,thermal parameters,magnetic properties,and microwave absorption capabilities,were examined by various techniques.

    The experiments give interesting and sometimes surprising results.For example,the crystallization degree,phase transition temperature,and degradation process of PEG can be mediated by the presence of Fe3O4nanoparticles.All these results point to the possibility of modification of physical properties of PEG.And the modification can be controlled by varying the relative amount of Fe3O4nanoparticles.We believe that this work may be of interest to researchers interested in the development of polymer/inorganic nanoparticle composite materials.

    2 Experimental

    2.1 Materials

    Ferrous chloride tetrahydrate(FeCl2·4H2O)and ferric chloride hexahydrate(FeCl3·6H2O)were the products of the Shanghai Jinshan Chemical Plant.β-CD was obtained from Shanghai Chemical Reagent Company and recrystallized twice from deionized water.PEG(Mn6000)was purchased from Shanghai Jingchun Chemical Reagent Factory.Crystal violet(CV)was from Aladdin Chemistry Co.Ltd.Rhodamine 6G(R6G)was purchased from Sigma-Aldrich.All other reagents are of analytical-reagent grade,unless stated otherwise.

    2.2 Preparation of Fe3O4nanoparticles

    Fe3O4nanoparticles were prepared by the aqueous co-precipitation(see Eq.(1))of soluble FeC12·4H2O and FeCl3·6H2O with addition of β-CD.26

    Initially,6 mmol(1.194 g)FeCl2·4H2O and 9 mmol(2.434 g)FeCl3·6H2O were dissolved in 100 mL aqueous solution of β-CD(1 mmol,1.135 g).Subsequently under vigorous stirring,aqueous ammonia(0.3 mol·L-1)was added to adjust the pH to 10.0.The reaction mixture was kept reacting in water bath at room temperature for 30 min under vigorous stirring.An insoluble black material was precipitated and separated via centrifugation.Then,the crystals of product were washed with distilled water until the pH value was lowered to 7.0.Finally,the crystals were collected and dried in a vacuum desiccator over phosphorus pentoxide.

    2.3 Preparation of a group of composites of PEG with Fe3O4nanoparticles

    All four composites were produced by blending the Fe3O4nanoparticles with an aqueous solution(50 mL)of PEG(1.0 g).The mixtures were dispersed by ultrasonication for 30 min,and stirred for 1 h at 333 K.Then,the formation of colloid solutions was observed.After the water was removed from the colloid solutions by rotary evaporation below 300 K,the crude products were dried under vacuum(76 Pa)at 333 K.The asobtained PEG/Fe3O4composite materials containing 1,10,50,and 200 mg of Fe3O4nanoparticles were marked as CM-1(colourless),CM-2(light grey),CM-3(yellow),and CM-4(brown),respectively.

    2.4 Instruments and methods

    X-ray diffraction(XRD)patterns of the samples were recorded in a Philips X?Pert Pro X-ray diffractometer(Philips,Netherlands).All the samples were irradiated with monochromatized Cu Kαradiation(λ=0.154178 nm).A continuous scan rate of 5(°)·min-1from 5°to 80°of 2θ was used for all samples.Tube voltage and current were 40 kV and 40 mA,respectively.

    Crystal morphologies of the samples were observed using a Supra 40 field emission scanning electron microscope(FE-SEM)(JEOL-2010,Japan)operated at 5 kV.Transmission electron microscope(TEM)and high-resolution transmission electron microscopy(HRTEM)images were obtained with a JEOL-2010(Japan)microscope using an accelerating voltage of 200 kV.

    Differential thermogravimetric(DTG)and thermogravimetric analyses(TGA)analyses were obtained on a Shimadzu TGA-50 thermogravimetric analyzer(Japan)at a heating rate of 10.0 K·min-1under a nitrogen atmosphere with a gas flow of 25 mL·min-1.All solid samples were ground to fine powder by mortar and pestle and dried under the same conditions before analysis.The mass of the samples analyzed was all in the range of about 5 to 7 mg.

    Differential scanning calorimetry(DSC)measurements were conducted on a DSCQ2000(TA company,United States)with a constant heating and cooling rate of 10.0 K·min-1during three cycles under a nitrogen atmosphere using a gas flow of 100 mL·min-1.

    Gas chromatography time-of-flightmass spectrometry(GC-TOF-MS)experiments were performed on a Micromass GCT-MS spectrometer with a controlled heating device(MS company,England).The heating program of the samples was the same as that reported for the previous study.27

    Field-dependent magnetization measurements were made with a Quantum Design Magnetic Property Measurement System(United States)equipped with a superconducting quantum interference device(SQUID)using a vibrating sample magnetometer at 300 K.

    X-ray photoelectron spectroscopy(XPS)was done at Photoemission Station of National Synchrotron Radiation Laboratory of Hefei with a VG Scienta R3000 electron energy analyzer,using Al Kαradiation(1486.6 eV)in ultra-high vacuum(2.00×10-9Pa)at room temperature.The energy resolution of the instrument is 0.16 eV.The C 1s peak(284.8 eV)was used as the internal standard for binding-energy calibration.

    The microwave absorption properties of the composites were characterized by an Agilent-8722ES Vector Network Analyzer(VNA,United States)in the range of 7.5 to 12.5 GHz.The analyzer was calibrated before use,and the composites were laminated to films with 1 mm thickness.The electromagnetic wave propagated perpendicular to the surface of the films when these films were placed between the two ports of the waveguide,and the waveguide-fed rectangular aperture was sealed.

    Surface-enhanced Raman scattering(SERS)measurements of the Fe3O4nanoparticles,CM-1,and CM-4 were performed using a LABRAM-HR Confocal Laser Micro Raman spectrometer(JY company,France)operated with a 514.5 nm laser excitation in the range of 100-2000 cm-1and laser power of 2.5 mW at the sample for an exposure time of 10 s at room temperature,with a resolution of 0.6 cm-1.R6G and CV were used as probe molecules.The Fe3O4nanoparticles,CM-1,and CM-4 were dispersed on a silica substrate(1 cm×1 cm)after suspended in alcohol.Then,the R6G and CV probe solutions(20 μL,10-3mol·L-1)were dropped onto a freshly prepared silica substrate.The spectra have been background corrected and normalized for comparison.

    3 Results and discussion

    3.1 Characterization of Fe3O4nanoparticles

    Fig.1A presents the XRD pattern of the Fe3O4nanoparticles obtained.The position of the Bragg peaks is in accordance with the JCPDS card(65-3107)for crystalline Fe3O4.28The diffraction peaks at 2θ values of 30.6°,35.9°,43.5°,54.1°,57.6°,and 63.2°,with the corresponding(hkl)planes of(220),(311),(400),(422),(511),and(440)respectively,are the characteristic features of the Fe3O4material with a cubic spinel structure.29

    Fig.1 XRD pattern(A),SEM image(B),TEM image(C),and HRTEM image(D)of the Fe3O4nanoparticles

    As seen from Fig.1A,only the cubic symmetry phase of Fe3O4is observed,and there is no other phase such as ferric hydroxide,γ-or α-ferric oxide.The FE-SEM and TEM images in Fig.1B and 1C,respectively,show relatively uniform particles with a diameter of less than 40 nm.The HRTEM image in Fig.1D reveals that the Fe3O4nanoparticles look like an octadecahedral nanobox structure with corners truncated:eight identical isosceles triangular surfaces,eight identical isosceles trapezoid surfaces,and two square base surfaces.Moreover,all the four sides of the polyhedral nanobox correspond to the<110> zone axis of the cubic spinel structure.The formation of such a special nanostructure of Fe3O4particles is positive and significant for the development of inorganic nanomaterials.Undoubtedly,the addition of β-CD plays an important part in the regulation of the shape of Fe3O4particles,because without it,no regular nanoparticles could be obtained under such mild experimental conditions.30,31We propose that the β-CD may act as a chelating agent for the iron salts and/or a protective agent in the prevention of aggregation of core particles.32,33

    The field-dependence of magnetization in Fig.2(left)displays that the Fe3O4nanomaterial presents a soft ferromagnetism behavior with a small hysteresis loop in the magnetic field(1 kOe).The saturation magnetization(Ms)at an applied field of 4.37 kOe at 300 K is about 13.41 emu·g-1,which is much smaller than those reported previously.34-37One reason is due to the formation of a regular polyhedral structure(see Fig.1C)of the Fe3O4nanomaterial since shape anisotropy can play a crucial role in decreasing Ms,38,39The other reason may be due to the very fast nucleation and growth kinetics of Fe3O4nanoparticles.40

    3.2 Crystallization behaviors of the composites

    The colloid solutions of PEG containing different concentrations of the Fe3O4nanoparticles are displayed in Fig.3.Obviously for the four composites,except for CM-4,there is no sediment in suspension or at the bottom.The formation of colloids is attributed to both the small size of the nanoparticles and the surface effect of PEG chains.A control experiment shows that no colloid is formed in the presence of the commercial Fe3O4(see Fig.3A)under the same conditions as the CM-4.We consider that the generation of such colloids is a distinctive feature of the interaction between insoluble inorganic nanoparticles and soluble polymers.It may be helpful for understanding the formation of the composites.

    Fig.2 Field dependences of magnetizations of the Fe3O4 nanomaterial(a)and its composites(b)

    Fig.3 Photographs of the PEG solutions containing commercial Fe3O4(200 mg)and CM-1,CM-2,CM-3,and CM-4

    Further,with the increase of the content of Fe3O4nanoparticles,the solutions gradually deepen in color and become opaque.Also,the solution colors,except CM-4,are stable for weeks in air(see Fig.3B)and accord with the color of the composite materials obtained.This change in color probably is a result of the interaction between the metallic ions(Fe2+and Fe3+)and the oxygen atoms of PEG chains,41,42which was induced by a sufficient dispersion of Fe3O4nanoparticles at PEG surfaces.

    After water was removed from the colloids,we obtained the composites.Their surface morphologies are depicted in Fig.4.The CM-1 containing the lowest amount of Fe3O4nanoparticles has a smooth sheet structure with a thickness of about 200 nm,similar to the commercially pure PEG.43However,with the increase of the Fe3O4content,as seen in the figure,the surfaces of the composites become rougher and rougher.This provides experimental evidence for the shape-dependence of the PEG composites on the amount of Fe3O4nanoparticles.

    XRD patterns of the composites are indicated in Fig.4.It is apparent that the crystallization behavior of all the four composites was mainly dominated by the crystal growth process of PEG since several main diffraction peaks at 19.2°,23.2°,26.6°,and 36.1°belong to PEG.No signals due to Fe3O4are observed in CM-1,CM-2,and CM-3,but in CM-4,the peaks of Fe3O4at 30.5°and 35.9°occur(labeled by asterisks).The observations give us an impression that a lower amount of Fe3O4nanoparticles can be more effectively dispersed in the crystallization process of PEG.

    3.3 Thermal parameters of the composites

    Here,in order to investigate how the amount of Fe3O4nanoparticles influences thermal properties of PEG,we performed two independent measurements:DSC and DTG.

    Fig.5 displays a comparison of the phase transition properties between PEG and itscomposites.There are two interesting phenomena.First,the higher the amount of added Fe3O4(from CM-1 to CM-3),the lower the melting point of PEG(indicated by the dashed arrow).Second,as the amount of Fe3O4increases further,the melting point of PEG rises slightly(indicated by the solid arrow).Table 1 lists the data of the phase transition points(melting temperatures,Tm).These data provide strong evidence that the melting process of PEG is not only mediated by the presence of Fe3O4nanoparticles,but also directly related to the added amount of Fe3O4.Importantly,this was also supported by the addition of a very little amount of Fe3O4nanoparticles.This result provides an important clue to the possible significance of inorganic oxide nanoparticles in modifying the thermal behavior of polymers.

    Fig.4 FE-SEM images(upper)and XRD patterns(lower)of CM-1,CM-2,CM-3,and CM-4

    Fig.5 DSC curves of PEG and its composites

    The degree of crystallinity(Xc)of PEG was determined based on Eq.(2),in which ΔHmand ΔHm?(see Table 1)are the melting enthalpy obtained from DSC curve and the melting enthalpy of fully crystallized PEG(ΔHm?,196.0 J·g-1).44The data of Xcare summarized in Table 1.We can see that the crystallinity of PEG is lowered upon compositing with Fe3O4nanoparticles,and becomes lower and lower with increasing Fe3O4with the exception of CM-4.The difference in Xcmay be an impor-tant reason for the different Tmvalues.

    Table 1 Thermal parameters and crystallization behavior of PEG and its composites

    TGA curves of the as-obtained PEG/Fe3O4composite materials in Fig.6A indicated that no weight loss was observed below 450 K.Therefore,we can evaluate the relative content of Fe3O4in the materials based on the initial mass of reactants.In the light of calculations,the mass fractions of Fe3O4in CM-1,CM-2,CM-3 and CM-4 were 0.099%,0.99%,4.76%,and 16.67%,respectively.Fig.6B shows the degradation processes of PEG in a free state and in thecomposites.There is only one peak at 671.7 K(Td)corresponding to the degradation process of free PEG.However,in the cases of the composites(CM-1 to CM-3),the peak appears at a higher temperature.Further,as indicated by the arrow,Tdincreases with the content increase of Fe3O4.This finding demonstrates that the composited PEGs have a higher thermal stability than free PEG,dependent on Fe3O4contents.More interestingly,these features are not present in the case of CM-4.The PEG in the composite exhibits a completely different degradation route composed of two degradation stages:one centered at approximately 574.2 K and the other at 658.5 K,both of which are lower than the Tdvalue of free PEG.It suggests that the excess addition of the Fe3O4nanomaterial causes a decrease in thermal stability of PEG.This,together with the DSC results,shows the significant difference between the composite and the other three composites,giving the importance of the content of inorganic oxide nanoparticles in mediating the degradation process of a polymer.

    Fig.6 TGAprofiles of the four composites(A)and DTG profiles of PEG and its composites(B)

    To further explore whether the Fe3O4nanomaterial is involved in the regulation of thermal degradation products of PEG,we performed GC-TOF-MS experiments.Fig.7 shows total ion current(TIC)curves of PEG and CM-3.Free PEG has a strong release peak at 26.3 min,three moderate peaks at 32.1,35.6,and 42.4 min,and a weak peak at 10.3 min.42However,the PEG in the CM-3 presents different profiles:two strong peaks at 25.6 and 31.6 min,and two weak peaks at 17.6 and 35.8 min.

    This difference in TIC profiles,including the number,position,and intensity of peaks(see the arrows in the figure),is a reflection of the effect of Fe3O4nanoparticles on the rupture of PEG chains.Such an effect can be easily seen in mass spectra.Fig.8 indicates the relative abundances(RA)of degradation products of PEG and CM-3 at the maximum degradation rates.Our results show two interesting phenomena including:(1)the presence of Fe3O4nanoparticles leads to the occurrence of more small fragments(indicated by the circle)with m/z lower than 46,e.g.,CHO+(29.002),C2H3O+(43.018),and C2H5O+(45.033).The situation is very similar to that found in the binary system of Fe nanoparticles and PEG;43(2)RA values of several main fragments:C4H9O+(73.058),C4H8O2+(88.051),C4H9O2+(89.060),C6H13O3+(133.086),C8H17O4+(177.114)decrease largely(indicated by the arrow),which is different from the effect of Fe nanoparticles.27These results imply that the degradation process of PEG can be mediated by Fe-based nanomaterials,and different Fe-based nanomaterials have different mediating effects.

    3.4 Magnetic properties and electronic structures of the composites

    Fig.8 Mass spectra of PEG at 26.3 min and CM-3 at 25.6 min

    Magnetic properties of the composites at room temperature are shown in Fig.2.Like the Fe3O4nanomaterial,the Fe3O4components in the composites display soft ferromagnetism with a small hysteresis loop in a low magnetic field(1 kOe).We noticed that the values of Msupon compositing are lower than the pure nanomaterial.45For example,the Msvalue(1.46 emu·g-1)of the Fe3O4component in CM-4 is less than one ninth of that of the Fe3O4nanomaterial(13.41 emu·g-1).In particular,the Fe3O4components in CM-1,CM-2,and CM-3 have a much lower Msvalue(<0.50 emu·g-1).

    In order to explain the difference in magnetizations,we have made XPS measurements.Fig.9 indicates the binding energies of Fe 2p3/2and O 1s at 710.4 and 532.2 eV,respectively,46,47in the Fe3O4nanomaterial.However,the core levels of Fe 2p3/2and O 1s are located at lower energies upon compositing with PEG.For example,the binding energies of Fe 2p3/2and O 1s are 709.8 and 531.0 eV in CM-2.The large difference in the energy of O 1s(see the arrow)may be due to the contribution of the oxygen atoms in PEG.

    It is worth stressing that with increasing the content of PEG in the composites,the binding energy of Fe 2p3/2increases(indicated by the arrow)while the binding energy of O 1s decreases slightly(indicated by the arrow).The observation points to the electronic shift from iron to oxygen,and supports the hypothesis that the interaction between the oxygen atoms of PEG and Fe3O4nanoparticles decreases the electronic density of the iron.This is likely to be a reason for the lower Msvalues of the Fe3O4components in the composites.

    Fig.9 XPS spectra of(A)Fe 2p3/2and(B)O 1s in the Fe3O4nanomaterial and its composites

    3.5 Microwave absorption capabilities of the composites

    The microwave absorption properties of the films of PEG and its composites were characterized in a frequency range of 7.5-12.5 GHz at room temperature.Before use,the films were laminated to be small pieces with 1 mm thickness and 1 cm diameter.Fig.10 shows the insertion loss and return loss of the films.It is clear that all the films show a very high return loss of at least 7.5 dB and a rather low insertion loss of at most 3.0 dB.In particular,the films present a series of strong signals at the microwave frequency range.For example,the maximum peak values at 8.0,8.2,and 10.2 GHz are all higher than 30 dB.These results mean that the films obtained here may have considerable potential in applications as microwave absorption materials.48

    Further,we observed several interesting features from this figure.(1)Two new return loss peaks(indicated by asterisks)appear in the range of 8-9 GHz in the cases of composite films.(2)The shift in position of the return loss peaks from the PEG film to the composite films can be easily seen.(3)The profiles of the return loss peaks of the composite films differ from one another in particular at lower frequencies.These findings reveal that the microwave absorption capability of PEG is affected by the incorporation of Fe3O4nanoparticles,and can be further tuned by the amount of Fe3O4nanoparticles added.

    Fig.10 Microwave absorption properties of the films of PEG and its composites

    Now,let us make detailed discussion on the relation between the microwave absorption abilities of the composite materials and the contents of Fe3O4.On the one hand,in the frequency range of 9-12 GHz,the insertion losses of the composite materials are much higher than that of pure PEG film,but the content of Fe3O4only makes a small contribution to the improvement of the return loss of PEG film.On the other hand,the microwave absorption abilities of the composite materials including insertion losses and return losses are much higher than that of pure PEG film in the frequency range of 7.5-9.0 GHz,and the return losses are highly associated with the content of Fe3O4.There are two significant aspects to these results.(1)Although no large changes were observed in the insertion losses and return losses of CM-1,CM-2,and CM-3,the three composites exhibit higher microwave absorption abilities than CM-4;(2)With the increase of the content of Fe3O4,the return loss of CM-3 is higher than those of CM-1 and CM-2.These observations indicate that in this frequency range,a moderate content of Fe3O4is advantageous to improve the microwave absorption ability of PEG film.On the contrary,a very high content of Fe3O4will lead to a decrease in the microwave absorption ability.One probable reason is that the microwave absorption abilities of the films may relate to the dispersion level of Fe3O4particles in the films.

    3.6 SERS of the composites

    Raman spectra from R6G and CV on the pure Fe3O4nanoparticles,CM-1 and CM-4 materials deposited onto a silica substrate are shown in Fig.11.No Raman signal from R6G and CV on a silica glass substrate could be observed(curve a),and both of them in the presence of the Fe3O4nanoparticles(curve b)and CM-1(curve c)deposited on a silica glass substrate exhibit rather weak Raman signals:R6G at 612,773,1361,1513 cm-1and CV at 914,1177,1366,1620 cm-1.49However,in the case of CM-4,there is a large enhancement of the Raman intensity of the signals.For example,the intensity of the strongest peak of R6G at 1361 cm-1and CV at 1620 cm-1are about 5.2 and 4.5 times larger than those in case of CM-1.The result reveals that the SERS enhancement of the PEG composites for the organic dyes is associated with the amount of Fe3O4nanoparticles in the composites.

    Fig.11 SERS spectra of(A)R6G and(B)CV on a silica substrate(a),the Fe3O4nanoparticles(b),CM-1(c),and CM-4(d)

    It is reported that the enhancement of localized electromagnetic field incident on an adsorbed organic molecule is an important factor for SERS effects.50Here,we suggest that the molecule-ion interaction between the Fe3O4nanoparticles and PEG molecules may be a factor contributing to the enhanced localized electromagnetic field.Our data indicate that such an enhancement would jump to a higher level,while more Fe3O4nanoparticles were accommodated near PEG chains leading to an increase in the density of shell-localized charge.

    4 Conclusions

    In the study,a Fe3O4nanomaterial with a highly symmetric octadecahedral nanobox structure was constructed by a facile,one-step and low temperature water bath method.The material exhibited a soft ferromagnetism behavior with a much lower saturation magnetization than those reported previously.Several composite materials of PEG with the nanomaterial in different initial mass ratios were prepared and characterized by various techniques.The composite materials presented several features of interest.First,the melting process of PEG can,to a certain extent,be tuned by the amount of the Fe3O4nanomaterial added.Also,the PEGs in the composites showed lower melting enthalpies and degrees of crystallinity,but higher degradation temperatures in comparison with free PEG.In particular,the thermal degradation pattern and degradation products of PEG were largely affected by the presence of Fe3O4nanoparticles.Further,although the Fe3O4components in the composite materials indicated a similar soft ferromagnetism response,they had a much lower saturation magnetization than the Fe3O4nanomaterial.This is possibly due to the electronic shift from iron of Fe3O4nanoparticles to oxygen atoms of PEG.More importantly,the composite films displayed very low insertion losses and quite high return losses,suggesting that they could have a potential use in microwave absorption applications.Finally,our data showed that the CM-4 composite material exhibits a relatively large enhancement in SERS for organic dyes,demonstrating that the composite ratio between an inorganic oxide and a polymer is a key parameter,which can make a dominant contribution to the SERS efficiency.We consider that this work may be a contribution to future studies about the design and construction of polymer/inorganic oxide nanoparticle composites.

    (1) (a)Fu,M.X.;Chen,F.F.;Zhang,J.X.;Shi,G.Q.J.Mater.Chem.2002,12,2331.doi:10.1039/b201405j(b)Liang,G.J.;Zhong,Z.C.;Xu,J.;Zhang,Z.C.;Chen,M.H.;Li,Z.F.;He,P.;Hou,Q.F.Acta Phys.-Chim.Sin.2012,28,2852.[梁桂杰,鐘志成,許 杰,張增常,陳美華,李在房,和 平,候秋飛.物理化學(xué)學(xué)報,2012,28,2852.]doi:10.3866/PKU.WHXB201210091

    (2) (a)Liu,M.;Guo,X.F.;Wang,J.M.;Jiang,L.Acta Phys.-Chim.Sin.2012,28,2931.[劉 萌,郭向飛,王景明,江 雷.物理化學(xué)學(xué)報,2012,28,2931.]doi:10.3866/PKU.WHXB201209262(b)Darmanin,T.;Guittard,F.;Amigoni,S.;Noblin,X.;Kofman,R.;Celestini,F.Soft Matter 2011,7,1053.

    (3) Zhang,R.X.;Gao,B.J.;Wei,X.P.Acta Phys.-Chim.Sin.2012,28,223.[張瑞霞,高保嬌,位霄鵬.物理化學(xué)學(xué)報,2012,28,223.]doi:10.3866/PKU.WHXB201111171

    (4)Zhang,H.Y.;Qi,R.R.;Tong,M.K.;Su,Y.Z.;Huang,M.J.Appl.Polym.Sci.2012,125,1152.doi:10.1002/app.v125.2

    (5) (a)Frickel,N.;Greenbaum,A.G.;Gottlieb,M.;Schmidt,A.M.J.Phys.Chem.C 2011,115,10946.doi:10.1021/jp111348e(b)Liu,J.;Chen,G.M.;Yang,J.P.Polymer 2008,48,3923.

    (6) (a)Chen,W.;Qu,B.J.J.Mater.Chem.2004,14,1705.doi:10.1039/b401790k(b)Ghassemzadeh,L.;Pace,G.;DiNoto,V.;Muller,K.Phys.Chem.Chem.Phys.2011,13,9327.

    (7) Zhang,J.F.;Sun,X.Z.Biomacromolecules 2004,5,1446.doi:10.1021/bm0400022

    (8) (a)Song,H.M.;Kim,Y.J.;Park,J.H.J.Phys.Chem.C 2008,112,5397.doi:10.1021/jp709721g(b)Song,L.X.;Du,F.Y.;Yang,J.;Dang,Z.;Yang,J.;Shao,Z.C.Soft Matter 2011,7,6671.

    (9) (a)Song,L.X.;Wang,M.;Pan,S.Z.;Yang,J.;Chen,J.;Yang,J.J.Mater.Chem.2011,21,7982.doi:10.1039/c1jm10252d(b)Wang,M.;Song,L.X.;Dang,Z.;Zhu,L.H.;Yang,J.Chem.Lett.2011,40,478.

    (10) (a)Babinec,S.J.;Mussell,R.D.;Lundgard,R.L.;Cieslinski,R.Adv.Mater.2000,12,1823.(b)Yang,J.;Song,L.X.;Guo,X.Q.;Yang,J.;Chen,J.Chin.J.Inorg.Chem.2011,27,2013.[楊 軍,宋樂新,郭雪晴,楊 晶,陳 杰.無機化學(xué)學(xué)報,2011,27,2013.]

    (11)Zhang,L.;Zhu,J.Q.;Zhou,W.B.;Wang,J.;Wang,Y.Energy 2012,39,294.doi:10.1016/j.energy.2012.01.011

    (12) Sakai,T.;Mukawa,T.;Tsuchiya,K.;Sakai,H.;Abe,M.J.Nanosci.Nanotechnol.2009,9,461.doi:10.1166/jnn.2009.J058

    (13) Kuzhir,P.;Paddubskaya,A.;Bychanok,D.;Nemilentsau,A.;Shuba,M.;Plusch,A.;Maksimenko,S.;Bellucci,S.;Coderoni,L.;Micciulla,F.;Sacco,I.;Rinaldi,G.;Macutkevic,J.;Seliuta,D.;Valusis,G.;Banys,J.Thin Solid Films 2011,519,4114.doi:10.1016/j.tsf.2011.01.198

    (14) Peng,F.B.;Lu,L.Y.;Sun,H.L.;Wang,Y.Q.;Liu,J.Q.;Jiang,Z.Y.Chem.Mater.2005,17,6790.doi:10.1021/cm051890q

    (15) (a)Triebel,C.;Vasylyev,S.;Damm,C.;Stara,H.;Ozpinar,C.;Hausmann,S.;Peukert,W.;Munstedt,H.J.Mater.Chem.2011,21,4377.doi:10.1039/c0jm03487h(b)Schubert,U.Chem.Mater.2001,13,3487.

    (16) (a)Zeng,L.Y.;Ren,W.Z.;Zheng,J.J.;Cui,P.;Wu,A.G.Phys.Chem.Chem.Phys.2012,14,2631.doi:10.1039/c2cp23196d(b)Chen,P.J.;Hu,S.H.;Hsiao,C.S.;Chen,Y.Y.;Liu,D.M.;Chen,S.Y.J.Mater.Chem.2011,21,2535.

    (17) (a)Chen,Z.L.;Li,J.;Zhang,X.;Wu,Z.N.;Zhang,H.;Sun,H.Z.;Yang,B.Phys.Chem.Chem.Phys.2012,14,6119.(b)Hong,Z.Q.;Li,J.X.;Zhang,F.;Zhou,L.H.Acta Phys.-Chim.Sin.2013,29,590.[洪周琴,李金霞,張 芳,周麗繪.物理化學(xué)學(xué)報,2013,29,590.]doi:10.3866/PKU.WHXB201212123

    (18) (a)Liu,B.;Zhang,W.;Yang,F.K.;Feng,H.L.;Yang,X.L.J.Phys.Chem.C 2011,115,15875.doi:10.1021/jp204976y(b)Jiang,W.;Li,F.S.;Chen,L.Y.;Yang,Y.;Chu,J.J.Acta Phys.-Chim.Sin.2005,21,182.[姜 煒,李鳳生,陳令允,楊 毅,楚建軍.物理化學(xué)學(xué)報,2005,21,182.]doi:10.3866/PKU.WHXB20050214

    (19) (a)Yang,T.I.;Brown,R.N.C.;Kempel,L.C.;Kofinas,P.J.Magn.Magn.Mater.2008,320,2714.doi:10.1016/j.jmmm.2008.06.008(b)Gas,J.;Poddar,P.;Almand,J.;Srinath,S.;Srikanth,H.Adv.Funct.Mater.2006,16,71.

    (20)French,A.C.;Thompson,A.L.;Davis,B.G.Angew.Chem.Int.Edit.2009,48,1248.doi:10.1002/anie.200804623

    (21)Obermeier,B.;Wurm,F.;Mangold,C.;Frey,H.Angew.Chem.Int.Edit.2011,50,7988.doi:10.1002/anie.v50.35

    (22)Ohki,T.;Harada,M.;Okada,T.J.Phys.Chem.B 2007,111,7245.

    (23) (a)Wei,D.;Ge,L.L.;Guo,R.J.Phys.Chem.B 2010,114,3472.doi:10.1021/jp910315e(b)Pan,S.Z.;Song,L.X.,Bai,L.;Wang,M.;Zhu,L.H.;Chen,J.Curr.Org.Chem.2011,15,862.

    (24)(a)Yang,Y.;Zhang,Y.M.;Chen,Y.;Zhao,D.;Chen,J.T.;Liu,Y.Chem.-Eur.J.2012,18,4208.doi:10.1002/chem.v18.14(b)Cai,W.S.;Xia,B.Y.;Shao,X.G.;Maigret,B.;Pan,Z.X.Chem.Phys.Lett.2000,319,708.(c)Shao,Z.C.;Song,L.X.;Teng,Y.;Dang,Z.;Xia,J.Acta Phys.-Chim.Sin.2013,29,460.[邵志成,宋樂新,滕 越,黨 政,夏 娟.物理化學(xué)學(xué)報,2013,29,460.]doi:10.3866/PKU.WHXB201301071

    (25) (a)Song,L.X.;Yang,J.;Bai,L.;Du,F.Y.;Chen,J.;Wang,M.Inorg.Chem.2011,50,1682.doi:10.1021/ic1021609(b)Song,L.X.;Chen,J.;Zhu,L.H.;Xia,J.;Yang,J.Inorg.Chem.2011,50,7988.

    (26)(a)Cruz,L.A.C.;Perez,C.A.M.;Romero,H.A.M.;Casillas,P.E.G.J.Alloy.Compd.2008,466,330.doi:10.1016/j.jallcom.2007.11.081(b)Xu,P.;Song,L.X.Acta Phys.-Chim.Sin.2008,24,2214.[徐 鵬,宋樂新.物理化學(xué)學(xué)報,2008,24,2214.]doi:10.3866/PKU.WHXB20081212(c)Xu,P.;Song,L.X.Acta Phys.-Chim.Sin.2008,24,729.[徐 鵬,宋樂新.物理化學(xué)學(xué)報,2008,24,729.]doi:10.3866/PKU.WHXB20080433

    (27) (a)Song,L.X.;Xu,P.J.Phys.Chem.A 2008,112,11341.doi:10.1021/jp806026q(b)Dang,Z.;Song,L.X.;Yang,J.;Chen,J.;Teng,Y.Dalton Trans.2012,41,3006.(c)Du,F.Y.;Song,L.X.;Wang,M.;Pan,S.Z.;Zhu,L.H.;Yang,J.Soft Matter 2011,7,9078.

    (28)Yu,X.G.;Shan,Y.;Du,B.;Chen,K.Z.CrystEngComm 2011,13,1525.doi:10.1039/c0ce00280a

    (29) Jiao,F.;Jumas,J.C.;Womes,M.;Chadwick,A.V.;Harrison,A.;Bruce,P.G.J.Am.Chem.Soc.2006,128,12905.doi:10.1021/ja063662i

    (30)Wang,B.;Zhang,F.;Qiu,J.H.;Zhang,X.H.;Chen,H.;Du,Y.;Xu,P.Acta Chim.Sin.2009,67,1211.[王 冰,張 鋒,邱建華,張雪洪,陳 洪,杜 毅,許 平.化學(xué)學(xué)報,2009,67,1211.]

    (31)Wang,H.B.;Liu,Z.L.;Lu,Q.H.;Peng,L.;Yao,K.L.Chin.J.Inorg.Chem.2004,20,1279.[汪漢斌,劉祖黎,盧強華,彭 麗,姚凱倫.無機化學(xué)學(xué)報,2004,20,1279.]

    (32) Hapiot,F.;Bricout,H.;Tilloy,S.;Monflier,E.Eur.J.Inorg.Chem.2012,1571.

    (33) Jean-Marie,A.;Griboval-Constant,A.;Khodakov,A.Y.;Monflier,E.;Diehl,F.Chem.Commun.2011,47,10767.doi:10.1039/c1cc13800f

    (34)Yang,X.W.;Jiang,W.;Liu,L.;Chen,B.H.;Wu,S.X.;Sun,D.P.;Li,F.S.J.Magn.Magn.Mater.2012,324,2249.doi:10.1016/j.jmmm.2012.02.111

    (35)Yang,C.;Wu,J.J.;Hou,Y.L.Chem.Commun.2011,47,5130.doi:10.1039/c0cc05862a

    (36)Wu,H.X.;Gao,G.;Zhou,X.J.;Zhang,Y.;Guo,S.W.CrystEngComm 2012,14,499.doi:10.1039/c1ce05724c

    (37)Wang,L.X.;Li,J.C.;Jiang,Q.;Zhao,L.J.Dalton Trans.2012,41,4544.doi:10.1039/c2dt11827k

    (38)Wang,J.;Chen,Q.;Zeng,C.;Hou,B.Adv.Mater.2004,16,137.

    (39) Zhang,D.;Zhang,X.;Ni,X.;Song,J.;Zheng,H.Cryst.Growth Des.2007,7,2117.doi:10.1021/cg060395j

    (40) Li,Z.;Sun,Q.;Gao,M.Y.Angew.Chem.Int.Edit.2005,44,123.

    (41)Yiapanis,G.;Henry,D.J.;Maclaughlin,S.;Evans,E.;Yarovsky,I.Langmuir 2012,28,17263.doi:10.1021/la3023375

    (42) Huang,C.L.;Jiao,L.;Zeng,J.B.;Zhang,M.;Xiao,L.P.;Yang,K.K.;Wang,Y.Z.Polymer 2012,53,3780.doi:10.1016/j.polymer.2012.06.027

    (43) Pan,S.Z.;Song,L.X.;Chen,J.;Du,F.Y.;Yang,J.;Xia,J.Dalton Trans.2011,40,10117.doi:10.1039/c1dt11090j

    (44)Wunderlich,B.Thermal Analysis;Academic Press:Los Angeles,1990.

    (45) Zhou,J.P.;He,H.C.;Shi,Z.;Nan,C.W.Appl.Phys.Lett.2006,88,013111.doi:10.1063/1.2162262

    (46)Grosvenor,A.P.;Kobe,B.A.;Biesinger,M.C.;McIntyre,N.S.Surf.Interface Anal.2004,36,1564.

    (47)Yang,C.Q.;Wang,G.;Lu,Z.Y.;Sun,J.;Zhuang,J.Q.;Yang,W.S.J.Mater.Chem.2005,15,4252.doi:10.1039/b505018a

    (48)Zhang,Z.Y.;Liu,X.X.;Wang,X.J.;Wu,Y.P.;Liu,Y.J.Magn.Magn.Mater.2012,324,2177.doi:10.1016/j.jmmm.2012.02.107

    (49)(a)Chen,L.M.;Liu,Y.N.CrystEngComm 2011,13,6481.doi:10.1039/c1ce05557g(b)Doherty,M.D.;Murphy,A.;Mcphillips,J.;Pollard,R.J.;Dawson,P.J.Phys.Chem.C 2010,114,19913.

    (50) (a)Jena,B.K.;Raj,C.R.Chem.Mater.2008,20,3546.doi:10.1021/cm7019608(b)Haynes,C.L.;McFarland,A.D.;Van Duyne,R.P.Anal.Chem.2005,77,338.

    猜你喜歡
    三鐵志成物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    納米級四氧化三鐵回收水中鉛離子實驗
    磁性四氧化三鐵氮摻雜石墨烯磁性固相萃取測定水樣中的6種醛酮化合物
    Chemical Concepts from Density Functional Theory
    連志成:一心向戰(zhàn)
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    天天都是感恩節(jié)
    磁性四氧化三鐵制備及對廢水重金屬離子凈化*
    水溶性四氧化三鐵納米粒子制備及其在大鼠體內(nèi)分布
    国产色爽女视频免费观看| 亚洲一区二区三区色噜噜| 桃红色精品国产亚洲av| 亚洲精品成人久久久久久| 黄色日韩在线| 蜜桃亚洲精品一区二区三区| 露出奶头的视频| 日韩精品中文字幕看吧| 亚洲av成人精品一区久久| 好男人在线观看高清免费视频| 男女之事视频高清在线观看| 琪琪午夜伦伦电影理论片6080| 伊人久久精品亚洲午夜| 日日夜夜操网爽| 精品免费久久久久久久清纯| 午夜福利欧美成人| 午夜日韩欧美国产| 九色国产91popny在线| 欧美色欧美亚洲另类二区| 69av精品久久久久久| 久久久成人免费电影| 亚洲成人久久性| 波野结衣二区三区在线| 亚洲成av人片在线播放无| 天堂网av新在线| 99热这里只有是精品在线观看 | 中亚洲国语对白在线视频| 免费看日本二区| 免费av不卡在线播放| 九九热线精品视视频播放| 国产久久久一区二区三区| 91午夜精品亚洲一区二区三区 | 99视频精品全部免费 在线| 亚洲美女视频黄频| 看免费av毛片| 色播亚洲综合网| 国产精品免费一区二区三区在线| 亚洲精品成人久久久久久| 亚洲自拍偷在线| 99国产极品粉嫩在线观看| 如何舔出高潮| 亚州av有码| 成年女人看的毛片在线观看| 日韩大尺度精品在线看网址| 午夜精品久久久久久毛片777| 久久久久久国产a免费观看| 搡老岳熟女国产| 亚洲电影在线观看av| netflix在线观看网站| 国产久久久一区二区三区| xxxwww97欧美| 久9热在线精品视频| 亚洲欧美清纯卡通| 一本一本综合久久| 99riav亚洲国产免费| 精品久久久久久久末码| 两个人视频免费观看高清| 乱人视频在线观看| 亚洲无线在线观看| 婷婷六月久久综合丁香| 亚洲精品日韩av片在线观看| 久久人人精品亚洲av| 亚洲精品在线观看二区| 国产精品影院久久| 欧美色视频一区免费| 我要看日韩黄色一级片| 欧美黄色片欧美黄色片| 欧美精品国产亚洲| 99久久久亚洲精品蜜臀av| 黄色日韩在线| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品论理片| 啦啦啦观看免费观看视频高清| 一级av片app| 俺也久久电影网| 国产av不卡久久| 亚洲片人在线观看| 亚洲电影在线观看av| 国产精品不卡视频一区二区 | 99国产极品粉嫩在线观看| 国产乱人视频| 男人舔奶头视频| 精品一区二区三区视频在线观看免费| 久久久久免费精品人妻一区二区| 可以在线观看毛片的网站| 九色国产91popny在线| 国产色爽女视频免费观看| 成人av在线播放网站| 欧美成狂野欧美在线观看| 国产淫片久久久久久久久 | 国产69精品久久久久777片| 日韩 亚洲 欧美在线| 久久性视频一级片| 午夜免费激情av| 俺也久久电影网| 亚洲人成伊人成综合网2020| 99精品久久久久人妻精品| 高清毛片免费观看视频网站| 日本与韩国留学比较| 婷婷亚洲欧美| 国产亚洲精品av在线| 美女高潮的动态| 久久午夜福利片| 午夜亚洲福利在线播放| 少妇丰满av| 成人毛片a级毛片在线播放| 全区人妻精品视频| 波野结衣二区三区在线| 在线a可以看的网站| 亚洲经典国产精华液单 | 一个人免费在线观看的高清视频| 欧美精品国产亚洲| 国产亚洲欧美在线一区二区| 波多野结衣高清作品| 他把我摸到了高潮在线观看| 国产伦精品一区二区三区视频9| 亚洲电影在线观看av| 国产探花在线观看一区二区| 噜噜噜噜噜久久久久久91| 男女下面进入的视频免费午夜| 日本五十路高清| 国产精品一区二区性色av| 小说图片视频综合网站| 欧美日韩瑟瑟在线播放| 亚洲国产日韩欧美精品在线观看| 国产午夜精品论理片| 日日摸夜夜添夜夜添av毛片 | 九色国产91popny在线| 又爽又黄a免费视频| 如何舔出高潮| 国产亚洲欧美98| 无人区码免费观看不卡| 简卡轻食公司| 午夜激情福利司机影院| 亚洲第一欧美日韩一区二区三区| 99热这里只有精品一区| 久久人妻av系列| 日本三级黄在线观看| 美女高潮的动态| 无人区码免费观看不卡| 在线免费观看不下载黄p国产 | 免费大片18禁| 欧美日韩中文字幕国产精品一区二区三区| 最近视频中文字幕2019在线8| 岛国在线免费视频观看| 色精品久久人妻99蜜桃| 一边摸一边抽搐一进一小说| 1024手机看黄色片| 国产精品伦人一区二区| 日本在线视频免费播放| 美女被艹到高潮喷水动态| 色5月婷婷丁香| 午夜福利成人在线免费观看| 国产伦精品一区二区三区视频9| 国产高潮美女av| 少妇高潮的动态图| 国内久久婷婷六月综合欲色啪| 成人亚洲精品av一区二区| 国产精品美女特级片免费视频播放器| 国产精品嫩草影院av在线观看 | 日韩精品青青久久久久久| 免费看a级黄色片| 国产午夜精品久久久久久一区二区三区 | 日韩欧美免费精品| 亚洲国产精品成人综合色| 亚洲五月天丁香| 色播亚洲综合网| 综合色av麻豆| 一二三四社区在线视频社区8| 丁香欧美五月| 午夜影院日韩av| 亚洲欧美日韩无卡精品| 自拍偷自拍亚洲精品老妇| 国产精品影院久久| 亚洲美女黄片视频| 日本与韩国留学比较| 美女大奶头视频| 热99在线观看视频| 99久久精品热视频| www.999成人在线观看| 女生性感内裤真人,穿戴方法视频| 久久久久久久午夜电影| 国内毛片毛片毛片毛片毛片| 国产亚洲精品久久久com| 亚洲欧美激情综合另类| 免费在线观看亚洲国产| 国产真实乱freesex| 在线免费观看不下载黄p国产 | 长腿黑丝高跟| 亚洲狠狠婷婷综合久久图片| 欧美xxxx黑人xx丫x性爽| 非洲黑人性xxxx精品又粗又长| 夜夜夜夜夜久久久久| 脱女人内裤的视频| 欧美日韩国产亚洲二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲综合色惰| 国产一区二区在线观看日韩| 青草久久国产| 成人美女网站在线观看视频| 韩国av一区二区三区四区| 全区人妻精品视频| 久久久久亚洲av毛片大全| 91麻豆精品激情在线观看国产| 麻豆国产97在线/欧美| 国产精品久久久久久人妻精品电影| 在现免费观看毛片| 色av中文字幕| 少妇人妻精品综合一区二区 | 全区人妻精品视频| 国产亚洲精品久久久久久毛片| 午夜福利在线观看免费完整高清在 | 欧美乱妇无乱码| 精品熟女少妇八av免费久了| 一卡2卡三卡四卡精品乱码亚洲| 观看免费一级毛片| 国产午夜精品论理片| 久久精品91蜜桃| 无遮挡黄片免费观看| 少妇被粗大猛烈的视频| 国产黄a三级三级三级人| 18禁在线播放成人免费| 禁无遮挡网站| 欧美乱妇无乱码| 男女视频在线观看网站免费| 给我免费播放毛片高清在线观看| 日韩亚洲欧美综合| 久久午夜亚洲精品久久| 久久天躁狠狠躁夜夜2o2o| 亚洲五月婷婷丁香| 国产人妻一区二区三区在| 99热这里只有是精品在线观看 | 麻豆久久精品国产亚洲av| 欧美又色又爽又黄视频| 在线观看一区二区三区| 99热只有精品国产| 欧美成人性av电影在线观看| 一区二区三区免费毛片| 色哟哟哟哟哟哟| 国产私拍福利视频在线观看| 动漫黄色视频在线观看| 亚洲真实伦在线观看| 婷婷色综合大香蕉| 亚洲av成人av| 99国产精品一区二区蜜桃av| 熟女人妻精品中文字幕| 好男人在线观看高清免费视频| 国产视频内射| 午夜福利成人在线免费观看| 亚洲国产日韩欧美精品在线观看| 国产免费男女视频| 欧美不卡视频在线免费观看| 国产一级毛片七仙女欲春2| 久久人人精品亚洲av| 他把我摸到了高潮在线观看| 亚洲无线在线观看| 午夜免费激情av| 亚洲国产欧美人成| 国产精品久久视频播放| 女人被狂操c到高潮| 日韩欧美在线乱码| 亚洲一区二区三区色噜噜| 亚洲精品一区av在线观看| 男女床上黄色一级片免费看| 久久午夜福利片| 免费看日本二区| 中文字幕av在线有码专区| 身体一侧抽搐| 成人三级黄色视频| 丁香欧美五月| 床上黄色一级片| 99热只有精品国产| 国产一区二区亚洲精品在线观看| 亚洲av第一区精品v没综合| 男女之事视频高清在线观看| 99热这里只有是精品在线观看 | 神马国产精品三级电影在线观看| 婷婷色综合大香蕉| 草草在线视频免费看| 国产av不卡久久| 日本 欧美在线| 99热这里只有是精品在线观看 | 欧美午夜高清在线| 男女之事视频高清在线观看| 国产日本99.免费观看| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av| 久久精品国产自在天天线| 国产一区二区三区在线臀色熟女| 亚洲狠狠婷婷综合久久图片| 欧美日韩中文字幕国产精品一区二区三区| www.www免费av| 我要搜黄色片| 嫩草影院精品99| 国产三级黄色录像| 免费看美女性在线毛片视频| 色精品久久人妻99蜜桃| xxxwww97欧美| 99热精品在线国产| 又紧又爽又黄一区二区| 亚洲精品一区av在线观看| 美女黄网站色视频| 久久久久久久精品吃奶| xxxwww97欧美| 国产色爽女视频免费观看| 可以在线观看毛片的网站| a级一级毛片免费在线观看| 欧美日韩综合久久久久久 | 国产精品久久久久久久久免 | 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区免费观看 | 一进一出抽搐gif免费好疼| 亚洲美女视频黄频| 制服丝袜大香蕉在线| 男人和女人高潮做爰伦理| 亚洲精品456在线播放app | 高清在线国产一区| 老熟妇乱子伦视频在线观看| 日本与韩国留学比较| 热99在线观看视频| а√天堂www在线а√下载| 午夜激情福利司机影院| 国产精品人妻久久久久久| 国产精品影院久久| 美女黄网站色视频| 九九热线精品视视频播放| 一边摸一边抽搐一进一小说| 国产精品久久久久久久久免 | 日日夜夜操网爽| 免费看光身美女| 中文字幕av成人在线电影| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 国产在线精品亚洲第一网站| 欧美三级亚洲精品| 五月玫瑰六月丁香| 国产欧美日韩一区二区精品| 精品人妻熟女av久视频| 亚洲av成人精品一区久久| 久久久久免费精品人妻一区二区| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 波多野结衣高清无吗| 久久精品人妻少妇| 搡女人真爽免费视频火全软件 | 一级作爱视频免费观看| 久久久精品大字幕| 国产免费一级a男人的天堂| 国产av不卡久久| 亚洲人与动物交配视频| 色综合婷婷激情| 国产午夜精品久久久久久一区二区三区 | 色哟哟哟哟哟哟| 亚洲欧美日韩无卡精品| 欧美日韩中文字幕国产精品一区二区三区| 精品免费久久久久久久清纯| 国产精品亚洲av一区麻豆| 国产成人a区在线观看| 国内少妇人妻偷人精品xxx网站| 搡老岳熟女国产| 我的女老师完整版在线观看| 免费人成视频x8x8入口观看| 男插女下体视频免费在线播放| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 赤兔流量卡办理| 精品人妻1区二区| 偷拍熟女少妇极品色| 亚洲欧美精品综合久久99| 国产白丝娇喘喷水9色精品| 黄片小视频在线播放| 欧美黑人巨大hd| 成年人黄色毛片网站| 男女那种视频在线观看| 又紧又爽又黄一区二区| 国产精品av视频在线免费观看| 欧美一区二区亚洲| 日本精品一区二区三区蜜桃| 露出奶头的视频| 一级黄片播放器| 亚洲成av人片在线播放无| 一进一出好大好爽视频| 成人av在线播放网站| 老女人水多毛片| 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 国产成人影院久久av| 老女人水多毛片| 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区视频在线| 99热精品在线国产| 成人三级黄色视频| 一个人观看的视频www高清免费观看| 高清在线国产一区| 日本黄色视频三级网站网址| 亚洲精品色激情综合| 亚洲成人久久爱视频| 欧美精品啪啪一区二区三区| 午夜a级毛片| 亚洲最大成人手机在线| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 亚洲黑人精品在线| 老女人水多毛片| 国产精品综合久久久久久久免费| 亚洲av一区综合| 首页视频小说图片口味搜索| 亚洲中文日韩欧美视频| 精品人妻偷拍中文字幕| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 人妻制服诱惑在线中文字幕| 丰满人妻一区二区三区视频av| 久9热在线精品视频| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 真人一进一出gif抽搐免费| 欧美日韩国产亚洲二区| www.色视频.com| 一进一出抽搐动态| 国产毛片a区久久久久| 男女床上黄色一级片免费看| 亚洲一区高清亚洲精品| 看十八女毛片水多多多| 亚洲熟妇熟女久久| 中文字幕免费在线视频6| 欧美一区二区精品小视频在线| 精品一区二区免费观看| 午夜福利视频1000在线观看| www.熟女人妻精品国产| 黄色日韩在线| 欧美黑人欧美精品刺激| 一本一本综合久久| 欧美乱色亚洲激情| 亚洲国产精品999在线| 午夜福利在线观看吧| 亚洲久久久久久中文字幕| 一个人看的www免费观看视频| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 好男人在线观看高清免费视频| 亚洲av.av天堂| 99久久精品国产亚洲精品| 国产精品精品国产色婷婷| 欧美3d第一页| 免费在线观看影片大全网站| 国产成人福利小说| 欧美3d第一页| 两个人的视频大全免费| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| 久久精品国产自在天天线| 日韩有码中文字幕| 国语自产精品视频在线第100页| 88av欧美| x7x7x7水蜜桃| 不卡一级毛片| 丝袜美腿在线中文| 成人精品一区二区免费| 亚洲片人在线观看| 无人区码免费观看不卡| 国产视频一区二区在线看| 最近视频中文字幕2019在线8| 国产又黄又爽又无遮挡在线| 亚洲精品一区av在线观看| 欧美成狂野欧美在线观看| 欧美+日韩+精品| 亚洲熟妇中文字幕五十中出| 99久久精品国产亚洲精品| 伦理电影大哥的女人| 99热只有精品国产| 久久99热6这里只有精品| 永久网站在线| 亚洲av第一区精品v没综合| 国内精品久久久久精免费| www日本黄色视频网| 给我免费播放毛片高清在线观看| 91九色精品人成在线观看| 国产高清激情床上av| 国产中年淑女户外野战色| 在线a可以看的网站| 美女xxoo啪啪120秒动态图 | 99视频精品全部免费 在线| 18禁在线播放成人免费| 人妻丰满熟妇av一区二区三区| 亚洲精品成人久久久久久| 成人av在线播放网站| 一级黄色大片毛片| 国产一区二区亚洲精品在线观看| 又黄又爽又刺激的免费视频.| 成年女人看的毛片在线观看| 90打野战视频偷拍视频| 精品日产1卡2卡| 动漫黄色视频在线观看| 成人午夜高清在线视频| 国产综合懂色| 99国产极品粉嫩在线观看| 一个人观看的视频www高清免费观看| 久久久精品大字幕| 免费电影在线观看免费观看| 国产精品久久电影中文字幕| 色在线成人网| 亚洲av免费高清在线观看| 91在线观看av| 国产欧美日韩一区二区三| bbb黄色大片| 欧美区成人在线视频| a级毛片免费高清观看在线播放| 国产av一区在线观看免费| 日韩欧美国产一区二区入口| 一本久久中文字幕| 免费无遮挡裸体视频| 深爱激情五月婷婷| 窝窝影院91人妻| 亚洲av美国av| 国产av一区在线观看免费| 亚洲精品日韩av片在线观看| 国产成人av教育| 麻豆久久精品国产亚洲av| 久久午夜福利片| 成人国产综合亚洲| 午夜亚洲福利在线播放| 亚洲在线观看片| 欧美午夜高清在线| 在线播放国产精品三级| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 美女被艹到高潮喷水动态| 国产成人福利小说| 国内精品久久久久精免费| 国产精品乱码一区二三区的特点| 天堂动漫精品| av黄色大香蕉| 精华霜和精华液先用哪个| 狂野欧美白嫩少妇大欣赏| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 九九热线精品视视频播放| 久久久精品大字幕| 他把我摸到了高潮在线观看| 如何舔出高潮| 午夜影院日韩av| 51国产日韩欧美| 国产一级毛片七仙女欲春2| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 国产精品精品国产色婷婷| 免费一级毛片在线播放高清视频| 99热只有精品国产| 尤物成人国产欧美一区二区三区| 丁香欧美五月| 国产69精品久久久久777片| 国内少妇人妻偷人精品xxx网站| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 亚洲黑人精品在线| 婷婷亚洲欧美| 69人妻影院| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品| 一级a爱片免费观看的视频| 校园春色视频在线观看| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 美女大奶头视频| 国产v大片淫在线免费观看| 国产av在哪里看| 一进一出抽搐动态| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 欧美三级亚洲精品| 久久性视频一级片| 永久网站在线| 精品一区二区三区视频在线| 两个人的视频大全免费| av女优亚洲男人天堂| 欧美一区二区精品小视频在线| 别揉我奶头~嗯~啊~动态视频| 99久久久亚洲精品蜜臀av| 别揉我奶头~嗯~啊~动态视频| 日本免费一区二区三区高清不卡| 免费在线观看成人毛片| 亚洲成人精品中文字幕电影| 一级av片app| 欧美在线黄色| 人妻久久中文字幕网| avwww免费| 国产精品久久电影中文字幕| 午夜a级毛片| 直男gayav资源| 男人舔女人下体高潮全视频| 欧美高清性xxxxhd video| 亚洲美女视频黄频| 天堂影院成人在线观看| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 亚洲性夜色夜夜综合| 成人永久免费在线观看视频| av视频在线观看入口| 国产成+人综合+亚洲专区| 成人午夜高清在线视频| 一个人看的www免费观看视频|