• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚乙二醇-四氧化三鐵納米粒子復(fù)合材料的結(jié)構(gòu)、物理性質(zhì)及應(yīng)用

    2013-09-17 06:58:38宋樂新邵志成
    物理化學(xué)學(xué)報 2013年7期
    關(guān)鍵詞:三鐵志成物理化學(xué)

    夏 娟 宋樂新,,* 黨 政 邵志成

    (1中國科學(xué)技術(shù)大學(xué)材料科學(xué)與工程系,中國科學(xué)院能量轉(zhuǎn)換材料重點實驗室,合肥230026;2中國科學(xué)技術(shù)大學(xué)化學(xué)系,合肥230026)

    1 Introduction

    Polymer materials,for their low price and good plasticity,were widely applied in many fields,such as conductive films,optical films,biosensors.1-3However,poor thermal stability,low heat transfer capability,and poor mechanical properties often limit their applications.Extensive studies have been carried out on polymer/inorganic particle composites in order to overcome these constraints.4-7It was found that the incorporation of inorganic particles as filler into a polymer as carrier resulted in significant improvement in physical properties of polymers,such as controlled electrical resistivity,better stiffness,enhanced strength,and improved thermal stability.5-9Various polymer/inorganic composites have been considered to be more promising materials due to a unique combination of desirable organic and inorganic characteristics.8-10For example,graphite or metal powders and thermoplastic polymers such as polyethylene glycol(PEG),or thermosetting polymers such as epoxy resin,can be blended to achieve specific properties,e.g.,anti-static interference,lump absorbent,magnetic activity,and corrosion-resistant character.11-13

    Nanometer-scale inorganic particles occupy a larger surface area and consequently lead to an increased fraction of polymer chains interacting with the inorganic particles.14,15Fe3O4nanoparticles may be a good filler for its magnetic properties which have many applications in science and engineering.16,17Although there were many attempts in the past to prepare and characterize polymers/Fe3O4composites,18there were a few reports on the combination between nano-sized Fe3O4particles and a polymer.19PEG,a semicrystalline thermoplastic polymer,is soluble in both aqueous and organic solvents,and has been extensively studied both experimentally and theoretically.20-23

    In this paper,PEG was used as a carrier polymer and Fe3O4nanoparticles were used as a filler to combine the two kinds of materials by adjusting their initial amounts,and to produce a series of useful composites.Initially,Fe3O4nanoparticles(diameter<40 nm)with a unique octadecahedral structure were synthesized in the presence of β-cyclodextrin(CD)24,25and characterized.Subsequently,a series of composites consisting of different amounts of Fe3O4nanoparticles embedded in a PEG matrix were prepared.Finally,the physical properties of the composites,including crystallization behaviors,thermal parameters,magnetic properties,and microwave absorption capabilities,were examined by various techniques.

    The experiments give interesting and sometimes surprising results.For example,the crystallization degree,phase transition temperature,and degradation process of PEG can be mediated by the presence of Fe3O4nanoparticles.All these results point to the possibility of modification of physical properties of PEG.And the modification can be controlled by varying the relative amount of Fe3O4nanoparticles.We believe that this work may be of interest to researchers interested in the development of polymer/inorganic nanoparticle composite materials.

    2 Experimental

    2.1 Materials

    Ferrous chloride tetrahydrate(FeCl2·4H2O)and ferric chloride hexahydrate(FeCl3·6H2O)were the products of the Shanghai Jinshan Chemical Plant.β-CD was obtained from Shanghai Chemical Reagent Company and recrystallized twice from deionized water.PEG(Mn6000)was purchased from Shanghai Jingchun Chemical Reagent Factory.Crystal violet(CV)was from Aladdin Chemistry Co.Ltd.Rhodamine 6G(R6G)was purchased from Sigma-Aldrich.All other reagents are of analytical-reagent grade,unless stated otherwise.

    2.2 Preparation of Fe3O4nanoparticles

    Fe3O4nanoparticles were prepared by the aqueous co-precipitation(see Eq.(1))of soluble FeC12·4H2O and FeCl3·6H2O with addition of β-CD.26

    Initially,6 mmol(1.194 g)FeCl2·4H2O and 9 mmol(2.434 g)FeCl3·6H2O were dissolved in 100 mL aqueous solution of β-CD(1 mmol,1.135 g).Subsequently under vigorous stirring,aqueous ammonia(0.3 mol·L-1)was added to adjust the pH to 10.0.The reaction mixture was kept reacting in water bath at room temperature for 30 min under vigorous stirring.An insoluble black material was precipitated and separated via centrifugation.Then,the crystals of product were washed with distilled water until the pH value was lowered to 7.0.Finally,the crystals were collected and dried in a vacuum desiccator over phosphorus pentoxide.

    2.3 Preparation of a group of composites of PEG with Fe3O4nanoparticles

    All four composites were produced by blending the Fe3O4nanoparticles with an aqueous solution(50 mL)of PEG(1.0 g).The mixtures were dispersed by ultrasonication for 30 min,and stirred for 1 h at 333 K.Then,the formation of colloid solutions was observed.After the water was removed from the colloid solutions by rotary evaporation below 300 K,the crude products were dried under vacuum(76 Pa)at 333 K.The asobtained PEG/Fe3O4composite materials containing 1,10,50,and 200 mg of Fe3O4nanoparticles were marked as CM-1(colourless),CM-2(light grey),CM-3(yellow),and CM-4(brown),respectively.

    2.4 Instruments and methods

    X-ray diffraction(XRD)patterns of the samples were recorded in a Philips X?Pert Pro X-ray diffractometer(Philips,Netherlands).All the samples were irradiated with monochromatized Cu Kαradiation(λ=0.154178 nm).A continuous scan rate of 5(°)·min-1from 5°to 80°of 2θ was used for all samples.Tube voltage and current were 40 kV and 40 mA,respectively.

    Crystal morphologies of the samples were observed using a Supra 40 field emission scanning electron microscope(FE-SEM)(JEOL-2010,Japan)operated at 5 kV.Transmission electron microscope(TEM)and high-resolution transmission electron microscopy(HRTEM)images were obtained with a JEOL-2010(Japan)microscope using an accelerating voltage of 200 kV.

    Differential thermogravimetric(DTG)and thermogravimetric analyses(TGA)analyses were obtained on a Shimadzu TGA-50 thermogravimetric analyzer(Japan)at a heating rate of 10.0 K·min-1under a nitrogen atmosphere with a gas flow of 25 mL·min-1.All solid samples were ground to fine powder by mortar and pestle and dried under the same conditions before analysis.The mass of the samples analyzed was all in the range of about 5 to 7 mg.

    Differential scanning calorimetry(DSC)measurements were conducted on a DSCQ2000(TA company,United States)with a constant heating and cooling rate of 10.0 K·min-1during three cycles under a nitrogen atmosphere using a gas flow of 100 mL·min-1.

    Gas chromatography time-of-flightmass spectrometry(GC-TOF-MS)experiments were performed on a Micromass GCT-MS spectrometer with a controlled heating device(MS company,England).The heating program of the samples was the same as that reported for the previous study.27

    Field-dependent magnetization measurements were made with a Quantum Design Magnetic Property Measurement System(United States)equipped with a superconducting quantum interference device(SQUID)using a vibrating sample magnetometer at 300 K.

    X-ray photoelectron spectroscopy(XPS)was done at Photoemission Station of National Synchrotron Radiation Laboratory of Hefei with a VG Scienta R3000 electron energy analyzer,using Al Kαradiation(1486.6 eV)in ultra-high vacuum(2.00×10-9Pa)at room temperature.The energy resolution of the instrument is 0.16 eV.The C 1s peak(284.8 eV)was used as the internal standard for binding-energy calibration.

    The microwave absorption properties of the composites were characterized by an Agilent-8722ES Vector Network Analyzer(VNA,United States)in the range of 7.5 to 12.5 GHz.The analyzer was calibrated before use,and the composites were laminated to films with 1 mm thickness.The electromagnetic wave propagated perpendicular to the surface of the films when these films were placed between the two ports of the waveguide,and the waveguide-fed rectangular aperture was sealed.

    Surface-enhanced Raman scattering(SERS)measurements of the Fe3O4nanoparticles,CM-1,and CM-4 were performed using a LABRAM-HR Confocal Laser Micro Raman spectrometer(JY company,France)operated with a 514.5 nm laser excitation in the range of 100-2000 cm-1and laser power of 2.5 mW at the sample for an exposure time of 10 s at room temperature,with a resolution of 0.6 cm-1.R6G and CV were used as probe molecules.The Fe3O4nanoparticles,CM-1,and CM-4 were dispersed on a silica substrate(1 cm×1 cm)after suspended in alcohol.Then,the R6G and CV probe solutions(20 μL,10-3mol·L-1)were dropped onto a freshly prepared silica substrate.The spectra have been background corrected and normalized for comparison.

    3 Results and discussion

    3.1 Characterization of Fe3O4nanoparticles

    Fig.1A presents the XRD pattern of the Fe3O4nanoparticles obtained.The position of the Bragg peaks is in accordance with the JCPDS card(65-3107)for crystalline Fe3O4.28The diffraction peaks at 2θ values of 30.6°,35.9°,43.5°,54.1°,57.6°,and 63.2°,with the corresponding(hkl)planes of(220),(311),(400),(422),(511),and(440)respectively,are the characteristic features of the Fe3O4material with a cubic spinel structure.29

    Fig.1 XRD pattern(A),SEM image(B),TEM image(C),and HRTEM image(D)of the Fe3O4nanoparticles

    As seen from Fig.1A,only the cubic symmetry phase of Fe3O4is observed,and there is no other phase such as ferric hydroxide,γ-or α-ferric oxide.The FE-SEM and TEM images in Fig.1B and 1C,respectively,show relatively uniform particles with a diameter of less than 40 nm.The HRTEM image in Fig.1D reveals that the Fe3O4nanoparticles look like an octadecahedral nanobox structure with corners truncated:eight identical isosceles triangular surfaces,eight identical isosceles trapezoid surfaces,and two square base surfaces.Moreover,all the four sides of the polyhedral nanobox correspond to the<110> zone axis of the cubic spinel structure.The formation of such a special nanostructure of Fe3O4particles is positive and significant for the development of inorganic nanomaterials.Undoubtedly,the addition of β-CD plays an important part in the regulation of the shape of Fe3O4particles,because without it,no regular nanoparticles could be obtained under such mild experimental conditions.30,31We propose that the β-CD may act as a chelating agent for the iron salts and/or a protective agent in the prevention of aggregation of core particles.32,33

    The field-dependence of magnetization in Fig.2(left)displays that the Fe3O4nanomaterial presents a soft ferromagnetism behavior with a small hysteresis loop in the magnetic field(1 kOe).The saturation magnetization(Ms)at an applied field of 4.37 kOe at 300 K is about 13.41 emu·g-1,which is much smaller than those reported previously.34-37One reason is due to the formation of a regular polyhedral structure(see Fig.1C)of the Fe3O4nanomaterial since shape anisotropy can play a crucial role in decreasing Ms,38,39The other reason may be due to the very fast nucleation and growth kinetics of Fe3O4nanoparticles.40

    3.2 Crystallization behaviors of the composites

    The colloid solutions of PEG containing different concentrations of the Fe3O4nanoparticles are displayed in Fig.3.Obviously for the four composites,except for CM-4,there is no sediment in suspension or at the bottom.The formation of colloids is attributed to both the small size of the nanoparticles and the surface effect of PEG chains.A control experiment shows that no colloid is formed in the presence of the commercial Fe3O4(see Fig.3A)under the same conditions as the CM-4.We consider that the generation of such colloids is a distinctive feature of the interaction between insoluble inorganic nanoparticles and soluble polymers.It may be helpful for understanding the formation of the composites.

    Fig.2 Field dependences of magnetizations of the Fe3O4 nanomaterial(a)and its composites(b)

    Fig.3 Photographs of the PEG solutions containing commercial Fe3O4(200 mg)and CM-1,CM-2,CM-3,and CM-4

    Further,with the increase of the content of Fe3O4nanoparticles,the solutions gradually deepen in color and become opaque.Also,the solution colors,except CM-4,are stable for weeks in air(see Fig.3B)and accord with the color of the composite materials obtained.This change in color probably is a result of the interaction between the metallic ions(Fe2+and Fe3+)and the oxygen atoms of PEG chains,41,42which was induced by a sufficient dispersion of Fe3O4nanoparticles at PEG surfaces.

    After water was removed from the colloids,we obtained the composites.Their surface morphologies are depicted in Fig.4.The CM-1 containing the lowest amount of Fe3O4nanoparticles has a smooth sheet structure with a thickness of about 200 nm,similar to the commercially pure PEG.43However,with the increase of the Fe3O4content,as seen in the figure,the surfaces of the composites become rougher and rougher.This provides experimental evidence for the shape-dependence of the PEG composites on the amount of Fe3O4nanoparticles.

    XRD patterns of the composites are indicated in Fig.4.It is apparent that the crystallization behavior of all the four composites was mainly dominated by the crystal growth process of PEG since several main diffraction peaks at 19.2°,23.2°,26.6°,and 36.1°belong to PEG.No signals due to Fe3O4are observed in CM-1,CM-2,and CM-3,but in CM-4,the peaks of Fe3O4at 30.5°and 35.9°occur(labeled by asterisks).The observations give us an impression that a lower amount of Fe3O4nanoparticles can be more effectively dispersed in the crystallization process of PEG.

    3.3 Thermal parameters of the composites

    Here,in order to investigate how the amount of Fe3O4nanoparticles influences thermal properties of PEG,we performed two independent measurements:DSC and DTG.

    Fig.5 displays a comparison of the phase transition properties between PEG and itscomposites.There are two interesting phenomena.First,the higher the amount of added Fe3O4(from CM-1 to CM-3),the lower the melting point of PEG(indicated by the dashed arrow).Second,as the amount of Fe3O4increases further,the melting point of PEG rises slightly(indicated by the solid arrow).Table 1 lists the data of the phase transition points(melting temperatures,Tm).These data provide strong evidence that the melting process of PEG is not only mediated by the presence of Fe3O4nanoparticles,but also directly related to the added amount of Fe3O4.Importantly,this was also supported by the addition of a very little amount of Fe3O4nanoparticles.This result provides an important clue to the possible significance of inorganic oxide nanoparticles in modifying the thermal behavior of polymers.

    Fig.4 FE-SEM images(upper)and XRD patterns(lower)of CM-1,CM-2,CM-3,and CM-4

    Fig.5 DSC curves of PEG and its composites

    The degree of crystallinity(Xc)of PEG was determined based on Eq.(2),in which ΔHmand ΔHm?(see Table 1)are the melting enthalpy obtained from DSC curve and the melting enthalpy of fully crystallized PEG(ΔHm?,196.0 J·g-1).44The data of Xcare summarized in Table 1.We can see that the crystallinity of PEG is lowered upon compositing with Fe3O4nanoparticles,and becomes lower and lower with increasing Fe3O4with the exception of CM-4.The difference in Xcmay be an impor-tant reason for the different Tmvalues.

    Table 1 Thermal parameters and crystallization behavior of PEG and its composites

    TGA curves of the as-obtained PEG/Fe3O4composite materials in Fig.6A indicated that no weight loss was observed below 450 K.Therefore,we can evaluate the relative content of Fe3O4in the materials based on the initial mass of reactants.In the light of calculations,the mass fractions of Fe3O4in CM-1,CM-2,CM-3 and CM-4 were 0.099%,0.99%,4.76%,and 16.67%,respectively.Fig.6B shows the degradation processes of PEG in a free state and in thecomposites.There is only one peak at 671.7 K(Td)corresponding to the degradation process of free PEG.However,in the cases of the composites(CM-1 to CM-3),the peak appears at a higher temperature.Further,as indicated by the arrow,Tdincreases with the content increase of Fe3O4.This finding demonstrates that the composited PEGs have a higher thermal stability than free PEG,dependent on Fe3O4contents.More interestingly,these features are not present in the case of CM-4.The PEG in the composite exhibits a completely different degradation route composed of two degradation stages:one centered at approximately 574.2 K and the other at 658.5 K,both of which are lower than the Tdvalue of free PEG.It suggests that the excess addition of the Fe3O4nanomaterial causes a decrease in thermal stability of PEG.This,together with the DSC results,shows the significant difference between the composite and the other three composites,giving the importance of the content of inorganic oxide nanoparticles in mediating the degradation process of a polymer.

    Fig.6 TGAprofiles of the four composites(A)and DTG profiles of PEG and its composites(B)

    To further explore whether the Fe3O4nanomaterial is involved in the regulation of thermal degradation products of PEG,we performed GC-TOF-MS experiments.Fig.7 shows total ion current(TIC)curves of PEG and CM-3.Free PEG has a strong release peak at 26.3 min,three moderate peaks at 32.1,35.6,and 42.4 min,and a weak peak at 10.3 min.42However,the PEG in the CM-3 presents different profiles:two strong peaks at 25.6 and 31.6 min,and two weak peaks at 17.6 and 35.8 min.

    This difference in TIC profiles,including the number,position,and intensity of peaks(see the arrows in the figure),is a reflection of the effect of Fe3O4nanoparticles on the rupture of PEG chains.Such an effect can be easily seen in mass spectra.Fig.8 indicates the relative abundances(RA)of degradation products of PEG and CM-3 at the maximum degradation rates.Our results show two interesting phenomena including:(1)the presence of Fe3O4nanoparticles leads to the occurrence of more small fragments(indicated by the circle)with m/z lower than 46,e.g.,CHO+(29.002),C2H3O+(43.018),and C2H5O+(45.033).The situation is very similar to that found in the binary system of Fe nanoparticles and PEG;43(2)RA values of several main fragments:C4H9O+(73.058),C4H8O2+(88.051),C4H9O2+(89.060),C6H13O3+(133.086),C8H17O4+(177.114)decrease largely(indicated by the arrow),which is different from the effect of Fe nanoparticles.27These results imply that the degradation process of PEG can be mediated by Fe-based nanomaterials,and different Fe-based nanomaterials have different mediating effects.

    3.4 Magnetic properties and electronic structures of the composites

    Fig.8 Mass spectra of PEG at 26.3 min and CM-3 at 25.6 min

    Magnetic properties of the composites at room temperature are shown in Fig.2.Like the Fe3O4nanomaterial,the Fe3O4components in the composites display soft ferromagnetism with a small hysteresis loop in a low magnetic field(1 kOe).We noticed that the values of Msupon compositing are lower than the pure nanomaterial.45For example,the Msvalue(1.46 emu·g-1)of the Fe3O4component in CM-4 is less than one ninth of that of the Fe3O4nanomaterial(13.41 emu·g-1).In particular,the Fe3O4components in CM-1,CM-2,and CM-3 have a much lower Msvalue(<0.50 emu·g-1).

    In order to explain the difference in magnetizations,we have made XPS measurements.Fig.9 indicates the binding energies of Fe 2p3/2and O 1s at 710.4 and 532.2 eV,respectively,46,47in the Fe3O4nanomaterial.However,the core levels of Fe 2p3/2and O 1s are located at lower energies upon compositing with PEG.For example,the binding energies of Fe 2p3/2and O 1s are 709.8 and 531.0 eV in CM-2.The large difference in the energy of O 1s(see the arrow)may be due to the contribution of the oxygen atoms in PEG.

    It is worth stressing that with increasing the content of PEG in the composites,the binding energy of Fe 2p3/2increases(indicated by the arrow)while the binding energy of O 1s decreases slightly(indicated by the arrow).The observation points to the electronic shift from iron to oxygen,and supports the hypothesis that the interaction between the oxygen atoms of PEG and Fe3O4nanoparticles decreases the electronic density of the iron.This is likely to be a reason for the lower Msvalues of the Fe3O4components in the composites.

    Fig.9 XPS spectra of(A)Fe 2p3/2and(B)O 1s in the Fe3O4nanomaterial and its composites

    3.5 Microwave absorption capabilities of the composites

    The microwave absorption properties of the films of PEG and its composites were characterized in a frequency range of 7.5-12.5 GHz at room temperature.Before use,the films were laminated to be small pieces with 1 mm thickness and 1 cm diameter.Fig.10 shows the insertion loss and return loss of the films.It is clear that all the films show a very high return loss of at least 7.5 dB and a rather low insertion loss of at most 3.0 dB.In particular,the films present a series of strong signals at the microwave frequency range.For example,the maximum peak values at 8.0,8.2,and 10.2 GHz are all higher than 30 dB.These results mean that the films obtained here may have considerable potential in applications as microwave absorption materials.48

    Further,we observed several interesting features from this figure.(1)Two new return loss peaks(indicated by asterisks)appear in the range of 8-9 GHz in the cases of composite films.(2)The shift in position of the return loss peaks from the PEG film to the composite films can be easily seen.(3)The profiles of the return loss peaks of the composite films differ from one another in particular at lower frequencies.These findings reveal that the microwave absorption capability of PEG is affected by the incorporation of Fe3O4nanoparticles,and can be further tuned by the amount of Fe3O4nanoparticles added.

    Fig.10 Microwave absorption properties of the films of PEG and its composites

    Now,let us make detailed discussion on the relation between the microwave absorption abilities of the composite materials and the contents of Fe3O4.On the one hand,in the frequency range of 9-12 GHz,the insertion losses of the composite materials are much higher than that of pure PEG film,but the content of Fe3O4only makes a small contribution to the improvement of the return loss of PEG film.On the other hand,the microwave absorption abilities of the composite materials including insertion losses and return losses are much higher than that of pure PEG film in the frequency range of 7.5-9.0 GHz,and the return losses are highly associated with the content of Fe3O4.There are two significant aspects to these results.(1)Although no large changes were observed in the insertion losses and return losses of CM-1,CM-2,and CM-3,the three composites exhibit higher microwave absorption abilities than CM-4;(2)With the increase of the content of Fe3O4,the return loss of CM-3 is higher than those of CM-1 and CM-2.These observations indicate that in this frequency range,a moderate content of Fe3O4is advantageous to improve the microwave absorption ability of PEG film.On the contrary,a very high content of Fe3O4will lead to a decrease in the microwave absorption ability.One probable reason is that the microwave absorption abilities of the films may relate to the dispersion level of Fe3O4particles in the films.

    3.6 SERS of the composites

    Raman spectra from R6G and CV on the pure Fe3O4nanoparticles,CM-1 and CM-4 materials deposited onto a silica substrate are shown in Fig.11.No Raman signal from R6G and CV on a silica glass substrate could be observed(curve a),and both of them in the presence of the Fe3O4nanoparticles(curve b)and CM-1(curve c)deposited on a silica glass substrate exhibit rather weak Raman signals:R6G at 612,773,1361,1513 cm-1and CV at 914,1177,1366,1620 cm-1.49However,in the case of CM-4,there is a large enhancement of the Raman intensity of the signals.For example,the intensity of the strongest peak of R6G at 1361 cm-1and CV at 1620 cm-1are about 5.2 and 4.5 times larger than those in case of CM-1.The result reveals that the SERS enhancement of the PEG composites for the organic dyes is associated with the amount of Fe3O4nanoparticles in the composites.

    Fig.11 SERS spectra of(A)R6G and(B)CV on a silica substrate(a),the Fe3O4nanoparticles(b),CM-1(c),and CM-4(d)

    It is reported that the enhancement of localized electromagnetic field incident on an adsorbed organic molecule is an important factor for SERS effects.50Here,we suggest that the molecule-ion interaction between the Fe3O4nanoparticles and PEG molecules may be a factor contributing to the enhanced localized electromagnetic field.Our data indicate that such an enhancement would jump to a higher level,while more Fe3O4nanoparticles were accommodated near PEG chains leading to an increase in the density of shell-localized charge.

    4 Conclusions

    In the study,a Fe3O4nanomaterial with a highly symmetric octadecahedral nanobox structure was constructed by a facile,one-step and low temperature water bath method.The material exhibited a soft ferromagnetism behavior with a much lower saturation magnetization than those reported previously.Several composite materials of PEG with the nanomaterial in different initial mass ratios were prepared and characterized by various techniques.The composite materials presented several features of interest.First,the melting process of PEG can,to a certain extent,be tuned by the amount of the Fe3O4nanomaterial added.Also,the PEGs in the composites showed lower melting enthalpies and degrees of crystallinity,but higher degradation temperatures in comparison with free PEG.In particular,the thermal degradation pattern and degradation products of PEG were largely affected by the presence of Fe3O4nanoparticles.Further,although the Fe3O4components in the composite materials indicated a similar soft ferromagnetism response,they had a much lower saturation magnetization than the Fe3O4nanomaterial.This is possibly due to the electronic shift from iron of Fe3O4nanoparticles to oxygen atoms of PEG.More importantly,the composite films displayed very low insertion losses and quite high return losses,suggesting that they could have a potential use in microwave absorption applications.Finally,our data showed that the CM-4 composite material exhibits a relatively large enhancement in SERS for organic dyes,demonstrating that the composite ratio between an inorganic oxide and a polymer is a key parameter,which can make a dominant contribution to the SERS efficiency.We consider that this work may be a contribution to future studies about the design and construction of polymer/inorganic oxide nanoparticle composites.

    (1) (a)Fu,M.X.;Chen,F.F.;Zhang,J.X.;Shi,G.Q.J.Mater.Chem.2002,12,2331.doi:10.1039/b201405j(b)Liang,G.J.;Zhong,Z.C.;Xu,J.;Zhang,Z.C.;Chen,M.H.;Li,Z.F.;He,P.;Hou,Q.F.Acta Phys.-Chim.Sin.2012,28,2852.[梁桂杰,鐘志成,許 杰,張增常,陳美華,李在房,和 平,候秋飛.物理化學(xué)學(xué)報,2012,28,2852.]doi:10.3866/PKU.WHXB201210091

    (2) (a)Liu,M.;Guo,X.F.;Wang,J.M.;Jiang,L.Acta Phys.-Chim.Sin.2012,28,2931.[劉 萌,郭向飛,王景明,江 雷.物理化學(xué)學(xué)報,2012,28,2931.]doi:10.3866/PKU.WHXB201209262(b)Darmanin,T.;Guittard,F.;Amigoni,S.;Noblin,X.;Kofman,R.;Celestini,F.Soft Matter 2011,7,1053.

    (3) Zhang,R.X.;Gao,B.J.;Wei,X.P.Acta Phys.-Chim.Sin.2012,28,223.[張瑞霞,高保嬌,位霄鵬.物理化學(xué)學(xué)報,2012,28,223.]doi:10.3866/PKU.WHXB201111171

    (4)Zhang,H.Y.;Qi,R.R.;Tong,M.K.;Su,Y.Z.;Huang,M.J.Appl.Polym.Sci.2012,125,1152.doi:10.1002/app.v125.2

    (5) (a)Frickel,N.;Greenbaum,A.G.;Gottlieb,M.;Schmidt,A.M.J.Phys.Chem.C 2011,115,10946.doi:10.1021/jp111348e(b)Liu,J.;Chen,G.M.;Yang,J.P.Polymer 2008,48,3923.

    (6) (a)Chen,W.;Qu,B.J.J.Mater.Chem.2004,14,1705.doi:10.1039/b401790k(b)Ghassemzadeh,L.;Pace,G.;DiNoto,V.;Muller,K.Phys.Chem.Chem.Phys.2011,13,9327.

    (7) Zhang,J.F.;Sun,X.Z.Biomacromolecules 2004,5,1446.doi:10.1021/bm0400022

    (8) (a)Song,H.M.;Kim,Y.J.;Park,J.H.J.Phys.Chem.C 2008,112,5397.doi:10.1021/jp709721g(b)Song,L.X.;Du,F.Y.;Yang,J.;Dang,Z.;Yang,J.;Shao,Z.C.Soft Matter 2011,7,6671.

    (9) (a)Song,L.X.;Wang,M.;Pan,S.Z.;Yang,J.;Chen,J.;Yang,J.J.Mater.Chem.2011,21,7982.doi:10.1039/c1jm10252d(b)Wang,M.;Song,L.X.;Dang,Z.;Zhu,L.H.;Yang,J.Chem.Lett.2011,40,478.

    (10) (a)Babinec,S.J.;Mussell,R.D.;Lundgard,R.L.;Cieslinski,R.Adv.Mater.2000,12,1823.(b)Yang,J.;Song,L.X.;Guo,X.Q.;Yang,J.;Chen,J.Chin.J.Inorg.Chem.2011,27,2013.[楊 軍,宋樂新,郭雪晴,楊 晶,陳 杰.無機化學(xué)學(xué)報,2011,27,2013.]

    (11)Zhang,L.;Zhu,J.Q.;Zhou,W.B.;Wang,J.;Wang,Y.Energy 2012,39,294.doi:10.1016/j.energy.2012.01.011

    (12) Sakai,T.;Mukawa,T.;Tsuchiya,K.;Sakai,H.;Abe,M.J.Nanosci.Nanotechnol.2009,9,461.doi:10.1166/jnn.2009.J058

    (13) Kuzhir,P.;Paddubskaya,A.;Bychanok,D.;Nemilentsau,A.;Shuba,M.;Plusch,A.;Maksimenko,S.;Bellucci,S.;Coderoni,L.;Micciulla,F.;Sacco,I.;Rinaldi,G.;Macutkevic,J.;Seliuta,D.;Valusis,G.;Banys,J.Thin Solid Films 2011,519,4114.doi:10.1016/j.tsf.2011.01.198

    (14) Peng,F.B.;Lu,L.Y.;Sun,H.L.;Wang,Y.Q.;Liu,J.Q.;Jiang,Z.Y.Chem.Mater.2005,17,6790.doi:10.1021/cm051890q

    (15) (a)Triebel,C.;Vasylyev,S.;Damm,C.;Stara,H.;Ozpinar,C.;Hausmann,S.;Peukert,W.;Munstedt,H.J.Mater.Chem.2011,21,4377.doi:10.1039/c0jm03487h(b)Schubert,U.Chem.Mater.2001,13,3487.

    (16) (a)Zeng,L.Y.;Ren,W.Z.;Zheng,J.J.;Cui,P.;Wu,A.G.Phys.Chem.Chem.Phys.2012,14,2631.doi:10.1039/c2cp23196d(b)Chen,P.J.;Hu,S.H.;Hsiao,C.S.;Chen,Y.Y.;Liu,D.M.;Chen,S.Y.J.Mater.Chem.2011,21,2535.

    (17) (a)Chen,Z.L.;Li,J.;Zhang,X.;Wu,Z.N.;Zhang,H.;Sun,H.Z.;Yang,B.Phys.Chem.Chem.Phys.2012,14,6119.(b)Hong,Z.Q.;Li,J.X.;Zhang,F.;Zhou,L.H.Acta Phys.-Chim.Sin.2013,29,590.[洪周琴,李金霞,張 芳,周麗繪.物理化學(xué)學(xué)報,2013,29,590.]doi:10.3866/PKU.WHXB201212123

    (18) (a)Liu,B.;Zhang,W.;Yang,F.K.;Feng,H.L.;Yang,X.L.J.Phys.Chem.C 2011,115,15875.doi:10.1021/jp204976y(b)Jiang,W.;Li,F.S.;Chen,L.Y.;Yang,Y.;Chu,J.J.Acta Phys.-Chim.Sin.2005,21,182.[姜 煒,李鳳生,陳令允,楊 毅,楚建軍.物理化學(xué)學(xué)報,2005,21,182.]doi:10.3866/PKU.WHXB20050214

    (19) (a)Yang,T.I.;Brown,R.N.C.;Kempel,L.C.;Kofinas,P.J.Magn.Magn.Mater.2008,320,2714.doi:10.1016/j.jmmm.2008.06.008(b)Gas,J.;Poddar,P.;Almand,J.;Srinath,S.;Srikanth,H.Adv.Funct.Mater.2006,16,71.

    (20)French,A.C.;Thompson,A.L.;Davis,B.G.Angew.Chem.Int.Edit.2009,48,1248.doi:10.1002/anie.200804623

    (21)Obermeier,B.;Wurm,F.;Mangold,C.;Frey,H.Angew.Chem.Int.Edit.2011,50,7988.doi:10.1002/anie.v50.35

    (22)Ohki,T.;Harada,M.;Okada,T.J.Phys.Chem.B 2007,111,7245.

    (23) (a)Wei,D.;Ge,L.L.;Guo,R.J.Phys.Chem.B 2010,114,3472.doi:10.1021/jp910315e(b)Pan,S.Z.;Song,L.X.,Bai,L.;Wang,M.;Zhu,L.H.;Chen,J.Curr.Org.Chem.2011,15,862.

    (24)(a)Yang,Y.;Zhang,Y.M.;Chen,Y.;Zhao,D.;Chen,J.T.;Liu,Y.Chem.-Eur.J.2012,18,4208.doi:10.1002/chem.v18.14(b)Cai,W.S.;Xia,B.Y.;Shao,X.G.;Maigret,B.;Pan,Z.X.Chem.Phys.Lett.2000,319,708.(c)Shao,Z.C.;Song,L.X.;Teng,Y.;Dang,Z.;Xia,J.Acta Phys.-Chim.Sin.2013,29,460.[邵志成,宋樂新,滕 越,黨 政,夏 娟.物理化學(xué)學(xué)報,2013,29,460.]doi:10.3866/PKU.WHXB201301071

    (25) (a)Song,L.X.;Yang,J.;Bai,L.;Du,F.Y.;Chen,J.;Wang,M.Inorg.Chem.2011,50,1682.doi:10.1021/ic1021609(b)Song,L.X.;Chen,J.;Zhu,L.H.;Xia,J.;Yang,J.Inorg.Chem.2011,50,7988.

    (26)(a)Cruz,L.A.C.;Perez,C.A.M.;Romero,H.A.M.;Casillas,P.E.G.J.Alloy.Compd.2008,466,330.doi:10.1016/j.jallcom.2007.11.081(b)Xu,P.;Song,L.X.Acta Phys.-Chim.Sin.2008,24,2214.[徐 鵬,宋樂新.物理化學(xué)學(xué)報,2008,24,2214.]doi:10.3866/PKU.WHXB20081212(c)Xu,P.;Song,L.X.Acta Phys.-Chim.Sin.2008,24,729.[徐 鵬,宋樂新.物理化學(xué)學(xué)報,2008,24,729.]doi:10.3866/PKU.WHXB20080433

    (27) (a)Song,L.X.;Xu,P.J.Phys.Chem.A 2008,112,11341.doi:10.1021/jp806026q(b)Dang,Z.;Song,L.X.;Yang,J.;Chen,J.;Teng,Y.Dalton Trans.2012,41,3006.(c)Du,F.Y.;Song,L.X.;Wang,M.;Pan,S.Z.;Zhu,L.H.;Yang,J.Soft Matter 2011,7,9078.

    (28)Yu,X.G.;Shan,Y.;Du,B.;Chen,K.Z.CrystEngComm 2011,13,1525.doi:10.1039/c0ce00280a

    (29) Jiao,F.;Jumas,J.C.;Womes,M.;Chadwick,A.V.;Harrison,A.;Bruce,P.G.J.Am.Chem.Soc.2006,128,12905.doi:10.1021/ja063662i

    (30)Wang,B.;Zhang,F.;Qiu,J.H.;Zhang,X.H.;Chen,H.;Du,Y.;Xu,P.Acta Chim.Sin.2009,67,1211.[王 冰,張 鋒,邱建華,張雪洪,陳 洪,杜 毅,許 平.化學(xué)學(xué)報,2009,67,1211.]

    (31)Wang,H.B.;Liu,Z.L.;Lu,Q.H.;Peng,L.;Yao,K.L.Chin.J.Inorg.Chem.2004,20,1279.[汪漢斌,劉祖黎,盧強華,彭 麗,姚凱倫.無機化學(xué)學(xué)報,2004,20,1279.]

    (32) Hapiot,F.;Bricout,H.;Tilloy,S.;Monflier,E.Eur.J.Inorg.Chem.2012,1571.

    (33) Jean-Marie,A.;Griboval-Constant,A.;Khodakov,A.Y.;Monflier,E.;Diehl,F.Chem.Commun.2011,47,10767.doi:10.1039/c1cc13800f

    (34)Yang,X.W.;Jiang,W.;Liu,L.;Chen,B.H.;Wu,S.X.;Sun,D.P.;Li,F.S.J.Magn.Magn.Mater.2012,324,2249.doi:10.1016/j.jmmm.2012.02.111

    (35)Yang,C.;Wu,J.J.;Hou,Y.L.Chem.Commun.2011,47,5130.doi:10.1039/c0cc05862a

    (36)Wu,H.X.;Gao,G.;Zhou,X.J.;Zhang,Y.;Guo,S.W.CrystEngComm 2012,14,499.doi:10.1039/c1ce05724c

    (37)Wang,L.X.;Li,J.C.;Jiang,Q.;Zhao,L.J.Dalton Trans.2012,41,4544.doi:10.1039/c2dt11827k

    (38)Wang,J.;Chen,Q.;Zeng,C.;Hou,B.Adv.Mater.2004,16,137.

    (39) Zhang,D.;Zhang,X.;Ni,X.;Song,J.;Zheng,H.Cryst.Growth Des.2007,7,2117.doi:10.1021/cg060395j

    (40) Li,Z.;Sun,Q.;Gao,M.Y.Angew.Chem.Int.Edit.2005,44,123.

    (41)Yiapanis,G.;Henry,D.J.;Maclaughlin,S.;Evans,E.;Yarovsky,I.Langmuir 2012,28,17263.doi:10.1021/la3023375

    (42) Huang,C.L.;Jiao,L.;Zeng,J.B.;Zhang,M.;Xiao,L.P.;Yang,K.K.;Wang,Y.Z.Polymer 2012,53,3780.doi:10.1016/j.polymer.2012.06.027

    (43) Pan,S.Z.;Song,L.X.;Chen,J.;Du,F.Y.;Yang,J.;Xia,J.Dalton Trans.2011,40,10117.doi:10.1039/c1dt11090j

    (44)Wunderlich,B.Thermal Analysis;Academic Press:Los Angeles,1990.

    (45) Zhou,J.P.;He,H.C.;Shi,Z.;Nan,C.W.Appl.Phys.Lett.2006,88,013111.doi:10.1063/1.2162262

    (46)Grosvenor,A.P.;Kobe,B.A.;Biesinger,M.C.;McIntyre,N.S.Surf.Interface Anal.2004,36,1564.

    (47)Yang,C.Q.;Wang,G.;Lu,Z.Y.;Sun,J.;Zhuang,J.Q.;Yang,W.S.J.Mater.Chem.2005,15,4252.doi:10.1039/b505018a

    (48)Zhang,Z.Y.;Liu,X.X.;Wang,X.J.;Wu,Y.P.;Liu,Y.J.Magn.Magn.Mater.2012,324,2177.doi:10.1016/j.jmmm.2012.02.107

    (49)(a)Chen,L.M.;Liu,Y.N.CrystEngComm 2011,13,6481.doi:10.1039/c1ce05557g(b)Doherty,M.D.;Murphy,A.;Mcphillips,J.;Pollard,R.J.;Dawson,P.J.Phys.Chem.C 2010,114,19913.

    (50) (a)Jena,B.K.;Raj,C.R.Chem.Mater.2008,20,3546.doi:10.1021/cm7019608(b)Haynes,C.L.;McFarland,A.D.;Van Duyne,R.P.Anal.Chem.2005,77,338.

    猜你喜歡
    三鐵志成物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    納米級四氧化三鐵回收水中鉛離子實驗
    磁性四氧化三鐵氮摻雜石墨烯磁性固相萃取測定水樣中的6種醛酮化合物
    Chemical Concepts from Density Functional Theory
    連志成:一心向戰(zhàn)
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    天天都是感恩節(jié)
    磁性四氧化三鐵制備及對廢水重金屬離子凈化*
    水溶性四氧化三鐵納米粒子制備及其在大鼠體內(nèi)分布
    日本一区二区免费在线视频| 窝窝影院91人妻| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 国产xxxxx性猛交| 免费一级毛片在线播放高清视频 | 黄色视频不卡| 中文字幕制服av| 精品一区二区三区av网在线观看 | 蜜桃在线观看..| 美女中出高潮动态图| 国产亚洲av高清不卡| 午夜91福利影院| 男女高潮啪啪啪动态图| 少妇人妻久久综合中文| 国产有黄有色有爽视频| 久久天堂一区二区三区四区| 精品人妻1区二区| 在线观看www视频免费| 咕卡用的链子| 大片电影免费在线观看免费| 中文字幕人妻丝袜制服| 成人免费观看视频高清| 深夜精品福利| 少妇精品久久久久久久| 蜜桃国产av成人99| 国产日韩欧美视频二区| 咕卡用的链子| 国产免费视频播放在线视频| 国产亚洲欧美精品永久| 亚洲国产av新网站| 国产av又大| 汤姆久久久久久久影院中文字幕| 亚洲国产精品一区二区三区在线| 精品国产一区二区三区久久久樱花| av有码第一页| 巨乳人妻的诱惑在线观看| 91成人精品电影| 成人国产一区最新在线观看| 国产精品久久久久久精品电影小说| 中文字幕av电影在线播放| 正在播放国产对白刺激| 夫妻午夜视频| 大码成人一级视频| 少妇人妻久久综合中文| 日本av免费视频播放| 汤姆久久久久久久影院中文字幕| 大型av网站在线播放| 久久 成人 亚洲| 国产精品免费大片| 成人国产av品久久久| av天堂在线播放| 亚洲全国av大片| 国产欧美日韩一区二区精品| 午夜影院在线不卡| 亚洲伊人色综图| 亚洲三区欧美一区| 色老头精品视频在线观看| 国产成人a∨麻豆精品| 精品第一国产精品| 高清av免费在线| 日韩中文字幕视频在线看片| 日韩一卡2卡3卡4卡2021年| 如日韩欧美国产精品一区二区三区| 免费高清在线观看视频在线观看| 在线观看免费日韩欧美大片| 国产一区二区三区av在线| 免费观看人在逋| 久久精品人人爽人人爽视色| 两个人免费观看高清视频| 日本五十路高清| 另类精品久久| 超碰97精品在线观看| 飞空精品影院首页| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 亚洲国产精品成人久久小说| 午夜激情av网站| 亚洲精品成人av观看孕妇| 美女国产高潮福利片在线看| 国产成人av激情在线播放| 日韩有码中文字幕| 精品福利永久在线观看| 美女中出高潮动态图| 日韩 欧美 亚洲 中文字幕| 18禁观看日本| 婷婷色av中文字幕| 黄色视频在线播放观看不卡| 一区二区三区乱码不卡18| 高潮久久久久久久久久久不卡| 一本—道久久a久久精品蜜桃钙片| 亚洲天堂av无毛| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美一区二区综合| 欧美日韩亚洲综合一区二区三区_| 欧美老熟妇乱子伦牲交| 欧美在线黄色| 精品人妻1区二区| 999精品在线视频| 免费日韩欧美在线观看| 99九九在线精品视频| 国精品久久久久久国模美| 日本vs欧美在线观看视频| 香蕉国产在线看| 国产亚洲精品久久久久5区| 黑丝袜美女国产一区| 亚洲av美国av| 亚洲少妇的诱惑av| 国产高清视频在线播放一区 | 亚洲av美国av| 亚洲专区中文字幕在线| 一区二区三区四区激情视频| 女人精品久久久久毛片| 一本一本久久a久久精品综合妖精| 国产在线观看jvid| 久久久国产欧美日韩av| 国产在线一区二区三区精| 999精品在线视频| 动漫黄色视频在线观看| 日韩一区二区三区影片| 久久久久久免费高清国产稀缺| 精品少妇一区二区三区视频日本电影| 国产精品免费视频内射| 下体分泌物呈黄色| 亚洲五月色婷婷综合| 亚洲精品第二区| 欧美精品亚洲一区二区| 婷婷色av中文字幕| 18禁观看日本| 伊人久久大香线蕉亚洲五| 极品少妇高潮喷水抽搐| 无遮挡黄片免费观看| 亚洲国产看品久久| 高清视频免费观看一区二区| 岛国毛片在线播放| 天堂中文最新版在线下载| 男女免费视频国产| 1024视频免费在线观看| 麻豆av在线久日| 久久天躁狠狠躁夜夜2o2o| 欧美日韩视频精品一区| 国产熟女午夜一区二区三区| 国产成人av教育| 18禁裸乳无遮挡动漫免费视频| 爱豆传媒免费全集在线观看| 国产片内射在线| 制服人妻中文乱码| 精品一区二区三区av网在线观看 | 色精品久久人妻99蜜桃| 色精品久久人妻99蜜桃| 亚洲人成电影观看| 免费在线观看黄色视频的| 两人在一起打扑克的视频| 国产亚洲午夜精品一区二区久久| 欧美久久黑人一区二区| 黄色怎么调成土黄色| 热re99久久国产66热| 亚洲va日本ⅴa欧美va伊人久久 | 在线观看人妻少妇| videos熟女内射| 国产在线观看jvid| 日韩,欧美,国产一区二区三区| 99国产综合亚洲精品| 桃红色精品国产亚洲av| 日本wwww免费看| 欧美中文综合在线视频| 国产精品一区二区免费欧美 | 在线永久观看黄色视频| 欧美激情极品国产一区二区三区| 欧美激情高清一区二区三区| 男女之事视频高清在线观看| 久久精品成人免费网站| 最黄视频免费看| 午夜激情久久久久久久| 亚洲 国产 在线| 亚洲国产精品成人久久小说| 一级a爱视频在线免费观看| 999精品在线视频| 天天躁夜夜躁狠狠躁躁| av在线老鸭窝| 久久毛片免费看一区二区三区| av有码第一页| 性色av乱码一区二区三区2| 日韩人妻精品一区2区三区| 久久久国产成人免费| 亚洲国产av新网站| 国产亚洲午夜精品一区二区久久| 高潮久久久久久久久久久不卡| 大片免费播放器 马上看| 国产精品久久久久成人av| 久热爱精品视频在线9| 91字幕亚洲| 国产不卡av网站在线观看| 国内毛片毛片毛片毛片毛片| 久久免费观看电影| 美女主播在线视频| 欧美一级毛片孕妇| 欧美大码av| 国产免费视频播放在线视频| 一二三四在线观看免费中文在| 久久久久久久大尺度免费视频| 国产xxxxx性猛交| 亚洲精品美女久久av网站| 国产有黄有色有爽视频| 18在线观看网站| 中文字幕人妻熟女乱码| 国产精品免费大片| 国产亚洲精品一区二区www | 少妇精品久久久久久久| 99国产精品免费福利视频| 久久狼人影院| 亚洲成人国产一区在线观看| 波多野结衣av一区二区av| 国产成人系列免费观看| 另类亚洲欧美激情| 久久国产精品大桥未久av| 国产精品偷伦视频观看了| 女人精品久久久久毛片| 亚洲欧美日韩高清在线视频 | 丁香六月欧美| 欧美人与性动交α欧美软件| 丝袜在线中文字幕| 午夜福利视频在线观看免费| 在线精品无人区一区二区三| 黄频高清免费视频| 亚洲精品久久久久久婷婷小说| 国产精品秋霞免费鲁丝片| 99久久精品国产亚洲精品| 国产亚洲午夜精品一区二区久久| 黑人操中国人逼视频| 亚洲精品成人av观看孕妇| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区三 | 在线观看免费午夜福利视频| 欧美国产精品一级二级三级| 热re99久久国产66热| 午夜两性在线视频| 亚洲欧美色中文字幕在线| 亚洲色图 男人天堂 中文字幕| 视频区图区小说| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 亚洲精品在线美女| 午夜影院在线不卡| 欧美日韩中文字幕国产精品一区二区三区 | 九色亚洲精品在线播放| 日韩欧美国产一区二区入口| 宅男免费午夜| 日韩欧美免费精品| 国产欧美日韩综合在线一区二区| 久久午夜综合久久蜜桃| 色婷婷久久久亚洲欧美| www.自偷自拍.com| 热99久久久久精品小说推荐| 亚洲精华国产精华精| 18禁裸乳无遮挡动漫免费视频| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区mp4| 一个人免费看片子| 女性生殖器流出的白浆| 免费人妻精品一区二区三区视频| 精品欧美一区二区三区在线| 日日爽夜夜爽网站| 久久久精品区二区三区| 日韩视频在线欧美| 19禁男女啪啪无遮挡网站| 汤姆久久久久久久影院中文字幕| 亚洲综合色网址| 色播在线永久视频| 男人舔女人的私密视频| 亚洲成av片中文字幕在线观看| 天天操日日干夜夜撸| 日本撒尿小便嘘嘘汇集6| 91大片在线观看| 99国产精品一区二区三区| 国产亚洲精品第一综合不卡| av有码第一页| 国产欧美日韩一区二区精品| 国产人伦9x9x在线观看| www日本在线高清视频| 国产高清视频在线播放一区 | 国产男人的电影天堂91| 在线观看舔阴道视频| 不卡一级毛片| 亚洲视频免费观看视频| 美女大奶头黄色视频| 中文精品一卡2卡3卡4更新| 大片免费播放器 马上看| 黄色 视频免费看| 他把我摸到了高潮在线观看 | 91av网站免费观看| 一区二区av电影网| 国产99久久九九免费精品| 国产日韩欧美视频二区| 午夜福利乱码中文字幕| 国产免费福利视频在线观看| 老司机午夜福利在线观看视频 | 日本一区二区免费在线视频| 国产一区二区 视频在线| 黄网站色视频无遮挡免费观看| 日韩电影二区| 69av精品久久久久久 | 国产精品偷伦视频观看了| 男女国产视频网站| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 午夜福利免费观看在线| 一区二区三区精品91| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 午夜福利视频在线观看免费| 最近中文字幕2019免费版| 亚洲一卡2卡3卡4卡5卡精品中文| 国产片内射在线| 国产精品国产三级国产专区5o| 午夜两性在线视频| 免费少妇av软件| 最近最新中文字幕大全免费视频| 久久久国产一区二区| 男人爽女人下面视频在线观看| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 午夜激情久久久久久久| 亚洲国产精品成人久久小说| 美女中出高潮动态图| 国产精品久久久久久人妻精品电影 | 亚洲精品粉嫩美女一区| 后天国语完整版免费观看| 免费一级毛片在线播放高清视频 | 久久久国产一区二区| 久久久久网色| 日韩欧美一区视频在线观看| 久久免费观看电影| 制服人妻中文乱码| 亚洲精品在线美女| 99re6热这里在线精品视频| 黄色片一级片一级黄色片| 大片免费播放器 马上看| 亚洲成人免费av在线播放| 日韩欧美免费精品| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 国产福利在线免费观看视频| 国产成人欧美在线观看 | 久久久久视频综合| 国产精品 欧美亚洲| 老司机在亚洲福利影院| 三上悠亚av全集在线观看| 男人添女人高潮全过程视频| cao死你这个sao货| 一级黄色大片毛片| 美女主播在线视频| 欧美亚洲日本最大视频资源| 免费不卡黄色视频| 最新在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 777久久人妻少妇嫩草av网站| 亚洲精品国产区一区二| 少妇精品久久久久久久| 免费观看人在逋| 视频区图区小说| 亚洲国产中文字幕在线视频| netflix在线观看网站| 美女视频免费永久观看网站| 午夜影院在线不卡| 黄色视频不卡| 国产97色在线日韩免费| 亚洲欧洲日产国产| 日韩 亚洲 欧美在线| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 国产精品一区二区在线观看99| 精品国产一区二区三区久久久樱花| 嫁个100分男人电影在线观看| 国产亚洲欧美精品永久| 久热爱精品视频在线9| av在线app专区| 亚洲人成77777在线视频| 99热国产这里只有精品6| 成年女人毛片免费观看观看9 | 免费人妻精品一区二区三区视频| 黄色片一级片一级黄色片| 国产片内射在线| 无限看片的www在线观看| 亚洲精品中文字幕在线视频| tube8黄色片| 久久久久精品人妻al黑| 久久免费观看电影| 少妇人妻久久综合中文| 久久99热这里只频精品6学生| 久久久久国产精品人妻一区二区| 女人高潮潮喷娇喘18禁视频| 午夜福利,免费看| 免费高清在线观看日韩| 最黄视频免费看| 亚洲av电影在线观看一区二区三区| 久久久久久人人人人人| 久久中文看片网| 视频区欧美日本亚洲| 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 久久久精品区二区三区| 久久久国产精品麻豆| 欧美亚洲 丝袜 人妻 在线| 成人三级做爰电影| 精品国产超薄肉色丝袜足j| 亚洲第一青青草原| 欧美精品人与动牲交sv欧美| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 久久久久国产精品人妻一区二区| 在线观看www视频免费| 欧美变态另类bdsm刘玥| 十八禁人妻一区二区| 大片免费播放器 马上看| 亚洲熟女毛片儿| 在线永久观看黄色视频| 91av网站免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜精品一区,二区,三区| 国产亚洲精品第一综合不卡| 亚洲久久久国产精品| 日韩制服骚丝袜av| 淫妇啪啪啪对白视频 | 亚洲午夜精品一区,二区,三区| 日韩中文字幕视频在线看片| 欧美日韩视频精品一区| 多毛熟女@视频| 一区二区三区激情视频| 久久人人97超碰香蕉20202| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 精品少妇内射三级| 12—13女人毛片做爰片一| 永久免费av网站大全| 在线观看免费午夜福利视频| av在线播放精品| 午夜影院在线不卡| 久久久国产精品麻豆| 午夜激情久久久久久久| 午夜福利视频精品| 欧美在线黄色| 欧美激情高清一区二区三区| av片东京热男人的天堂| 99久久99久久久精品蜜桃| 国产精品久久久人人做人人爽| 69av精品久久久久久 | 天天操日日干夜夜撸| 一进一出抽搐动态| 手机成人av网站| 欧美在线黄色| 男女下面插进去视频免费观看| 精品福利永久在线观看| 亚洲欧洲日产国产| 亚洲欧美精品自产自拍| 亚洲第一av免费看| 69av精品久久久久久 | h视频一区二区三区| 久久99一区二区三区| 首页视频小说图片口味搜索| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 久久99一区二区三区| 夫妻午夜视频| 国产精品国产三级国产专区5o| 蜜桃在线观看..| a级毛片在线看网站| 人人澡人人妻人| 午夜福利视频在线观看免费| 久久精品国产亚洲av高清一级| 成人国产av品久久久| 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 国产有黄有色有爽视频| 国产av又大| 欧美日韩精品网址| 国产淫语在线视频| 亚洲精品国产精品久久久不卡| 亚洲av国产av综合av卡| 淫妇啪啪啪对白视频 | 欧美激情久久久久久爽电影 | 亚洲精品第二区| 久久人人97超碰香蕉20202| 欧美xxⅹ黑人| 法律面前人人平等表现在哪些方面 | 欧美成狂野欧美在线观看| 欧美久久黑人一区二区| 精品人妻一区二区三区麻豆| 国产伦人伦偷精品视频| 在线av久久热| 一本久久精品| 在线观看一区二区三区激情| 91av网站免费观看| 首页视频小说图片口味搜索| 国产精品熟女久久久久浪| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 美女中出高潮动态图| 电影成人av| 国产男人的电影天堂91| 欧美+亚洲+日韩+国产| 亚洲国产日韩一区二区| av福利片在线| 最新在线观看一区二区三区| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 两性夫妻黄色片| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 中文欧美无线码| 丰满迷人的少妇在线观看| 亚洲成人免费电影在线观看| 欧美xxⅹ黑人| 欧美精品av麻豆av| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 国产一区二区三区av在线| 亚洲中文日韩欧美视频| 日韩视频在线欧美| 亚洲激情五月婷婷啪啪| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 最近中文字幕2019免费版| 国产男人的电影天堂91| 麻豆乱淫一区二区| 性高湖久久久久久久久免费观看| 日韩有码中文字幕| 黄网站色视频无遮挡免费观看| 国产一区二区激情短视频 | 中文精品一卡2卡3卡4更新| 老司机深夜福利视频在线观看 | 老汉色av国产亚洲站长工具| 久久性视频一级片| 中国国产av一级| 手机成人av网站| 日韩欧美一区视频在线观看| 啪啪无遮挡十八禁网站| 国产高清videossex| 精品一品国产午夜福利视频| 在线观看免费午夜福利视频| 性色av一级| 国产一区二区三区在线臀色熟女 | 欧美日韩黄片免| 成人免费观看视频高清| 淫妇啪啪啪对白视频 | 黄色a级毛片大全视频| 韩国精品一区二区三区| 中文字幕人妻丝袜制服| 国产精品 欧美亚洲| 国产亚洲精品第一综合不卡| 午夜福利在线观看吧| 国产一区二区 视频在线| 欧美变态另类bdsm刘玥| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 19禁男女啪啪无遮挡网站| 一区福利在线观看| 中文精品一卡2卡3卡4更新| 日本欧美视频一区| 十八禁人妻一区二区| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 久久久久久亚洲精品国产蜜桃av| a级毛片黄视频| 18禁观看日本| 最黄视频免费看| 男人爽女人下面视频在线观看| 18禁国产床啪视频网站| 久久ye,这里只有精品| 亚洲专区中文字幕在线| 热99re8久久精品国产| 亚洲专区国产一区二区| 岛国毛片在线播放| 欧美成狂野欧美在线观看| 又黄又粗又硬又大视频| 午夜免费观看性视频| 日本wwww免费看| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 成年美女黄网站色视频大全免费| 精品卡一卡二卡四卡免费| 亚洲男人天堂网一区| 极品人妻少妇av视频| 乱人伦中国视频| 汤姆久久久久久久影院中文字幕| 建设人人有责人人尽责人人享有的| 久久99一区二区三区| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| 欧美人与性动交α欧美精品济南到| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 国产国语露脸激情在线看| 国产日韩欧美视频二区| 国产精品自产拍在线观看55亚洲 | 如日韩欧美国产精品一区二区三区| 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频| 亚洲av成人一区二区三| 欧美变态另类bdsm刘玥| 日本一区二区免费在线视频| 亚洲全国av大片| 91国产中文字幕| 亚洲精品中文字幕在线视频| 亚洲av日韩在线播放| 九色亚洲精品在线播放| 精品免费久久久久久久清纯 | 韩国精品一区二区三区| 麻豆av在线久日|