• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    苯并咪唑衍生配體鋅-銪(或鋱)異金屬雙核配合物的合成、結(jié)構(gòu)與光學(xué)性質(zhì)

    2013-09-21 09:00:40趙順省石國(guó)香馮維旭呂興強(qiáng)劉向榮
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:張建軍化工學(xué)院物理化學(xué)

    趙順省 張 召 石國(guó)香 馮維旭 呂興強(qiáng),* 劉向榮

    (1西安科技大學(xué)化學(xué)與化工學(xué)院,西安710054;2西北大學(xué),陜西省物理無(wú)機(jī)化學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710069)

    1 Introduction

    Luminescent lanthanide(Ln)complexes,especially those of europium and terbium,with long-lived and characteristic line like emission bands in visible region,have attracted the interest of scientists in recent decades,1not only because of their potential applications in optoelectronics,2,3but also in the detection of various bioactive molecules and in-vitro imaging.4,5Nevertheless,the absorption coefficients of the lanthanide ions are low due to the parity forbidden f-f transitions and limit the emission of these ions.6One way to overcome this shortcoming is to employ a sensitizing chromophore or antennae as ligand in a lanthanide complex.7For the choice of appropriate ligand for efficient energy transfer to the lanthanide ion after excitation,the binding strength of the ligand,the ultraviolet(UV)absorption properties,absence of high frequency vibration modes,8and location of donor excited states of ligand identity9are important criteria to be considered.Many organic(cyclic or acyclic)ligands10-12and d-block metal complexes13-15have been used as antennae or chromophores for the effective sensitization of near-infrared(NIR)luminescence of Ln3+ions.

    Past studies have shown that in the formation of the series of Zn-Ln hetero-metallic complexes16,17from the compartmental Salen-type Schiff-base ligands with the outer O2O2moieties from methoxyl groups,the Zn2+complexes based on the Salentype Schiff-base ligands,as the suitable chromophores,could effectively sensitize the NIR luminescence of the centered Ln3+ions.Moreover,the occupation of pyridine at the axial position of the Zn2+ion is helpful for the strong NIR luminescence,which should be due to the complete avoiding of the luminescent quenching effect arising from OH-,CH-or NH-oscillators around the Ln3+ion.The introduction of heavy atom(Br)on the flank phenyl group is another way to improve the luminescent quantum efficiency of lanthanide ions.As a matter of fact,the utilization of the Salen-type Schiff-base ligands should not be the only way to construct Zn-Ln bimetallic complexes,recently reported Cu-Tb,Cu-Gd bimetallic complexes with single molecular magnet property18and Zn-Nd bimetallic complex19with near-infrared emission illuminate us the further exploration on the synthesis and luminescent properties Zn-Tb and Zn-Eu pairs,since the benzimidazole derivative ligand and its zinc complex emits at blue range,which may match better with the energy level of excited states of Tb3+or Eu3+.Herein,a series of hetero-binuclear ZnLn complexes[ZnLnLn2(Py)(NO3)3]·solvent(Py=Pyridine)based on the benzimidazole derivative ligands HL1(HL1=2-(2-hydroxy-3-methoxyphenyl)benzimidazole)or HL2(HL2=2-(5-bromo-2-hydroxy-3-methoxyphenyl)benzimidazole)were synthesized and characterized.UV-visible absorption spectra,excitation and emission spectra of these complexes were measured and the sensitization and energy transfer for the luminescence of the Ln3+ions in these Zn-Ln complexes were discussed.

    2 Experimental

    2.1 Reagents and general techniques

    All chemicals and solvents purchased commercially were analytical reagents and were used without further purification unless otherwise stated.The benzimidazole derivative ligands HL1and HL2were prepared according to a well-established procedure from the literature.18,19Acetonitrile for photophysical measurement was dried with calcium hydride,distilled and degassed by N2before use.Elemental analyses were performed on a Perkin-Elmer 2400-II elemental analyzer(PerkinElmer Inc.,USA).FTIR spectra were recorded on a P.E.983 FTIR spectrophotometer(PerkinElmer Inc.,USA)in the region 4000-400 cm-1using KBr pellets.UV-visible absorption spectra were recorded with a Cary 300 UV spectrophotometer(Agilent Technologies,USA),and steady-state visible fluorescence,PL excitation spectra on a Photon Technology International(PTI)Alphascan spectrofluorometer(Photon Technology International,Inc.USA)and visible decay spectra on a pico-N2laser system(PTI Time Master).The quantum yield of the visible luminescence for each sample was determined by the relative comparison procedure,using a reference of a known quantum yield(quinine sulfate in 0.05 mol·L-1H2SO4solution,quantum yield Фem=0.546).

    2.2 General procedure for synthesis of[ZnLnL2(NO3)3(Py)]·solvent

    To a stirred solution of the precursor HL(0.1 mmol)in absolute MeOH(5 mL),a solution of Zn(CH3COO)2·2H2O(0.011g,0.05 mmol)in methanol(2 mL)was added and stirred for 30 min,Ln(NO3)3·6H2O(0.05 mmol,Ln=Eu,17.9 mg;Ln=Tb,19.3 mg)in acetonitrile(5 mL)and one drop of pyridine were added,then the final mixture was refluxed for 3 h.The respective clear pale yellow solution was then cooled to room temperature and filtered.Diethyl ether was allowed to diffuse slowly into the solution at room temperature and pale yellow crystalline productsof 1-4wereobtainedinafew weeks,respectively.

    For[ZnEu(L1)2(NO3)3(Py)]·2Py·THF(1):Yield:31.6 mg,54.1%.Anal.calcd.for C47H45EuN10O14Zn(%):C,41.24;H,2.83;N,11.66;Found(%):C,41.39;H,2.69;N,11.76.IR(KBr,cm-1):3285(w),2944(w),2848(w),1642(s),1608(m),1478(s),1445(w),1423(w),1385(m),1283(w),1254(s),1179(w),1162(s),1091(w),1054(m),1035(w),986(m),933(m),863(w),783(w),740(m),707(w),620(w),557(s).(ESI-MS)(CH3CN)m/z:960.9(100%)[M-2Py-THF]+.

    For[ZnTb(L1)2(NO3)3(Py)]·Py·EtOH·H2O(2):Anal.calcd.for C40H40N9O15TbZn(%):C,40.95;H,2.81;N,11.58;Found(%):C,40.48;H,2.79;N,11.49.IR(KBr,cm-1):3301(w),3071(w),2942(w),1624(m),1608(w),1595(w),1535(w),1482(s),1452(m),1426(m),1385(m),1312(w),1285(w),1252(s),1105(w),1099(w),1075(w),1035(w),993(m),930(m),860(m),816(w),783(m),743(s),703(m),638(w),560(m),516(w).ESI-MS(CH3CN)m/z:967.7(100%),[MPy-EtOH-H2O]+.

    For[ZnEu(L2)2(NO3)3(Py)]·Py·H2O(3):Anal.calcd.for C38H32Br2EuN9O14Zn(%):C,35.43;H,2.25;N,10.02;Found(%):C,35.50;H,2.27;N,10.20.IR(KBr,cm-1):3419(w),3067(w),2944(w),1646(s),1625(s),1608(m),1596(w),1539(w),1481(s),1386(m),1317(w),1241(m),1120(s),1099(w),1075(w),1035(w),986(m),940(m),937(m),815(w),800(m),766(w),747(m),704(m),616(w),549(s),515(w).ESI-MS(CH3CN)m/z:1118.8(100%),[M-Py-H2O]+.

    For[ZnTb(L2)2(NO3)3(Py)]·Py·H2O(4):Anal.calcd.for C38H32Br2TbN9O14Zn:C,35.21;H,2.24;N,9.95;Found(%):C,35.13;H,2.32;N,10.03.IR(KBr,cm-1):3430(w),3067(w),2946(w),2846(s),1614(s),1586(m),1552(w),1512(vs),1468(w),1386(s),1303(w),1264(s),1234(w),1196(w),1168(w),1096(w),1074(w),1024(m),965(w),851(m),814(w),784(w),741(w),649(w),620(w),558(w),513(w),441(w).ESI-MS(CH3CN)m/z:1125.8(100%),[M-Py-H2O]+.

    2.3 Crystal structure determinations

    Single crystal of suitable dimensions was mounted onto thin glass fibers.All the intensity data were collected at 293 K on a Bruker SMART CCD diffractometer(Mo Kαradiation,λ=0.071073 nm)in Φ and ω scan modes.The structure was solved by direct methods followed by difference Fourier syntheses,and then refined by full-matrix least-squares techniques against F2using SHELXTL.20Absorption corrections were applied using SADABS.21All other non-hydrogen atoms were refined with anisotropic thermal parameters.Crystallographic data and refinement parameters for the complexes are presented in Table 1.Relevant atomic distances and bond angles are collected in Tables 2,3 and 4.CCDC reference numbers are 915907(for 1),915908(for 2),and 915909(for 3).

    3 Results and discussion

    3.1 Synthesis and characterization

    Scheme 1 Assembly of hetero-binuclear complexes

    Table 1 Crystallographic data and structure refinement for complexes 1,2,and 3

    Table 2 Selected bond lengths and bond angles for complex 1

    As shown in Scheme 1,using of HL1or HL2,which are prepared according to the literature method,19to react with the Zn(CH3COO)2·2H2O,subsequently the Ln(NO3)3·6H2O(Ln=Eu or Tb)in the presence of pyridine,results in the formation of two series of the hetero-binuclear Zn-Ln complexes[ZnEu(L1)2(NO3)3Py]·2Py·THF(1),[ZnTb(L1)2(NO3)3Py]·Py·EtOH·2H2O(2),[ZnEu(L2)2(NO3)3Py]·Py·H2O(3),and[ZnTb(L2)2(NO3)3Py]·Py·H2O(4),respectively.For complexes 1,2,and 3,single crystals suitable for X-ray diffraction studies have been obtained by allowing Et2O to diffuse into the respective reaction mixture at room temperature.Two strong absorptions at 1478-1482 and 1314-1320 cm-1shown in the FTIR spectra of complexes 1-4 are typical for the bidentate NO-3groups,and the bands appearing at 766 or 758 cm-1should be assigned to the υ(C-Br)vibration in complexes 3 or 4,respectively.The ESI-MS spectra of the four Zn-Ln complexes(1-4)exhibit the strongest peak at m/z 960.9(1),967.9(2),1118.8(3)or 1125.8(4),respectively,corresponding to the major species[ZnLn(L1)2(Py)(NO3)3](Ln=Eu,1;Ln=Tb,2)or[ZnLn(L2)2(Py)(NO3)3](Ln=Eu,3;Ln=Tb,4),giving the further proof that in the respective dilute MeCN solution the Zn-Ln(Ln=Eu or Tb)molecule keeps indiscrete.

    3.2 Structural analysis of the complexes 1-3

    X-ray quality crystals of 1 and 2 based on the HL1ligand have been obtained.X-ray diffraction determination indicates that they are isostrucural with the previous reported Cu-Tb,Cu-Gd18and Zn-Nd19bimetallic complexes with different coordinated solvates.Selected bond lengths and bond angles are given in Tables 1 and 2.Complex 1 crystallizes with one independent hetero-binuclear molecules and solvates of THF,H2O,and Py in an asymmetrical unit,as shown in Fig.1.In the crystal,one Zn2+ion coordinates two deprotonated(L1)-ligandsthrough their N,O sites and one Eu3+ion through their O2site,compelling the two ligands to assembly shoulder to shoulder.The Zn2+ion has a five-coordinate environment and adopts a distorted square pyramidal geometry,composed of the inner N2O2core from two deprotonated benzimidazole-based(L1)-ligands as the base plane,and one N atom from the coordinated pyridine at the apical position.The Eu3+ion and the Zn2+ion are bridged by two phenoxo oxygen atoms of two(L1)-ligands with the a Zn??Eu separation of 0.3562(2)nm.The Eu3+ion is in a ten-coordinate environment.Besides four oxygen atoms from two deprotonated benzimidazole-based(HL1)-ligands,they complete their coordination environments with six oxygen atoms from three bidentate NO-3anions.The bond lengths(0.2029(5)nm and 0.2044(5)nm)of Zn-N(the benzimidazole(HL1)ligands,N2 and N3)bonds are smaller than that(0.2090(12)nm)of Zn-N(Py,N8)bond while between those(0.2060(4)-0.2078(3)nm)of Zn-O(phenoxo,O2 and O3)bonds.The bond lengths of Eu-O vary during 0.2295(9)-0.2731(4)nm depending on the origin of the oxygen atoms:the bond lengths from oxygen atoms of NO-3anions are longer than those from phenoxo oxygen atoms,while slightly shorter than those from methoxy groups.Besides the intermolecular N4-H4A…N9(-x+1,-y+1,-z+1)hydrogen bonding with the N…N distance of 2.868(2)between one of the solvate Py and an adjacent Zn-Eu molecule(see Table 5 and Fig.S1,in Supporting Information),the other solvate molecules(Py or THF)are not bound to the framework and they exhibit no observable interactions with the host structure.Other heterobimetallic Cu-Ln(Ln=Eu,Tb,Er,Tb,Nd)complexes with similar structure but with different ligand and nonidentical coordination environment of Cu2+have been reported previously.22

    Table 3 Selected bond lengths and bond angles for complex 2

    Table 4 Selected bond lengths and bond angles for complex 3

    Fig.1 Perspective drawing of complex 1

    The change of lanthanide ion leads to an isostructural hetero-binuclear Zn-Tb structure from the replacement of Eu3+ion by Tb3+ion.X-ray quality crystals of 2 based on the HL1ligand were obtained and the data of selected crystal properties are given in Tables 1 and 3.Complex 2 is isostructural with 1 containing nonidentical solvates,as shown in Fig.2 and Fig.S2(in Supporting Information).The bond lengths of Zn-N,Zn-O,Tb-O and separation distance of Zn-Tb are similar with those of the complex 1.Intermolecular hydrogen bond of N1-H1A…N9(-x,-y+1,-z)(see Table 5)between the solvate Py and host molecule could also be found in the crystals while the other solvates(EtOH or H2O)being kept unbound.

    The introcduction of heavy atoms(Br)still keeps the heterobinuclear Zn-Ln structures from the replacement of the benzimidazole-based ligand HL2.X-ray quality crystals of 3 as the representative of the two Zn-Ln complexes based on the HL2ligand have been obtained,and the tables of selected crystal properties are also given in Tables 1 and 4.Complex 3 crystallizes with one independent hetero-binuclear molecule,one solvate of Py and one solvate of H2O in the asymmetrical unit,as shown in Fig.3.The slightly shorter Zn-N(benzimidazole)bond lengths(0.196(2)-0.214(2))and the slightly longer Zn…Eu separation(0.3641(3))in complex 3 than those of complex 1 and 2,respectively,should be attributed to the electron with-drawing effect of Br atoms introduced on the ligand HL2.Unlike that of the complexes 1 and 2,the intramolecular N2-H2A…N9 hydrogen bond with N…N distance of 0.2720(3)between the solvate Py and the Zn-Eu molecule is also observed(see Table 5).It is worth noting that in the formation of two hetero-binuclear Zn-Ln complexes 1,2,and 3,comparable of that of near-infrared emitting[Zn(HL1)2Nd(NO3)3],19the occupation of Py at the axial position of Zn2+ions is considered to completely avoid the further coordination of solvents around the Ln3+ions of the four Zn-Ln complexes.

    Fig.2 Perspective drawing of complex 2

    Fig.3 Perspective drawing of complex 3

    Table 5 Hydrogen bond lengths and angles for complexes 1-3

    3.3 Photophysical properties of the complexes

    The photophysical properties of the complexes 1-4 have been examined in dilute MeCN solution at room temperature and summarized in Figs.4-6 and Table 6,respectively.As shown in Fig.4,in the UV-visible absorption spectra of the complexes,the similar ligand-centered absorption spectra(229-231,299-301,and 332-334 nm)of complexes 1-4 in the UV-Vis region are observed,which should be assigned to the π-π*transition of the benzimidazole ligands.

    Fig.4 UV-visible absorption spectra of complexes 1-4 in 2×10-5mol·L-1CH3CN solution

    As shown in Fig.5,the characteristic emissions of the Tb3+ion(5D4→7Fn,n=6,5,4,3)in the green light region have been detected up on photo excitation of the antenna at the range of 275-450 nm in complexes 2 and 4.The emissions at 489,542,584,and 622 nm could be assigned to5D4→7F6,5D4→7F5,5D4→7F4,and5D4→7F3transitions of the Tb3+ion,respectively.The precursor[Zn(L)2(Py)]or Tb(NO3)3does not exhibit the luminescence under the same condition.For complex 2,when monitoring at the two different emission peaks(λem=468 or 542 nm),two similar excitation spectra monitored,which clearly demonstrated that both the residue of the antennae emissions and the characteristic emission of the Tb3+ion are originated from the same π→π transitions of the benzimidazole-based ligand HL1and suggests that the energy transfer from the antenna to the Tb3+ions takes place but not completely.It was worth noting that for complex 4,although there was almost no position shift of the emissions of Tb3+ions in solution at room temperature,each of the emission intensities of complex 4 was distinctively higher than the respective one of complex 2.Moreover,the emission spectrum only shows the characteristic emission of Tb3+,there is no ligand based emission residue observed.This could be attributed to the heavy atom effect of Br on the HL2,which probably promotes of1LC→3LC intersystem crossing and thus increases the energy transfer efficiency between the antennae and Tb3+ion for that the energy transfer takes place mostly from triplet state of the antennae to the lanthanide ions.23

    For the Eu3+contained complexes 1 and 3,only ligand centered emission band(ca 468 nm)with low quantum yield(Φem<10-3,much lower than that of the precursor ZnL2Py)in dilute absolute MeCN solution at room temperature(see Fig.6 and Table 6),but no characteristic emission band of Eu3+is observed.From the viewpoint of the energy level match,the energy gap between the energy-donating3LC level(21639 cm-1for theor 21592 cm-1for theof the ligand and the excited5D1state(19020 cm-1)24of Eu3+is suitable for energy transfer,and the characteristic emission of Eu3+would have been sensitized.One explanation is that there may be a deactivation pathway that involves a charge transfer from the Zn(L)2excited state to Eu3+ion.25

    We were naturally interested in the efficiency of overall sensitization process which was established by determining luminescent quantum yield of the hetero-bimetallic complexes.The luminescent quantum yields of the complexes were measured by using the quinine sulfate(in 0.05 mol·L-1H2SO4solution,Φem=0.546)as the reference,adjusting the absorbance value to same at 350 nm and comparing the emission area of the complexes and reference.As listed in Table 6,the sensitized efficiency of the characteristic emission of Tb3+is 0.11 for 2 and 0.17 for 4.The luminescent decay curves obtained from timeresolved luminescent experiments can be fitted mono-exponentially with time constant of microseconds(at 542 nm,0.73 ms for 2 and 0.81 ms for 4),and the intrinsic quantum yield ΦLn(ca 0.18 for 2 and 0.20 for 4)of the Tb3+emission may be estimated by ΦLn=τobs/τ0,where τobsis the observed emission lifetime and τ0is the‘natural lifetime’,viz 4 ms for the Tb3+ion,26which indicates the presence of single emitting center for complex in dilute MeCN solutions.27

    Fig.5 Excitation and emission spectra of complexes 2 and 4 in 2×10-5mol·L-1CH3CN solution

    Fig.6 Excitation and emission spectra of complexes 1 and 3 in 2×10-5mol·L-1CH3CN solution

    Table 6 Photophysical properties of the complexes 1-4 in 2×10-5mol·L-1CH3CN solution at room temperature

    4 Conclusions

    In conclusion,with the benzimidazole derived ligand HL1or HL2as the precursor,series of hetero-binuclear Zn-Ln complexes[ZnEu(L1)2(NO3)3Py]·2Py·THF(1),[ZnTb(L1)2(NO3)3Py]·Py·EtOH·2H2O(2),[ZnEu(L2)2(NO3)3Py]·Py·H2O(3),and[ZnTb(L2)2(NO3)3Py]·Py·H2O(4)with two energy donors around the Ln3+ion are obtained,respectively.The results of their photophysical studies show that the strong and characteristic luminescence of Tb3+ions with emissive lifetimes in the microsecond range has been sensitized from the excited state of the benzimidazole-based ligand due to the effective intramolecular energy transfer,and the involvement of heavy atoms(Br)on the ligand promotes the energy transfer and luminescent efficiency.The Eu3+complexes do not show their characteristic emission due to other deactivation pathway.

    Supporting Information: Crystal structures of 1,2,and 3 showing the intermolecular or intramolecular hydrogen bonds have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Supplementary Material: The crystallographic data have been deposited at the Cambridge Crystallographic Data Center,CCDC 915907(for 1),915908(for 2),and 915909(for 3).The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge CB21EZ,UK.

    (1) Dos Santos,C.M.G.;Harte,A.J.;Quinn,S.J.;Gunnlaugsson,T.Coord.Chem.Rev.2008,252,2512.doi:10.1016/j.ccr.2008.07.018

    (2) Bünzli,J.C.G.;Eliseeva,S.V.J.Rare Earths 2010,28,824.doi:10.1016/S1002-0721(09)60208-8

    (3) Kido,J.;Okamoto,Y.Chem.Rev.2002,102,2357.doi:10.1021/cr010448y

    (4)Law,G.L.;Wong,K.L.;Man,C.W.Y.;Tsao,S.W.;Wong,W.T.J.Biophotonics 2009,2,718.doi:10.1002/jbio.v2:12

    (5) Bünzli,J.C.G.Chem.Rev.2010,110,2729.doi:10.1021/cr900362e

    (6) Comby,S.;Bünzli,J.C.G.Lanthanide Near-Infrared Luminescence in Molecular Probe and Device.In Handbook on the Physics and Chemistry of Rare Earths;Gschneidner,K.A.,Bünzli,J.C.G.,Pecharsky,V.K.Eds.;Elsevier Science B.V.:Amsterdam,2007;Vol.37,pp 221-224.

    (7) Sabbatini,N.;Guardigli,M.;Lehn,J.M.Coord.Chem.Rev.1993,123,201.doi:10.1016/0010-8545(93)85056-A

    (8) Freund,C.;Porzio,W.;Giovanella,U.;Vignali,F(xiàn).;Pasini,M.;Destri,S.;Mech,A.;Di Pietro,S.;Di Bari,L.;Mineo,P.Inorg.Chem.2011,50,5417.doi:10.1021/ic1021164

    (9) Bünzli,J.C.G.;Comby,S.;Chauvin,A.S.;Vandevyver,C.D.B.J.Rare Earths 2007,25,257.doi:10.1016/S1002-0721(07)60420-7

    (10) Bünzli,J.C.G.;Piguet,C.Chem.Soc.Rev.2005,34,1048.doi:10.1039/b406082m

    (11) Duan,L.Q.;Qiao,C.F.;Wei,Q.;Xia,Z.Q.;Chen,S.P.;Zhang,G.C.;Zhou,C.S.;Gao,S.L.Acta Phys.-Chim.Sin.2012,28,2783.[段林強(qiáng),喬成芳,魏 青,夏正強(qiáng),陳三平,張國(guó)春,周春生,高勝利.物理化學(xué)學(xué)報(bào),2012,28,2783.]doi:10.3866/PKU.WHXB201210122

    (12) Zhang,J.;Wang,J.F.;Zhang,J.J.Acta Phys.-Chim.Sin.2012,28,290.[張 潔,王娟芬,張建軍.物理化學(xué)學(xué)報(bào),2012,28,290.]doi:10.3866/PKU.WHXB201112121

    (13) Ward,M.D.Coord.Chem.Rev.2007,251,1663.doi:10.1016/j.ccr.2006.10.005

    (14) Chen,F(xiàn).F.;Chen,Z.Q.;Bian,Z.Q.;Huang,C.H.Coord.Chem.Rev.2010,254,991.doi:10.1016/j.ccr.2009.12.028

    (15)Ward,M.D.Coord.Chem.Rev.2010,254,2634.doi:10.1016/j.ccr.2009.12.001

    (16)Lo,W.K.;Wong,W.K.;Wong,W.Y.;Guo,J.P.;Yeung,K.T.;Cheng,Y.K.;Yang,X.P.;Jones,R.A.Inorg.Chem.2006,45,9315.doi:10.1021/ic0610177

    (17)Zhao,S.S.;Lü,X.Q.;Hou,A.X.;Wong,W.Y.;Wong,W.K.;Yang,X.P.;Jones,R.A.Dalton Trans.2009,9595.doi:10.1039/b908682j

    (18) Fellah,F(xiàn).Z.C.;Costes,J.P.;Duhayon,C.;Daran,J.C.;Tuchagues,J.P.Polyhedron 2010,29,2111.doi:10.1016/j.poly.2010.04.010

    (19) Shi,G.X.;Feng,W.X.;Zou,D.;Lü,X.Q.;Zhang,Z.;Zhang,Y.;Fan,D.D.;Zhao,S.S.;Wong,W.K.;Jones,R.A.Inorg.Chem.Commun.2012,22,126.doi:10.1016/j.inoche.2012.05.041

    (20) Sheldrick,G.M.SHELXS-97:Program for Crystal Structure Refinement;G?tingen:Germany,1997.

    (21) Sheldrick,G.M.SADABS;University of G?tingen:G?tingen,1996.

    (22)Yang,X.P.;Jones,R.A.;Lai,R.J.;Waheed,A.;Oye,M.M.;Holmes,A.L.Polyhedron 2006,25,881.doi:10.1016/j.poly.2005.09.029

    (23) Petoud,S.;Cohen,S.M.;Bünzli,J.C.G.;Raymond,K.N.J.Am.Chem.Soc.2003,125,13324.doi:10.1021/ja0379363

    (24) Sayre,E.V.;Freed,S.J.Chem.Phys.1956,24,1213.doi:10.1063/1.1742743

    (25)Zhu,X.J.;Wong,W.K.;Wong,W.Y.;Yang,X.P.Eur.J.Inorg.Chem.2011,4651.

    (26) Klink,S.I.;Grave,L.;Reinhoudt,D.N.;van Veggel,F(xiàn).C.J.M.;Werts,M.H.V.;Geurts,F(xiàn).A.J.;Hofstraat,J.W.J.Phys.Chem.A 2000,104,5457.doi:10.1021/jp994286+

    (27) Bünzli,J.C.G.Lanthanide Probe in Life.In Chemical and Earth Sciences,Theory and Practice;Bünzli,J.C.G.,Choppin,G.R.Eds.;Elsievier Science Pub1.B.V.:Amsterdam,1989;ch7,pp 219-293.

    猜你喜歡
    張建軍化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    Chemical Concepts from Density Functional Theory
    巧用反例在概率論教學(xué)中的作用
    99久久九九国产精品国产免费| 色吧在线观看| 欧美zozozo另类| 国产中年淑女户外野战色| 国产大屁股一区二区在线视频| 国产一区二区三区综合在线观看 | 99热国产这里只有精品6| 久久久国产一区二区| videossex国产| 晚上一个人看的免费电影| kizo精华| 天天躁夜夜躁狠狠久久av| 久久久成人免费电影| av在线播放精品| 日韩一区二区三区影片| 日日摸夜夜添夜夜添av毛片| 我的老师免费观看完整版| 看非洲黑人一级黄片| a级毛片免费高清观看在线播放| 久久人人爽av亚洲精品天堂 | 欧美另类一区| 国产成人精品婷婷| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩,欧美,国产一区二区三区| 五月开心婷婷网| 国产老妇女一区| 欧美三级亚洲精品| 交换朋友夫妻互换小说| freevideosex欧美| 少妇人妻一区二区三区视频| 一区二区av电影网| 有码 亚洲区| 亚洲av电影在线观看一区二区三区 | 校园人妻丝袜中文字幕| 国产中年淑女户外野战色| 日韩一区二区视频免费看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品女同一区二区软件| 香蕉精品网在线| 亚洲无线观看免费| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩另类电影网站 | 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 欧美激情在线99| 一级av片app| 91精品一卡2卡3卡4卡| 精品人妻偷拍中文字幕| 听说在线观看完整版免费高清| 最近2019中文字幕mv第一页| 亚洲人成网站在线观看播放| 欧美日韩在线观看h| 激情 狠狠 欧美| 少妇人妻精品综合一区二区| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说| 亚洲欧洲日产国产| 一级黄片播放器| kizo精华| 99热国产这里只有精品6| 女人十人毛片免费观看3o分钟| 国产一级毛片在线| 网址你懂的国产日韩在线| 久久精品国产自在天天线| 国产伦理片在线播放av一区| av在线观看视频网站免费| 国产视频首页在线观看| 热re99久久精品国产66热6| 18+在线观看网站| 亚洲精品自拍成人| 观看美女的网站| 久久精品久久久久久久性| 91精品一卡2卡3卡4卡| 只有这里有精品99| 91在线精品国自产拍蜜月| 香蕉精品网在线| 免费大片黄手机在线观看| 亚洲精品成人久久久久久| 久久99热这里只频精品6学生| 国产精品伦人一区二区| 亚洲,欧美,日韩| av免费观看日本| 久久精品久久精品一区二区三区| 亚洲人成网站在线播| 大香蕉久久网| 丰满人妻一区二区三区视频av| 精品久久久精品久久久| 精品视频人人做人人爽| 日日啪夜夜撸| 色播亚洲综合网| 中文字幕免费在线视频6| 亚洲色图av天堂| 精品国产三级普通话版| 毛片女人毛片| 看黄色毛片网站| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 女人被狂操c到高潮| 日韩国内少妇激情av| 久久精品久久久久久噜噜老黄| 69av精品久久久久久| 亚洲不卡免费看| 免费av不卡在线播放| 亚洲伊人久久精品综合| 麻豆成人午夜福利视频| 麻豆成人av视频| 亚洲天堂av无毛| 久久6这里有精品| 欧美高清性xxxxhd video| h日本视频在线播放| 亚洲综合色惰| 在现免费观看毛片| 麻豆成人av视频| 欧美日韩精品成人综合77777| 一个人观看的视频www高清免费观看| 亚洲精品乱码久久久v下载方式| 伦理电影大哥的女人| 少妇人妻 视频| 亚洲国产最新在线播放| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| av国产精品久久久久影院| 国产v大片淫在线免费观看| 在线观看一区二区三区激情| 日韩中字成人| 久久久久精品久久久久真实原创| 国产女主播在线喷水免费视频网站| freevideosex欧美| 日本黄大片高清| 街头女战士在线观看网站| av免费在线看不卡| 欧美性猛交╳xxx乱大交人| 国产亚洲精品久久久com| 热re99久久精品国产66热6| 国产亚洲av片在线观看秒播厂| 小蜜桃在线观看免费完整版高清| av福利片在线观看| av在线观看视频网站免费| 亚州av有码| 天美传媒精品一区二区| 国产老妇伦熟女老妇高清| 色视频www国产| 毛片女人毛片| 国产 一区精品| 少妇被粗大猛烈的视频| 高清av免费在线| 最后的刺客免费高清国语| 女的被弄到高潮叫床怎么办| 成人午夜精彩视频在线观看| 欧美区成人在线视频| 日本色播在线视频| 欧美国产精品一级二级三级 | 高清午夜精品一区二区三区| 国产一区二区在线观看日韩| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 亚洲婷婷狠狠爱综合网| 亚洲va在线va天堂va国产| 水蜜桃什么品种好| 国产v大片淫在线免费观看| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 中文精品一卡2卡3卡4更新| 亚洲综合精品二区| 亚洲精品乱码久久久v下载方式| www.av在线官网国产| 黄片无遮挡物在线观看| 亚洲精品国产成人久久av| 亚洲国产色片| 天堂网av新在线| 少妇高潮的动态图| 欧美区成人在线视频| 精品人妻偷拍中文字幕| 免费播放大片免费观看视频在线观看| 国产一区亚洲一区在线观看| 欧美xxxx黑人xx丫x性爽| 建设人人有责人人尽责人人享有的 | 伊人久久精品亚洲午夜| 永久免费av网站大全| 男人舔奶头视频| 久久久成人免费电影| 91精品伊人久久大香线蕉| 狠狠精品人妻久久久久久综合| 成人高潮视频无遮挡免费网站| 蜜臀久久99精品久久宅男| 欧美激情国产日韩精品一区| 全区人妻精品视频| 日本wwww免费看| 久久韩国三级中文字幕| 特大巨黑吊av在线直播| av在线亚洲专区| 1000部很黄的大片| 看非洲黑人一级黄片| av一本久久久久| 大片免费播放器 马上看| 韩国av在线不卡| 久久精品熟女亚洲av麻豆精品| 一个人看视频在线观看www免费| 久久热精品热| 国产成人福利小说| 在线免费十八禁| 久久久久久久大尺度免费视频| 国产乱人偷精品视频| 亚洲精品一二三| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 国产精品99久久99久久久不卡 | 99热这里只有是精品在线观看| 大又大粗又爽又黄少妇毛片口| 成人免费观看视频高清| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 男人舔奶头视频| 王馨瑶露胸无遮挡在线观看| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花 | 日韩中字成人| 少妇熟女欧美另类| 麻豆久久精品国产亚洲av| 免费观看性生交大片5| 欧美97在线视频| 哪个播放器可以免费观看大片| 免费观看的影片在线观看| 亚洲无线观看免费| 夫妻午夜视频| 久久精品国产亚洲av天美| 男人舔奶头视频| 精品久久久精品久久久| 九草在线视频观看| 久久综合国产亚洲精品| 亚洲人成网站高清观看| 视频区图区小说| 乱系列少妇在线播放| 成人亚洲精品一区在线观看 | 国产av国产精品国产| 黄色欧美视频在线观看| 日日撸夜夜添| 蜜桃亚洲精品一区二区三区| 婷婷色麻豆天堂久久| av国产久精品久网站免费入址| 日韩成人伦理影院| 亚洲内射少妇av| 日本三级黄在线观看| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 少妇的逼水好多| 七月丁香在线播放| 一级av片app| 在线a可以看的网站| 2022亚洲国产成人精品| 国产成人a区在线观看| 国产伦精品一区二区三区四那| 免费观看av网站的网址| 亚洲精品乱码久久久久久按摩| 亚洲精品色激情综合| 精品少妇久久久久久888优播| 成人二区视频| 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 男男h啪啪无遮挡| 观看免费一级毛片| 你懂的网址亚洲精品在线观看| 18禁裸乳无遮挡动漫免费视频 | 99re6热这里在线精品视频| 亚洲成人中文字幕在线播放| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂| 欧美三级亚洲精品| 午夜福利网站1000一区二区三区| 国产老妇女一区| 久久国产乱子免费精品| 久久精品综合一区二区三区| 亚洲成人久久爱视频| 少妇的逼水好多| 91aial.com中文字幕在线观看| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| 99视频精品全部免费 在线| 亚洲国产欧美在线一区| 51国产日韩欧美| 国产伦理片在线播放av一区| 久久精品国产自在天天线| 性色avwww在线观看| 国产欧美日韩精品一区二区| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 国产精品.久久久| 久久久精品欧美日韩精品| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 欧美日韩视频精品一区| 免费看av在线观看网站| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| 亚洲成人久久爱视频| 亚洲最大成人中文| 爱豆传媒免费全集在线观看| 亚洲成人久久爱视频| 亚洲性久久影院| 深夜a级毛片| 欧美激情在线99| 真实男女啪啪啪动态图| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 国产av码专区亚洲av| 亚洲欧洲日产国产| 国产精品伦人一区二区| 亚洲成人av在线免费| 国产成人福利小说| 婷婷色av中文字幕| .国产精品久久| 亚洲国产欧美在线一区| 韩国高清视频一区二区三区| 女人久久www免费人成看片| 18禁在线播放成人免费| 中国美白少妇内射xxxbb| 日韩大片免费观看网站| 成人亚洲精品av一区二区| 日产精品乱码卡一卡2卡三| 国产 精品1| 天堂中文最新版在线下载 | 精品亚洲乱码少妇综合久久| eeuss影院久久| 亚洲精品中文字幕在线视频 | 亚洲性久久影院| 丰满乱子伦码专区| 免费看不卡的av| 国产av不卡久久| 一级爰片在线观看| 又粗又硬又长又爽又黄的视频| 老女人水多毛片| 国产精品国产三级专区第一集| 亚洲成人久久爱视频| 成人毛片60女人毛片免费| 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 高清欧美精品videossex| 色网站视频免费| 91精品伊人久久大香线蕉| 黄色配什么色好看| 欧美激情在线99| 国产一区二区三区综合在线观看 | 女的被弄到高潮叫床怎么办| 久久精品久久久久久噜噜老黄| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 干丝袜人妻中文字幕| freevideosex欧美| av国产久精品久网站免费入址| 少妇的逼水好多| 精品人妻视频免费看| 丰满少妇做爰视频| 精品久久久久久久人妻蜜臀av| 少妇人妻 视频| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| 精华霜和精华液先用哪个| 2021少妇久久久久久久久久久| 中文资源天堂在线| 一级毛片 在线播放| 久久精品国产亚洲网站| 黄色日韩在线| 国国产精品蜜臀av免费| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 亚洲高清免费不卡视频| 精品久久久久久久人妻蜜臀av| 久久99热这里只有精品18| 少妇熟女欧美另类| 欧美xxⅹ黑人| 免费观看性生交大片5| av在线亚洲专区| 免费大片18禁| 十八禁网站网址无遮挡 | 久久99精品国语久久久| 国产一级毛片在线| 日韩精品有码人妻一区| 又爽又黄a免费视频| 久久99热这里只有精品18| 97在线人人人人妻| 18禁裸乳无遮挡动漫免费视频 | 深爱激情五月婷婷| 免费大片黄手机在线观看| 欧美激情在线99| 亚洲经典国产精华液单| 免费观看的影片在线观看| 日本黄大片高清| 亚洲国产精品成人久久小说| 日日啪夜夜撸| 国产v大片淫在线免费观看| 久久精品国产自在天天线| 亚洲美女搞黄在线观看| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品50| 九色成人免费人妻av| 午夜视频国产福利| 综合色丁香网| 人人妻人人澡人人爽人人夜夜| 国产成人a∨麻豆精品| 三级男女做爰猛烈吃奶摸视频| 国产免费一区二区三区四区乱码| 午夜福利在线观看免费完整高清在| 日本欧美国产在线视频| av网站免费在线观看视频| 国产 精品1| 汤姆久久久久久久影院中文字幕| 极品教师在线视频| 亚洲av.av天堂| 亚洲在线观看片| 色哟哟·www| 91精品一卡2卡3卡4卡| 色视频在线一区二区三区| 秋霞伦理黄片| 街头女战士在线观看网站| 国产免费一级a男人的天堂| a级毛片免费高清观看在线播放| 久热久热在线精品观看| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 美女高潮的动态| 日本-黄色视频高清免费观看| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 99热国产这里只有精品6| 2021少妇久久久久久久久久久| 国产欧美亚洲国产| 亚洲精品国产成人久久av| 中文字幕人妻熟人妻熟丝袜美| 国产黄频视频在线观看| 中文乱码字字幕精品一区二区三区| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 国产精品国产av在线观看| 亚洲精品色激情综合| 日日啪夜夜爽| 婷婷色综合大香蕉| 99热这里只有是精品在线观看| 97人妻精品一区二区三区麻豆| 直男gayav资源| av又黄又爽大尺度在线免费看| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂 | 日韩av不卡免费在线播放| 免费看av在线观看网站| 少妇人妻久久综合中文| 中文在线观看免费www的网站| 国产黄频视频在线观看| 欧美成人午夜免费资源| 久久久国产一区二区| 91精品一卡2卡3卡4卡| 国精品久久久久久国模美| av福利片在线观看| 午夜爱爱视频在线播放| 久久国产乱子免费精品| 国产综合懂色| 日韩强制内射视频| 人妻制服诱惑在线中文字幕| 禁无遮挡网站| 免费看a级黄色片| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 小蜜桃在线观看免费完整版高清| 亚洲,一卡二卡三卡| 国产av码专区亚洲av| 水蜜桃什么品种好| eeuss影院久久| 男女那种视频在线观看| 久久影院123| 网址你懂的国产日韩在线| 日韩亚洲欧美综合| 国产精品无大码| 日日啪夜夜爽| av一本久久久久| 黄色配什么色好看| 日韩亚洲欧美综合| 深夜a级毛片| 老师上课跳d突然被开到最大视频| 午夜激情久久久久久久| 欧美激情国产日韩精品一区| 一本久久精品| 久久99精品国语久久久| 日日啪夜夜爽| 国产视频首页在线观看| 又爽又黄无遮挡网站| 久久久成人免费电影| 国产欧美日韩精品一区二区| 国产av国产精品国产| 永久网站在线| 国产亚洲一区二区精品| 国产精品一及| 亚洲人成网站在线观看播放| 国产精品久久久久久av不卡| 国产爱豆传媒在线观看| 中文字幕亚洲精品专区| 国产av不卡久久| 一个人看视频在线观看www免费| 18禁裸乳无遮挡免费网站照片| 中文字幕av成人在线电影| 在线亚洲精品国产二区图片欧美 | 尾随美女入室| 一本久久精品| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 一个人看视频在线观看www免费| 插阴视频在线观看视频| 国产永久视频网站| 狠狠精品人妻久久久久久综合| 啦啦啦在线观看免费高清www| 特级一级黄色大片| 99久国产av精品国产电影| 91aial.com中文字幕在线观看| 国产大屁股一区二区在线视频| 国产高清国产精品国产三级 | 一级毛片 在线播放| 免费看不卡的av| 好男人视频免费观看在线| 91午夜精品亚洲一区二区三区| 内地一区二区视频在线| 国国产精品蜜臀av免费| 亚洲成色77777| 午夜爱爱视频在线播放| 成人国产麻豆网| 久久久精品免费免费高清| 在线观看免费高清a一片| 久久久久久九九精品二区国产| 国产欧美日韩一区二区三区在线 | www.av在线官网国产| 男人爽女人下面视频在线观看| av免费观看日本| 男人添女人高潮全过程视频| 欧美激情在线99| 中文天堂在线官网| 99热这里只有精品一区| 麻豆国产97在线/欧美| 五月开心婷婷网| 国产片特级美女逼逼视频| 久久国产乱子免费精品| 青春草视频在线免费观看| 国产高清有码在线观看视频| 交换朋友夫妻互换小说| 九九爱精品视频在线观看| 丰满乱子伦码专区| 国产老妇女一区| 天堂俺去俺来也www色官网| 国产精品国产三级国产av玫瑰| 欧美人与善性xxx| 久久久色成人| 在线观看一区二区三区| 少妇的逼水好多| 成人无遮挡网站| 久久久午夜欧美精品| 国产综合懂色| 亚洲精品久久午夜乱码| av在线蜜桃| 国产爽快片一区二区三区| 有码 亚洲区| 久久女婷五月综合色啪小说 | 91久久精品电影网| 国产爽快片一区二区三区| 男女国产视频网站| 十八禁网站网址无遮挡 | 最近最新中文字幕免费大全7| 久久久a久久爽久久v久久| 成人特级av手机在线观看| 国产一区二区三区综合在线观看 | 大片免费播放器 马上看| 人妻夜夜爽99麻豆av| 日韩一区二区三区影片| 久久国产乱子免费精品| 别揉我奶头 嗯啊视频| 精品午夜福利在线看| 色5月婷婷丁香| 欧美日韩国产mv在线观看视频 | 我的女老师完整版在线观看| 午夜免费观看性视频| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 狂野欧美激情性bbbbbb| 日本色播在线视频| 极品少妇高潮喷水抽搐| 有码 亚洲区| 久久久久国产网址| 毛片女人毛片| av在线观看视频网站免费| 中文字幕亚洲精品专区| 成人国产av品久久久| 美女视频免费永久观看网站| 26uuu在线亚洲综合色| 久久久久久久久久久丰满| 一级a做视频免费观看| 黄色配什么色好看| 日韩亚洲欧美综合| 亚洲av中文av极速乱| 免费黄网站久久成人精品| 啦啦啦在线观看免费高清www| 久久亚洲国产成人精品v| 欧美zozozo另类| 国产精品一区二区性色av| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 日韩,欧美,国产一区二区三区| 久久国内精品自在自线图片| 91aial.com中文字幕在线观看| 观看免费一级毛片| 18禁裸乳无遮挡动漫免费视频 | 激情 狠狠 欧美| 人人妻人人澡人人爽人人夜夜|