• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    楊梅酮的抗氧化活性

    2013-09-21 09:00:42謝湖均牟望舒林芙蓉徐結(jié)慧雷群芳方文軍
    物理化學(xué)學(xué)報 2013年7期
    關(guān)鍵詞:化學(xué)系工商大學(xué)杭州

    謝湖均 牟望舒 林芙蓉 徐結(jié)慧 雷群芳 方文軍

    (1浙江工商大學(xué)應(yīng)用化學(xué)系,杭州310035;2浙江大學(xué)化學(xué)系,杭州310027)

    1 Introduction

    Flavonoids are found in fruits,vegetables,bark,nuts,tea,grains,flowers,and wine.1-3The general structures of flavonoids share a common three-ring structure in which two of them are aromatic rings A and B and one of them is heterocyclic C,which are shown in Fig.1.4-7Myricetin(3,5,7,3',4',5'-hexa-hydroxyflavon),belonging to flavonoid compounds,is a natural antioxidant that is present in waxberry.8-10The molecular structure of myricetin is also presented in Fig.1.Previous studies showed that myricetin has a variety of biological activities.11,12Myricetin has shown to possess anti-inflammatory,antiallergic,antimutagenic,cancer chemo-preventive and antioxidant activities.13-15Hence,in the past few years,many scientists have devoted to the research of the biological activity,especially the antioxidant activity of this compound,since free radical-induced peroxidation of membrane lipids has been considered to be associated with a wide variety of chronic health problems,such as cancer,atherosclerosis,and aging.16,17Myricetin has been reported to be a good antioxidant and can reduce levels of plasma low-density lipoproteins.18,19

    The antioxidant activity of myricetin is related to its hydroxyl(OH)groups which can scavenge free radicals produced in vivo.20,21Previous experimental and theoretical studies showed that myricetin is a stronger antioxidant than quercetin,which has been attributed to the presence of the 5'-OH group that allows a further stabilization of the semiquinone myricetin radical via hydrogen-bond interaction.22,23Moreover,the pyrogallol moiety present in myricetin is a better superoxide scavenger than the catechol moiety present in quercetin.Wang et al.24evaluated the cytoprotective effect of myricetin on oxidative stress damaged cells by assessment of the scavenging effect of reactive oxygen species(ROS)and the activities of antioxidant enzymes.The results show that the myricetin has the scavenging effect of 1,1-diphenyl-2-picrylhydrazyl(DPPH)radicals on intracellular ROS.Moser25revealed that the antioxidant activity of myricetin was determined in soybean oil methyl esters(SME),and myricetin had greater antioxidant activity than atocopherol,but was inferior to tert-butylhydroquinone.

    Justino and Vieira26performed semi-empirical PM6 calculations to obtain the heat of formation,frontier molecular orbitals,atomic charge,as well as bond dissociation enthalpy,in order to discuss the antioxidant activity of myricetin.However,generally speaking,the PM6 method can not give the fine geometry and unpaired electron distribution of a molecule.In contrast,density functional theory(DFT)has proved to be reliable in the study of geometrical and energetic properties of proton transfer and other ion-molecule reactions.27-29Sadasivam and Kumaresan30have reported the antioxidant activity of myricetin via DFT calculations.The results showed that a hydrogen abstraction in the para position is more favored than the other positions,showing that the myricetin is a potent antioxidant due to its semiquinone structure of dehydrogenated radicals,in which the unpaired electrons are mainly distributed on the para position of the O-atom and B ring.

    In the present calculations,the antioxidant activity and rate constant for H-atom abstraction reaction of myricetin have been performed by DFT calculations.Our work can provide the reasons of high antioxidant activity of myricetin and determine which structural and electronic features are behind the high antioxidant activity of myricetin and telucidate the possible mechanisms underlying antioxidant activity.

    2 Computational details

    Geometry optimizations and frequency calculations have been carried out using the M06-2X functional31,32in combination with the 6-31++G(d,p)basis set.Unrestricted calculations were used for open shell systems,and local minima and transition states(TS)were identified by the number of imaginary frequencies(NIMAG=0 or 1,respectively).For each transition state,intrinsic reaction coordinate(IRC)calculations were also performed to guarantee its correct connection to the designated local minima.The TS Gibbs free energy allowed us to evaluate the Gibbs free energies of activation(ΔG#).To examine solvent effect on hydrogen atom abstraction reaction,the conductorlike polarizable continuum model(CPCM)33,34with a dielectric constant of water(ε=78.35)has been employed on the basis of the optimized structures in the gas phase.All the electronic calculations were performed with the Gaussian 09 package of programs.35

    Atom in molecule(AIM)theory36,37was performed at the M06-2X/6-31++G(d,p)level of theory to investigate the hydrogen bond property of studied structures.The AIM analysis was carried out by means ofAIM2000 program.38

    Fig.1 Molecular structure of flavonoid and atom numbering of myricetin(R)

    Bond dissociation enthalpy(BDE,ΔH)of each OH group in flavonoids(ArOH)was calculated for different compounds according to the following equation:

    where H was the enthalpy that took into account temperaturedependent corrections(zero point energy(ZPE),translational,rotational,and vibrational energies at 298 K).H(ArOH,298 K)corresponded to the enthalpy of the molecule and H(ArO·,298 K)was the enthalpy of the phenoxy radical where the H atom was removed.The BDE of each OH group of a compound was quoted BDE(i-OH).

    The rate constants appeared more relevant than ΔG#to compare the different reactions since hydrogen atom transfer(HAT)reactions may involve tunneling effect.Rate coefficients were calculated at 298 K within the conventional transition state theory(TST)39,40framework.

    where kBand h are the Boltzmann and Planck constants,the κ(T)transmission coefficient(quantum tunneling along the reaction coordinate)was evaluated by Wigner method.41This method is the most widely used and the simplest approximation to account for tunneling through the reaction barrier.Wigner method assumes a parabolic potential for nuclear motion near the transition state and κW(T)is given by

    where ν#is the transition states(TS)imaginary frequency.

    3 Results and discussion

    3.1 Geometry analysis of myricetin

    The nomenclature of H-deleted radicals is based on the molecular structure of myricetin(Fig.1).For example,the hydrogen atom is deleted from 3 site,then corresponding compounds are denoted with 3-OH radical.The same notation is used for the other radical forms,corresponding intermediates(Int),TS,and products(P).

    Structure-activity relationship researches42-44revealed that flavonoids have effective radical-scaveng capacities,which is originated from unique geometry conformation,that is,the ortho-trihydroxyl structure in the B-ring,the 2,3-double bond allows π electron delocalization from the B-ring,as well as the 3-and 5-OH with 4-oxo function in the A-and C-rings.As shown in Fig.1,myricetin belongs to flavonoid and possesses the similar structure characteristic,indicating strong antioxidant activity.

    Fig.2 depicts the evolution of the energy with respect to the C2'-C1'-C2-O1torsion angle around C1'-C2bond of myricetin between the rings B and C,and their preferred relative positions are presented.It has been found that the zero degree torsion angle is the most stable conformer of myricetin in gas phase.The curve also shows that the maximum value of potential energy lies at 90°,and the rotational barrier for interconversion is predicted to be 26.5 kJ·mol-1,which is consistent with previous results obtained from other flavonoids.45-48All hydroxyl groups are oriented in such way to form the stable structure.

    Fig.2 Relative energy profiles of myricetin obtained from rotation of the dihedral angle C2′?C1′?C2?O1around C1′?C2bond

    Many researchers have reported conformational calculations of flavonoids.Van Acker et al.49have obtained a planar geometry for quercetin via ab initio method,with the STO-3G basis set.Sadasivam and Kumaresan30have showed that the myricetin has a highly planar structure,the result is important because planarity influences π electron delocalization,one of the important parameters for an antioxidant.Fig.3 represents a three-dimensional(3D)visualization HOMO of myricetin,and it shows the characteristic of π state.For the myricetin,the HOMO mostly remains on the B-ring and little in the C2-C3double bond,indicating that the hydroxides in B-ring have strong antioxidant activity,which is in good agreement with previous calculated results.30,46The present calculations also suggested the presence of H-bond interactions between 3-OH and the carbonyl groups,3'-OH and 4'-OH groups,as well as 4'-OH and 5'-OH groups.Based on the calculations,the predicted H-bond distance of O3- H3…O4is about 0.1914 nm,which may play an important role in the myricetin stabilization and antioxidation activity.50,51

    Fig.3 Frontier molecular orbitals of myricetin(isovalue=0.05)

    3.2 Bond dissociation enthalpy

    As Fig.1 shows,among the six hydroxyl groups of myricetin,the 3'-OH,4'-OH,and 5'-OH groups are in the B-ring(pyrogallol moiety),which are responsible for the strong antioxidant activity of myricetin.In addition,the 3-OH is in the C-ing,while the 5-OH and 7-OH groups are in theA-ring.

    On the basis of previous studies,46,52-54flavonoids can react with radicals by hydrogen atom transfer(HAT)due to the low bond dissociation enthalpy of the O-H bond.Also,hydrogen atom transfer from an antioxidant to the oxygen-containing radical is a thermodynamically favorable event.Such as the BDE of phenol is 370 kJ·mol-1,which is generally chosen as the zero compound.55,56According to present calculations,all the BDEs of myricetin are lower than that of phenol as shown in Table 1,indicating that the hydrogen atom transfer is more favorable than the electron transfer.The BDE for breaking the O-H bond is characteristic of this antioxidant pathway.The weaker the OH bond(low BDE),the faster the reaction with free radicals.

    Theoretical calculations of the bond dissociation enthalpy by means of semi-empirical,Hartree-Fock,as well as DFT methods,have been useful for elucidating the high capacity of the OH groups of phenolic antioxidants.Nevertheless,quantumchemical studies on flavonoids are far from being complete.The previous theoretical investigations focused only on the B-ring(particularly the catechol moiety)and the most reliable methodology still has to be established.Although the B3LYP method is used in many investigations on antioxidant activity,57-60and in this study,the M06-2X method developed by Zhao and Truhlar31,32is applied.The main reason lies in the fact that sometimes there are some problems in the prediction of bond dissociation enthalpy,as well as energies and geometries of transition states by means of the B3LYP method.61-63As shown in Table 1,it can be seen the sequence of the BDE of OH groups calculated from M06-2X/6-31++G(d,p)level of theory:4'-OH<5'-OH<5-OH<3-OH<3'-OH<7-OH,meaning that the 4'-OH group has the strongest antioxidation activity with the BDE value of 303.7 kJ·mol-1,which is consistent with the calculations obtained by Sadasivama and kumaresan.30

    The relative low values of bond dissociation enthalpy(ΔH)are found for the 4'-OH and 5'-OH myricetin radicals,which clearly demonstrates that the B-ring is the most important site for hydrogen atom transfer.The role of the B-ring found here,especially that of the 4'-OH group,is in accordance with all structure-activity relationship described in the literature.30,46,64,65The role of ortho-substitution on the B-ring has also been intensively discussed,the 4'-OH seems to be the most thermo-dynamically favorable site,and similar results are obtained for quercetin and taxifolin.66,67The low ΔH value of 4'-OH group could be attributed to weak hydrogen-bond interactions,that is,the keto(C=O)group and remaining 3'-OH and 5'-OH groups(O3'-H'…O4'and O5'-H'…O4'hydrogen bonds).After the O-H bond is broken in the parent compound,the radical is able to rearrange to the more stable conformation,corresponding to the formation of a new hydrogen-bond in contrast to myricetin molecule.Thus,the hydrogen-bond has a stabilizing effect after radical formation on the B-ring and rearrangement,by twisting the remaining OH bond,is possible in the present calculations.

    Table 1 Total energies(E)and relative energies(RE)of dehydrogenated myricetin radicals and O-H bond dissociation enthalpies(ΔH)derived from M06-2X/6-31++G(d,p)calculations

    The 3-OH,5-OH,and 7-OH radicals were also considered in the present study.The ΔH values(Table 1)show that the role of the A-ring and C-ring is clearly less important than that of the B-ring.In contrast to B-ring,a difference of about 42 kJ·mol-1is observed for the bond dissociation enthalpy of the A-ring and C-ring.Again,this is in agreement with all previous studies.30,46The calculated BDE values confirm that even the 3-OH group in the C-ring of myricetin,in some cases,can be also responsible for antioxidant activity.46,68After H removal of the 3-OH group,the stabilizing effect,due to an hydrogenbond with the 4-keto group,disappears in myricetin.

    Fig.4 presents the singly occupied molecular orbitals(SOMO)of dehydrogenated myricetin radicals.As Fig.4 shows,the SOMO of radicals can be correlated with the free radical-scavenging activity due to their delocalization of the unpaired electron and conjugation effects.Lien et al.69used this parameter in a quantitative structure-activity relationship(QSAR)study on phenolic compounds.The SOMO is important because it corresponds to the energy level of the unpaired electron.We have therefore analyzed the spatial distribution of SOMO.This parameter gives important information about possible stabilization by delocalization of the flavonoxy radical.It is noticed from Fig.4 that the SOMO is delocalized over the B-ring for the 4'-OH radicals of myricetin.Possibility of π electron delocalization in the radical,after hydrogen atom transfer,largely influences the ΔH values.This analysis supports the results obtained for the HOMO distribution and ΔH values,which are in agreement with previous structure-activity relationship.30

    3.3 Antioxidation mechanism of myricetin

    Fig.4 SOMO of H-deleted myricetin radicals

    Fig.5 Optimized geometries of Int1derived from M06-2X/6-31++G(d,p)calculations bond distance in nm

    The low O-H bond dissociation enthalpy of myricetin means that the hydrogen atom transfer reaction is easy to occur.In order to elucidate the reactivity of OH groups of myricetin,we calculated the free energy profiles for the reaction between the CH3OO·radical with myricetin(R).A simple model for the lipid peroxide radical CH3OO·is chosen because nu-merous natural peroxides are of the similar structure(ROO·).Thus,the obtained results could demonstrate their general behaviors.The calculations reveal that detachment of H atom by CH3OO·radical can be performed with all six hydroxyl groups of myricetin.Each reaction proceeds via one transition state(TS)and two intermediates(Int1and Int2).The relative energies of the different compounds in the hydrogen abstraction reaction in the gas phase and aqueous solution are given in Table 2,and the optimized geometries of the stationary points concerning Int1,TS,Int2,and P in the antioxidation reaction are available in Figs.5-8.

    The optimized geometries of all stationary points encountered during the H-atom transfer reaction between the 4'-OH group of myricetin and CH3OO·radical are reported in Figs.5-8.The 4'-OH group is considered to be the most reactive,since,from its radicalization,a very stable radical species is obtained,stabilized by delocalization and conjugation phenomena,as well as by an internal H-bond,established between the radicalized O·and the adjacent OH groups,which agrees with the smallest value for bond dissociation enthalpy of 4'-OH group.Myricetin is a planar species,and the OH groups are arranged in such a way as to maximize the number of hydrogenbonds.The reaction between myricetin(R)and CH3OO·radical starts with the formation of a reactant complex(Int1),in which the radical is hydrogen bonded to the 4'-OH group of the ortho-diphenolic moiety of myricetin.As Fig.5 displays,the predicted 4'-OH…OOCH3hydrogen-bond distance in Int1is 0.1907 nm.The H-atom transfer reaction passes through a transition state(TS)in which the hydrogen is bonded to the ox-ygen atoms of both the 4'-OH and the CH3OO·radical.By inspecting Table 2,one can observe that the smallest activation barriers of 34.5 and 37.3 kJ·mol-1in the gas phase and aqueous solution are required for the reaction in the position of 4'-OH.The activation barrier required to transfer the hydrogen atom from the phenolic OH to the methyl peroxide radical is calculated as the difference in the total energy between the transition state(TS)and corresponding reactant(Int1).As shown in Fig.6,the critical distances of 4'-O…H and H…OOCH3in TS are 0.1122 and 0.1289 nm,respectively.After the hydrogen atom transfers,a complex of the intermediates(Int2)is found.The H-OOCH3bond is completely established,and the methyl peroxide is hydrogen bonded to the 4'-O radical of myricetin as shown in Fig.7.In the latter,an internal hydrogen bond is formed and involves the radicalized oxygen of the 4'-OH group and the adjacent 3'-OH in the B-ring.Finally,the CH3OOH and H-deleted myricetin radical(P)are generated as shown in Fig.8.On the basis of present calculations,the patterns of the hydrogen bonds present in myricetin are retained in going from reactant to Int1,TS,Int2,and P,which is validated by AIM analysis as shown in Fig.9.Generally speaking,hydrogen bond is characterized by positive value of Laplacian?2ρ(r)and low electronic density ρ(r)value(<0.1)at bond critical point(BCP).Inspection of Fig.9 reveals obviously that the ρ(r)and ?2ρ(r)of all compounds for the 4'-H atom abstraction reaction fit the characteristics of hydrogen bond.

    Table 2 Relative energy of the different compounds in the hydrogen abstraction reaction of myricetin

    Fig.6 Optimized geometries of TS for hydrogen atom transfer derived from M06-2X/6-31++G(d,p)calculations

    The H-atom transferreaction occurring between the CH3OO·radical and the 5'-OH group of myricetin is qualitatively similar to the 4'-OH group.The reactant complex(Int1)is obtained with hydrogen-bond 5'-OH…OOCH3distance of 0.1887 nm displayed in Fig.5.The transition state,necessary to proceed towards the product complex,is characterized by a 5'-O…H and H…OOCH3distances of 0.1105 and 0.1313 nm,respectively(Fig.6).As Table 2 shows,the predicted activation barriers for the hydrogen atom transfer are about 38.7 and 37.8 kJ·mol-1in the gas phase and aqueous solution,respectively.On the basis of the calculations,it leads to a conclusion that the reaction can take place in both 4'and 5'positions.As Table 2 depicts,the reverse reactions in these positions are unlikely,since both reactions for the formation of the final products are significantly exergonic in the gas phase to prevent the reverse process.

    Fig.7 Optimized geometries of Int2derived from M06-2X/6-31++G(d,p)calculations

    It is noted that the pyrogallol functionality in the B-ring of myricetin has a reasonable effect on the barrier heights.The greater reactivity of the 4'-OH and 5'-OH groups towards the CH3OO·radical is mainly due to the stability generated by the intramolecular H-bond between radicalized oxygen of the reactive OH group and the adjacent OH in the B-ring,which is retained in going from free myricetin to reactant complex to transition state.This H-bond helps in stabilizing the electronic deficiency generated on the radicalized oxygen during the H abstraction reaction.The important role of intramolecular hydrogen bonds in stability of the radicals has been validated by previous studies.7,42,46,67For the other OH groups,this stability cannot be achieved.

    In the case of the 3'-OH group,the hydrogen-bond distance between the oxygen from the CH3OO·radical and the hydrogen from the 3'-OH group in Int1is about 0.1919 nm(Fig.5).As can be noted from Fig.6,the 3'-O…H and H…OOCH3distances at the saddle points for the hydrogen atom transfer are calculated to be 0.1174 and 0.1219 nm,respectively.The corresponding reaction barriers are equal to 52.5 and 48.3 kJ·mol-1in the gas phase and aqueous solution,respectively.

    The 3-OH,5-OH,and 7-OH groups in C-ring of myricetin are recognized as the other possible sites for the reaction with the free radicals,from both theoretical and experimental points of view,due to the fact that in the radical arising from the oxidation process,the odd electron can be delocalized over both B-and C-rings.On the basis of the calculations,the H-atom transfer reactions of the 3-OH,5-OH,and 7-OH groups in C-ring of myricetin are less favorable than that of the 4'-OH group of myricetin.Also,the H-atom transfer reactions between the 3-OH,5-OH,and 7-OH groups with the CH3OO·show the similar potential energy surfaces.Thus,we will only talk about the reaction between the 3-OH group with the CH3OO·.For 3-OH group,a stable complex between reactants is obtained,through a weak interaction involving the hydrogen of the 3-OH and the oxygen of the CH3OO·.As Fig.5 shows,the distance of hydrogen-bond in Int1amounts to 0.2028 nm.The hydrogen of the 3-OH is also involved in the hydrogenbond with the 4-carbonyl oxygen(0.2055 nm).For the hydrogen that is going to be transferred,the reaction proceeds towards the transition state in which this hydrogen is contemporaneously bonded to the 3-OH and to the CH3OO·as shown in Fig.6(0.1082 and 0.1354 nm),and at the same time,the internal 4-keto…3-OH hydrogen-bond is destroyed.The activation barriers for the hydrogen atom transfer are predicted to be 49.2 and 42.0 kJ·mol-1in the gas phase and aqueous solution,respectively.

    Fig.8 Optimized geometries of product(P)derived from M06-2X/6-31++G(d,p)calculations

    On the basis of present calculations,the following activation energy sequence for the OH groups is found in the gas phase:4'-OH<5'-OH<3-OH<3'-OH<5-OH<7-OH,which agrees with the result from aqueous solution.The 4'-OH site seems to be the most reactive one,also indicated by previous works.30,46

    A detailed analysis of the transition states shows that the spin density(Fig.10)is located on CH3OO·and H-deleted ring.In comparison to the reactants,the spin density in TS associated with H-deleted ring moiety is increased,while that associated with CH3OO·fragment is decreased.

    3.4 Rate constants of H-atom abstraction reaction

    The rate constants for the H atom abstraction from the different OH groups of myricetin by the CH3OO·radical are calculated via M06-2X/6-31++G(d,p)method,together with the tunnelling transmission coefficients as a function of the temperature,which are collected in Table 3.In the present calculations,only the M06-2X functional is performed since this functional provides more reliable kinetics and thermodynamics.

    Fig.9 Electronic density ρ(r)BCPand Laplacian ?2ρ(r)BCPat bond critical point(BCP)of Int1,TS,Int2,and Pfor the 4′-H atom abstraction reaction

    Fig.10 Spin densities of TS for the hydrogen atom transfer reaction between myricetin and CH3OO·radical

    Table 3 Rate constants for the H-abstraction reaction between CH3OO·free radical and myricetin presented along with the tunneling transmission coefficients as a function of temperature

    The conventional transition state rate constant value,kTST,mainly depends on the high classical potential energy barrier(besides entropic contributions).As Table 3 shows,the rate constant for the 4'-H atom abstraction reaction is predicted to be 1.5×108L·mol-1·s-1at 298 K.After quantum tunneling correction,the rate constant of k(T)is equal to 6.0×108L·mol-1·s-1.In addition,with the increase of temperature,the rate constant is increased significantly.The predicted rate constants kTSTand k(T)at 1000 K are 8.7×1011and 1.1×1012L·mol-1·s-1,respectively.The rate constant at 1000 K is 3 orders of magnitude larger than that at 298 K.The present calculations indicate that the rate constant of 4'-H atom abstraction reaction shows the largest value,which is consistent with the previous researches30,46,64that a high rate of hydrogen atom transfer is expected to be related to a low BDE of phenolic O-H bond.The overall reactivity of myricetin toward CH3COO·radicals was found to be fast,supporting the excellent radical scavenging activity of myricetin,in agreement with the available experimental evidence.25Also,the κ(T)transmission coefficient is gradually decreased with the increase of temperature,indicating that the entropic effects become more significant.

    As indicated in the previous section,the formation of the reactant complex and the dissociation of the product complex do not affect kinetics since these two processes occur with no classical energy barriers,and the overall reaction is governed only by the H-atom abstraction bottleneck.According to the calculations,the tunnelling effects are slightly important in this reaction.Our findings are in qualitative agreement with those obtained in a study of the reaction between the methyl peroxide radical and epicatechin,70also showing the pyrogallol functionality in the B-ring.

    4 Conclusions

    On the basis of the most stable conformations of myricetin,its electronic structure has been calculated by means of M06-2X/6-31++G(d,p)treatments.The BDEs of all OH groups of myricetin were calculated,and the antioxidation activity and rate constant for hydrogen atom transfer were discussed.All these results confirm the predominant H-transfer capacity of the 4'-OH group,compared to the other OH groups in the myricetin.The relative high antioxidation activity of 4'-OH group in myricetin is attributed to very stable H-deleted radical species,delocalization and conjugation phenomena,as well as by an internal H-bond,established between the radicalized O·and the adjacent OH groups.The theoretical investigations on the antioxidation mechanism of myricetin could provide the insights into the design and synthesis of novel antioxidants with enhanced activity.

    (1) Kuhnau,J.World Rev.Nutr.Diet.1976,24,117.

    (2)Miean,K.H.;Mohamed,S.J.Agric.Food Chem.2001,49,3106.doi:10.1021/jf000892m

    (3)Li,M.J.;Zhang,L.M.;Liu,W.X.;Lu,W.C.Chin.J.Chem.Phys.2011,24,173.

    (4) Rüfer,C.E.;Kulling,S.E.J.Agric.Food Chem.2006,54,2926.doi:10.1021/jf053112o

    (5)Amat,A.;Clementi,C.;DeAngelis,F(xiàn).;Sgamellotti,A.;Fantaccia,S.J.Phys.Chem.A 2009,113,15118.doi:10.1021/jp9052538

    (6) Horvath,C.R.;Martos,P.A.;Saxena,P.K.J.Chromatogr.A 2005,1062,199.doi:10.1016/j.chroma.2004.11.030

    (7) Nenadis,N.;Sigalas,M.P.J.Phys.Chem.A 2008,112,12196.doi:10.1021/jp8058905

    (8) Rashid,U.;Anwar,F(xiàn).;Moser,B.R.;Knothe,G.Bioresour.Technol.2008,99,8175.doi:10.1016/j.biortech.2008.03.066

    (9) Gunesekaran,R.;Ubeda,A.;Alcaraz,M.J.;Jayaprakasam,R.;Nair,A.G.R.Pharmazie 1993,48,230.

    (10)Mehrdad,M.;Zebardast,M.;Abedi,G.;Koupaei,M.N.;Rasouli,H.;Talebi,M.J.Aoac.Int.2009,92,1035.

    (11) Burda,S.;Oleszek,W.J.Agric.Food.Chem.2001,49,2774.doi:10.1021/jf001413m

    (12) Mira,L.;Fernandez,M.T.;Santos,M.;Rocha,R.;Florencio,M.H.;Jennings,K.R.Free Radic.Res.2002,36,1199.doi:10.1080/1071576021000016463

    (13)Ko,C.H.;Shen,S.C.;Lee,T.J.;Chen,Y.C.Mol.Cancer Ther.2005,4,281.

    (14) Morales,P.;Haza,A.I.J.Appl.Toxicol.2012,32,986.doi:10.1002/jat.v32.12

    (15) Rasulev,B.F.;Abdullaev,N.D.;Syrov,V.N.Leszczynski,J.QSAR Comb.Sci.2005,24,1056.

    (16)DeToma,A.S.;Choi,J.S.;Braymer,J.J.;Lim,M.H.ChemBioChem 2011,12,1198.doi:10.1002/cbic.v12.8

    (17) Delgado,M.E.;Haza,A.I.;Garcia,A.;Morales,P.Toxicolin.In Vitro 2009,23,1292.doi:10.1016/j.tiv.2009.07.022

    (18)Oyama,Y.;Fuchs,P.A.;Katayama,N.;Noda,K.Brain Res.1994,635,125.doi:10.1016/0006-8993(94)91431-1

    (19)Gordon,M.H.;Roedig-Penmanm,A.Chem.Phys.Lipids 1998,97,79.doi:10.1016/S0009-3084(98)00098-X

    (20) Lalas,S.;Tsaknis,J.J.Am.Oil.Chem.Soc.2002,79,677.doi:10.1007/s11746-002-0542-2

    (21) Shahidi,F(xiàn).;Wanasundara,U.Dev.Food Sci.1995,37A,469.

    (22) Robak,J.;Gryglewski,R.J.Biochem.Pharmacol.1988,37,837.doi:10.1016/0006-2952(88)90169-4

    (23) Angelone,T.;Pasqua,T.;Di Majo,D.;Quintieri,A.M.;Filice,E.;Amodio,N.;Tota,B.;Giammanco,M.;Cerra,M.C.Nutr.Metab.Cardiovas.2011,21,362.doi:10.1016/j.numecd.2009.10.011

    (24)Wang,Z.H.;Kang,K.A.;Zhang,R.;Piao,M.J.;Jo,S.H.;Kim,J.S.;Kang,S.S.;Lee,J.S.;Park,D.H.;Hyun,J.W.Environ.Toxicol.Phar.2010,29,12.doi:10.1016/j.etap.2009.08.007

    (25) Moser,B.R.Eur.J.Lipid Sci.Technol.2008,110,1167.doi:10.1002/ejlt.v110:12

    (26) Justino,G.C.;Vieira,A.J.S.C.J.Mol.Model.2010,16,863.doi:10.1007/s00894-009-0583-1

    (27)Mendoza-Wilson,A.M.;Sotelo-Mundo,R.R.;Balandran-Quintana,R.R.;Glossman-Mitnik,D.;Santiz-Gomez,M.A.;Garcia-Orozco,K.D.J.Mol.Struct.2010,981,187.doi:10.1016/j.molstruc.2010.08.005

    (28) Leon-Carmona,J.R.;Galano,A.J.Phys.Chem.B 2011,115,4538.doi:10.1021/jp201383y

    (29) Anouar,E.;Calliste,C.A.;Kosinova,P.;Di Meo,F(xiàn).;Duroux,J.L.;Champavier,Y.;Marakchi,K.;Trouillas,P.J.Phys.Chem.A 2009,113,13881.doi:10.1021/jp906285b

    (30) Sadasivam,K.;Kumaresan,R.Spectrochim.Acta A 2011,79,282.doi:10.1016/j.saa.2011.02.042

    (31) Zhao,Y.;Truhlar,D.G.Theor.Chem.Acc.2008,120,215.doi:10.1007/s00214-007-0310-x

    (32) Zhao,Y.;Truhlar,D.G.Accounts Chem.Res.2008,41,157.doi:10.1021/ar700111a

    (33) Barone,V.;Cossi,M.J.Phys.Chem.A 1998,102,1995.doi:10.1021/jp9716997

    (34)Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem.2003,24,669.doi:10.1002/jcc.10189

    (35) Frisch,M.J.;Trucks,G..W.;Schlegel,H.B.;et al.Gaussian 09,RevisionA.01;Gaussian Inc.:Wallingford,CT,2009.

    (36) Bader,R.F.W.Chem.Res.1991,91,893.

    (37) Bader,R.F.W.J.Phys.Chem.A 1998,102,7314.doi:10.1021/jp981794v

    (38) Biegler-Konig,F(xiàn).AIM2000;University ofApplied Sciences:Bielefeld,Germany.

    (39) Eyring,H.J.Chem.Phys.1935,3,107.doi:10.1063/1.1749604

    (40) Evans,M.G.;Polanyi,M.Trans.Faraday Soc.1935,31,875.doi:10.1039/tf9353100875

    (41) Wigner,E.J.Chem.Phys.1937,5,720.

    (42) Russo,N.;Toscano,M.;Uccella,N.J.Agric.Food Chem.2000,48,3232.doi:10.1021/jf990469h

    (43)Bors,W.;Heller,W.;Saran,M.Methods in Enzymology;Academic Press:San Diego,1990;Vol.186,p 343.

    (44) Leopoldini,M.;Rondinelli,F(xiàn).;Russo,N.;Toscano,M.J.Agric.Food Chem.2010,58,8862.doi:10.1021/jf101693k

    (45) Estvez,L.;Mosquera,R.A.J.Phys.Chem.A 2007,111,11100.doi:10.1021/jp074941a

    (46) Xie,H.J.;Lei,Q.F.;Fang,W.J.Acta Chim.Sin.2010,68,1467.

    (47) Markovic,Z.S.;Dimitric,J.M.;Markovic,D.;Dolicanin,C.B.Theor.Chem.Acc.2010,127,69.doi:10.1007/s00214-009-0706-x

    (48)Sadasivam,K.;Kumaresan,R.Comput.Theor.Chem.2011,963,227.doi:10.1016/j.comptc.2010.10.025

    (49) VanAcker,S.A.B.E.;DeGroot,M.J.;Van den Berg,D.J.;Tromp,M.N.J.L.;Den Kelder,G.D.O.;Van der Vijgh,W.J.F.;Bast,A.Chem.Res.Toxicol.1996,9,1305.doi:10.1021/tx9600964

    (50) Rice-Evans,C.A.;Miller,N.J.;Paganga,G.Free Radic.Biol.Med.1996,20,933.doi:10.1016/0891-5849(95)02227-9

    (51)VanAcker,S.A.B.E.;Van Den Berg,D.J.;Tromp,M.N.J.L.;Griffioen,D.H.;Van Bennekom,W.P.;Van Der Vijgh,W.J.F.;Bast,A.Free Radic.Biol.Med.1996,20,331.doi:10.1016/0891-5849(95)02047-0

    (52) Guzman,R.;Santiago,C.;Sanchez,M.J.Mol.Struct.2009,935,110.doi:10.1016/j.molstruc.2009.06.048

    (53) Chiodo,S.G.;Leopoldini,M.;Russo,N.;Toscano,M.Phys.Chem.Chem.Phys.2010,12,7662.doi:10.1039/b924521a

    (54)Li,M.J.;Li,Y.J.;Peng,C.R.;Lu,W.C.Acta Phys.-Chim.Sin.2010,26,466.[李敏杰,李亞軍,彭淳容,陸文聰.物理化學(xué)學(xué)報,2010,26,466.]doi:10.3866/PKU.WHXB20100230

    (55) Wright,J.S.;Johnson,E.R.;Di Labio,G.A.J.Am.Chem.Soc.2001,123,1173.doi:10.1021/ja002455u

    (56) Trouillas,P.;Fagnere,C.;Lazzaroni,R.;Calliste,C.;Marfak,A.;Duroux,J.L.Food Chem.2004,88,571.doi:10.1016/j.foodchem.2004.02.009

    (57) Aparicio,S.Int.J.Mol.Sci.2010,11,2017.doi:10.3390/ijms11052017

    (58) Zhang,J.H.;Du,F(xiàn).P.;Peng,B.;Lu,R.H.;Gao,H.X.;Zhou,Z.Q.J.Mol.Struct.-Theochem 2010,955,1.doi:10.1016/j.theochem.2010.04.036

    (59) Kosinova,P.;Di Meo,F(xiàn).;Anouar,E.H.;Duroux,J.L.;Trouillas,P.Int.J.Quantum Chem.2011,11,1131.

    (60)Zhang,H.Y.;Wang,L.F.;Sun,Y.M.Bioorg.Med.Chem.Lett.2003,13,909.doi:10.1016/S0960-894X(03)00013-1

    (61)Zhang,I.Y.;Wu,J.M.;Luo,Y.;Xu,X.J.Comput.Chem.2011,32,1824.doi:10.1002/jcc.v32.9

    (62)Wu,J.M.;Zhang,I.Y.;Xu,X.ChemPhysChem 2010,11,2561.doi:10.1002/cphc.201000273

    (63) Alecu,I.M.;Truhlar,D.G.J.Phys.Chem.A 2011,115,2811.doi:10.1021/jp110024e

    (64) Dhaouadi,Z.;Nsangou,M.;Garrab,N.;Anouar,E.H.;Marakchi,K.;Lahmar,S.J.Mol.Struct.-Theochem 2009,904,35.doi:10.1016/j.theochem.2009.02.034

    (65)Mikulski,D.;Gorniak,R.;Molski,M.Eur.J.Med.Chem.2010,45,1015.doi:10.1016/j.ejmech.2009.11.044

    (66) Trouillas,P.;Marsal,P.;Siri,D.;Lazzaroni,R.;Duroux,J.L.Food Chem.2006,97,679.doi:10.1016/j.foodchem.2005.05.042

    (67) Leopoldini,M.;Pitarch,I.P.;Russo,N.;Toscano,M.J.Phys.Chem.A 2004,108,92.doi:10.1021/jp035901j

    (68) Bowater,L.;Fairhurst,S.A.;Just,V.J.;Bornemann,S.FEBS Lett.2004,557,45.doi:10.1016/S0014-5793(03)01439-X

    (69) Lien,E.J.;Ren,S.;Bui,H.H.;Wang,R.Free Radic.Biol.Med.1999,26,285.doi:10.1016/S0891-5849(98)00190-7

    (70) Tejero,I.;Gonzalez-Garcia,N.;Gonzalez-Lafont,A.;Lluch,J.M.J.Am.Chem.Soc.2007,129,5846.doi:10.1021/ja063766t

    猜你喜歡
    化學(xué)系工商大學(xué)杭州
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    杭州
    幼兒畫刊(2022年11期)2022-11-16 07:22:36
    重慶工商大學(xué)學(xué)科簡介
    重慶工商大學(xué)
    重慶工商大學(xué)
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    G20 映像杭州的“取勝之鑰”
    傳媒評論(2017年12期)2017-03-01 07:04:58
    杭州
    汽車與安全(2016年5期)2016-12-01 05:21:55
    一夜夜www| 成人三级做爰电影| 国产淫语在线视频| 国产区一区二久久| 女警被强在线播放| 夜夜爽天天搞| 亚洲七黄色美女视频| 一区福利在线观看| 久久久久久久国产电影| 午夜福利免费观看在线| 新久久久久国产一级毛片| 久久99热这里只频精品6学生| 亚洲人成伊人成综合网2020| 亚洲第一青青草原| 日韩 欧美 亚洲 中文字幕| 热re99久久精品国产66热6| 日韩免费高清中文字幕av| 免费日韩欧美在线观看| 伊人久久大香线蕉亚洲五| av欧美777| 深夜精品福利| 久久久国产成人免费| 操美女的视频在线观看| 啦啦啦在线免费观看视频4| www日本在线高清视频| 国产深夜福利视频在线观看| 黄色视频不卡| 欧美人与性动交α欧美精品济南到| 可以免费在线观看a视频的电影网站| 两个人看的免费小视频| 在线观看免费视频日本深夜| 免费少妇av软件| 99re6热这里在线精品视频| 色94色欧美一区二区| 亚洲国产欧美一区二区综合| 一本—道久久a久久精品蜜桃钙片| av一本久久久久| 色综合婷婷激情| 少妇 在线观看| 99久久人妻综合| 欧美午夜高清在线| 亚洲精品中文字幕一二三四区 | 免费av中文字幕在线| 久久久久久久久免费视频了| 亚洲情色 制服丝袜| 中文字幕精品免费在线观看视频| 动漫黄色视频在线观看| 免费少妇av软件| 日韩熟女老妇一区二区性免费视频| 国产欧美亚洲国产| 国产91精品成人一区二区三区 | 免费观看人在逋| 国产在线视频一区二区| 国产精品二区激情视频| 亚洲精品一二三| 久久久欧美国产精品| 黄色 视频免费看| 在线观看66精品国产| 丰满迷人的少妇在线观看| 久久99一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 精品国产亚洲在线| 久久国产亚洲av麻豆专区| 看免费av毛片| 两个人看的免费小视频| 91老司机精品| 老司机福利观看| 精品久久蜜臀av无| 99riav亚洲国产免费| 精品久久久久久久毛片微露脸| 久久精品aⅴ一区二区三区四区| 午夜两性在线视频| 国产精品一区二区精品视频观看| 91九色精品人成在线观看| 欧美日韩国产mv在线观看视频| 国产亚洲精品一区二区www | 亚洲成av片中文字幕在线观看| 美女福利国产在线| 成年女人毛片免费观看观看9 | 欧美日韩国产mv在线观看视频| 汤姆久久久久久久影院中文字幕| 少妇被粗大的猛进出69影院| 午夜激情av网站| 搡老熟女国产l中国老女人| 日韩一卡2卡3卡4卡2021年| 欧美成狂野欧美在线观看| 青草久久国产| 国产色视频综合| 美女午夜性视频免费| 大片电影免费在线观看免费| 亚洲天堂av无毛| 91麻豆精品激情在线观看国产 | 亚洲人成77777在线视频| 曰老女人黄片| bbb黄色大片| 一区二区日韩欧美中文字幕| 国产精品电影一区二区三区 | 多毛熟女@视频| 国产一卡二卡三卡精品| 少妇 在线观看| 99精品在免费线老司机午夜| 色尼玛亚洲综合影院| 国产成人一区二区三区免费视频网站| 欧美乱妇无乱码| 黄色视频,在线免费观看| 国产欧美日韩精品亚洲av| 男女无遮挡免费网站观看| 男女无遮挡免费网站观看| 亚洲精品国产区一区二| 亚洲欧美精品综合一区二区三区| 咕卡用的链子| 天堂8中文在线网| 欧美成人午夜精品| 黄网站色视频无遮挡免费观看| 久久人人97超碰香蕉20202| 精品久久久精品久久久| 国产成人av教育| 18禁黄网站禁片午夜丰满| 在线播放国产精品三级| 国产精品久久久久成人av| 亚洲 国产 在线| kizo精华| 国产色视频综合| 亚洲精品久久午夜乱码| 精品国产亚洲在线| 成年人免费黄色播放视频| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 视频区图区小说| 黄色a级毛片大全视频| 97人妻天天添夜夜摸| 亚洲成人国产一区在线观看| 大香蕉久久成人网| 精品少妇久久久久久888优播| 蜜桃国产av成人99| 视频区欧美日本亚洲| 日本av免费视频播放| 久久ye,这里只有精品| av不卡在线播放| 精品人妻1区二区| 国产精品九九99| 日本一区二区免费在线视频| 怎么达到女性高潮| 老熟女久久久| 欧美日本中文国产一区发布| 久久久精品国产亚洲av高清涩受| 美女福利国产在线| 久久久久网色| avwww免费| 18禁美女被吸乳视频| 一级a爱视频在线免费观看| 成人手机av| 免费看十八禁软件| 视频在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 美女扒开内裤让男人捅视频| 91麻豆av在线| 多毛熟女@视频| 两个人看的免费小视频| 国产免费视频播放在线视频| 我要看黄色一级片免费的| 中文亚洲av片在线观看爽 | 男女床上黄色一级片免费看| 亚洲成人免费电影在线观看| 又紧又爽又黄一区二区| 一区二区三区乱码不卡18| 色婷婷久久久亚洲欧美| 色综合婷婷激情| 老司机在亚洲福利影院| 成年动漫av网址| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 怎么达到女性高潮| 日韩制服丝袜自拍偷拍| 国产午夜精品久久久久久| 这个男人来自地球电影免费观看| 国产片内射在线| 国产精品一区二区精品视频观看| kizo精华| 一区二区三区精品91| 欧美国产精品一级二级三级| 免费日韩欧美在线观看| 80岁老熟妇乱子伦牲交| 国产黄色免费在线视频| av天堂久久9| 欧美国产精品va在线观看不卡| 丝袜喷水一区| 亚洲av国产av综合av卡| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 日韩一卡2卡3卡4卡2021年| 窝窝影院91人妻| 久久久久久久大尺度免费视频| 久久人妻福利社区极品人妻图片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成国产人片在线观看| 中文字幕人妻熟女乱码| 美国免费a级毛片| 午夜视频精品福利| 女性生殖器流出的白浆| 欧美日韩福利视频一区二区| xxxhd国产人妻xxx| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 精品一区二区三区四区五区乱码| 欧美人与性动交α欧美软件| 男女床上黄色一级片免费看| 99国产精品一区二区蜜桃av | 亚洲天堂av无毛| 91精品国产国语对白视频| 免费少妇av软件| 国产精品九九99| 菩萨蛮人人尽说江南好唐韦庄| 99九九在线精品视频| 精品亚洲成a人片在线观看| 国产精品 国内视频| 黄色a级毛片大全视频| 一区二区三区乱码不卡18| 亚洲欧美精品综合一区二区三区| 丝袜喷水一区| 国产成人影院久久av| 久久人人爽av亚洲精品天堂| 老熟女久久久| 天天操日日干夜夜撸| 黑人猛操日本美女一级片| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区激情| 一夜夜www| 精品熟女少妇八av免费久了| 午夜91福利影院| 精品国产一区二区三区四区第35| 午夜福利在线观看吧| 91大片在线观看| 飞空精品影院首页| 欧美激情高清一区二区三区| 久久人妻av系列| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 大型av网站在线播放| 国产aⅴ精品一区二区三区波| 久久久久久免费高清国产稀缺| 成年人免费黄色播放视频| 最新在线观看一区二区三区| 亚洲国产成人一精品久久久| 高清黄色对白视频在线免费看| 久久久久精品国产欧美久久久| 天堂俺去俺来也www色官网| 国产成人精品在线电影| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区激情| 午夜老司机福利片| 热re99久久精品国产66热6| 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 国产真人三级小视频在线观看| 大香蕉久久成人网| 色老头精品视频在线观看| 成年人免费黄色播放视频| 多毛熟女@视频| av线在线观看网站| 色精品久久人妻99蜜桃| 亚洲专区字幕在线| 国产精品一区二区在线观看99| 伦理电影免费视频| 亚洲成人免费av在线播放| 欧美成狂野欧美在线观看| 亚洲色图av天堂| 国产精品九九99| 美女扒开内裤让男人捅视频| 国产精品麻豆人妻色哟哟久久| 国产av又大| 欧美精品啪啪一区二区三区| videosex国产| 人人妻人人添人人爽欧美一区卜| 久久精品aⅴ一区二区三区四区| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 少妇裸体淫交视频免费看高清 | 人妻久久中文字幕网| 日韩一区二区三区影片| 国产成人精品在线电影| 正在播放国产对白刺激| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 亚洲国产中文字幕在线视频| 久久人人97超碰香蕉20202| 日本a在线网址| 高清在线国产一区| 悠悠久久av| 极品教师在线免费播放| 欧美中文综合在线视频| 亚洲国产欧美日韩在线播放| 国产有黄有色有爽视频| 淫妇啪啪啪对白视频| 天天躁夜夜躁狠狠躁躁| 亚洲欧美一区二区三区黑人| 国产在线精品亚洲第一网站| 精品亚洲成a人片在线观看| 亚洲黑人精品在线| 成人精品一区二区免费| 18禁国产床啪视频网站| 精品国产乱码久久久久久小说| 女人爽到高潮嗷嗷叫在线视频| 国产不卡一卡二| 国产精品一区二区在线观看99| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久 | 日韩精品免费视频一区二区三区| 一区二区三区精品91| netflix在线观看网站| 日本欧美视频一区| 成人手机av| 一区二区三区乱码不卡18| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 交换朋友夫妻互换小说| 国产成人av激情在线播放| 99久久人妻综合| 一级片免费观看大全| 亚洲情色 制服丝袜| 国产日韩欧美亚洲二区| 久久久久久久精品吃奶| 色视频在线一区二区三区| 国产男靠女视频免费网站| 亚洲av国产av综合av卡| 国产在视频线精品| 久久天堂一区二区三区四区| aaaaa片日本免费| 水蜜桃什么品种好| 精品少妇一区二区三区视频日本电影| a级毛片在线看网站| 亚洲国产欧美网| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 欧美黄色片欧美黄色片| 国产精品免费大片| 变态另类成人亚洲欧美熟女 | 岛国毛片在线播放| 欧美成人免费av一区二区三区 | 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 操出白浆在线播放| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲 | 欧美日韩视频精品一区| 女人爽到高潮嗷嗷叫在线视频| 久久av网站| 亚洲精品乱久久久久久| 老汉色∧v一级毛片| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 免费看a级黄色片| 高清毛片免费观看视频网站 | 午夜福利视频在线观看免费| 超色免费av| 王馨瑶露胸无遮挡在线观看| 丁香欧美五月| 精品免费久久久久久久清纯 | 国产日韩欧美亚洲二区| 国产精品国产av在线观看| 电影成人av| 免费久久久久久久精品成人欧美视频| 午夜福利视频精品| 国产精品1区2区在线观看. | 欧美成狂野欧美在线观看| 国产精品免费大片| 欧美人与性动交α欧美软件| 久久人人97超碰香蕉20202| 日韩欧美一区二区三区在线观看 | 久久久久视频综合| 午夜91福利影院| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 91九色精品人成在线观看| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 老熟女久久久| 欧美乱妇无乱码| 午夜激情av网站| 久久人妻福利社区极品人妻图片| 午夜福利视频精品| 日本黄色日本黄色录像| 欧美一级毛片孕妇| 亚洲国产成人一精品久久久| 又大又爽又粗| 国产成人免费无遮挡视频| 黄片小视频在线播放| 欧美一级毛片孕妇| 乱人伦中国视频| 亚洲熟女精品中文字幕| 亚洲三区欧美一区| 男女边摸边吃奶| 高潮久久久久久久久久久不卡| 日韩 欧美 亚洲 中文字幕| 18禁黄网站禁片午夜丰满| 男人舔女人的私密视频| 成年人黄色毛片网站| 9热在线视频观看99| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 国产三级黄色录像| 在线播放国产精品三级| 国产精品久久久av美女十八| av网站免费在线观看视频| 又黄又粗又硬又大视频| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡| 国产成人av教育| 下体分泌物呈黄色| 狠狠婷婷综合久久久久久88av| 久久99热这里只频精品6学生| 久久狼人影院| 精品国产一区二区久久| 淫妇啪啪啪对白视频| 午夜福利欧美成人| 亚洲国产av新网站| 老汉色∧v一级毛片| 91av网站免费观看| 黑人欧美特级aaaaaa片| 亚洲成人免费av在线播放| bbb黄色大片| 热re99久久精品国产66热6| 男女边摸边吃奶| 在线十欧美十亚洲十日本专区| 大陆偷拍与自拍| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 不卡一级毛片| 捣出白浆h1v1| 精品一区二区三区四区五区乱码| 久久青草综合色| 久久人妻av系列| 色视频在线一区二区三区| 一个人免费看片子| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 亚洲av成人一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 手机成人av网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 少妇 在线观看| 久久av网站| 日韩中文字幕视频在线看片| 亚洲精品国产区一区二| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 九色亚洲精品在线播放| 成人手机av| 老熟妇仑乱视频hdxx| 国产欧美日韩综合在线一区二区| 精品亚洲成a人片在线观看| 亚洲综合色网址| 欧美午夜高清在线| 久久人人爽av亚洲精品天堂| 成人亚洲精品一区在线观看| 99国产精品一区二区三区| 欧美精品人与动牲交sv欧美| 成人特级黄色片久久久久久久 | 亚洲第一欧美日韩一区二区三区 | 久久久久久亚洲精品国产蜜桃av| h视频一区二区三区| 在线播放国产精品三级| 亚洲精品美女久久久久99蜜臀| 午夜日韩欧美国产| 男女下面插进去视频免费观看| 日韩一区二区三区影片| 精品一区二区三区四区五区乱码| 日韩 欧美 亚洲 中文字幕| av天堂久久9| 老汉色av国产亚洲站长工具| 精品国产国语对白av| 久久久久久久精品吃奶| 不卡一级毛片| 十分钟在线观看高清视频www| 99re在线观看精品视频| 国产高清videossex| 性高湖久久久久久久久免费观看| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影 | 18禁国产床啪视频网站| 真人做人爱边吃奶动态| 亚洲一码二码三码区别大吗| 777久久人妻少妇嫩草av网站| 欧美日韩成人在线一区二区| 99久久人妻综合| 熟女少妇亚洲综合色aaa.| 亚洲第一青青草原| 精品高清国产在线一区| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 两人在一起打扑克的视频| 国产主播在线观看一区二区| 久久热在线av| 国产精品.久久久| 国产精品熟女久久久久浪| 中国美女看黄片| 飞空精品影院首页| 精品欧美一区二区三区在线| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 波多野结衣av一区二区av| 伦理电影免费视频| 午夜福利免费观看在线| 欧美精品亚洲一区二区| 日本一区二区免费在线视频| 国产淫语在线视频| 窝窝影院91人妻| 国产亚洲精品久久久久5区| 在线观看66精品国产| 国产欧美日韩综合在线一区二区| 国产又爽黄色视频| xxxhd国产人妻xxx| 欧美在线一区亚洲| 国产一区二区三区视频了| 99热网站在线观看| 国产91精品成人一区二区三区 | 男女免费视频国产| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 人妻 亚洲 视频| 免费在线观看日本一区| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 久久精品国产99精品国产亚洲性色 | 大型av网站在线播放| 一边摸一边做爽爽视频免费| 国产精品秋霞免费鲁丝片| 两个人免费观看高清视频| 男男h啪啪无遮挡| a级毛片在线看网站| 久久人人97超碰香蕉20202| 欧美中文综合在线视频| 国产一区二区三区综合在线观看| 亚洲自偷自拍图片 自拍| 欧美精品一区二区免费开放| 欧美精品高潮呻吟av久久| 50天的宝宝边吃奶边哭怎么回事| 久久人妻熟女aⅴ| 国产一区二区三区视频了| 老司机午夜福利在线观看视频 | av网站在线播放免费| www.999成人在线观看| 不卡av一区二区三区| 99国产精品一区二区蜜桃av | 亚洲精品粉嫩美女一区| 色婷婷久久久亚洲欧美| 一进一出抽搐动态| kizo精华| 99国产精品一区二区三区| 电影成人av| 亚洲av成人不卡在线观看播放网| 亚洲欧洲精品一区二区精品久久久| 国产精品av久久久久免费| 国产精品98久久久久久宅男小说| 国产成人av教育| 久久精品aⅴ一区二区三区四区| 99久久99久久久精品蜜桃| 日韩大码丰满熟妇| 搡老岳熟女国产| av国产精品久久久久影院| 久久免费观看电影| 韩国精品一区二区三区| 制服人妻中文乱码| 久久久国产精品麻豆| 女同久久另类99精品国产91| 少妇的丰满在线观看| 欧美黑人欧美精品刺激| 中文字幕精品免费在线观看视频| 99香蕉大伊视频| 两个人免费观看高清视频| 9191精品国产免费久久| 这个男人来自地球电影免费观看| 亚洲美女黄片视频| 精品少妇久久久久久888优播| 69av精品久久久久久 | 亚洲综合色网址| 五月开心婷婷网| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 深夜精品福利| 成年人午夜在线观看视频| 亚洲人成电影免费在线| 午夜福利一区二区在线看| 91九色精品人成在线观看| 久久午夜亚洲精品久久| av在线播放免费不卡| 黄色毛片三级朝国网站| 久久精品成人免费网站| 免费黄频网站在线观看国产| 免费在线观看日本一区| 中国美女看黄片| 精品亚洲成a人片在线观看| 亚洲欧美日韩高清在线视频 | 丝袜在线中文字幕|