• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Field Emission Properties of Aligned ZnO Nanowire Arrays Prepared by Simple Solution-Phase Method

    2012-11-06 07:01:06ZHANGHuanLIMengKeZHANGJingYULiYuanLIULingLingYANGZhi
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:納米線物理化學(xué)遼寧省

    ZHANG Huan LI Meng-Ke,* ZHANG Jing YU Li-Yuan LIU Ling-Ling YANG Zhi

    (1School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China;2National Key Laboratory of Nano/Micro Fabrication Technology,Key Laboratory for Thin Film and Microfabrication of the Ministry of Education,Research Institute of Micro/Nano Science and Technology,Shanghai Jiao Tong University,Shanghai 200240,P.R.China)

    Field Emission Properties of Aligned ZnO Nanowire Arrays Prepared by Simple Solution-Phase Method

    ZHANG Huan1LI Meng-Ke1,*ZHANG Jing1YU Li-Yuan1LIU Ling-Ling1YANG Zhi2

    (1School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China;2National Key Laboratory of Nano/Micro Fabrication Technology,Key Laboratory for Thin Film and Microfabrication of the Ministry of Education,Research Institute of Micro/Nano Science and Technology,Shanghai Jiao Tong University,Shanghai 200240,P.R.China)

    One-dimensional(1D)aligned ZnO nanowire arrays with different morphologies were synthesized by a solution-phase method.The morphology and microstructure of the products were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The field emission property of different ZnO nanowire array samples was compared.The factors that influence the field emission property of the 1D ZnO nanowire arrays were analyzed using the Fowler-Nordheim equation.The results showed that the ZnO nanowire samples with the lower arealdensity,higher aspectratio,and thin tips showed much better field emission characteristics.

    ZnO;Nanowire array;Field emission;Solution-phase method

    High-quality field emitters are very desirable for applications in a wide range of field-emission-based devices such as flat-panel displays and other electronic devices.1D ZnO semiconductor nanostructures with its inherent properties of larger length-to-diameter,higher surface-area-to-volume ratio,thermal stability,oxidation resistance,and high chemical stability should be a good candidate for field emission applications.Recently,the field emission property of different 1D ZnO nanostructures,such as nanowires,nanoneedles,nanopins,and nanotubes has been studied[1-5].The previous research on 1D ZnO nanostructure field emitters showed that the shape,aspect ratio,screening effect,and contact behavior(both mechanical and electrical)are theprimary influence factors on the field emission properties[6-9]. However,the field emission properties of 1D ZnO nanowires with different geometrical structures still have many obscure problems to deal with.For example,the field emission properties of ZnO nanowire arrays with regular high aspect ratio and the effect of emitter density on the field-screening were rarely stud-ied due to the difficulty in the preparation of those emitters with different densities.Therefore,it is essential to synthesize well-aligned 1D ZnO nanostructures and pursue the physical origins of the dependence of the field emission of 1D ZnO nanowire emitters on the geometrical factors for improving their field emission properties.

    There are various methods for synthesizing 1D ZnO nanostructures,such as pulsed laser deposition,thermal evaporation, electrochemical deposition,chemical or physical vapor deposition,solution-phase approach,etc[10-16].But,most of the ZnO nanostructures in these published field emission articles were synthesized with the high-temperature synthesizing techniques. The high-temperature techniques,including pulsed laser deposition[17],chemical vapor deposition(CVD)[18],and thermal evaporation[19-20],are energy-consuming and expensive.In most of these studies,the 1D ZnO nanostructures are deposited on the higher resistance silicon and sapphire substrates.Therefore,undesirable,defective contact resistance can be caused between the ZnO nanostructures and substrates.This result is unfavorable to the enhancement in the field emission current density of 1D ZnO nanostructure field emitters.

    Recently,the solution-phase approaches to produce highquality 1D aligned ZnO nanostructures have attracted extensive interest on account of their low growth temperature(<100℃), low cost,no metal catalyst needed,easy to control,and good potential for scale-up with general substrates[10-16].In addition,this solution-phase controlled fabricating approach can grow 1D ZnO nanostructures directly on various metal foils.Then,robust electrical contact can be formed in the growth processes.This better electrical contact is beneficial to rational designs with different sizes for raising the field emission current density of the 1D ZnO nanostructure field emitters.Meanwhile,the controlled fabrication of high-quality ZnO nanostructures with low temperature,facile manipulation,and potential for scale-up can enable the straightforward integration of ZnO nanostructures into nanoelectronic devices,such as field emission displays and micro/nanosensors.

    In this article,well-aligned 1D ZnO nanowire arrays were fabricated on the zinc foil using a very simple hydrothermal reaction method at a low temperature(95℃).The comparative investigation on the field emission properties of different ZnO nanowire array samples was carried out.The influence factors of field emission property were analyzed.

    1 Experimental

    Aligned ZnO nanowire arrays were directly prepared on zinc foils(99.99%,0.2 mmthick)reactingin aqueousammonia solution.Beforehand zinc foils(10 mm×10 mm)were ultrasonically washed in analytical grade acetone,ethanol,and deionized water for 20 min,successively.The effects of solution concentration and growth time on the microstructure of ZnO nanowire arrays had been studied.(1)Some zinc foils were dipped into corresponding reactive aqueous ammonia for 3 h at room temperature to form a ZnO-seed film,and then the treated zinc foils were vertically immersed into 20 mL aqueous ammonia solution of 4%,7%,10%,and 15%(V/V)for 24 h,seperatively.(2)Some treated zinc foils were reacted in 15%aqueous ammonia for 6, 12,24,and 48 h.All of the reacting processes were performed in a sealed Teflon reaction kettle(25 mL)heating at a constant temperature of 95℃.

    The obtained ZnO nanowire products were then rinsed with deionized water and dried in air for further characterization.The morphology and microstructure of synthesized nanowires were characterized by X-ray diffraction(XRD,Rigaku DMAX PSPC MDG 2000),scanning electron microscopy(SEM,KYKY-1010),and transmission electron microscopy(TEM,JEOL-2010).

    Field emission properties of the different samples were carried out inside a vacuum chamber,which was pumped down to about 3.1×10-5Pa at room temperature.The tests were measured using a simple diode configuration.The cathode was the as-grown ZnO nanowires and the zinc foil was used as a cathode-conducting layer.The anode was polished pure copper rod.The gap between cathode and anode was controlled by the thickness of a mica spacer containing a 2 mm circular hole in the center.Voltages up to 2.5 kV were applied to the anode with a step of 100 V.And the emission current(I)was detected with a micro amperometer.The testing electric field(E)was estimated from dividing the applied voltage(V)by the anode-cathode distance(d). The emission current density(J)was calculated from the obtained emission current and the area of the rounded hole in the mica.The emission current-voltage characteristics were analyzed by using the Fowler-Nordheim equation.

    2 Results and discussion

    Fig.1(a-d)show low-and high-magnification SEM and TEM images of the ZnO nanowire arrays synthesized in different precursor concentrations of aqueous ammonia solution at 95℃for 24 h.From the images,large-scale well-oriented ZnO nanowire arrays were observed with uniform and dense arrays.They are approximately of the same length,8-10 μm.The TEM inset in Fig.1(d)testifies that the ZnO nanowires have a smooth surface without catalytical growth droplets at their growth tips.In each sample,the diameter of ZnO nanowires has little variation from bottom to top.As increase of precursor concentrations from 4% to 15%,the mean diameter of the nanowires altered from 600, 400,250,to 150 nm,the growth density changed from 2,6,9 to 25 μm-2.And the diameter sizes of the grown ZnO nanowires were reduced and the growth density in a unit area was enhanced.According to these basic values from the SEM images in Fig.1,the specific surface area of the synthesized ZnOnanowire arrays in a unit area was calculated.The calculated ratio of specific surface area is about 6.86:30.6:72.9:333.So the specific surface areas of synthesized ZnO samples increased with the increase of precursor concentration from 4%to 15%. Fig.2 shows the corresponding XRD pattern of ZnO nanowire arrays in different aqueous ammonia concentrations for 24 h. The three diffraction peaks of(002),(100),and(101)show good agreement with those of the JCPDS(36-1451)data of the ZnO (a=0.325 nm,c=0.521 nm).The sharp and narrow(002)diffraction peaks at 34.2°exist in every product.With the increase of aqueous ammonia concentration,the intensity of the(002)diffraction peaks is enhanced.It indicates that the synthesized ZnO materials are highly aligned perpendicular to the substrate with a c-axial growth direction.

    Fig.1 Typical SEM images of ZnO nanowire arrays fabricated in various aqueous ammonia concentrations for 24 h at 95℃The insets are low-and high-magnification SEM and TEM pictures of the ZnO arrays and individual nanowires.ammonia concentration:(a)4%,(b)7%,(c)10%,(d)15%

    The SEM images in Fig.3(a-d)show four different ZnO nanowire arrays prepared at different reacting time.These re-sults represent that growth length of ZnO nanowire arrays are a function of the growth time from 6 to 48 h in 15%aqueous am-monia.As the reaction time was changed from 6 to 48 h,the lengthwise growth has experienced from nucleation to short nanowires,to long nanowires.From the initial time to 6 h growth stage,a layer of ZnO growth nucleation with higher distributed density was observed in Fig.3(a).The diameter of the growth nucleation distribution is in the range of 240-300 nm, and the average growth length is about 350 nm.When the reaction time was increased from 12 to 24 h in Fig.3(b-c),ZnO nanowires began to grow along the(002)direction obviously. And the length varied from 3 to 10 μm.When the response time was increased to 48 h,an interesting aspect of the as-grown sample in Fig.3(d)is gained.Some longer and sparse ZnO nanowires with high aspect ratio and thinness of the tips are showed on the top surface of the nanowire arrays.The average length is 40 μm. The inset in Fig.3(d)presents the high magnification image of the samples.We think that the diameter of ZnO nanowires on the growing tips will appear significantly different as the increase of growth time.The result is that a high diversity ingrowth rate would be present.The nanowires with small-diameter tips have a larger growth rate and the nanowires with largediameter tips have a lower growth rate.In the latter stage of the ZnO nanowire growth processes,these nanowire arrays appear to form mostly discrete and sparse morphology on the top surface of as-grown ZnO nanowire arrays.When the growth time is long enough,sparse ZnO nanowires with high aspect ratio and thinness of the tips can be represented.

    Fig.2 XRD patterns of ZnO nanowire arrays synthesized at 95℃and 4%,7%,10%,and 15%aqueous ammonia for 24 h

    Fig.3 SEM images of ZnO nanowire arrays prepared in 15%aqueous ammonia at different growth timegrowth time:(a)6,(b)12,(c)24,(d)48 h;The inset in Fig.3(d)presents the high magnification image of the samples.

    Fig.4 J-E behaviors of ZnO nanowire arrays synthesized in different ammonia solutions for 24 h at 95℃ammonia concentration:(a)4%,(b)7%,(c)10%,(d)15%; The inset is corresponding Fowler-Nordheim plots of four different ZnO nanowire arrays samples.

    The field emission performances of ZnO nanowire samples synthesized under different conditions have been investigated. Firstly,the effect of diverse ZnO nanowire diameters on their field emission characteristics was studied.Fig.4 gives the J-E characteristic curve of four kinds of ZnO nanowire samples corresponding to that of Fig.1(a-d).It shows that the field emission current density(J)from the different samples is a function of the applied electrical field(E).For all the samples,as the E is increased,the emission current density J is also elevated,and no saturation of J is evident under the highest E.The turn-on field (Eton)and threshold field(Ethr)values of all the samples were evaluated.Generally,Etonand Ethrare arbitrarily defined as the electrical fields under which a J of 100 μA·cm-2and 1 mA·cm-2can be observed,respectively.Table 1 lists the measured values of Etonand Ethrfor all the samples.It shows that the larger the mean diameter of the ZnO nanowires is,the higher the values oftheir Etonand Ethrare attained.

    Table 1 Eton,Ethr,and β values of ZnO nanowire arrays synthesized in different aqueous ammonia at 95℃for different time

    Fig.5 J-E behaviors of ZnO nanowire arrays prepared in 15%aqueous ammonia for different reaction timereaction time:(a)6,(b)12,(c)24,(d)48 h. The inset is corresponding Fowler-Nordheim plots.

    The published article show that electrical contact,emitter geometry and screening effect are three prerequisites for field emission property[21].The direct growth of aligned ZnO 1D nanowires on conducting metal substrates via a simple solutionphase approach may facilitate their electrical contact with the external circuit.These arrays will,therefore,have smaller Etonand Ethrvalues.Meanwhile,the inset in Fig.4 shows approximate linear relations between ln(J/E2)and 1/E,suggesting that the electron emission could be well formulated by the Fowler-Nordheim theory[22-23],

    ln(J/E2)=(-Bφ3/2/βE)+ln(Aβ2/φ)

    where,β is the field enhancement factor,φ is the work function of the emitter which is 5.3 eV for ZnO material[24],A and B are constants with the value of 1.56×10-10A·V-2·eV and 6.83×103V·eV-3/2·μm-1,respectively.The β could be derived from the slope of ln(J/E2)-(1/E),and the values of β are estimated and listed in Table 1.It clearly demonstrates that the sample in Fig. 1a has the smallest β value of 1.1×103and the sample in Fig.1d has the largest β value of 2.4×103.

    Field emission characteristic is correlated with the morphology of ZnO nanowires.In these field emission experiments in Fig. 4,four ZnO nanowire samples are approximately of the same length,8-10 μm.We can see from the SEM images that ZnO nanowires in the four samples show high growth density,and the distances between single ZnO nanowire is in the range of 20 nm to tens of nanometer in space.So strong field screening effect will be generated.Then,the worse field emission property with the higher Etonand Ethras well as a relative small β value is produced.These results come from the screening effect of dense growth of 1D ZnO nanowires.

    Ku et al.[25]demonstrated that the geometric construction such as tip cone angle(θ)and tip radius(Rtip)are two important factors for the field emission property of 1D nanostructure emitter, i.e.,small θ and Rtipare beneficial to field emission.Ramgir et al.[6]had reported the theoretical field enhancement factor β0=1/kr, where k is a constant known as the geometrical factor,and r is the radius.Without doubt,The sample in Fig.1(a)has the largest diameter,so it has the smallest β value.And the sample in Fig.1 (d)has the smallest diameter,so it has the largest β value.On the other hand,the high aspect ratio of the nanowires can generate a high electric field,which decreases the field emission potential barrier and so increases the field emission current[8].As a result, ZnO nanowires in Fig.1(d)with smaller diameter and higher aspect ratio have larger β value(2.4×103)and thus smaller turn-on field(10 V·μm-1).

    Secondly,the field emission behaviors of ZnO nanowire samples with four different reaction time in 15%aqueous ammonia were measured,which correspond to the SEM images of Fig.3 (a-d).The reaction times are 6,12,24 and 48 h and the growth lengths of these ZnO nanowires are about 350 nm,3,10 and 40 μm,respectively.Fig.5 gives the J-E curve from these ZnO nanowire samples.The inset is corresponding Fowler-Nordheim plots.Table 1 shows the measured values of Eton,Ethr,and β for these samples.It can be seen that the ZnO nanowire arrays fabricated for 6 and 12 h have the worse field emission property with the highest Etonand Ethrvalues,and their β values are about 1.5× 103and 2.0×103.Meanwhile,the samples fabricated for 24 h has the better field emission property with the lower Etonand Ethrvalues,and β is about 2.4×103.But the samples fabricated for 48 h has the best field emission property with the lowest Etonand Ethrvalues,and its β value is about 3.2×103.The applied field required to 1 mA·cm-2is about 11 V·μm-1.This result is smaller than the corresponding Ethrvalue of 22 V·μm-1in the samples fabricated for 6 h.

    It is well known that the field enhancement factor β reflects the enhanced electron emission due to the localized electronic states and the value of β can be modified by other effects such as the field-screening effect from the proximity of emitters.After obtaining the values of β of the four different samples,we can analyze quantitatively the field-screening effect on the field emission property from the ZnO nanowire arrays with different coverage densities on the top growth surface.In the sample of Fig.3(d),the thinness of the tip,high aspect ratio and lower coverage densities on the top growth surface are appeared.The distance between the adjacent emission sites is enlarged compared with the other samples,which can decrease the electrostatic screening effect and increase the effective emission sites.Therefore,this growth morphology will substantially reduce the result of the screening effect.So the excellent field emission property and the higher β value are gained.But the ZnO nanowire emitters in Fig.3(a,b)are main consisted of a layer of spherical ZnO growth nuclei with high coverage density.And some growth nuclei have not clear growth direction.The local field produced from higher coverage of ZnO emitters will decrease the β value owing to the screening effect[1].At the same time,many structur-al defects and complicated microstructures exist in the nanowire arrays.Thus the higher Etonand Ethrvalue,the lower J at the same field E value are achieved[7-8].So the ZnO nanowire sample in Fig. 3(d)with high aspect ratio,thinness of the tips and sparse microstruc-ture shows better field emission characteristics.

    3 Conclusions

    In summary,aligned ZnO nanowire arrays were fabricated using a very simple hydrothermal reaction method on conducting zinc metal foils at 95℃.Better electrical contact property was created between the growth ZnO nanowires and metal substrates.The experimental results show that the field emission characteristics of the ZnO nanowire arrays can be adjusted by the electrical contact and emitter geometry as well as its screening effect.The larger the mean diameter of the ZnO nanowires is,the higher the values of their Etonand Ethris attained.When the growth time is long enough,sparse ZnO nanowires with high aspect ratio and thinness of the tips can be represented.The field emission screening effect of aligned ZnO nanowire arrays will be reduced.As a result,the as-grown ZnO nanowire arrays synthesized with the hydrothermal reaction method can achieved excellent field emission properties.The above conclusions suggest that these aligned ZnO nanowire arrays have great potential applications in flat panel displays and other electronic devices.

    1 Debasis,B.;Sung,H.J.;Zhi,F.R.Adv.Mater.,2004,16:2028

    2 Lee,S.F.;Chang,Y.P.;Lee,L.Y.Acta Phys.-Chim.Sin.,2008, 24:1411 [李世鴻,張永平,李麗英.物理化學(xué)學(xué)報(bào),2008,24: 1411]

    3 Xu,C.X.;Sun,X.W.Appl.Phys.Lett.,2003,83:3806

    4 Cheng,J.P.;Zhang,Y.;Guo,R.Y.J.Appl.Phys.,2009,105: 034313

    5 Chen,H.S.;Qi,J.J.;Huang,Y.H.;Liao,Q.L.;Zhang,Y.Acta Phys.-Chim.Sin.,2007,23:55 [陳紅升,齊俊杰,黃運(yùn)華,廖慶亮,張 躍.物理化學(xué)學(xué)報(bào),2007,23:55]

    6 Ramgir,N.S.;Late,D.J.;Bhise,A.B.;Mulla,I.S.;More,M.A.; Joag,D.S.;Pillai,V.K.Nanotechnology,2006,17:2730

    7 Li,C.;Hou,K.;Yang,X.X.;Qu,K.;Lei,W.;Zhang,X.B.;Wang, B.P.;Sun,X.W.Appl.Phys.Lett.,2008,93:233508

    8 Lee,C.J.;Lee,T.J.;Lyu,S.C.;Zhang,Y.;Ruh,H.;Lee,H.J. Appl.Phys.Lett.,2002,81:3649

    9 Chang,Y.Q.;Chen,X.H.;Zhang,H.Z.;Qiang,W.J.;Long,Y. J.Vac.Sci.Technol.B,2007,25:1251

    10 Zhang,Y.F.;Russo,R.E.;Mao,S.S.Appl.Phys.Lett.,2005,87: 133115

    11 Li,F.;Li,Z.;Jin,F.J.Physica B,2008,403:664

    12 Duan,X.F.;Lieber,C.M.Adv.Mater.,2000,12:298

    13 Cao,B.Q.;Teng,X.M.;Sung,H.H.;Li,Y.;Sung,O.C.;Li,G. H.;Cai,W.P.J.Phys.Chem.C,2007,111:2470

    14 Tan,S.T.;Chen,B.J.;Sun,X.W.;Fan,W.J.;Kwok,H.S.; Zhang,X.H.;Chua,S.J.Appl.Phys.,2005,98:13505

    15 Huang,M.H.;Mao,S.;Feick,H.;Yan,H.Q.;Wu,Y.Y.;Kind,H.; Weber,E.;Russo,R.;Yang,P.D.Science,2001,292:1897

    16 Huang,M.H.;Wu,Y.Y.;Feick,H.;Tran,N.;Weber,E.;Yang,P. D.Adv.Mater.,2001,13:113

    17 Han,W.Q.;.Fan,S.S.;Li,Q.Q.;Hu,Y.D.Science,1997,277: 1287

    18 Konenkamp,R.;Boedecker,K.;Lux-Steiner,M.C.;Poschenrieder, M.;Zenia,F.;Clement,C.L.;Wagner,S.Appl.Phys.Lett.,2000, 77:2575

    19 Li,Y.;Meng,G.W.;Zhang,L.D.;Phillipp,F.Appl.Phys.Lett., 2000,76:2011

    20 Kong,Y.C.;Yu,D.P.;Zhang,B.;Fang,W.;Feng,S.Q.Appl. Phys.Lett.,2001,78:407

    21 Yang,Y.H.;Wang,B.;Xu,N.S.;Yanga,G.W.Appl.Phys.Lett., 2006,89:043108

    22 Bonard,J.M.;Salvetat,J.P.;Stockli,T.;Forro,L.;Chatelain,A. Appl.Phys.Lett.,1998,73:918

    23 Spindt,C.A.;Brodie,I.;Humphrey,L.;Westerberg,E.R.J.Appl. Phys.,1976,47:5248

    24 Bai,X.;Wang,E.G.;Gao,P.;Wang,Z.L.Nano Lett.,2003,3: 1147

    25 Ku,T.K.;Chen,M.S.;Wang,C.C.;Feng,M.S.;Hsieh,I.J.; Huang,C.M.;Cheng,H.C.Jpn.J.Appl.Phys.,1995,34:5789

    液相法制備取向ZnO納米線陣列的場(chǎng)發(fā)射特性

    張 歡1李夢(mèng)軻1,*張 競(jìng)1于麗媛1劉玲玲1楊 志2

    (1遼寧師范大學(xué)物理與電子技術(shù)學(xué)院,遼寧大連 116029;2上海交通大學(xué)微納科學(xué)技術(shù)研究院,微米/納米加工技術(shù)國家級(jí)重點(diǎn)實(shí)驗(yàn)室,薄膜與微細(xì)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200240)

    采用水熱合成工藝,在不同條件下制備了不同的一維取向ZnO納米線陣列樣品.用X射線衍射儀(XRD)、掃描電鏡(SEM)及透射電鏡(TEM)對(duì)樣品的晶體結(jié)構(gòu)和形貌等進(jìn)行了表征,對(duì)樣品的場(chǎng)發(fā)射特性進(jìn)行了分析和比較,并用Fowler-Nordheim方程對(duì)影響ZnO納米線場(chǎng)發(fā)射的因素進(jìn)行了研究.結(jié)果表明,具有較低生長密度分布、較高的長徑比和較尖銳生長端的ZnO納米線陣列樣品具有較好的場(chǎng)發(fā)射特性.

    ZnO; 納米線陣列;場(chǎng)發(fā)射; 液相法

    O649

    Received:May 20,2010;Revised:May 25,2010;Published on Web:July 15,2010.

    *Corresponding author.Email:lmknwnu@sina.com;Tel.:+86-411-82159023.

    The project was supported by the Innovation Team Foundation of Educational Department of Liaoning Province,China(2007T088),Natural Science Foundation of Liaoning Province,China(20072155),Construction Capital for Key Laboratory of Liaoning Province,Doctoral Scientific Research

    Starting Foundation of Liaoning Province,China(20081081),and National Natural Science Foundation of China(10804040).

    遼寧省教育廳創(chuàng)新團(tuán)隊(duì)(2007T088),遼寧省自然科學(xué)基金(20072155),遼寧省重點(diǎn)實(shí)驗(yàn)室建設(shè)基金,遼寧省博士后科研啟動(dòng)資金(20081081)及國家自然科學(xué)基金(10804040)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    納米線物理化學(xué)遼寧省
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    3d過渡金屬摻雜對(duì)Cd12O12納米線電子和磁性能的影響
    Chemical Concepts from Density Functional Theory
    遼寧省各級(jí)工會(huì)收看十九大開幕會(huì)
    遼寧省環(huán)境保護(hù)廳與遼寧省氣象局進(jìn)一步深化合作
    遼寧省自然環(huán)境分類探索
    遼寧省建環(huán)保舉報(bào)獎(jiǎng)勵(lì)制度
    溫度對(duì)NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    青青草视频在线视频观看| 国产黄a三级三级三级人| 熟女av电影| 在线 av 中文字幕| 亚洲国产欧美在线一区| 成年版毛片免费区| 中文字幕亚洲精品专区| 亚洲国产最新在线播放| 亚洲av福利一区| 九九在线视频观看精品| 51国产日韩欧美| 日本wwww免费看| 永久网站在线| 啦啦啦啦在线视频资源| 99久久中文字幕三级久久日本| 成年女人看的毛片在线观看| 内射极品少妇av片p| 欧美xxxx性猛交bbbb| 国产精品人妻久久久影院| 91久久精品电影网| 熟女av电影| 中文字幕制服av| 能在线免费看毛片的网站| 97超视频在线观看视频| 黄色日韩在线| 国产v大片淫在线免费观看| 亚洲va在线va天堂va国产| 校园人妻丝袜中文字幕| 黄片无遮挡物在线观看| 波多野结衣巨乳人妻| 国产欧美日韩一区二区三区在线 | 中文字幕久久专区| 三级国产精品片| 777米奇影视久久| 成人亚洲精品一区在线观看 | 国产成人freesex在线| 特大巨黑吊av在线直播| 久久99热这里只频精品6学生| 99热国产这里只有精品6| 最近中文字幕2019免费版| 精品久久久噜噜| 亚洲精品成人av观看孕妇| 亚洲精品国产成人久久av| 国产一区二区在线观看日韩| 国产av码专区亚洲av| 可以在线观看毛片的网站| 欧美 日韩 精品 国产| 午夜福利视频精品| 色吧在线观看| 我的老师免费观看完整版| 成人一区二区视频在线观看| 97精品久久久久久久久久精品| 成人漫画全彩无遮挡| 日本wwww免费看| 日韩av不卡免费在线播放| 亚洲在久久综合| 亚洲天堂国产精品一区在线| 狂野欧美激情性bbbbbb| 久久影院123| 在线观看一区二区三区| 精品人妻视频免费看| 男女边摸边吃奶| 成人综合一区亚洲| 日韩 亚洲 欧美在线| 舔av片在线| 国产一区二区在线观看日韩| 亚洲性久久影院| av国产免费在线观看| 精华霜和精华液先用哪个| 日本与韩国留学比较| 在线观看一区二区三区激情| 亚洲av.av天堂| 波野结衣二区三区在线| 尾随美女入室| 中文资源天堂在线| 看黄色毛片网站| 香蕉精品网在线| 国产在视频线精品| 嫩草影院精品99| 日日撸夜夜添| 亚洲精品亚洲一区二区| www.av在线官网国产| 一级爰片在线观看| 国产亚洲一区二区精品| 成人无遮挡网站| 欧美国产精品一级二级三级 | 色哟哟·www| 亚洲天堂国产精品一区在线| 久久久久久久大尺度免费视频| 国产美女午夜福利| 色视频在线一区二区三区| 中文天堂在线官网| 欧美三级亚洲精品| 熟女av电影| 欧美激情久久久久久爽电影| 熟女电影av网| 日韩欧美精品v在线| 中国三级夫妇交换| 久久精品综合一区二区三区| 91久久精品国产一区二区三区| 舔av片在线| 一区二区三区免费毛片| 午夜爱爱视频在线播放| 亚洲精品久久午夜乱码| 久久97久久精品| 国产精品女同一区二区软件| 国产视频首页在线观看| av在线天堂中文字幕| 精品久久国产蜜桃| 嫩草影院精品99| 国产精品爽爽va在线观看网站| xxx大片免费视频| 啦啦啦在线观看免费高清www| 色吧在线观看| 丰满人妻一区二区三区视频av| 亚洲成色77777| 国产成人freesex在线| 人妻系列 视频| 欧美高清性xxxxhd video| 国产免费又黄又爽又色| 成人欧美大片| 青春草视频在线免费观看| 国产乱人偷精品视频| 少妇的逼水好多| 亚洲丝袜综合中文字幕| 国产成人精品一,二区| 香蕉精品网在线| 最近的中文字幕免费完整| 亚洲精品日本国产第一区| 国产成人福利小说| av国产免费在线观看| 国产 一区精品| 午夜福利高清视频| 免费av不卡在线播放| 又爽又黄无遮挡网站| 最近2019中文字幕mv第一页| 久久久久网色| 婷婷色综合www| 最近手机中文字幕大全| 日韩一区二区三区影片| 国产在线一区二区三区精| 亚洲天堂国产精品一区在线| 欧美一级a爱片免费观看看| 极品少妇高潮喷水抽搐| 国产精品麻豆人妻色哟哟久久| 亚洲精品成人av观看孕妇| 久久精品国产亚洲网站| 干丝袜人妻中文字幕| 国产一级毛片在线| 国产欧美日韩一区二区三区在线 | 日韩av不卡免费在线播放| 在线天堂最新版资源| 一个人看的www免费观看视频| 不卡视频在线观看欧美| 新久久久久国产一级毛片| 久久久久久久久久久丰满| 国产在线一区二区三区精| 国产高清三级在线| 日日啪夜夜爽| 乱码一卡2卡4卡精品| 国产色爽女视频免费观看| 午夜视频国产福利| 国产欧美亚洲国产| 亚洲国产日韩一区二区| 三级国产精品欧美在线观看| 男女啪啪激烈高潮av片| 黄片wwwwww| 国产成人91sexporn| 99久久中文字幕三级久久日本| 国产一区二区亚洲精品在线观看| 国产精品女同一区二区软件| 精品久久久精品久久久| 亚洲国产精品成人久久小说| 欧美丝袜亚洲另类| 晚上一个人看的免费电影| 国产免费一区二区三区四区乱码| 亚洲自偷自拍三级| 在线观看三级黄色| 久久99热这里只频精品6学生| 午夜爱爱视频在线播放| 日本黄色片子视频| av专区在线播放| av.在线天堂| 国内精品美女久久久久久| 爱豆传媒免费全集在线观看| 一区二区三区免费毛片| 国产精品一二三区在线看| 久久99热6这里只有精品| 18禁裸乳无遮挡免费网站照片| 日韩亚洲欧美综合| 超碰97精品在线观看| 国产精品一区www在线观看| 久久午夜福利片| 国产国拍精品亚洲av在线观看| 夫妻午夜视频| av免费观看日本| 午夜福利网站1000一区二区三区| 久久国产乱子免费精品| 1000部很黄的大片| 国产精品一区二区性色av| 寂寞人妻少妇视频99o| 国产永久视频网站| 国产精品国产三级专区第一集| 婷婷色综合大香蕉| 国产男人的电影天堂91| 97在线视频观看| 天美传媒精品一区二区| 插阴视频在线观看视频| 18禁在线播放成人免费| 人体艺术视频欧美日本| 国产熟女欧美一区二区| 欧美日韩视频精品一区| a级毛片免费高清观看在线播放| 亚洲自偷自拍三级| 成人毛片a级毛片在线播放| 国产一区有黄有色的免费视频| 日本一二三区视频观看| 2021少妇久久久久久久久久久| 亚洲精品456在线播放app| 18禁动态无遮挡网站| 国产精品久久久久久精品电影小说 | 成人毛片60女人毛片免费| 91狼人影院| 日日摸夜夜添夜夜添av毛片| 国产又色又爽无遮挡免| 国产精品人妻久久久久久| 久久久欧美国产精品| 亚洲av中文字字幕乱码综合| 另类亚洲欧美激情| 国产伦在线观看视频一区| 欧美+日韩+精品| 国产又色又爽无遮挡免| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜添av毛片| 看黄色毛片网站| 欧美97在线视频| 新久久久久国产一级毛片| 伊人久久国产一区二区| 联通29元200g的流量卡| 看黄色毛片网站| 人妻一区二区av| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| av国产免费在线观看| 一级片'在线观看视频| 日韩强制内射视频| 国产亚洲最大av| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久伊人网av| 精品久久久久久电影网| 精品午夜福利在线看| 少妇人妻 视频| 国产真实伦视频高清在线观看| 天堂中文最新版在线下载 | 美女内射精品一级片tv| 国产亚洲av嫩草精品影院| 在线观看国产h片| 在线精品无人区一区二区三 | 亚洲精品国产av成人精品| 麻豆精品久久久久久蜜桃| 最近最新中文字幕大全电影3| 国产午夜精品一二区理论片| 国产毛片a区久久久久| 午夜日本视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边亲一边摸免费视频| 色播亚洲综合网| 简卡轻食公司| 欧美 日韩 精品 国产| 九九爱精品视频在线观看| 久久久久性生活片| 欧美97在线视频| 伦精品一区二区三区| av.在线天堂| 熟女电影av网| 日韩不卡一区二区三区视频在线| 国产黄色免费在线视频| 国产精品久久久久久精品电影| 少妇丰满av| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人aa在线观看| 中文在线观看免费www的网站| 精品久久久久久久人妻蜜臀av| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线在线| 久久久久久九九精品二区国产| tube8黄色片| 国产欧美亚洲国产| 国产乱人视频| 亚洲天堂av无毛| 亚洲国产精品专区欧美| 成人一区二区视频在线观看| 一个人看视频在线观看www免费| 1000部很黄的大片| 国产免费一级a男人的天堂| 日日撸夜夜添| 欧美xxxx黑人xx丫x性爽| 建设人人有责人人尽责人人享有的 | 麻豆成人av视频| av.在线天堂| 两个人的视频大全免费| 成人国产麻豆网| 免费看a级黄色片| 有码 亚洲区| 好男人视频免费观看在线| 国产精品国产三级国产专区5o| 国产成人a区在线观看| 日本三级黄在线观看| 蜜桃亚洲精品一区二区三区| 男女无遮挡免费网站观看| 久久鲁丝午夜福利片| 在线观看av片永久免费下载| 色哟哟·www| 青春草国产在线视频| 免费看不卡的av| 美女主播在线视频| 啦啦啦在线观看免费高清www| 男男h啪啪无遮挡| 国产乱来视频区| 亚洲三级黄色毛片| 色网站视频免费| 少妇人妻一区二区三区视频| 男女边吃奶边做爰视频| 91久久精品国产一区二区成人| 最近2019中文字幕mv第一页| 亚洲国产成人一精品久久久| 男人添女人高潮全过程视频| 黄色日韩在线| 免费观看a级毛片全部| 爱豆传媒免费全集在线观看| 黄色怎么调成土黄色| 免费黄色在线免费观看| 成人美女网站在线观看视频| 国产有黄有色有爽视频| 亚洲美女视频黄频| 一个人观看的视频www高清免费观看| 欧美成人午夜免费资源| 国产毛片a区久久久久| 国产精品一及| 毛片一级片免费看久久久久| 直男gayav资源| 久久久久久久久久人人人人人人| 男女啪啪激烈高潮av片| 搡老乐熟女国产| 简卡轻食公司| 美女被艹到高潮喷水动态| 午夜福利高清视频| 精品久久久久久久久av| 在线免费十八禁| 赤兔流量卡办理| 2022亚洲国产成人精品| 亚洲内射少妇av| 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 男人舔奶头视频| 亚洲欧洲日产国产| 午夜爱爱视频在线播放| 欧美日本视频| 久久久亚洲精品成人影院| 午夜激情久久久久久久| 伦理电影大哥的女人| 日韩成人伦理影院| 亚洲成人中文字幕在线播放| 一本一本综合久久| 欧美老熟妇乱子伦牲交| 久久国产乱子免费精品| 舔av片在线| av线在线观看网站| 亚洲精品日韩在线中文字幕| 一区二区三区乱码不卡18| 国产午夜精品一二区理论片| 久久久成人免费电影| 午夜爱爱视频在线播放| 国产欧美日韩精品一区二区| 99视频精品全部免费 在线| 一区二区av电影网| 精品一区二区三区视频在线| 国产探花极品一区二区| 99久久精品热视频| 在线免费观看不下载黄p国产| 国产成人精品一,二区| 2022亚洲国产成人精品| 激情 狠狠 欧美| 亚洲国产色片| 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| 亚洲精品色激情综合| 亚洲婷婷狠狠爱综合网| 丝瓜视频免费看黄片| 久久久久久久久久成人| 国产爱豆传媒在线观看| 嫩草影院新地址| 免费黄频网站在线观看国产| 一级毛片aaaaaa免费看小| 国产探花在线观看一区二区| 久久热精品热| 女人十人毛片免费观看3o分钟| 亚洲在线观看片| 亚洲欧美精品专区久久| 亚洲,一卡二卡三卡| 久久久久久久亚洲中文字幕| 中文字幕av成人在线电影| 亚洲最大成人av| 久久久久精品性色| a级一级毛片免费在线观看| 亚洲精品一二三| 可以在线观看毛片的网站| 国内精品美女久久久久久| 亚洲伊人久久精品综合| 在线 av 中文字幕| 国产大屁股一区二区在线视频| 夫妻性生交免费视频一级片| 草草在线视频免费看| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 18禁裸乳无遮挡动漫免费视频 | 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 2021少妇久久久久久久久久久| 老女人水多毛片| 国产精品久久久久久久电影| 色吧在线观看| 久久久色成人| 久久久精品免费免费高清| 国产精品福利在线免费观看| 综合色丁香网| 亚洲不卡免费看| 久久女婷五月综合色啪小说 | av在线天堂中文字幕| 一级av片app| 五月天丁香电影| 免费人成在线观看视频色| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 美女主播在线视频| 成人无遮挡网站| 观看免费一级毛片| 身体一侧抽搐| 欧美另类一区| 麻豆乱淫一区二区| 少妇高潮的动态图| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜爱| 亚洲欧美中文字幕日韩二区| 一级毛片aaaaaa免费看小| 亚洲精品自拍成人| 日本av手机在线免费观看| 99久久精品国产国产毛片| 观看免费一级毛片| 少妇高潮的动态图| 一区二区三区精品91| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 啦啦啦啦在线视频资源| 99久久九九国产精品国产免费| 亚州av有码| 99热全是精品| 国产精品.久久久| 午夜激情久久久久久久| 日本黄色片子视频| 免费av不卡在线播放| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 99精国产麻豆久久婷婷| 在线观看国产h片| 观看免费一级毛片| 一区二区三区精品91| 97热精品久久久久久| 国产探花在线观看一区二区| 日韩欧美精品v在线| 性色avwww在线观看| 日日啪夜夜撸| 一区二区三区四区激情视频| 国产色爽女视频免费观看| 蜜臀久久99精品久久宅男| 日韩欧美精品免费久久| 赤兔流量卡办理| 久久久成人免费电影| 日韩一区二区三区影片| 神马国产精品三级电影在线观看| 色婷婷久久久亚洲欧美| 插逼视频在线观看| 一区二区三区四区激情视频| 国产毛片在线视频| 精品久久久久久电影网| 最近2019中文字幕mv第一页| 亚洲成色77777| 亚洲最大成人av| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美 国产精品| 国精品久久久久久国模美| 青春草视频在线免费观看| 日韩不卡一区二区三区视频在线| 男人狂女人下面高潮的视频| 在线看a的网站| 国语对白做爰xxxⅹ性视频网站| 亚洲性久久影院| av又黄又爽大尺度在线免费看| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 97在线视频观看| 尤物成人国产欧美一区二区三区| 亚洲av欧美aⅴ国产| 丝袜美腿在线中文| 成人一区二区视频在线观看| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 色视频在线一区二区三区| 国产成人a区在线观看| av免费观看日本| 51国产日韩欧美| 成年版毛片免费区| 久久影院123| 丝袜喷水一区| 亚洲成人精品中文字幕电影| 亚洲国产精品成人久久小说| 九草在线视频观看| 久久久精品94久久精品| 国产精品麻豆人妻色哟哟久久| 五月伊人婷婷丁香| 少妇人妻精品综合一区二区| 夜夜看夜夜爽夜夜摸| 在线观看免费高清a一片| 日韩国内少妇激情av| 欧美性感艳星| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱久久久久久| 国产91av在线免费观看| 日韩av在线免费看完整版不卡| 亚洲精品国产av成人精品| 日韩国内少妇激情av| av一本久久久久| 国产成人精品一,二区| 亚洲美女视频黄频| 啦啦啦啦在线视频资源| 午夜福利高清视频| 97热精品久久久久久| 国产男女超爽视频在线观看| 91精品伊人久久大香线蕉| 亚洲经典国产精华液单| 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 国内精品宾馆在线| av福利片在线观看| 日日摸夜夜添夜夜爱| 亚洲无线观看免费| 国产亚洲午夜精品一区二区久久 | 亚洲精品aⅴ在线观看| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 舔av片在线| 联通29元200g的流量卡| eeuss影院久久| 日本黄色片子视频| 国产乱人视频| 国产色爽女视频免费观看| 日韩欧美 国产精品| 亚洲最大成人av| 美女视频免费永久观看网站| 成人免费观看视频高清| 亚洲国产精品专区欧美| 亚洲最大成人手机在线| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| av.在线天堂| 舔av片在线| 直男gayav资源| 亚洲精品自拍成人| 91在线精品国自产拍蜜月| 欧美高清性xxxxhd video| 大话2 男鬼变身卡| 舔av片在线| 亚洲精品乱码久久久v下载方式| 免费观看av网站的网址| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 丰满乱子伦码专区| 久久这里有精品视频免费| 欧美精品国产亚洲| 男女那种视频在线观看| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 少妇被粗大猛烈的视频| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看| 特大巨黑吊av在线直播| 婷婷色综合大香蕉| 午夜精品国产一区二区电影 | 亚洲最大成人av| 免费看不卡的av| av一本久久久久| 日韩在线高清观看一区二区三区| 亚洲精品国产色婷婷电影| 熟女av电影| 免费大片18禁| 内射极品少妇av片p| 黄色怎么调成土黄色| 久久久久国产网址| 在线观看免费高清a一片| 久久久久久久久久人人人人人人| 日韩欧美精品免费久久| 熟女电影av网| 成年人午夜在线观看视频|