• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    脂肪酰胺水解酶催化三聯(lián)體膦酰化失活的機(jī)理:一個(gè)模型體系的理論研究

    2010-12-12 02:43:24李強(qiáng)根鄢國(guó)森
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:?;?/a>水解酶四川大學(xué)

    李強(qiáng)根 薛 英 郭 勇 鄢國(guó)森

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都 610064)

    Fatty acid amide hydrolase(FAAH)[1-3]is a mammalian amidase signature enzyme belonging to the amidase signature(AS) family[4-5].Meanwhile,FAAH is an integral membrane enzyme that degrades members of the fatty acid amide class of neural signaling lipids,including the endogenous cannabinoid N-arachidonyl ethanolamine(anandamide)[6],the sleep-inducing substance 9(Z)-octadecenamide(oleamide)[7],the anti-inflammatory factor N-palmitoyl ethanolamine(PEA)[8],and the satiating signal N-oleoyl ethanolamine(OEA)[9].Early experimental results[10-21]indicated that FAAH may represent an attractive therapeutic target for treatment of pain,inflammation,and other central nervous system(CNS)disorders.The recent determination of the threedimensional structures of FAAH[22]and the two distantly related bacterial amidase signature enzymes[23]suggest that the catalytic machinery of this enzyme is a serine-serine-lysine catalytic triad,in contrast to the classical serine-histidine-aspartate triad found in most serine hydrolases.This unusual triad is assumed to be responsible for the ability of FAAH to hydrolyse amides and esters at equivalent rates through a mechanism in which acylation is rate-limiting step.Afterwards,the detail catalytic mechanism of FAAH was studied by mutagenesis and affinity labeling[24],where both Ser217 and Lys142 contribute to the basecatalyzed activation of the nucleophile Ser241 of FAAH and cooperate to deprotonate Ser241,and Ser217 serves as a bridge between Lys142 and Ser241,Lys142 appears to play a uniquely important role in the acid-catalyzed protonation of the substrateleaving group.

    Since the discovery of FAAH and the awareness of its therapeutic potential,much attention has been paid to design the selective and/or potent FAAH inhibitors[25].It is known that organophosphorus acid anhydrides(OPs)are rapid,stoichiometric,and essentially irreversible inhibitors of serine hydrolases,which can act as“hemisubstrate”to trap the enzyme[26-29].As one of the representative of OP-type inhibitors,methyl arachidonyl fluorophosphonate(MAFP)interacts with FAAH by blocking the active center of FAAH through the formation of a phosphonate ester bond with the active site on Ser241(Scheme 1),and subsequentlyleads to the loss ofenzyme activity of FAAH[30].Although the inhibition reaction of FAAH by MAFP has been known greatly,the detailed reaction mechanism of MAFP with FAAH still remains considerably elusive,and no related theoretical work has been reported to our best knowledge.In addition,the reaction mechanism of MAFP with FAAH may be different from hydrolysis of amides or esters due to the five covalence bonds of phosphor as well as its larger atom radius than carbon. Through a combination of site-directed mutagenesis,enzyme kinetics,and chemical labeling experiments,McKinney et al.[24]found that the reaction rate constants of FAAH with fluorophosphonate(FP)-rhodamine are quite different from oleamide or oleoyl methyl ester(about 104times faster),indicating that the phosphonylation reaction of FP-rhodamine with FAAH may proceedviaaspecialpathway,differentfromhydrolysisofamides or esters.

    Scheme 1 Inhibition of FAAH by MAFP

    Interestingly,Bracey and coworkers[22]have found that the active site of FAAH appears to simultaneously access both the aqueous environment of the cytoplasm and the lipid milieu of the bilayer.This architecture may provide an exit route to the cytosol for the polar amine substituents and could also provide entries for water molecules.Furthermore,McKinney et al.[24]also concluded that the Lys142 residue of the triad is too far away (>0.45 nm)to make direct contacts with either the serine nucleophile or the predicted position of the substrate-leaving group.Therefore,we think that there may be some solvent water molecules filling in the“huge hole”of the active site of FAAH and forming a water-chain bridge to connect Lys142 residue and the substrate-leaving group in the reaction process.In this study, we will propose a new phosphonylation reaction mechanism of MAFP with the active site of the catalytic triad of FAAH using density functional theory B3LYP/6-311G(d,p)method.As described in Scheme 2,two possible reaction pathways(Path A and Path B)have been considered.For the computational model, in order to use less time,more importantly to focus our main attention on the active site of FAAH,the Ser241-Ser217-Lys142 catalytic triad is simplified to CH3OH-CH3OH-CH3NH2system, labeled as Ser-m241-Ser-m217-Lys-m142.MAFP is modeled by O-methyl methylphosphonofluridate(OMPF).Moreover,the polarizable continuum model(PCM)is used to evaluate the solvent influence of water on the studied reactions.This study might be useful for design of new inhibitors of FAAH.

    1 Computational details

    The geometric optimizations of all species,including the reactant complex(RC),the intermediate(INT),the transition state (TS),and the product complex(PC),were carried out using the density functional theory(DFT)with Becke′s three-parameter (B3)[31]exchange functional along with the Lee-Yang-Parr(LYP) nonlocal correlation functional(B3LYP)[32-33]and using the standard valence triple-ζ basis set,expanded with d-type polarization functions for heavy elements and p-type polarization functions for H,6-311G(d,p)[34].This approach has recently been successfully applied to model the phosphonylation mechanisms of sarin and acetylcholinesterase[35-38].The nature of all optimized structures was determined using harmonic frequency analysis as true minimum with no imaginary frequency or transition state with only one imaginary frequency.The frequency calculations at the B3LYP/6-311G(d,p)level without scaling also provided thermodynamic quantities such as the zero-point vibrational energy, thermal correction,enthalpies,Gibbs free energies,and entropies at 298.15 K and 101.325 kPa.Single-point MP2 calculations,MP2/6-311G(d,p)//B3LYP/6-311G(d,p),were also carried out to assess the accuracy of the B3LYP energies.

    Scheme 2 Possible reaction pathways for MAFP and the active site of FAAHPath A:the unaffected catalytic triad of FAAH;Path B:mutagenesis of Lys142

    The polarizable continuum model(PCM)[39]by performing SCRF calculations at the MP2/PCM/6-311G(d,p)//B3LYP/6-311G(d,p)level with a relative dielectric constant ε=78.41(water)was applied for all gas-phase-optimized structures to evaluate the solvent effects of water on the reactions.Charge distribu-tions were obtained employing natural population analysis (NPA)[40-41]from the wave functions calculated at the MP2/6-311G(d,p)//B3LYP/6-311G(d,p)level.Throughout this study, allcalculationswereperformedusingtheGaussian03program[42]. The relative free energy to the reactant complex in the gas-phase (denoted as ΔG298Kin kJ·mol-1)is computed using the Gibbs free energy value at 298.15 K and 101.325 kPa,which is obtained by adding the Gibbs free energy correction at the B3LYP/6-311G (d,p)level to the electronic energy at the MP2/6-311G(d,p)// B3LYP/6-311G(d,p)level.In water,the relative free energy is described by the Gibbs free energy change(ΔGsolin kJ·mol-1) with PCM treatment.

    2 Results and discussion

    As mentioned above,we investigated the phosphonylation reaction mechanism of OMPF with two CH3OH and one CH3NH2molecules,the simplified active center model between MAFP and FAAH,by use of B3LYP/6-311G(d,p)method(see Scheme 2).Path A is a two-step addition-elimination process,involving a zwitterionic trigonal bipyramidal intermediate.One of the solvent water molecules(labeled as WB)acts as a“hydrogen bridge”connecting Lys-m142 residue and OMPF in the reaction process. At the same time,to illustrate the catalytic power and the detailed phosphonylation mechanism of serine-serine-lysine triad of FAAH,we took into account the other possible reaction pathway,Path B,considered as the case of Lys-m142 residue mutagenesis to alanine(denoted as K142A in Ref.[24])in the catalytic triad of FAAH.The energy data,including zero-point energy corrections and Gibbs free energy barriers,are summarized, while atomic charges and bond order(BO)of selected bonds are provided,respectively.In this section,we will discuss in detail this phosphonylation mechanism and the influences of mutagenesis of catalytic triad residues on it.

    2.1 Path A

    2.1.1 Geometries and the relative energies

    Path A represents the phosphonylation reaction process of OMPF with the active site of FAAH,which is a typical stepwise mechanism.As shown in Fig.1,the configuration of the reaction complex(RC-A)obtained from the DFT optimization has the WBpositioned between Lys-m142 and OMPF,which forms two hydrogen bonds,respectively,with hydrogen atom of the amino group in Lys-m142(r(O10…H9)=0.2093 nm)and the fluorine atom of OMPF(r(F2…H11)=0.2048 nm).Ser-m217 serves as the bridge connecting Lys-m142 and Ser-m241 in the catalytic triad of FAAH,through the hydrogen bonds between the N8 atom and the H7 atom with the distances of 0.1762 nm as well as between the O6 atom and the H5 atom with the distance of 0.1746 nm,respectively.Ser-m241 is close to the methyl and methoxyl hydrogen of OMPF with the hydrogen bond lengths of 0.2348 and 0.2217 nm,respectively,and will act as a nucleophile to attack the phosphorus atom of OMPF in the next step. Lys-m142 is distant from Ser-m241 and OMPF by 0.4342 and 0.4220 nm,respectively,which is reasonable compared with the experimental observation[24].

    In the transition state TS1-A,the single imaginary frequency amounts to 929.1i cm-1,whose vibrational mode corresponds to the nucleophilic attack of oxygen atom(O4)of Ser-m241 on the phosphorus atom of OMPF from the backside relative to the fluorine atom.The TS1-A presents a ten-membered ring structure, formed by the Ser-m241-Ser-m217-Lys-m142 catalytic triad of FAAH,the connecting water molecule WB,and OMPF(Fig.1). The nucleophile Ser-m241 attacks the phosphor atom of OMPF and the distance between the hydroxyl oxygen of Ser-m241 and the phosphor atom of OMPF is 0.1939 nm,indicating the formation of a partial O—P single bond.Also at the same time,the proton transfers from Ser-m241 to nitrogen atom(N8)of Lys-m142 through the“bridge”of Ser-m217.The O4—H5 and O6—H7 single bonds increase by 0.0235 and 0.0274 nm from RC-A to TS1-A,respectively,implying that both Ser-m217 and Lysm142 residues contribute to the base-catalyzed activation of the nucleophile Ser-m241.During this process,the O4—P1—F2 moiety in the TS1-A assumes a linear conformation approximately(θ(O4—P1—F2)=161.8°).Meanwhile,due to the attack of the nucleophile Ser-m241 at the phosphor atom of OMPF,the P—F single bond and the P=O double bond distances increase by 0.0159 and 0.0013 nm,respectively.The θ(C13—P1—O12) bond angle increases by 10.8°from RC-A to TS1-A.Those larger deformations may result in higher reactive energy barrier.

    Fig.1 B3LYP/6-311G(d,p)optimized structures of all the complexes,intermediates and transition states in the Path Abong length or distance in nm,bond angle in degree

    The first step(addition process)leads to a zwitterionic trigonal bipyramidal intermediate INT-A(Fig.1).Fig.1 shows that the INTA presents a ten-membered ring conformation similar to TS1-A. While the N8 atom of Lys-m142 has captured the proton(H7)of Ser-m217 and the N8—H7 bond distance is 0.1044 nm.The O3=P1 double bond distance increases by 0.0002 nm compared with that in TS1-A and 0.0015 nm compared with that in RC-A, respectively.The P1—O4 single bond length and the P1—F2 single bond length decreases by 0.0187 nm and increases by 0.0183 nm from TS1-A to INT-A,respectively.Those geometry changes reveal the less stability of this zwitterionic trigonal bipyramidal intermediate compared with RC-A.

    In the TS2-A,the single imaginary frequency amounts to 119.5i cm-1,whose vibrational mode corresponds to the broken of the P1—F2 single bond and simultaneously the proton transfer from N8 to F2 assisted with WBmolecule.The P1—F2 bond distance is 0.2213 nm and increases by 0.0250 nm compared with that in INT-A and 0.0592 nm compared with that in RC-A, respectively,implying that the P1—F2 single bond has almost broken.The P1—O4 single bond and the O3=P1 double bond distances are 0.1712 and 0.1481 nm,respectively,and very close to those in PC-A.On the other hand,the N8—H9 and O10—H11 bond distances increase only by 0.0021 and 0.0042 nm from INT-A to TS2-A,respectively,indicating that the proton transfer may be difficult to occur in this step.In the PC-A,Lysm142 is distant from Ser-m241 and OMPF by 0.4082 and 0.4118 nm,re-spectively,which is close to 0.45 nm attained from experimental study[24].

    The relative energies of all the species to the reactant complex at the MP2/6-311G(d,p)//B3LYP/6-311G(d,p)level of theory were presented in Table 1.The energy values show that the phosphonylation reaction process of OMPF with the active site of FAAH is moderately exothermic,with ΔE0Kof-25.1 kJ·mol-1(-28.0 kJ·mol-1after zero-point correction)in the gas phase. The reactive energy barrierof the rate-determining step is 69.0kJ·mol-1(79.1kJ·mol-1afterzero-pointcorrection)inthegasphase.After the solvent effects of water have been taken into account,the energy barrier is greatly decreased.The activation en-ergy barrierand activation free energy barrierof this phosphonylation reaction is 52.3 and 64.9 kJ·mol-1,respectively.Meanwhile,the solvent water molecules further increase the stability of PC-A and the energetic separation between RC-A and PC-A is-34.3 kJ·mol-1for ΔEsol.

    Table 1 Energy data of all the reaction structures at the MP2/6-311G(d,p)//B3LYP/6-311G(d,p)and B3LYP/6-311G(d,p)levels(in parentheses)

    Table 2 Selected NPA charge distributions(e)of the stationary points in Path A at the MP2/6-311G(d,p)//B3LYP/6-311G(d,p)level

    It is very interesting that INT-A is energetically located at 66.9 kJ·mol-1(ΔE0K)above RC-A in the gas phase,and very close to TS2-A at 66.1 kJ·mol-1.In water,although the solvent water molecules increase the stabilities of INT-A and TS2-A greatly, the INT-A is less stable than TS2-A and the energetic separation between INT-A and TS2-A is-1.6 kJ·mol-1for ΔEsol,and-4.2 kJ·mol-1for ΔGsol,indicating the short-life of this zwitterionic trigonal bipyramidal intermediate in this phosphonylation reaction process.Furthermore,our calculation results indicate that the dipole moments of RC-A,TS1-A,and PC-A are 1.396×10-29, 3.210×10-29,and 2.116×10-29C·m,respectively.The dipole moments of INT-A and TS2-A are 3.555×10-29and 3.475×10-29C· m,respectively.Such larger dipole moments may be responsible for their higher energies of solvation.

    2.1.2 NPA charge and molecular orbital analysis

    The phosphonylation reaction process of OMPF with the active site of FAAH can be further analyzed by the NPA charge distribution from natural bond orbital(NBO)method and molecular orbital analysis.The selected atom charges presented in Table 2 reveal that the charge of N8 atom decreases by 0.108e from RC-A to TS1-A,implying that the N8 atom has been partially protonated in the transition state TS1-A and activates the nucleophile greatly.The charge of O4 atom increases by 0.073e from RC-A to TS1-A.So,it has been activated by the Lys-m142 and Ser-m217 and will be more facile to nucleophilicly attack the phosphorus atom of OMPF.The O3 and F2 atoms also get 0.041e and 0.086e from RC-A to TS1-A,respectively.The HOMO orbital of TS1-A,as shown in Fig.2,illustrates that the p-orbital of O6 atom is involved in the interaction with O4 atom and assists the O4 atom to attack the phosphorus atom of OMPF. Meantime,the p-orbitals of O4 and F2 atoms are both involved in the interaction with O3 atom and result in the partial P1=O3 double bond cleavage.From RC-A to INT-A,the O4,O3,and F2 atoms gain 0.125e,0.046e,and 0.134e,respectively.On the other hand,the N8 atom loses 0.143e from RC-A to INT-A.It is clearly that the INT-A presents a zwitterionic character,and the negative charges mostly concentrate on the O4,O3,and F2 moieties,while the positive charges on the NH3moiety.The HOMO orbital of INT-A(Fig.2)also shows that,the p-orbitals of O4 and F2 atoms both interact with O3 atom containing partial negative charge,and keep NH3moiety alone possessing partial positive charge.From RC-A to TS2-A,the charge of F2 atom increases by 0.170e,which can be deduced that the P1—F2 single bond has been partial cleavage.The N8 and H9 atoms still possess -0.761e and 0.480e in the TS2-A,respectively,revealing that the interaction between N8 and H9 atoms is very strong and Lye-m142 is not a good“bridge”for proton transfer.While the O10 and H11 atom charges are a little affected,which can explain the difficult occurrence of the proton transfer in the TS2-A.

    2.2 Path B

    In Path B,Ser-m241 still serves as a nucleophile attacking OMPF molecule,while Ser-m217 acts as a“bridge”connecting Ser-m241 and OMPF,and Alal42 is not included in the model reaction,which stands for the case of K142A in the serine-serinelysine catalytic triad of FAAH.Furthermore,we studied two types of the phosphonylation reaction mechanisms on Path B: concerted(SN2)and stepwise processes(see Scheme 2).In the stepwise process,there are also two pathways considered,with one water molecule assisted and without water molecule assisted. The structures of all RC,INT,TS,and PC in Path B are shown in Figs.3-5.The energy properties of all related structures are summarized in Table 1.

    2.2.1 The concerted SN2 process in Path B

    Fig.2 HOMOs of the TS1-A,INT-A,and TS2-A in the Path A

    For the SN2 displacement process of Path B,two reaction channels(inversion and retention)have been calculated(Fig.3). In the inversion reaction channel,the RC-I underwent a“Walden invert”to yield the product(PC-I)via a six-membered ring tran sition state(TS-I)with the single imaginary frequency 742.9i cm-1.In this six-membered ring transition state,the largest bond angle θ(O4—P1—F2)and the least bond angle θ(P1—F2—H7)is 106.8°and 92.5°,respectively.On going from RC-I to TS-I, great changes in the geometric conformation of OMPF take place.The P1—F2 single bond and P1=O3 double bond distances increase by 0.0422 and 0.0018 nm,respectively.The bond angle θ(C8—P1—O9)expands by 48.8°,which may result in higher active energy barrier for this reaction process.Furthermore,the O6—H7 single bond distance only increases by 0.0059 nm,indicating that the proton transfer is also not easy in this reaction process and may lag behind the nucleophilic substitute process.

    The MP2 relative energies in Table 1 show that this inversion SN2 displacement process is less exothermic either in the gas phase or in water.The reactive energy barrierof the inversion reaction channel of Path B is 218.4 kJ·mol-1(226.4 kJ·mol-1after zero-point correction)in the gas phase.If the continuum solvent effects are taken into account,it is found that the reactive energy barrier is almost unaffected with the solvent molecules.Therefore,in view of the thermodynamics and kinetics,the inversion reaction channel of Path B is difficult to take place both in the gas phase and in water.

    In the retention reaction channel,the attack of the nucleophile Ser-m241 at the OMPF molecule also leads to a six-membered ring transition state(TS-R)with the single imaginary frequency 158.5i cm-1.In TS-R,the least bond angle θ(O4—P1—F2)is only 71.1°.From RC-R to TS-R,the P1—F2 single bond and P1= O3 double bond distances increase by 0.0508 and 0.0017 nm, respectively.While the change of the θ(C8—P1—O9)bond angle is smaller than that in the inversion path,which may result in a smaller active energy barrier contrasted with the latter.NPA charge analysis presented in Table 3 shows that O4 atom bears 0.816e in RC-R and more than by about 0.006e in RC-I,indicating that Ser-m24 in RC-R possesses more nucleophilic ability than that in RC-I.

    2.2.2 The stepwise process in Path B

    Different from the SN2 mechanism of Path B,the stepwise process in Path B reveals a two-step addition-elimination reaction mechanism(Fig.4).In this path,Ser-m241 also acts as the nucleophile binding to the phosphorus of OMPF,while the proton simultaneously transfers to the oxygen of the phosphono group of OMPF via the“hydrogen-bridge”of Ser-m217(addition step).In the following reaction,the transferred proton helps to break the P1—F2 bond of the OMPF serine complex,finally the fluorine is departed as fluorine hydride(elimination step).

    When the separated reactants(Ser-m241,Ser-m217 and OMPF)are mixed,the Ser-m241 and Ser-m217 first form a reactant complex(RC-B)with OMPF through a hydrogen bond chain.The bond distances of the H5…O6 and H7…O3 are predicted to be 0.1828 and 0.1776 nm,respectively.Ser-m241 bonds to the methyl hydrogen of OMPF with a hydrogen bond of 0.2279 nm,and will act as a nucleophile to attack the phosphorus atom of OMPF in the next step.

    Fig.3 B3LYP/6-311G(d,p)optimized structures of all the complexes and transition states in the SN2 mechanism of Path Bbong length or distance in nm,bond angle in degree

    Table 3 Selected NPA charge distributions(e)of the stationary points in Path B at the MP2/6-311G(d,p)//B3LYP/6-311G(d,p)level

    The transition state TS1-B is found to be characterized by a pentacoordinated phosphorus compound with a tetrahedral structure,and the Ser-m241,Ser-m217 and OMPF present a sixmembered ring configuration via a hydrogen chain.The single imaginary frequency of TS1-B is predicted to be 1075.8i cm-1, corresponding to the vibrational mode of the proton(H5)transferring from O4 of Ser-m241 to O6 of Ser-m217,the proton (H7)transferring from O6 of Ser-m217 to O3 of OMPF;and simultaneously the nucleophile Ser-m241 O4 oxygen attacking to the phosphorus.In this six-membered ring transition state, the largest bond angle θ(P1—O3—H7)and the least bond angle θ(H5—O6—H7)is 118.7°and 84.9°,respectively.From RC-B to TS1-B,the O4—H5 and O6—H7 single bond lengths are estimated to increase by 0.0304 and 0.0168 nm,respectively.While the H5—O6 and H7—O3 distances decrease by 0.0689 and 0.0507 nm,respectively,indicating that the proton transfer is more facile than that in the SN2 process of Path B.Meantime,the O4—P1 distance is 0.1973 nm suggesting partial O4—P1 single bond formation.

    The MP2 single-point energy data in Table 1 show that the reactive energy barrierof the addition step of the stepwise processofPath B is 90.0 kJ·mol-1(102.9 kJ·mol-1after zero-point correction)in the gas phase,which is lower by 128.4 and 95.4 kJ·mol-1than those in the inversion channel and retention channel of concerted process,respectively.While the INT1-B is energetic above the RC-B 59.0 kJ·mol-1(54.8 kJ·mol-1after zeropoint correction)in the gas phase.In water,if the continuum solvent effects are taken into account,it is found that the activation free energy barrieris 99.6 kJ·mol-1in water,and higher by 34.7 kJ·mol-1than that in the Path A.Meanwhile,the solvent water molecules decrease the stability greatly of INT1-B and the energetic separation(ΔGsol)between INT1-B and RC-B is -68.6 kJ·mol-1.

    From addition step to elimination step of the stepwise process, INT1-B should undergo the O3—H7 single bond rotation about 180°fromSer-m241sidetoF2atomside(Fig.4).Fig.4alsoreveals that the elimination step of stepwise process involves a fourmembered ring transition state(TS2-B)with the single imaginary frequency 399.8i cm-1,corresponding to the vibrational mode of the proton(H7)transfer from O3 to F2 and the F2—P1 single bond cleavage.The Ser-m217 connects the O3 atom of OMPF directly by a hydrogen bond(r(O6H5…O3)=0.2086 nm), no longer acting as a“hydrogen bridge”in this process due to the steric restriction between them.In this four-membered ring transition state,compared with INT2-B,the P1—F2 distance is 0.2253 nm with increase of 0.0502 nm,meanwhile,the F2—H7 distance is 0.1380 nm with decrease of 0.0622 nm,indicating that the P1—F2 single bond is almost broken and the F2—H7 single bond is partial formed.While the H7—O3 and P1—O3 single bonds only increase by 0.0095 nm and reduce by 0.0062 nm from INT2-B to TS2-B,respectively.Therefore,the proton (H7)is also not easy to transfer from O3 to F2 in the elimination step.

    The relative energy data displayed in Table 1 indicate that the reactive energy barrier(relative to RC-B)of the elimination step is 106.3 kJ·mol-1(112.5 kJ·mol-1after zero-point correction)in the gas phase,which is a little higher than that in the addition step.Moreover,the PC-B is energetic above the RC-B 3.8 kJ·mol-1(6.3 kJ·mol-1after zero-point correction)in the gas phase.In water,the reactive energy barrier(relative to RCB)decreases to 103.3 kJ·mol-1.Meanwhile,the solvent water molecules increase the stability of PC-B and the energetic separation(ΔGsol)between PC-B and RC-B is 6.7 kJ·mol-1.

    Fig.4 B3LYP/6-311G(d,p)optimized structures of all the complexes,intermediates(INT)and transition states in the stepwise mechanism of Path Bbong length or distance in nm,bond angle in degree

    In summary,mutagenesis of the Lys142 residue in the catalytic triad of FAAH will decrease the nucleophilic ability of Serm241 and greatly increase the reactive energy barrier of the phosphonylation reaction of OMPF with the active site of FAAH.In view of the kinetics,the phosphonylation reaction of OMPF with the active site of FAAH may proceed through stepwise mechanism of Path B when the Lys142 residue is mutated in the catalytic triad of FAAH.

    2.2.3 One water molecule assisted stepwise process of Path B

    On the other hand,when the Lys142 residue is mutated in the catalytic triad of FAAH,the reactive energy barrierin the stepwise process of Path B is high to 99.6 kJ·mol-1at the MP2/6-311G(d,p)//B3LYP/6-311G(d,p)level of theory,which is higher than the experimental results attained by McKinney and Cravatt[24].We speculate that the solvent water molecule(s)may substitute for the Lys142 residue and participate in the reaction. However,the participating probability of water molecules will be limited because of the steric hindrance of the corresponding mutation residue.Thus,in this study,only one water molecule is considered in the phosphonylation reaction process of OMPF with the active site of FAAH when the Lys142 residue is mutated in the catalytic triad.Furthermore,the stepwise mechanism is chosen in this situation because the activation energy barrier is too high to proceed both for the inversion and retention SN2 displacement pathways.

    The reaction pathway of one water molecule assisted stepwise process is similar to the stepwise process of Path B,which is also a two-step addition-elimination reaction mechanism(Fig.5). When the Lys142 residue is mutated in the catalytic triad,one solvent water molecule substitutes for the Lys142 residue and forms a reactant complex(RC-B-W)with Ser-m241,Ser-m217 and OMPF through a hydrogen bond chain.The bond distances of the H5…O6,H7…O8,and H9…O3 are predicted to be 0.1744,0.1721,and 0.1745 nm,respectively.Ser-m241 bonds to the methyl and O-methyl hydrogens of OMPF with hydrogen bonds of 0.2235 and 0.2369 nm,respectively,and will act as a nucleophile to attack the phosphorus atom of OMPF in the next step.

    The transition state TS1-B-W is also characterized by a pentacoordinated phosphorus compound with a tetrahedral structure, and the substitutional water molecule,Ser-m241,Ser-m217 and OMPF present a eight-membered ring configuration via a hydrogen chain.The single imaginary frequency of TS1-B-W is predicted to be 804.4i cm-1,whose vibrational mode corresponds to the nucleophilic attack of oxygen atom(O4)of Ser-m241 on the phosphorus atom of OMPF from the front relative to the fluorine atom.At the same time,the proton transfers from Ser-m241 to O3 atom of OMPF through the“bridge”of Ser-m217 and the substitutional water molecule.In this eight-membered ring transition state,the largest bond angle θ(P1—O3—H9)and the least bond angle θ(H9—O8—H7)are 136.5°and 97.4°,respectively, which are larger than those(17.8°and 12.5°)in the six-membered ring transition state TS1-B,respectively.Moreover,the O4—P1 distance is 0.1893 nm,and 0.0080 nm shorter than that in the TS1-B,indicating that the proton transfer with a water molecule assisted is more facile when the Lys142 residue is mutated in the catalytic triad and expected for a lower activation energy barrier.The MP2 single-point energy data in Table 1 also show,that the reactive energy barrierand the activation free energy barrierof the addition step of one water molecule assisted stepwise process of Path B are 90.8 and 85.4 kJ· mol-1,respectively,which are lower than that in the case without water molecule assisted by 12.1 and 14.2 kJ·mol-1,respectively.

    Fig.5 B3LYP/6-311G(d,p)optimized structures of all the complexes,intermediates and transition states in the one water molecule assisted stepwise process of Path Bbong length or distance in nm,bond angle in degree

    The elimination step of one water molecule assisted stepwise process of Path B involves a six-membered ring transition state (TS2-B-W)with the single imaginary frequency 660.4i cm-1,in which the substitutional water molecule acts as a“hydrogen bridge”to promote the hydrogen transfer from O3 to F2.In this six-membered ring transition state,the F2—H7 and F2—P1 distance are 0.1401 and 0.2212 nm,respectively,which are 0.0021 nm longer and 0.0041 nm shorter than that in the case without water molecule assisted,respectively.This suggests that the conformation of the four-membered ring transition state in the stepwise process of Path B is closer to the product complex.The relative energy data displayed in Table 1 indicate that the activation free energy barrierof the elimination step of one water molecule assisted stepwise process of Path B is 102.9 kJ·mol-1and the same as that in the case without water molecule assisted.

    From the discussion above we can see that,when the Lys142 residue is mutated in the catalytic triad of FAAH,the first step of the stepwise mechanism is a rate-controlling one with the activation free energy barrierof 85.4 kJ·mol-1.Compared with the unaffected catalytic triad of FAAH,this free energy barrier increases by 20.5 kJ·mol-1,very close to the difference of 21.6 kJ·mol-1between K142A and wild type FAAH from the experiment investigation[24],in which the K142A mutant exhibited 6100-fold reductions in reactivity rates relative to wild type FAAH.Although the solvent water molecule substituting for the Lys142 residue can decrease the reactive energy barrier through acting as a“hydrogen bridge”to promote the proton transfer,its participating probability will be limited because of the steric hindrance of the corresponding mutation residue.Hence,it results in the smaller reaction rate than that in the case of the unaffected catalytic triad of FAAH.

    3 Conclusions

    The density functional theory,B3LYP method with 6-311G(d, p)basis set has been used to theoretically probe the mechanism of the phosphonylation reaction of MAFP and the active site of FAAH through a simplified model.A new phosphonylation reaction mechanism(Path A)has been proposed,and the results manifest that this phosphonylation reaction of the catalytic triad of FAAH is a two-step addition-elimination process,with the first step(addition step)being the rate-determining step,and involving a zwitterionic trigonal bipyramidal intermediate.One of the solvent water molecules performs a key role in the reaction process,and acts as a“hydrogen bridge”connecting Lys142 residue and MAFP through giving and accepting protons to promote the long-range proton transfer.The Ser241 serves as the nucleophile attacking the phosphor atom of MAFP in initial.Both Ser217 and Lys142 contribute to the base-catalyzed activation of the nucleophile Ser241,while Ser217 serves as a bridge between Lys142 and Ser241.Subsequently,OMPF breaks the P—F bond and simultaneously the proton transfers from N8 atom to F2 atom via the“hydrogen bridge”of WBto generate the products. The other possible reaction pathway(Path B)has been considered to investigate the effect of the residue Lys142 mutation on the phosphonylation reaction process.Our results indicate that, when the Lys142 residue is mutated,the phosphonylation reaction is still a two-step addition-elimination process.Moreover, mutagenesis of the Lys142 residue(Path-B-W:stepwise)in the catalytic triad of FAAH will decrease the nucleophilic strength of Ser241,and increase the reactive energy barrierby more than 20.5 kJ·mol-1compared with Path A,indicating that the Lys142 catalytic residues may act as an important role in the phosphonylation reaction of MAFP with active site of FAAH.It well reproduced the earlier experimental observations that the mutation of the catalytic triad of FAAH decreases the rate of hydrolysis for FP-rhodamine.

    Supporting Information Available: The optimized Cartesian coordinates and geometrical structures of all stationary points along the potential energy profiles have been included. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Cravatt,B.F.;Giang,D.K.;Mayfield,S.P.;Boger,D.L.;Lerner, R.A.;Gilula,N.B.Nature,1996,384:83

    2 Giang,D.K.;Cravatt,B.F.Proc.Natl.Acad.Sci.U.S.A.,1997, 94:2238

    3 Patricelli,M.P.;Cravatt,B.F.Vitamins and hormones-advances in research and applications.Vol.62.San Diego:Academic Press, 2001:95

    4 Mayaux,J.F.;Cerbelaud,E.;Soubrier,F.;Faucher,D.;Petre,D. J.Bacteriol.,1990,172:6764

    5 Chebrou,H.;Bigey,F.;Arnaud,A.;Galzy,P.Biochim.Biophys. Acta,1996,1298:285

    6 Devane,W.A.;Hanus,L.;Breuer,A.;Pertwee,R.G.;Stevenson, L.A.;Griffin,G.;Gibson,D.;Mandelbaum,A.;Etinger,A.; Mechoulam,R.Science,1992,258:1946

    7 Cravatt,B.F.;Prospero-Garcia,O.;Siuzdak,G.;Gilula,N.B.; Henriksen,S.J.;Boger,D.L.;Lerner,R.A.Science,1995,268: 1506

    8 Lambert,D.M.;Vandevoorde,S.;Jonsson,K.O.;Fowler,C.J. Curr.Med.Chem.,2002,9:663

    9 de Fonseca,F.R.;Navarro,M.;Gomez,R.;Escuredo,L.;Nava,F.; Fu,J.;Murillo-Rodriguez,E.;Giuffrida,A.;LoVerme,J.;Gaetani, S.;Kathuria,S.;Gall,C.;Piomelli,D.Nature,2001,414:209

    10 Cravatt,B.F.;Demarest,K.;Patricelli,M.P.;Bracey,M.H.; Giang,D.K.;Martin,B.R.;Lichtman,A.H.Proc.Natl.Acad.Sci. U.S.A.,2001,98:9371

    11 Kathuria,S.;Gaetani,S.;Fegley,D.;Valino,F.;Duranti,A.; Tontini,A.;Mor,M.;Tarzia,G.;La Rana,G.;Calignano,A.; Giustino,A.;Tattoli,M.;Palmery,M.;Cuomo,V.;Piomelli,D. Nat.Med.,2003,9:76

    12 Lichtman,A.H.;Shelton,C.C.;Advani,T.;Cravatt,B.F.Pain, 2004,109:319

    13 Hohmann,A.G.;Suplita,R.L.;Bolton,N.M.;Neely,M.H.; Fegley,D.;Mangieri,R.;Krey,J.F.;Walker,J.M.;Holmes,P.V.; Crystal,J.D.;Duranti,A.;Tontini,A.;Mor,M.;Tarzia,G.; Piomelli,D.Nature,2005,435:1108

    14 Chang,L.;Luo,L.;Palmer,J.A.;Sutton,S.;Wilson,S.J.;Barbier, A.J.;Breitenbucher,J.G.;Chaplan,S.R.;Webb,M.Br.J. Pharmacol.,2006,148:102

    15 Jayamanne,A.;Greenwood,R.;Mitchell,V.A.;Aslan,S.; Piomelli,D.;Vaughan,C.W.Br.J.Pharmacol.,2006,147:281

    16 Russo,R.;LoVerme,J.;La Rana,G.;Compton,T.;Parrot,J.; Duranti,A.;Tontini,A.;Mor,M.;Tarzia,G.;Calignano,A.; Piomelli,D.J.Pharmacol.Exp.Ther.,2007,322:236

    17 Gobbi,G.;Bambico,F.R.;Mangieri,R.;Bortolato,M.; Campolongo,P.;Solinas,M.;Cassano,T.;Morgese,M.G.; Debonnel,G.;Duranti,A.;Tontini,A.;Tarzia,G.;Mor,M.;Trezza, V.;Goldberg,S.R.;Cuomo,V.;Piomelli,D.Proc.Natl.Acad.Sci. U.S.A.,2005,102:18620

    18 Naiu,P.S.;Varvel,S.A.;Ahn,K.;Cravatt,B.F.;Martin,B.R.; Lichtman,A.H.Psychopharmacology,2006,192:61

    19 Huitron-Resendiz,S.;Sanchez-Alavez,M.;Wills,D.N.;Cravatt, B.F.;Henriksen,S.J.Sleep,2004,27:857

    20 Cravatt,B.F.;Saghatelian,A.;Hawkins,E.G.;Clement,A.B.; Bracey,M.H.;Lichtman,A.H.Proc.Natl.Acad.Sci.U.S.A., 2004,101:10821

    21 Holt,S.;Comelli,F.;Costa,B.;Fowler,C.J.Br.J.Pharmacol., 2005,146:467

    22 Bracey,M.H.;Hanson,M.A.;Masuda,K.R.;Stevens,R.C.; Cravatt,B.F.Science,2002,298:1793

    23 Shin,S.;Lee,T.H.;Ha,N.C.;Koo,H.M.;Kim,S.Y.;Lee,H.S.; Kim,Y.S.;Oh,B.H.Eur.Mol.Biol.Org.,2002,21:2509

    24 McKinney,M.K.;Cravatt,B.F.J.Biol.Chem.,2003,278:37393

    25 Labara,G.;Michaux,C.Chemistry&Biodiversity,2007,4:1882

    26 Barak,D.;Ordentlich,A.;Kaplan,D.;Barak,R.;Mizrahi,D.; Kronman,C.;Segall,Y.;Velan,B.;Shafferman,A.Biochemistry, 2000,39:1156

    27 Millard,C.B.;Koellner,G.;Ordentlich,A.;Shafferman,A.; Silman,I.;Sussman,J.L.J.Am.Chem.Soc.,1999,121:9883

    28 Millard,C.B.;Kryger,G.;Ordentlich,A.;Greenblatt,H.M.;Harel, M.;Raves,M.L.;Segall,Y.;Barak,D.;Shafferman,A.;Silman,I.; Sussman,J.L.Biochemistry,1999,38:7032

    29 Bencsura,A.;Enyedy,I.Y.;Kovach,I.M.Biochemistry,1995, 34:8989

    30 Deutsch,D.G.;Omeir,R.;Arreaza,G.;Salehani,D.;Prestwich,G. D.;Huang,Z.;Howlett,A.Biochem.Pharmacol.,1997,53:255

    31 Becke,A.D.J.Chem.Phys.,1993,98:5648

    32 Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B,1988,37:785

    33 Miehlich,B.;Savin,A.;Stoll,H.;Preuss,H.Chem.Phys.Lett., 1989,157:200

    34 Hehre,W.J.;Radom,L.;Schleyer,P.R.;Pople,J.A.Ab initio molecular orbital theory.New York:Wiley,1986

    35 Wang,J.;Gu,J.;Leszczynski,J.J.Phys.Chem.B,2005,109:

    13761

    36 Wang,J.;Roszak,S.;Gu,J.;Leszczynski,J.J.Phys.Chem.B, 2005,109:1006

    37 Wang,J.;Gu,J.;Leszczynski,J.J.Phys.Chem.B,2006,110:7567

    38 Wang,J.;Gu,J.;Leszczynski,J.J.Phys.Chem.B,2008,112:3485

    39 Tomasi,J.;Persico,M.Chem.Rev.,1994,94:2027

    40 Reed,A.E.;Weinstock,R.B.;Weinhold,F.J.Chem.Phys.,1985, 83:735

    41 Reed,A.E.;Curtiss,L.A.;Weinhold,F.Chem.Rev.,1988,88: 899

    42 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision D.01.Pittsburgh,PA:Gaussian Inc.,2005

    猜你喜歡
    ?;?/a>水解酶四川大學(xué)
    無(wú)底物情況下來(lái)白R(shí)hoclococcus zopfii的腈水解酶中親核進(jìn)攻試劑CYS165的活性狀態(tài)的探究(英文)
    腈水解酶反應(yīng)機(jī)制與催化性能調(diào)控研究進(jìn)展
    氨基甲酸乙酯水解酶的家族生物信息學(xué)分析
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    石油化工應(yīng)用(2018年3期)2018-03-24 14:54:36
    百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    內(nèi)源信號(hào)肽DSE4介導(dǎo)頭孢菌素C?;冈诋叧嘟湍钢械姆置诒磉_(dá)
    促?;鞍讓?duì)3T3-L1脂肪細(xì)胞炎性反應(yīng)的影響
    人參二醇磺?;磻?yīng)的研究
    手机成人av网站| 久久精品成人免费网站| 女性生殖器流出的白浆| 久久久国产欧美日韩av| 国产精品亚洲一级av第二区| 一本大道久久a久久精品| 亚洲天堂国产精品一区在线| 夜夜夜夜夜久久久久| 久久九九热精品免费| 亚洲av第一区精品v没综合| 欧美激情极品国产一区二区三区| 少妇被粗大的猛进出69影院| 亚洲电影在线观看av| 天天一区二区日本电影三级| 亚洲 欧美一区二区三区| 可以免费在线观看a视频的电影网站| 真人一进一出gif抽搐免费| 久久午夜亚洲精品久久| 麻豆国产av国片精品| 免费搜索国产男女视频| 91成年电影在线观看| 波多野结衣高清无吗| 国产色视频综合| 久久精品国产亚洲av高清一级| 亚洲久久久国产精品| 巨乳人妻的诱惑在线观看| 精品电影一区二区在线| 熟女电影av网| 韩国av一区二区三区四区| 级片在线观看| 亚洲第一欧美日韩一区二区三区| 在线看三级毛片| 亚洲成人久久爱视频| 一边摸一边抽搐一进一小说| 欧美日韩乱码在线| 午夜福利免费观看在线| 亚洲精品色激情综合| 免费在线观看完整版高清| 午夜福利一区二区在线看| 日本 av在线| 国产又色又爽无遮挡免费看| 亚洲真实伦在线观看| 自线自在国产av| 免费在线观看影片大全网站| 久久婷婷成人综合色麻豆| 亚洲国产高清在线一区二区三 | 久久精品91蜜桃| 国产精品乱码一区二三区的特点| 欧美乱色亚洲激情| 久久精品国产综合久久久| 看黄色毛片网站| 男男h啪啪无遮挡| 精品国产乱子伦一区二区三区| 正在播放国产对白刺激| 国产成人啪精品午夜网站| 老司机福利观看| 亚洲国产中文字幕在线视频| 亚洲免费av在线视频| 成年女人毛片免费观看观看9| 国产97色在线日韩免费| 美女 人体艺术 gogo| 无人区码免费观看不卡| 免费在线观看成人毛片| 国产极品粉嫩免费观看在线| 麻豆成人午夜福利视频| 国产亚洲av嫩草精品影院| 久久天躁狠狠躁夜夜2o2o| 亚洲精华国产精华精| 一级片免费观看大全| 亚洲黑人精品在线| 久久久久久久精品吃奶| 啪啪无遮挡十八禁网站| 久久天躁狠狠躁夜夜2o2o| www.www免费av| 一本久久中文字幕| 两性夫妻黄色片| 国产成人影院久久av| 这个男人来自地球电影免费观看| a在线观看视频网站| 男女视频在线观看网站免费 | 亚洲一码二码三码区别大吗| 久久天躁狠狠躁夜夜2o2o| 青草久久国产| 欧美人与性动交α欧美精品济南到| 国产欧美日韩一区二区精品| 麻豆国产av国片精品| 欧美日韩一级在线毛片| 在线观看免费午夜福利视频| 亚洲成a人片在线一区二区| 久久久久国产一级毛片高清牌| 国产日本99.免费观看| 欧美色欧美亚洲另类二区| x7x7x7水蜜桃| 久久久国产成人精品二区| 亚洲avbb在线观看| 免费在线观看亚洲国产| 亚洲人成77777在线视频| 亚洲中文av在线| 国产伦人伦偷精品视频| 国产精品自产拍在线观看55亚洲| 欧美性猛交黑人性爽| 亚洲九九香蕉| 女生性感内裤真人,穿戴方法视频| 亚洲精品国产精品久久久不卡| 久久香蕉国产精品| 国产亚洲欧美在线一区二区| 免费高清视频大片| 欧美激情 高清一区二区三区| 91麻豆精品激情在线观看国产| 亚洲男人天堂网一区| 亚洲国产欧洲综合997久久, | 欧美乱妇无乱码| 后天国语完整版免费观看| 久久精品成人免费网站| 国产欧美日韩一区二区精品| 日本撒尿小便嘘嘘汇集6| 午夜福利成人在线免费观看| 欧美成人免费av一区二区三区| 国产成人av教育| 久99久视频精品免费| 精品一区二区三区四区五区乱码| 亚洲一区高清亚洲精品| aaaaa片日本免费| 亚洲国产中文字幕在线视频| 制服人妻中文乱码| 欧美一级a爱片免费观看看 | 中文字幕久久专区| 国产av一区在线观看免费| 夜夜躁狠狠躁天天躁| 成人精品一区二区免费| 黑人操中国人逼视频| 美女国产高潮福利片在线看| 亚洲精品在线美女| 日韩免费av在线播放| 亚洲真实伦在线观看| 国产亚洲精品第一综合不卡| 久久精品国产亚洲av香蕉五月| 久久天堂一区二区三区四区| 黄片小视频在线播放| 十八禁网站免费在线| 国内毛片毛片毛片毛片毛片| 亚洲性夜色夜夜综合| 欧美激情高清一区二区三区| 一个人观看的视频www高清免费观看 | 国产av在哪里看| 男女午夜视频在线观看| 男人舔女人下体高潮全视频| 久久国产乱子伦精品免费另类| 国产高清激情床上av| 欧美午夜高清在线| 91成年电影在线观看| 国产成人精品无人区| 亚洲一卡2卡3卡4卡5卡精品中文| 三级毛片av免费| 亚洲国产中文字幕在线视频| 最新美女视频免费是黄的| 亚洲午夜理论影院| 在线十欧美十亚洲十日本专区| 国产精品免费视频内射| 亚洲 国产 在线| 久热这里只有精品99| 亚洲精品国产精品久久久不卡| 夜夜爽天天搞| 亚洲成av人片免费观看| 午夜老司机福利片| 精品久久蜜臀av无| 成人18禁高潮啪啪吃奶动态图| 久久久国产精品麻豆| 国内揄拍国产精品人妻在线 | 国产又色又爽无遮挡免费看| 亚洲片人在线观看| 黄片小视频在线播放| 久久久水蜜桃国产精品网| 一个人免费在线观看的高清视频| 亚洲性夜色夜夜综合| 日韩av在线大香蕉| 国产欧美日韩一区二区精品| 非洲黑人性xxxx精品又粗又长| 别揉我奶头~嗯~啊~动态视频| 久9热在线精品视频| www国产在线视频色| 欧美中文日本在线观看视频| 欧美中文综合在线视频| 免费在线观看日本一区| 99国产精品99久久久久| 不卡av一区二区三区| 欧美日韩精品网址| 老司机靠b影院| 亚洲第一av免费看| 久久99热这里只有精品18| 天堂动漫精品| 少妇裸体淫交视频免费看高清 | 成人国产综合亚洲| 在线观看66精品国产| 熟女电影av网| 身体一侧抽搐| www日本黄色视频网| 美女高潮喷水抽搐中文字幕| 久久中文字幕一级| 在线观看免费日韩欧美大片| xxxwww97欧美| 久久人妻av系列| 成人永久免费在线观看视频| 免费无遮挡裸体视频| 中文字幕精品免费在线观看视频| 脱女人内裤的视频| 成人18禁在线播放| 精品欧美一区二区三区在线| 久久香蕉激情| 18禁裸乳无遮挡免费网站照片 | 欧美日韩亚洲综合一区二区三区_| 国产私拍福利视频在线观看| 精品国产一区二区三区四区第35| 999久久久国产精品视频| 久久久久久免费高清国产稀缺| 又黄又爽又免费观看的视频| 超碰成人久久| 黑人操中国人逼视频| 中文字幕久久专区| www.熟女人妻精品国产| xxxwww97欧美| 99在线视频只有这里精品首页| 午夜福利在线观看吧| 国产精品日韩av在线免费观看| 久久亚洲精品不卡| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 亚洲精品国产精品久久久不卡| 精品国产乱码久久久久久男人| 国产色视频综合| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 中文字幕精品免费在线观看视频| 999久久久精品免费观看国产| 人人妻人人澡欧美一区二区| 国产精品,欧美在线| 精品国产乱码久久久久久男人| 久久亚洲真实| 亚洲人成伊人成综合网2020| 欧美大码av| 韩国av一区二区三区四区| 久久香蕉精品热| 国产野战对白在线观看| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| www.熟女人妻精品国产| 麻豆一二三区av精品| 少妇 在线观看| 国产成人系列免费观看| 老汉色av国产亚洲站长工具| 岛国视频午夜一区免费看| 精品免费久久久久久久清纯| 欧美色视频一区免费| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 午夜a级毛片| 国产伦人伦偷精品视频| 国产麻豆成人av免费视频| 午夜久久久久精精品| 日韩中文字幕欧美一区二区| 日本 av在线| av视频在线观看入口| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久人妻蜜臀av| 午夜成年电影在线免费观看| 欧美乱码精品一区二区三区| 日韩欧美 国产精品| 久久天堂一区二区三区四区| 色精品久久人妻99蜜桃| 欧美一级毛片孕妇| 好看av亚洲va欧美ⅴa在| ponron亚洲| 亚洲精品美女久久久久99蜜臀| 视频在线观看一区二区三区| 精品欧美一区二区三区在线| 精品国产乱子伦一区二区三区| 一边摸一边做爽爽视频免费| 欧美av亚洲av综合av国产av| or卡值多少钱| 黄色视频不卡| 视频在线观看一区二区三区| 亚洲国产精品久久男人天堂| 美女国产高潮福利片在线看| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 操出白浆在线播放| 成人一区二区视频在线观看| 999精品在线视频| 亚洲av美国av| 嫁个100分男人电影在线观看| xxx96com| 亚洲人成网站在线播放欧美日韩| 男人舔女人下体高潮全视频| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 成人欧美大片| 日韩免费av在线播放| 啦啦啦 在线观看视频| 久久性视频一级片| 黄色a级毛片大全视频| 精品一区二区三区视频在线观看免费| 少妇被粗大的猛进出69影院| 色精品久久人妻99蜜桃| 日本在线视频免费播放| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 国产精品久久久久久人妻精品电影| 可以免费在线观看a视频的电影网站| 午夜激情福利司机影院| 国产精品久久久久久人妻精品电影| 午夜免费观看网址| 成人特级黄色片久久久久久久| 满18在线观看网站| 成人三级黄色视频| 午夜福利高清视频| 嫩草影视91久久| 国产又爽黄色视频| 色综合亚洲欧美另类图片| 亚洲成人国产一区在线观看| 国产午夜精品久久久久久| 亚洲欧美一区二区三区黑人| 精品久久久久久久末码| 国产国语露脸激情在线看| 亚洲中文日韩欧美视频| 久久欧美精品欧美久久欧美| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 好看av亚洲va欧美ⅴa在| 村上凉子中文字幕在线| 两个人视频免费观看高清| 亚洲精品国产一区二区精华液| 久久精品91蜜桃| 波多野结衣高清作品| 久久九九热精品免费| 国产激情偷乱视频一区二区| 国产爱豆传媒在线观看 | 国产蜜桃级精品一区二区三区| 午夜福利视频1000在线观看| 免费观看精品视频网站| 91字幕亚洲| 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 精品欧美国产一区二区三| 免费在线观看日本一区| 一区二区三区高清视频在线| 嫩草影院精品99| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 久久婷婷人人爽人人干人人爱| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 97碰自拍视频| 一夜夜www| 久久伊人香网站| 成人特级黄色片久久久久久久| 十八禁网站免费在线| 1024手机看黄色片| 成人欧美大片| 国产三级在线视频| 国产精品久久视频播放| 久久青草综合色| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 99热这里只有精品一区 | 亚洲中文av在线| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 19禁男女啪啪无遮挡网站| 性欧美人与动物交配| 国产精品一区二区精品视频观看| 88av欧美| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 看片在线看免费视频| 色在线成人网| av超薄肉色丝袜交足视频| 免费观看精品视频网站| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 成人精品一区二区免费| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 欧美zozozo另类| 人妻丰满熟妇av一区二区三区| 男女午夜视频在线观看| www.www免费av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av中文字字幕乱码综合 | aaaaa片日本免费| 国产精品98久久久久久宅男小说| 亚洲国产欧洲综合997久久, | 免费看a级黄色片| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 伊人久久大香线蕉亚洲五| 精品免费久久久久久久清纯| 欧洲精品卡2卡3卡4卡5卡区| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片 | 午夜福利高清视频| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清在线视频| 亚洲全国av大片| 亚洲精华国产精华精| 国产1区2区3区精品| 美女免费视频网站| 大香蕉久久成人网| 美国免费a级毛片| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 免费无遮挡裸体视频| 国产精品爽爽va在线观看网站 | 久久久久国产精品人妻aⅴ院| 亚洲激情在线av| xxxwww97欧美| 精品国产亚洲在线| 亚洲欧美一区二区三区黑人| 夜夜躁狠狠躁天天躁| 日韩成人在线观看一区二区三区| www.www免费av| 在线国产一区二区在线| 欧美黑人精品巨大| 午夜精品久久久久久毛片777| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 女人被狂操c到高潮| 欧美成人一区二区免费高清观看 | 亚洲国产欧美日韩在线播放| 欧美日韩乱码在线| 欧美大码av| 欧美日本亚洲视频在线播放| 这个男人来自地球电影免费观看| 久久国产亚洲av麻豆专区| 啦啦啦免费观看视频1| 久99久视频精品免费| 国产精品98久久久久久宅男小说| 亚洲无线在线观看| 亚洲av电影不卡..在线观看| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 亚洲av成人一区二区三| 欧美午夜高清在线| 桃色一区二区三区在线观看| 亚洲成人免费电影在线观看| 日本a在线网址| 99精品在免费线老司机午夜| 日本 av在线| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 国产在线精品亚洲第一网站| 精华霜和精华液先用哪个| 无人区码免费观看不卡| 久久香蕉精品热| 亚洲人成77777在线视频| 我的亚洲天堂| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 白带黄色成豆腐渣| 99国产综合亚洲精品| 国产在线精品亚洲第一网站| 日韩 欧美 亚洲 中文字幕| 亚洲欧美激情综合另类| 国产99白浆流出| 国产伦人伦偷精品视频| 国产1区2区3区精品| 免费在线观看完整版高清| 桃色一区二区三区在线观看| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 国产激情偷乱视频一区二区| 久久精品国产清高在天天线| 国产成人欧美在线观看| 久久精品人妻少妇| 青草久久国产| 国产精品一区二区精品视频观看| 午夜福利免费观看在线| 中文在线观看免费www的网站 | 巨乳人妻的诱惑在线观看| aaaaa片日本免费| 18禁观看日本| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 99国产精品一区二区蜜桃av| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 欧美国产日韩亚洲一区| 午夜福利18| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 亚洲自偷自拍图片 自拍| 国产亚洲欧美在线一区二区| 观看免费一级毛片| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| 精品电影一区二区在线| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 国产伦人伦偷精品视频| 91在线观看av| 90打野战视频偷拍视频| 精品国产乱子伦一区二区三区| 在线永久观看黄色视频| 成人18禁在线播放| 久久狼人影院| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| 日韩三级视频一区二区三区| 黄片播放在线免费| 十八禁网站免费在线| 可以在线观看毛片的网站| 黄色视频不卡| 日日夜夜操网爽| 99在线人妻在线中文字幕| 成人一区二区视频在线观看| 欧美激情极品国产一区二区三区| 欧美最黄视频在线播放免费| 亚洲精品国产精品久久久不卡| 国产精品野战在线观看| 成人免费观看视频高清| 色综合婷婷激情| av在线天堂中文字幕| 久久精品亚洲精品国产色婷小说| 免费女性裸体啪啪无遮挡网站| 少妇熟女aⅴ在线视频| 人成视频在线观看免费观看| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 精品欧美国产一区二区三| 日韩免费av在线播放| 国内精品久久久久久久电影| 久久人人精品亚洲av| 婷婷丁香在线五月| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站 | 亚洲av成人av| 日日夜夜操网爽| 一个人免费在线观看的高清视频| 久久精品亚洲精品国产色婷小说| 两个人视频免费观看高清| 婷婷亚洲欧美| 好男人在线观看高清免费视频 | 人人澡人人妻人| 精品免费久久久久久久清纯| 每晚都被弄得嗷嗷叫到高潮| 欧美中文综合在线视频| a级毛片a级免费在线| 亚洲五月色婷婷综合| 亚洲免费av在线视频| 国产成年人精品一区二区| 亚洲最大成人中文| 可以在线观看的亚洲视频| 国产又爽黄色视频| 国产1区2区3区精品| 18美女黄网站色大片免费观看| 午夜免费成人在线视频| 亚洲人成网站高清观看| 满18在线观看网站| 亚洲 国产 在线| 国产av一区在线观看免费| 俄罗斯特黄特色一大片| 亚洲精品中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看| 色综合站精品国产| 欧美成人午夜精品| 老司机午夜福利在线观看视频| 亚洲熟妇熟女久久| 亚洲精品一卡2卡三卡4卡5卡| 日本撒尿小便嘘嘘汇集6| 国产成年人精品一区二区| 亚洲国产精品合色在线| 国产成人一区二区三区免费视频网站| 精品国产美女av久久久久小说| 国产亚洲精品一区二区www| 一本一本综合久久| 亚洲片人在线观看| 欧美日本视频| 好男人在线观看高清免费视频 | 国产精品野战在线观看| 在线观看午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品av麻豆狂野| 麻豆av在线久日| 亚洲欧美日韩无卡精品| 一级毛片精品| 国产成人影院久久av| 搡老岳熟女国产| 成人精品一区二区免费| 大香蕉久久成人网| 男女下面进入的视频免费午夜 | 19禁男女啪啪无遮挡网站| 麻豆成人av在线观看| 精品久久蜜臀av无| 视频区欧美日本亚洲| 亚洲电影在线观看av| 婷婷丁香在线五月| or卡值多少钱| 色哟哟哟哟哟哟| 成人18禁在线播放| 黄频高清免费视频| 亚洲全国av大片| 久久久久久久久免费视频了| 啪啪无遮挡十八禁网站| 91成人精品电影|