• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    通過構(gòu)象誘導(dǎo)電感耦合機制光可逆調(diào)控有機場效應(yīng)晶體管的性能

    2010-12-12 02:44:14王振興惠靜姝郭雪峰
    物理化學學報 2010年7期
    關(guān)鍵詞:實驗室

    申 茜 甘 霖 劉 松 曹 陽 王振興 惠靜姝 郭雪峰

    (北京大學化學與分子工程學院,分子動態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國家重點實驗室,北京分子科學國家實驗室,北京 100871)

    Over the past decade great progress has been made on organic thin-film transistors(OTFTs)with impressive achievements in improving carrier mobilities that are now comparable to those of amorphous silicon thin-film transistors[1-4].For the practical application of OTFTs in low-cost,solution-processed/printed electronics-based sensors and displays,the next step of crucial importance is to install functionality into a simple OTFT such that the device is capable of converting an external stimulus to an easily detectable electrical signal.In fact,OTFTs have been envisioned as an ideal platform for developing robust,inexpensive chemical or biological sensors[5-17]because of their inherent advantages such as easy availability,compatibility with flexible, large-area substrates and highly tunable sensitivity.For example, recent work has shown that a proper selection of the semiconductors and gate dielectric materials can lead to reliable OTFT operations in the aqueous media that are required for biosensing[9,18]. The sensing mechanism of these sorption-based sensors has been attributed to the analytes′diffusion into grain boundaries in thin films that cause either trapping or doping of charge carriers.This mechanism provides sensitive detection for chemical and biological species,but the physically damaging interaction between semiconductors and analytes,and the difficulty of removing analytes could lead to serious problems of device stability and reversibility,being one of the major obstacles to the practical application of OTFTs in sensing.There is a pressing need to develop a noninvasive methodology of modulating the density of charge carriers flowing through the active semiconductor layers;this should be fully reversible and it should leave the semiconductors essentially untouched.

    Here,we detail a smart system,by which OTFTs performance can be reversibly fine-tuned by lights with different wavelengths.This study builds on our recent work in which we demonstrated that photochromic spiropyrans can be assembled to the surfaces of single-walled carbon nanotubes through molecular self-assembly[19]and to pentacene thin films through rubber stamping[20]to make photosensitive devices.In both cases UV and visible light irradiation can switch the device conductance back-and-forth between two distinct states by either reversible, conformation-induced doping or electrostatic effects.In the current case,we use a hybrid gate dielectric,which is composed of a buffer polymer carrier,polymethyl methacrylate(PMMA,MW= 4.95×105),and a photoresponsive molecule driver,photochromic spiropyran(SP).When the SP molecules undergo the reversible photoisomerization[21-22],we are able to regulate the capacitance of the gate dielectric,and this leads to the reversible photomodulation of the device characteristics of OTFTs in a noninvasive manner.

    1 Results and discussion

    A typical top-contact,bottom-gate OTFT device configuration was used in this study(Fig.1).The dielectric we used was a hybrid polymer bilayer(PMMA+SP,300 nm,top)/(SiO2,100 nm, bottom).We used the corresponding thin films without the SP additive as control dielectrics.To maximize the switching behavior of functionalized OTFTs,we used the hybrid dielectric with SP saturation concentration of~0.07 mol·L-1.We chosed the hybrid PMMA dielectrics with 300-nm thickness as a representative because we found that this thickness of hybrid dielectrics gave the best photoresponsivities.Pentacene was chosen as the model organic semiconductor because of its high mobility and the importance of this material for incorporation into electronic circuitry[1-3].

    Tapping-mode atomic force microscopy(AFM)images obtained from the hybrid gate dielectric surfaces demonstrated smooth surface morphologies(maximum root mean square roughness~0.3 nm)(Fig.2(a)).UV/visible absorption studies showed that SP molecules in thin films of the hybrid gate dielectric were able to reversibly switch back-and-forth between the neutral closed form(SP-closed)and the charge-separated,colored open form(SP-open)under UV and visible light irradiation(Fig.3(a)). This indicates that PMMA can serve as a good matrix for SP molecules.It can provide buffering space for SP′s conformational changes.After 40-nm pentacene deposition via thermal evaporation,we obtained large pentacene crystal grains with terraces (step heights about 1.5 nm)as demonstrated by AFM(Fig.2(b, c)).X-ray diffraction measurements also demonstrated the formation of highly crystal-quality pentacene thin films on top of the dielectric(Fig.3(b)).These results are important to achieve optimal OTFT performance.After deposition of top Au chargeinjecting and charge-extracting source and drain electrodes through thermal evaporation under vacuum,the desired transistors were obtained.The channel length of the devices was 60 μm and the width was 2000 μm.The capacitance of the hybrid dielectric films was measured on the sandwich electrode structures with gold pads(0.9 mm2)using a Karl Suss probe station equipped with a digital capacitance meter(Agilent 4294A).The transistor properties were characterized with the same probe station and a semiconducting parameter analyzer(Agilent 4155C). Carrier mobilities(μ)were calculated in the saturation regime by the standard method:ID=WCiμ(VG-VT)2/(2L),where IDis the source-drain saturation current,W is the channel width,L is the channel length,Ciis the gate dielectric capacitance(per area),VGis the gate voltage,and VTis the threshold voltage.Light irradiations were performed with a handheld UV lamp(~100 μW·cm-2, λ=365 nm)and with a 150 W Halogen incandescent lamp(Imax:~30 mW·cm-2,λ>520 nm).To avoid the heating effect during irradiation,visible light was focused and guided by a long optical fiber to the probe station.To aid in the analysis of the results, we intend to regulate the intensity of visible light that makes the photocurrents of the devices under visible irradiation equivalent to those induced by UV irradiation.By doing this,we can record the time trace of the drain currents of the devices without obvious current jumps when UV and visible lights are switched.All of the measurements were performed in the same condition and at the same temperature.OTFTs fabricated with 300 nm hybrid polymer/100 nm SiO2bilayer dielectrics achieved a mobility of as high as 0.13 cm2·V-1·s-1(Fig.4).

    Fig.1 Schematic representation of the top-contact,bottom-gate OTFT structure and the material components

    Fig.2 AFM images of the sample surfaces(a)representative tapping-mode AFM images(5.0 μm×5.0 μm)obtained from the hybrid gate dielectric surfaces(PMMA thickness:300 nm and SP concentration:0.07 mol·L-1),(b)representative tapping-mode AFM images(5.0 μm×5.0 μm)of surface morphologies of 40-nm pentacene thin films grown on the hybrid gate dielectric,(c)representative tapping-mode AFM images(1.5 μm×1.5 μm)of pentacene thin film surfaces

    Fig.3 (a)UV/visible absorption spectra of a PMMA-spiropyran thin film(thickness:300 nm and SP concentration of 0.07 mol· L-1)on a quartz substrate under UV light irradiation,(b)X-ray diffraction spectrum of 40-nm pentacene thin films on a hybrid gate dielectric with film thickness of 300 nm and SP concentration of 0.07 mol·L-1

    Fig.4 Representative output and transfer characteristics of devices on silicon wafer substrates with a hybrid polymer (PMMA+SP,top)/SiO2(100 nm,bottom)bilayer dielectricSP concentration is 0.07 mol·L-1.PMMA thickness is 300 nm.Ciis~3.6 nF.The channel length of the devices is 60 μm and the width is 2000 μm.

    We tested the photoswitching characteristics of the devices and found that large and reversible changes in drain current occurred in these SP-functionalized OTFTs when SP isomerized between SP-closed and SP-open forms(Fig.5(a-e)).As shown in Fig.5(a),after~270 s of UV irradiation,the initial(low)conductance state of the device(black curve,Ron:~1.5×1010Ω at~30 V source/drain bias and~20 V gate bias)was converted into a much higher conductance state(red curve,Ron:~7.9×109Ω).After further visible light irradiation for~24 min(green curve in Fig.5(a)),the drain current of the device was essentially restored to its original value.The back-and-forth photoswitching effect is rathergradual in time.Fig.5(b,c)show the time-evolution ofthe current-voltage curves during UV and visible light illumination, respectively.The drain current sharply increased at the beginning of UV irradiation and was saturated after~270 s of exposure when SP molecules reached the equilibrium of conformational transformation(Fig.5(b)).On the contrary,after the highconductance state was established and irradiation with visible light began,the drain current of the same device sharply decreased initially and then slowly attenuated,completing the decrease after~24 min illumination(Fig.5(c)).The similarity between the reversible photoswitching of the electrical conductivity of the functionalized devices and the reversible photoisomerization of SP molecules suggests that the photoswitching process of SP molecules is responsible for the changes in device characteristics of pentacene OTFTs.To gather kinetic data for the photoswitching process,we monitored the drain current as a function of time (VD=-30 V,VG=-20 V)asthe irradiation was toggled between UV and visible wavelengths.To clearly demonstrate the photoswitching process and mechanism discussed below,we do not show the slow back-conversion process of the devices in the dark after UV irradiation due to the slow transformation of SP from SP-open to SP-closed.Fig.5(d)shows one full switching cycle of the time-dependent behavior of the same device;this behavior is consistent with the results from Fig.5(b,c).A sudden current jump was also observed at the moment of turning on UV light generally due to the photoexcited state of organic semiconductors as proved by control experiments in Fig.6(c).In order to demonstrate the reversibility of the switching,we used shorter irradiation time.As shown in Fig.5(e),all the functionalized OTFTs are quite stable and can switch at least 50 times in ambient atmosphere without obvious degradation.The kinetics of each process can be fit with a single-exponential.Based on the data in Fig.5(e),the overall rate contants in different parts were calculated,KUV:~(1.6±0.2)×10-2s-1and Kvisible:~(0.7±0.1)×10-2s-1. These kinetic results for the photoswitching process are very similar to or even faster than those we observed in our previous work[19-20],which supports our suggestion(see above)that PMMA thin films serve as an effective solid matrix in which the SP molecules can isomerize.To aid in the analysis of these results, we performed control experiments in which we measured the photoresponse ofa pentacene device having the same PMMA/SiO2bilayer dielectric but lacking the spiropyran.Fig.6 shows the drain current characteristics of such a device as a function of time under the same measurement conditions.During irradiation with either UV or visible light,we consistently observed the slow decrease in drain current,probably resulting from problems associated with the device stability.From the trace in Fig.6,the overall rate constants for each part were obtained,both KUVand Kvisibleare~(5.0±0.1)×10-4s-1.In comparison with those in functionalized devices,two significant differences should be pointed out.One is that the rate constants of the device in Fig.5(e)under UV and visible light irradiation are two orders of magnitude larger than those obtained from the control device in Fig.6 under the same conditions.The other significant difference is that the photoswitching effect under UV illumination in functionalized devices is opposite to that in the control devices.It is quite clear that the photoisomerization of SP molecules is responsible for the switching effect in device characteristics.

    Fig.5 (a)A representative photoswitching cycle in a 40 nm pentacene thin film transistor with dielectric thickness of 300 nm and SP concentration of 0.07 mol·L-1;(b,c)the gradual conversion between low and high conductance states when the currentvoltage curves are taken every 30 s for UV illumination and every 2 min for visible light illumination,respectively;(d)one full switching cycle of the time-dependent behavior of the same device;(e)time trace of the drain current for the same device showing the reversible photoswitching events under irradiation of UV light(365 nm)and visible light(λ>520 nm)The bias between source and drain electrodes is-30 V,and the gate bias is-20 V.

    Fig.6 (a)output and(b)transfer characteristics of a control device on silicon wafer substrates with a polymer (300 nm PMMA,top)/SiO2(100 nm,bottom)bilayer dielectric,(c)time trace of the drain current for the same device under irradiation of UV light(365 nm)and visible light(λ>520 nm)The bias between source and drain electrodes is-30 V,and the gate bias is~20 V.Ciis-6.1 nF.The channel length of the devices is 60 μm and the width is 2000 μm.The calculated mobility is~0.5 cm2·V-1·s-1.

    Theoretical discussion[20]has suggested that the photoisomerization of photochromic molecules will significantly change their dipole moment(Pmol).We performed density functional theory calculations and the result shows that the electric dipole moment of the open form SP is 46.4×10-30C·m,more than two times of the dipole moment of the closed form(21.3×10-30C·m). In our previous work we showed that this photoinduced electrostatic environment should act as a local negative gate voltage that can modulate the transistor conductance by controlling the carrier density in devices[19-20].We hypothesized that the SP photoisomerization could initiate the reversible changes in capacitance of the hybrid gate dielectric and thus modulate the electrical conductivity of the devices.

    To prove this hypothesis,we tested the electrical characteristics of ITO/hybrid dielectrics(PMMA+SP)/Au capacitors.In order to avoid the shading of the UV and visible light,we irradiated the hybrid material from the bottom of ITO transparent electrodes.Fig.7(a,b)show the time-dependent evolution of the capacitance curves of a hybrid polymer dielectric at SP concentration of 0.07 mol·L-1and PMMA thickness of 300 nm.From the time course of the device capacitance,we can see that the capacitance increased sharply at the beginning of UV irradiation and then saturated after~260 s of exposure,further visible light irradiation can return it to its original value.The whole process is quite reversible.We show 4 representative full switching cycles of the same device by taking the data at 100 kHz frequency(Fig. 7(c)).In order to rule out other potential artifacts we performed control experiments.In the control device we used only PMMA thin films with the same thickness as the dielectric without the SP additive.Under UV or visible light irradiation,there was only negligible increases in capacitance(Fig.8),which may be due to the slight effect of the dissociative photoexcitation of C—C or C—H bonds of polymer PMMA on capacitance[23-24].From the results we may conclude that the photoisomerization of the SP molecules are responsible for the photoswitching of the capacitance in devices.Since SP photoisomerization can induce a big change in dipole moment of individual molecules and SP molecules serve as the key component of the gate dielectric,it is reasonable that this dipole change could initiate a collective change in dielectric constant of the gate dielectric,thus leading to the reversible photomodulation of the capacitance of the gate dielectric and then the carrier density at the semiconductor/dielectric interface.Consequently,it is not surprising that SP photoisomerization can realize the reversible photoregulation of the electrical conductivity of the devices as demonstrated experimentally through a novel mechanism:conformation-induced capacitive coupling.Another important feature which should be mentioned is that all of the conformational changes happen within the gate dielectric layer driven by the most convenient and noninvasive tool of lights without any damage of the semiconductors,making the functioning devices very stable.

    Fig.7 Demonstration of the switching mechanism(a)and(b)Time course of the capacitance of a hybrid polymer dielectric on ITO glass substrates upon UV and visible light irradiation. SP concentration is 0.07 mol·L-1.PMMA thickness is 300 nm.The capacitance-frequency curves are taken every 20 s for UV illumination and every 2 min for visible light illumination.(c)The representative 4 full switching cycles of the same device by taking the data at 100 KHz frequency.

    Fig.8 Time-evolution of the capacitance curves of control dielectric absent of SP molecules on ITO glass substrates under UV and visible light irradiationPMMA thickness is 300 nm.The capacitance-frequency curves are taken every 20 s for UV illumination(a)and every 2 min for visible light illumination(b).

    2 Conclusions

    In this study,we detailed a smart system,in which the OTFT performance can be fine-tuned by UV and visible light irradiation using a hybrid gate dielectric composed of a photochromic molecule SP and a polymer buffer PMMA.When the SP molecules underwent their documented reversible photoisomerization,the reversible changes in capacitance of the hybrid gate dielectric was observed due to the changes of the electric dipole moment of the molecules,thus leading to reversible photomodulation of the electrical conductivity of the devices.Since SP photoisomerizations happen only within the gate dielectric layer and the most convenient and noninvasive tool of lights is used,organic semiconductors are essentially untouched without any damage,making the devices very stable.This concept of conformation-induced capacitive coupling offers attractive new prospects for the development of functional molecular by utilizing other stimuli-responsive molecular materials.

    1 Murphy,A.R.;Frechet,J.M.J.Chem.Rev.,2007,107:1066

    2 Kagan,C.R.;Andry,P.Thin-film transistors.New York:Dekker, 2003

    3 Zaumseil,J.;Sirringhaus,H.Chem.Rev.,2007,107:1296

    4 Reese,C.;Bao,Z.Mater.Today,2007,10:20

    5 Janata,J.;Josowicz,M.Nat.Mater.,2003,2:19

    6 Katz,H.E.Electroanalysis,2004,16:1837

    7 Locklin,J.;Roberts,M.;Mannsfeld,S.;Bao,Z.Polym.Rev.,2006, 46:79

    8 Mabeck,J.T.;Malliaras,G.G.Anal.Bioanal.Chem.,2006,384: 343

    9 Wang,L.;Fine,D.;Sharma,D.;Torsi,L.;Dodabalapur,A.Anal. Bioanal.Chem.,2006,384:310

    10 Huang,J.;Miragliotta,J.;Becknell,A.;Katz,H.E.J.Am.Chem. Soc.,2007,129:9366

    11 Torsi,L.;Farinola,G.M.;Marinelli,F.Nat.Mater.,2008,7:412

    12 Crone,B.;Dodabalapur,A.;Gelperin,A.Appl.Phys.Lett.,2001, 78:2229

    13 Feldman,A.K.;Steigerwald,M.K.;Guo,X.;Nuckolls,C.Acc. Chem.Res.,2008,41:1731

    14 Torsi,L.;Lovinger,A.J.;Crone,B.J.Phys.Chem.B,2002,106: 12563

    15 Torsi,L.;Dodabalapur,A.;Sabbatini,L.;Zambonin,P.G.Sens. Actuator B-Chem.,2000,67:312

    16 Guo,X.;Xiao,S.;Myers,M.;Miao,Q.;Steigerwald,M.L.; Nuckolls,C.Proc.Natl.Acad.Sci.U.S.A.,2009,106:691

    17 Someya,T.;Yusaku,K.;Sekitani,T.Proc.Natl.Acad.Sci.U.S. A.,2005,102:12321

    18 Roberts,M.E.;Mannsfeld,S.C.B.;Bao,Z.Proc.Natl.Acad.Sci. U.S.A.,2008,105:12134

    19 Guo,X.;Huang,L.;O′Brien,S.;Kim,P.;Nuckolls,C.J.Am. Chem.Soc.,2005,127:15045

    20 Shen,Q.;Steigerwald,M.L.;Guo,X.J.Phys.Chem.C,2009, 113:10807

    21 Berkovic,G.;Krongauz,V.;Weiss,V.Chem.Rev.,2000,100, 1741

    22 Guo,X.;Zhang,D.;Yu,G.;Wan,M.;Li,J.;Liu,Y.;Zhu,D.Adv. Mater.,2004,16:636

    23 Benson,N.;Schidleja,M.;Melzer,C.;Schmechel,R.;von Seggern,H.Appl.Phys.Lett.,2006,89:182105

    24 Hollander,A.;Klemberg-Sapieha,J.E.;Wertheimer,M.R. Macromolecules,1994,27:2893

    猜你喜歡
    實驗室
    電競實驗室
    電子競技(2020年8期)2020-12-23 04:09:40
    電競實驗室
    電子競技(2020年7期)2020-10-12 10:45:48
    電競實驗室
    電子競技(2020年5期)2020-08-10 08:43:10
    電競實驗室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實驗室
    電子競技(2020年2期)2020-04-14 04:40:38
    電競實驗室
    電子競技(2020年11期)2020-02-07 02:49:36
    電競實驗室
    電子競技(2020年9期)2020-01-11 01:06:21
    電競實驗室
    電子競技(2020年10期)2020-01-11 01:06:06
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    自线自在国产av| 国产午夜精品一二区理论片| 美女内射精品一级片tv| av福利片在线| 你懂的网址亚洲精品在线观看| 久久女婷五月综合色啪小说| 精品亚洲成国产av| 侵犯人妻中文字幕一二三四区| 亚洲婷婷狠狠爱综合网| 丰满乱子伦码专区| 一级,二级,三级黄色视频| 90打野战视频偷拍视频| 午夜视频国产福利| av线在线观看网站| 精品少妇内射三级| √禁漫天堂资源中文www| 久久免费观看电影| 人人妻人人爽人人添夜夜欢视频| videos熟女内射| 日韩免费高清中文字幕av| 在线观看国产h片| 精品国产一区二区久久| 久久久亚洲精品成人影院| 日韩,欧美,国产一区二区三区| 国产色爽女视频免费观看| 亚洲欧美日韩另类电影网站| 国产成人免费无遮挡视频| 亚洲精品色激情综合| 日本与韩国留学比较| 国产精品一区二区在线观看99| 日韩视频在线欧美| 黄网站色视频无遮挡免费观看| 日韩欧美精品免费久久| 午夜激情久久久久久久| 日本与韩国留学比较| 中文字幕人妻丝袜制服| 中国美白少妇内射xxxbb| 丝袜在线中文字幕| 女性被躁到高潮视频| 久久99热这里只频精品6学生| xxx大片免费视频| av福利片在线| 成人毛片a级毛片在线播放| 久久鲁丝午夜福利片| 男人添女人高潮全过程视频| 欧美成人午夜精品| 成人漫画全彩无遮挡| 美女国产视频在线观看| 日韩在线高清观看一区二区三区| 亚洲av综合色区一区| 9热在线视频观看99| 国产在视频线精品| 久久精品国产综合久久久 | 国产精品女同一区二区软件| 极品人妻少妇av视频| 欧美精品一区二区免费开放| 亚洲精品aⅴ在线观看| 国产福利在线免费观看视频| 国产伦理片在线播放av一区| 免费人成在线观看视频色| 国产精品久久久久久精品古装| 亚洲精品成人av观看孕妇| 熟女人妻精品中文字幕| a级毛片黄视频| 美女内射精品一级片tv| 视频中文字幕在线观看| 久久久久人妻精品一区果冻| 欧美国产精品一级二级三级| 又粗又硬又长又爽又黄的视频| 国产精品人妻久久久影院| 少妇的逼好多水| 色哟哟·www| 国产亚洲午夜精品一区二区久久| 国产精品免费大片| 国产亚洲午夜精品一区二区久久| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 国产片内射在线| 男女高潮啪啪啪动态图| 国产精品国产三级国产av玫瑰| 日韩大片免费观看网站| 中文欧美无线码| 国产成人精品无人区| a级毛片在线看网站| 成人毛片60女人毛片免费| 国产精品麻豆人妻色哟哟久久| 久久婷婷青草| 91成人精品电影| 18禁国产床啪视频网站| 欧美激情 高清一区二区三区| 成年女人在线观看亚洲视频| 男女午夜视频在线观看 | 亚洲久久久国产精品| 人妻 亚洲 视频| 亚洲少妇的诱惑av| 在线亚洲精品国产二区图片欧美| 侵犯人妻中文字幕一二三四区| 久久久久网色| 性色avwww在线观看| 久久99热这里只频精品6学生| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品成人久久小说| 国产成人免费无遮挡视频| 天堂8中文在线网| 97在线视频观看| 亚洲欧洲日产国产| 高清av免费在线| 成人国产av品久久久| 国产精品.久久久| 精品亚洲成国产av| 久久久久久久国产电影| 免费看av在线观看网站| 超碰97精品在线观看| 欧美 日韩 精品 国产| 狠狠精品人妻久久久久久综合| 欧美 日韩 精品 国产| 精品99又大又爽又粗少妇毛片| 999精品在线视频| 三级国产精品片| 一级黄片播放器| 婷婷成人精品国产| 欧美丝袜亚洲另类| 秋霞在线观看毛片| 一级黄片播放器| 丰满饥渴人妻一区二区三| 另类精品久久| 亚洲人与动物交配视频| 人妻人人澡人人爽人人| 精品国产国语对白av| 99久久精品国产国产毛片| 欧美xxxx性猛交bbbb| 丝袜在线中文字幕| videos熟女内射| 国产精品人妻久久久久久| 成人免费观看视频高清| 极品少妇高潮喷水抽搐| 久久精品国产鲁丝片午夜精品| 夜夜爽夜夜爽视频| 国产av一区二区精品久久| 国产在线视频一区二区| 国产精品一区二区在线观看99| 免费高清在线观看日韩| 国产精品久久久久久久电影| 亚洲精品自拍成人| 欧美bdsm另类| 最近最新中文字幕免费大全7| 大片电影免费在线观看免费| 成人影院久久| 久久青草综合色| 咕卡用的链子| 久久久久网色| 建设人人有责人人尽责人人享有的| 亚洲精品456在线播放app| 丝袜喷水一区| 老熟女久久久| 在线观看免费视频网站a站| 中国美白少妇内射xxxbb| videosex国产| 最新的欧美精品一区二区| a级毛片在线看网站| 汤姆久久久久久久影院中文字幕| 欧美日韩成人在线一区二区| 午夜av观看不卡| 久久久久精品久久久久真实原创| 我的女老师完整版在线观看| 一边亲一边摸免费视频| 伦理电影免费视频| 国产亚洲最大av| 色视频在线一区二区三区| 国产精品久久久久久av不卡| 人妻少妇偷人精品九色| 国产精品国产三级国产专区5o| 超碰97精品在线观看| 97在线人人人人妻| 精品一品国产午夜福利视频| 亚洲国产日韩一区二区| 午夜福利在线观看免费完整高清在| 最近最新中文字幕大全免费视频 | 久久鲁丝午夜福利片| 免费观看在线日韩| 1024视频免费在线观看| 中文精品一卡2卡3卡4更新| 一区二区三区四区激情视频| 美女国产高潮福利片在线看| 中文字幕亚洲精品专区| tube8黄色片| 熟女av电影| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄| 少妇的丰满在线观看| 国国产精品蜜臀av免费| 欧美性感艳星| 午夜福利视频精品| 午夜91福利影院| 性色avwww在线观看| av女优亚洲男人天堂| 久久精品夜色国产| 国产精品久久久久久久久免| 精品人妻一区二区三区麻豆| 国产成人精品一,二区| 精品一品国产午夜福利视频| 亚洲,欧美精品.| 在线天堂中文资源库| 黄色配什么色好看| videosex国产| 日本免费在线观看一区| 人成视频在线观看免费观看| 制服丝袜香蕉在线| 母亲3免费完整高清在线观看 | 欧美成人精品欧美一级黄| 中文字幕亚洲精品专区| 丝瓜视频免费看黄片| 亚洲欧美色中文字幕在线| 日韩视频在线欧美| 深夜精品福利| 欧美激情极品国产一区二区三区 | 国产成人av激情在线播放| 亚洲婷婷狠狠爱综合网| 9热在线视频观看99| 久久精品夜色国产| 亚洲成人一二三区av| 成年av动漫网址| 在线观看人妻少妇| 精品人妻熟女毛片av久久网站| 国产福利在线免费观看视频| 男人操女人黄网站| 亚洲av福利一区| 午夜免费鲁丝| 春色校园在线视频观看| 亚洲欧美日韩另类电影网站| 国产爽快片一区二区三区| 天天影视国产精品| 99国产精品免费福利视频| 大陆偷拍与自拍| 这个男人来自地球电影免费观看 | 最近2019中文字幕mv第一页| 午夜福利在线观看免费完整高清在| 亚洲精品,欧美精品| 国产精品人妻久久久影院| 久久影院123| 人妻人人澡人人爽人人| 国产精品久久久久久久久免| 亚洲在久久综合| 一区二区三区精品91| 免费久久久久久久精品成人欧美视频 | 午夜久久久在线观看| 我要看黄色一级片免费的| 丝瓜视频免费看黄片| 国产毛片在线视频| 国产成人精品久久久久久| 国产精品秋霞免费鲁丝片| 在线观看国产h片| 国产精品99久久99久久久不卡 | av又黄又爽大尺度在线免费看| 9191精品国产免费久久| 男人舔女人的私密视频| 伦理电影大哥的女人| 国产精品成人在线| av又黄又爽大尺度在线免费看| 亚洲四区av| 男女午夜视频在线观看 | 9色porny在线观看| 最近手机中文字幕大全| 999精品在线视频| 两个人免费观看高清视频| 人人妻人人澡人人爽人人夜夜| 久久精品国产自在天天线| 青春草亚洲视频在线观看| 国产精品蜜桃在线观看| 国产午夜精品一二区理论片| 精品福利永久在线观看| 国产精品免费大片| 在线 av 中文字幕| 国产精品久久久av美女十八| 熟女电影av网| 一本色道久久久久久精品综合| 国产1区2区3区精品| 精品99又大又爽又粗少妇毛片| 另类亚洲欧美激情| av.在线天堂| 免费播放大片免费观看视频在线观看| 日本av手机在线免费观看| 麻豆精品久久久久久蜜桃| 考比视频在线观看| 五月开心婷婷网| freevideosex欧美| 777米奇影视久久| 欧美人与性动交α欧美软件 | 成人手机av| 有码 亚洲区| 极品少妇高潮喷水抽搐| 熟女av电影| 天堂中文最新版在线下载| 亚洲精品,欧美精品| 激情五月婷婷亚洲| 欧美精品亚洲一区二区| 久久久久久久亚洲中文字幕| 日韩,欧美,国产一区二区三区| 男女啪啪激烈高潮av片| 成人国产麻豆网| 看免费av毛片| 黄网站色视频无遮挡免费观看| 一区二区日韩欧美中文字幕 | 精品福利永久在线观看| 大码成人一级视频| 亚洲av免费高清在线观看| 涩涩av久久男人的天堂| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 久久青草综合色| 久热久热在线精品观看| 亚洲av电影在线进入| 日韩av免费高清视频| 性色av一级| 91精品三级在线观看| 纵有疾风起免费观看全集完整版| 99香蕉大伊视频| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 亚洲伊人色综图| 日韩成人伦理影院| 日韩人妻精品一区2区三区| 黑人高潮一二区| 亚洲国产最新在线播放| 另类精品久久| kizo精华| 日韩人妻精品一区2区三区| 少妇的丰满在线观看| av国产久精品久网站免费入址| 亚洲精品456在线播放app| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 欧美精品国产亚洲| 中文字幕精品免费在线观看视频 | 国产有黄有色有爽视频| 久久精品久久久久久噜噜老黄| 国国产精品蜜臀av免费| 中文乱码字字幕精品一区二区三区| 日日啪夜夜爽| 90打野战视频偷拍视频| 中文字幕人妻熟女乱码| 一级毛片电影观看| 热99国产精品久久久久久7| 亚洲精品一区蜜桃| 精品酒店卫生间| 欧美bdsm另类| 久久97久久精品| 妹子高潮喷水视频| 国产精品国产av在线观看| 老司机影院毛片| 美女主播在线视频| 中文字幕最新亚洲高清| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 中文字幕人妻丝袜制服| 精品国产一区二区久久| 热re99久久国产66热| 另类精品久久| 色5月婷婷丁香| 国产精品国产三级专区第一集| 久久久精品94久久精品| 水蜜桃什么品种好| 夜夜爽夜夜爽视频| 插逼视频在线观看| 一级毛片 在线播放| 亚洲欧美清纯卡通| 国产成人精品一,二区| 免费观看在线日韩| 大码成人一级视频| 国产精品嫩草影院av在线观看| 天天影视国产精品| 亚洲精华国产精华液的使用体验| 国产精品 国内视频| 亚洲欧洲日产国产| 51国产日韩欧美| 日韩欧美一区视频在线观看| 久久99一区二区三区| 久久人人爽人人爽人人片va| 人妻少妇偷人精品九色| 久久狼人影院| 中文天堂在线官网| 高清av免费在线| 97人妻天天添夜夜摸| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 狂野欧美激情性xxxx在线观看| 黄网站色视频无遮挡免费观看| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 久久青草综合色| 午夜精品国产一区二区电影| www.av在线官网国产| 搡女人真爽免费视频火全软件| av电影中文网址| 久久久a久久爽久久v久久| 香蕉丝袜av| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产| 考比视频在线观看| 免费高清在线观看视频在线观看| av天堂久久9| 晚上一个人看的免费电影| 女性生殖器流出的白浆| 中国三级夫妇交换| 亚洲国产色片| 熟女av电影| 视频区图区小说| 一本久久精品| 欧美97在线视频| 国产精品国产三级专区第一集| 色视频在线一区二区三区| 高清毛片免费看| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 欧美国产精品一级二级三级| 国产一级毛片在线| 夫妻性生交免费视频一级片| 七月丁香在线播放| 黄色视频在线播放观看不卡| 久久毛片免费看一区二区三区| 精品国产一区二区久久| 久久久久精品性色| 免费在线观看完整版高清| 日韩制服骚丝袜av| 久久久久网色| 国产白丝娇喘喷水9色精品| 中文精品一卡2卡3卡4更新| 亚洲五月色婷婷综合| 伦理电影大哥的女人| 色哟哟·www| 女的被弄到高潮叫床怎么办| 欧美xxⅹ黑人| 制服人妻中文乱码| 狠狠精品人妻久久久久久综合| 午夜福利在线观看免费完整高清在| 黑人欧美特级aaaaaa片| 老熟女久久久| 成人毛片a级毛片在线播放| 亚洲国产精品一区三区| 高清在线视频一区二区三区| 男的添女的下面高潮视频| 中国国产av一级| 成年av动漫网址| 久久99一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 大陆偷拍与自拍| 夫妻午夜视频| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 久久热在线av| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 免费观看无遮挡的男女| 欧美97在线视频| 99香蕉大伊视频| 亚洲四区av| 久久久久久久久久成人| 国产一区二区在线观看av| 国产黄色视频一区二区在线观看| 久久精品人人爽人人爽视色| 精品一区在线观看国产| 亚洲精品久久成人aⅴ小说| 精品熟女少妇av免费看| 国产视频首页在线观看| 丝瓜视频免费看黄片| 伊人亚洲综合成人网| 久久97久久精品| 国产又爽黄色视频| 国产 一区精品| 高清欧美精品videossex| a级片在线免费高清观看视频| 精品国产一区二区久久| 国产成人aa在线观看| 成人亚洲精品一区在线观看| 亚洲欧洲日产国产| 国产精品久久久久久久电影| 成人国产av品久久久| 大片电影免费在线观看免费| 亚洲国产欧美日韩在线播放| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 免费少妇av软件| 婷婷色综合大香蕉| a 毛片基地| 亚洲av电影在线进入| 狂野欧美激情性xxxx在线观看| 国产乱人偷精品视频| av在线观看视频网站免费| av电影中文网址| 国产一区二区三区综合在线观看 | 在线亚洲精品国产二区图片欧美| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 午夜福利乱码中文字幕| 又大又黄又爽视频免费| 免费黄色在线免费观看| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 国产一区有黄有色的免费视频| 一区在线观看完整版| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 日本色播在线视频| 国产老妇伦熟女老妇高清| 成年人免费黄色播放视频| 免费久久久久久久精品成人欧美视频 | 丰满少妇做爰视频| 深夜精品福利| 有码 亚洲区| 亚洲少妇的诱惑av| 午夜av观看不卡| 熟女人妻精品中文字幕| 国产有黄有色有爽视频| 天美传媒精品一区二区| 在线观看免费视频网站a站| 极品人妻少妇av视频| 亚洲av综合色区一区| 日韩一本色道免费dvd| 午夜福利影视在线免费观看| 国产在线视频一区二区| 久久人人爽av亚洲精品天堂| 免费在线观看完整版高清| 两个人看的免费小视频| 亚洲精品一二三| 一边亲一边摸免费视频| 97在线人人人人妻| 最黄视频免费看| 久久99热6这里只有精品| 中文天堂在线官网| 日韩免费高清中文字幕av| 亚洲中文av在线| 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 大码成人一级视频| 国产乱人偷精品视频| 中文字幕人妻熟女乱码| 性色av一级| 婷婷色麻豆天堂久久| 亚洲av免费高清在线观看| 色网站视频免费| 男男h啪啪无遮挡| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区 | 十八禁网站网址无遮挡| 国产片内射在线| 日韩电影二区| 五月玫瑰六月丁香| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 如何舔出高潮| 久久99蜜桃精品久久| 亚洲欧美日韩另类电影网站| 永久免费av网站大全| 国产精品久久久久成人av| 亚洲成人av在线免费| 99久久综合免费| 伦理电影大哥的女人| 看免费av毛片| 欧美激情国产日韩精品一区| 狂野欧美激情性xxxx在线观看| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 久久精品国产亚洲av天美| 观看av在线不卡| 国产精品久久久久久久久免| 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 日韩一本色道免费dvd| 亚洲国产色片| 在线看a的网站| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 欧美人与性动交α欧美软件 | 久久综合国产亚洲精品| 国产精品不卡视频一区二区| 男女国产视频网站| 午夜免费观看性视频| 有码 亚洲区| 精品人妻在线不人妻| 国国产精品蜜臀av免费| 秋霞伦理黄片| 一级毛片电影观看| 午夜视频国产福利| www.熟女人妻精品国产 | 亚洲成国产人片在线观看| 亚洲少妇的诱惑av| 桃花免费在线播放| av在线老鸭窝| av又黄又爽大尺度在线免费看| 国产高清三级在线| 亚洲国产欧美在线一区| 免费少妇av软件| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 国产精品欧美亚洲77777| 80岁老熟妇乱子伦牲交| 精品久久国产蜜桃| 国产精品人妻久久久久久| 久久午夜综合久久蜜桃| 人妻一区二区av| 亚洲精品久久午夜乱码| 看免费成人av毛片| 美女福利国产在线| 亚洲人成77777在线视频| 国语对白做爰xxxⅹ性视频网站| 日本免费在线观看一区| 老司机亚洲免费影院| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪|