• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    通過構象誘導電感耦合機制光可逆調控有機場效應晶體管的性能

    2010-12-12 02:44:14王振興惠靜姝郭雪峰
    物理化學學報 2010年7期
    關鍵詞:實驗室

    申 茜 甘 霖 劉 松 曹 陽 王振興 惠靜姝 郭雪峰

    (北京大學化學與分子工程學院,分子動態(tài)與穩(wěn)態(tài)結構國家重點實驗室,北京分子科學國家實驗室,北京 100871)

    Over the past decade great progress has been made on organic thin-film transistors(OTFTs)with impressive achievements in improving carrier mobilities that are now comparable to those of amorphous silicon thin-film transistors[1-4].For the practical application of OTFTs in low-cost,solution-processed/printed electronics-based sensors and displays,the next step of crucial importance is to install functionality into a simple OTFT such that the device is capable of converting an external stimulus to an easily detectable electrical signal.In fact,OTFTs have been envisioned as an ideal platform for developing robust,inexpensive chemical or biological sensors[5-17]because of their inherent advantages such as easy availability,compatibility with flexible, large-area substrates and highly tunable sensitivity.For example, recent work has shown that a proper selection of the semiconductors and gate dielectric materials can lead to reliable OTFT operations in the aqueous media that are required for biosensing[9,18]. The sensing mechanism of these sorption-based sensors has been attributed to the analytes′diffusion into grain boundaries in thin films that cause either trapping or doping of charge carriers.This mechanism provides sensitive detection for chemical and biological species,but the physically damaging interaction between semiconductors and analytes,and the difficulty of removing analytes could lead to serious problems of device stability and reversibility,being one of the major obstacles to the practical application of OTFTs in sensing.There is a pressing need to develop a noninvasive methodology of modulating the density of charge carriers flowing through the active semiconductor layers;this should be fully reversible and it should leave the semiconductors essentially untouched.

    Here,we detail a smart system,by which OTFTs performance can be reversibly fine-tuned by lights with different wavelengths.This study builds on our recent work in which we demonstrated that photochromic spiropyrans can be assembled to the surfaces of single-walled carbon nanotubes through molecular self-assembly[19]and to pentacene thin films through rubber stamping[20]to make photosensitive devices.In both cases UV and visible light irradiation can switch the device conductance back-and-forth between two distinct states by either reversible, conformation-induced doping or electrostatic effects.In the current case,we use a hybrid gate dielectric,which is composed of a buffer polymer carrier,polymethyl methacrylate(PMMA,MW= 4.95×105),and a photoresponsive molecule driver,photochromic spiropyran(SP).When the SP molecules undergo the reversible photoisomerization[21-22],we are able to regulate the capacitance of the gate dielectric,and this leads to the reversible photomodulation of the device characteristics of OTFTs in a noninvasive manner.

    1 Results and discussion

    A typical top-contact,bottom-gate OTFT device configuration was used in this study(Fig.1).The dielectric we used was a hybrid polymer bilayer(PMMA+SP,300 nm,top)/(SiO2,100 nm, bottom).We used the corresponding thin films without the SP additive as control dielectrics.To maximize the switching behavior of functionalized OTFTs,we used the hybrid dielectric with SP saturation concentration of~0.07 mol·L-1.We chosed the hybrid PMMA dielectrics with 300-nm thickness as a representative because we found that this thickness of hybrid dielectrics gave the best photoresponsivities.Pentacene was chosen as the model organic semiconductor because of its high mobility and the importance of this material for incorporation into electronic circuitry[1-3].

    Tapping-mode atomic force microscopy(AFM)images obtained from the hybrid gate dielectric surfaces demonstrated smooth surface morphologies(maximum root mean square roughness~0.3 nm)(Fig.2(a)).UV/visible absorption studies showed that SP molecules in thin films of the hybrid gate dielectric were able to reversibly switch back-and-forth between the neutral closed form(SP-closed)and the charge-separated,colored open form(SP-open)under UV and visible light irradiation(Fig.3(a)). This indicates that PMMA can serve as a good matrix for SP molecules.It can provide buffering space for SP′s conformational changes.After 40-nm pentacene deposition via thermal evaporation,we obtained large pentacene crystal grains with terraces (step heights about 1.5 nm)as demonstrated by AFM(Fig.2(b, c)).X-ray diffraction measurements also demonstrated the formation of highly crystal-quality pentacene thin films on top of the dielectric(Fig.3(b)).These results are important to achieve optimal OTFT performance.After deposition of top Au chargeinjecting and charge-extracting source and drain electrodes through thermal evaporation under vacuum,the desired transistors were obtained.The channel length of the devices was 60 μm and the width was 2000 μm.The capacitance of the hybrid dielectric films was measured on the sandwich electrode structures with gold pads(0.9 mm2)using a Karl Suss probe station equipped with a digital capacitance meter(Agilent 4294A).The transistor properties were characterized with the same probe station and a semiconducting parameter analyzer(Agilent 4155C). Carrier mobilities(μ)were calculated in the saturation regime by the standard method:ID=WCiμ(VG-VT)2/(2L),where IDis the source-drain saturation current,W is the channel width,L is the channel length,Ciis the gate dielectric capacitance(per area),VGis the gate voltage,and VTis the threshold voltage.Light irradiations were performed with a handheld UV lamp(~100 μW·cm-2, λ=365 nm)and with a 150 W Halogen incandescent lamp(Imax:~30 mW·cm-2,λ>520 nm).To avoid the heating effect during irradiation,visible light was focused and guided by a long optical fiber to the probe station.To aid in the analysis of the results, we intend to regulate the intensity of visible light that makes the photocurrents of the devices under visible irradiation equivalent to those induced by UV irradiation.By doing this,we can record the time trace of the drain currents of the devices without obvious current jumps when UV and visible lights are switched.All of the measurements were performed in the same condition and at the same temperature.OTFTs fabricated with 300 nm hybrid polymer/100 nm SiO2bilayer dielectrics achieved a mobility of as high as 0.13 cm2·V-1·s-1(Fig.4).

    Fig.1 Schematic representation of the top-contact,bottom-gate OTFT structure and the material components

    Fig.2 AFM images of the sample surfaces(a)representative tapping-mode AFM images(5.0 μm×5.0 μm)obtained from the hybrid gate dielectric surfaces(PMMA thickness:300 nm and SP concentration:0.07 mol·L-1),(b)representative tapping-mode AFM images(5.0 μm×5.0 μm)of surface morphologies of 40-nm pentacene thin films grown on the hybrid gate dielectric,(c)representative tapping-mode AFM images(1.5 μm×1.5 μm)of pentacene thin film surfaces

    Fig.3 (a)UV/visible absorption spectra of a PMMA-spiropyran thin film(thickness:300 nm and SP concentration of 0.07 mol· L-1)on a quartz substrate under UV light irradiation,(b)X-ray diffraction spectrum of 40-nm pentacene thin films on a hybrid gate dielectric with film thickness of 300 nm and SP concentration of 0.07 mol·L-1

    Fig.4 Representative output and transfer characteristics of devices on silicon wafer substrates with a hybrid polymer (PMMA+SP,top)/SiO2(100 nm,bottom)bilayer dielectricSP concentration is 0.07 mol·L-1.PMMA thickness is 300 nm.Ciis~3.6 nF.The channel length of the devices is 60 μm and the width is 2000 μm.

    We tested the photoswitching characteristics of the devices and found that large and reversible changes in drain current occurred in these SP-functionalized OTFTs when SP isomerized between SP-closed and SP-open forms(Fig.5(a-e)).As shown in Fig.5(a),after~270 s of UV irradiation,the initial(low)conductance state of the device(black curve,Ron:~1.5×1010Ω at~30 V source/drain bias and~20 V gate bias)was converted into a much higher conductance state(red curve,Ron:~7.9×109Ω).After further visible light irradiation for~24 min(green curve in Fig.5(a)),the drain current of the device was essentially restored to its original value.The back-and-forth photoswitching effect is rathergradual in time.Fig.5(b,c)show the time-evolution ofthe current-voltage curves during UV and visible light illumination, respectively.The drain current sharply increased at the beginning of UV irradiation and was saturated after~270 s of exposure when SP molecules reached the equilibrium of conformational transformation(Fig.5(b)).On the contrary,after the highconductance state was established and irradiation with visible light began,the drain current of the same device sharply decreased initially and then slowly attenuated,completing the decrease after~24 min illumination(Fig.5(c)).The similarity between the reversible photoswitching of the electrical conductivity of the functionalized devices and the reversible photoisomerization of SP molecules suggests that the photoswitching process of SP molecules is responsible for the changes in device characteristics of pentacene OTFTs.To gather kinetic data for the photoswitching process,we monitored the drain current as a function of time (VD=-30 V,VG=-20 V)asthe irradiation was toggled between UV and visible wavelengths.To clearly demonstrate the photoswitching process and mechanism discussed below,we do not show the slow back-conversion process of the devices in the dark after UV irradiation due to the slow transformation of SP from SP-open to SP-closed.Fig.5(d)shows one full switching cycle of the time-dependent behavior of the same device;this behavior is consistent with the results from Fig.5(b,c).A sudden current jump was also observed at the moment of turning on UV light generally due to the photoexcited state of organic semiconductors as proved by control experiments in Fig.6(c).In order to demonstrate the reversibility of the switching,we used shorter irradiation time.As shown in Fig.5(e),all the functionalized OTFTs are quite stable and can switch at least 50 times in ambient atmosphere without obvious degradation.The kinetics of each process can be fit with a single-exponential.Based on the data in Fig.5(e),the overall rate contants in different parts were calculated,KUV:~(1.6±0.2)×10-2s-1and Kvisible:~(0.7±0.1)×10-2s-1. These kinetic results for the photoswitching process are very similar to or even faster than those we observed in our previous work[19-20],which supports our suggestion(see above)that PMMA thin films serve as an effective solid matrix in which the SP molecules can isomerize.To aid in the analysis of these results, we performed control experiments in which we measured the photoresponse ofa pentacene device having the same PMMA/SiO2bilayer dielectric but lacking the spiropyran.Fig.6 shows the drain current characteristics of such a device as a function of time under the same measurement conditions.During irradiation with either UV or visible light,we consistently observed the slow decrease in drain current,probably resulting from problems associated with the device stability.From the trace in Fig.6,the overall rate constants for each part were obtained,both KUVand Kvisibleare~(5.0±0.1)×10-4s-1.In comparison with those in functionalized devices,two significant differences should be pointed out.One is that the rate constants of the device in Fig.5(e)under UV and visible light irradiation are two orders of magnitude larger than those obtained from the control device in Fig.6 under the same conditions.The other significant difference is that the photoswitching effect under UV illumination in functionalized devices is opposite to that in the control devices.It is quite clear that the photoisomerization of SP molecules is responsible for the switching effect in device characteristics.

    Fig.5 (a)A representative photoswitching cycle in a 40 nm pentacene thin film transistor with dielectric thickness of 300 nm and SP concentration of 0.07 mol·L-1;(b,c)the gradual conversion between low and high conductance states when the currentvoltage curves are taken every 30 s for UV illumination and every 2 min for visible light illumination,respectively;(d)one full switching cycle of the time-dependent behavior of the same device;(e)time trace of the drain current for the same device showing the reversible photoswitching events under irradiation of UV light(365 nm)and visible light(λ>520 nm)The bias between source and drain electrodes is-30 V,and the gate bias is-20 V.

    Fig.6 (a)output and(b)transfer characteristics of a control device on silicon wafer substrates with a polymer (300 nm PMMA,top)/SiO2(100 nm,bottom)bilayer dielectric,(c)time trace of the drain current for the same device under irradiation of UV light(365 nm)and visible light(λ>520 nm)The bias between source and drain electrodes is-30 V,and the gate bias is~20 V.Ciis-6.1 nF.The channel length of the devices is 60 μm and the width is 2000 μm.The calculated mobility is~0.5 cm2·V-1·s-1.

    Theoretical discussion[20]has suggested that the photoisomerization of photochromic molecules will significantly change their dipole moment(Pmol).We performed density functional theory calculations and the result shows that the electric dipole moment of the open form SP is 46.4×10-30C·m,more than two times of the dipole moment of the closed form(21.3×10-30C·m). In our previous work we showed that this photoinduced electrostatic environment should act as a local negative gate voltage that can modulate the transistor conductance by controlling the carrier density in devices[19-20].We hypothesized that the SP photoisomerization could initiate the reversible changes in capacitance of the hybrid gate dielectric and thus modulate the electrical conductivity of the devices.

    To prove this hypothesis,we tested the electrical characteristics of ITO/hybrid dielectrics(PMMA+SP)/Au capacitors.In order to avoid the shading of the UV and visible light,we irradiated the hybrid material from the bottom of ITO transparent electrodes.Fig.7(a,b)show the time-dependent evolution of the capacitance curves of a hybrid polymer dielectric at SP concentration of 0.07 mol·L-1and PMMA thickness of 300 nm.From the time course of the device capacitance,we can see that the capacitance increased sharply at the beginning of UV irradiation and then saturated after~260 s of exposure,further visible light irradiation can return it to its original value.The whole process is quite reversible.We show 4 representative full switching cycles of the same device by taking the data at 100 kHz frequency(Fig. 7(c)).In order to rule out other potential artifacts we performed control experiments.In the control device we used only PMMA thin films with the same thickness as the dielectric without the SP additive.Under UV or visible light irradiation,there was only negligible increases in capacitance(Fig.8),which may be due to the slight effect of the dissociative photoexcitation of C—C or C—H bonds of polymer PMMA on capacitance[23-24].From the results we may conclude that the photoisomerization of the SP molecules are responsible for the photoswitching of the capacitance in devices.Since SP photoisomerization can induce a big change in dipole moment of individual molecules and SP molecules serve as the key component of the gate dielectric,it is reasonable that this dipole change could initiate a collective change in dielectric constant of the gate dielectric,thus leading to the reversible photomodulation of the capacitance of the gate dielectric and then the carrier density at the semiconductor/dielectric interface.Consequently,it is not surprising that SP photoisomerization can realize the reversible photoregulation of the electrical conductivity of the devices as demonstrated experimentally through a novel mechanism:conformation-induced capacitive coupling.Another important feature which should be mentioned is that all of the conformational changes happen within the gate dielectric layer driven by the most convenient and noninvasive tool of lights without any damage of the semiconductors,making the functioning devices very stable.

    Fig.7 Demonstration of the switching mechanism(a)and(b)Time course of the capacitance of a hybrid polymer dielectric on ITO glass substrates upon UV and visible light irradiation. SP concentration is 0.07 mol·L-1.PMMA thickness is 300 nm.The capacitance-frequency curves are taken every 20 s for UV illumination and every 2 min for visible light illumination.(c)The representative 4 full switching cycles of the same device by taking the data at 100 KHz frequency.

    Fig.8 Time-evolution of the capacitance curves of control dielectric absent of SP molecules on ITO glass substrates under UV and visible light irradiationPMMA thickness is 300 nm.The capacitance-frequency curves are taken every 20 s for UV illumination(a)and every 2 min for visible light illumination(b).

    2 Conclusions

    In this study,we detailed a smart system,in which the OTFT performance can be fine-tuned by UV and visible light irradiation using a hybrid gate dielectric composed of a photochromic molecule SP and a polymer buffer PMMA.When the SP molecules underwent their documented reversible photoisomerization,the reversible changes in capacitance of the hybrid gate dielectric was observed due to the changes of the electric dipole moment of the molecules,thus leading to reversible photomodulation of the electrical conductivity of the devices.Since SP photoisomerizations happen only within the gate dielectric layer and the most convenient and noninvasive tool of lights is used,organic semiconductors are essentially untouched without any damage,making the devices very stable.This concept of conformation-induced capacitive coupling offers attractive new prospects for the development of functional molecular by utilizing other stimuli-responsive molecular materials.

    1 Murphy,A.R.;Frechet,J.M.J.Chem.Rev.,2007,107:1066

    2 Kagan,C.R.;Andry,P.Thin-film transistors.New York:Dekker, 2003

    3 Zaumseil,J.;Sirringhaus,H.Chem.Rev.,2007,107:1296

    4 Reese,C.;Bao,Z.Mater.Today,2007,10:20

    5 Janata,J.;Josowicz,M.Nat.Mater.,2003,2:19

    6 Katz,H.E.Electroanalysis,2004,16:1837

    7 Locklin,J.;Roberts,M.;Mannsfeld,S.;Bao,Z.Polym.Rev.,2006, 46:79

    8 Mabeck,J.T.;Malliaras,G.G.Anal.Bioanal.Chem.,2006,384: 343

    9 Wang,L.;Fine,D.;Sharma,D.;Torsi,L.;Dodabalapur,A.Anal. Bioanal.Chem.,2006,384:310

    10 Huang,J.;Miragliotta,J.;Becknell,A.;Katz,H.E.J.Am.Chem. Soc.,2007,129:9366

    11 Torsi,L.;Farinola,G.M.;Marinelli,F.Nat.Mater.,2008,7:412

    12 Crone,B.;Dodabalapur,A.;Gelperin,A.Appl.Phys.Lett.,2001, 78:2229

    13 Feldman,A.K.;Steigerwald,M.K.;Guo,X.;Nuckolls,C.Acc. Chem.Res.,2008,41:1731

    14 Torsi,L.;Lovinger,A.J.;Crone,B.J.Phys.Chem.B,2002,106: 12563

    15 Torsi,L.;Dodabalapur,A.;Sabbatini,L.;Zambonin,P.G.Sens. Actuator B-Chem.,2000,67:312

    16 Guo,X.;Xiao,S.;Myers,M.;Miao,Q.;Steigerwald,M.L.; Nuckolls,C.Proc.Natl.Acad.Sci.U.S.A.,2009,106:691

    17 Someya,T.;Yusaku,K.;Sekitani,T.Proc.Natl.Acad.Sci.U.S. A.,2005,102:12321

    18 Roberts,M.E.;Mannsfeld,S.C.B.;Bao,Z.Proc.Natl.Acad.Sci. U.S.A.,2008,105:12134

    19 Guo,X.;Huang,L.;O′Brien,S.;Kim,P.;Nuckolls,C.J.Am. Chem.Soc.,2005,127:15045

    20 Shen,Q.;Steigerwald,M.L.;Guo,X.J.Phys.Chem.C,2009, 113:10807

    21 Berkovic,G.;Krongauz,V.;Weiss,V.Chem.Rev.,2000,100, 1741

    22 Guo,X.;Zhang,D.;Yu,G.;Wan,M.;Li,J.;Liu,Y.;Zhu,D.Adv. Mater.,2004,16:636

    23 Benson,N.;Schidleja,M.;Melzer,C.;Schmechel,R.;von Seggern,H.Appl.Phys.Lett.,2006,89:182105

    24 Hollander,A.;Klemberg-Sapieha,J.E.;Wertheimer,M.R. Macromolecules,1994,27:2893

    猜你喜歡
    實驗室
    電競實驗室
    電子競技(2020年8期)2020-12-23 04:09:40
    電競實驗室
    電子競技(2020年7期)2020-10-12 10:45:48
    電競實驗室
    電子競技(2020年5期)2020-08-10 08:43:10
    電競實驗室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實驗室
    電子競技(2020年2期)2020-04-14 04:40:38
    電競實驗室
    電子競技(2020年11期)2020-02-07 02:49:36
    電競實驗室
    電子競技(2020年9期)2020-01-11 01:06:21
    電競實驗室
    電子競技(2020年10期)2020-01-11 01:06:06
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    a级毛片免费高清观看在线播放| 网址你懂的国产日韩在线| 一级毛片aaaaaa免费看小| 晚上一个人看的免费电影| 亚洲精品国产av成人精品| 偷拍熟女少妇极品色| 99热国产这里只有精品6| 在线看a的网站| 十八禁网站网址无遮挡 | 王馨瑶露胸无遮挡在线观看| 少妇人妻久久综合中文| 免费观看av网站的网址| 欧美高清成人免费视频www| 伊人久久国产一区二区| 嘟嘟电影网在线观看| 久久久久国产精品人妻一区二区| 亚洲精品国产av成人精品| 亚洲国产最新在线播放| 91在线精品国自产拍蜜月| 亚洲欧洲日产国产| 我的女老师完整版在线观看| 看非洲黑人一级黄片| 一区二区三区精品91| 日韩av在线免费看完整版不卡| 全区人妻精品视频| 成人高潮视频无遮挡免费网站| av视频免费观看在线观看| 大又大粗又爽又黄少妇毛片口| 欧美极品一区二区三区四区| 五月天丁香电影| 91在线精品国自产拍蜜月| 国产亚洲91精品色在线| 国产一区二区在线观看日韩| 欧美日韩视频精品一区| av.在线天堂| 波野结衣二区三区在线| 日本黄色日本黄色录像| 欧美人与善性xxx| 亚洲无线观看免费| 美女中出高潮动态图| 免费黄频网站在线观看国产| av黄色大香蕉| 伊人久久国产一区二区| 日日啪夜夜爽| 晚上一个人看的免费电影| 午夜激情福利司机影院| 夜夜骑夜夜射夜夜干| 男男h啪啪无遮挡| 在线观看免费高清a一片| 精品少妇久久久久久888优播| 成人18禁高潮啪啪吃奶动态图 | 伊人久久精品亚洲午夜| 99久久精品一区二区三区| 亚洲无线观看免费| 欧美激情极品国产一区二区三区 | 亚洲高清免费不卡视频| 国产精品一区二区在线不卡| 日本猛色少妇xxxxx猛交久久| 少妇人妻久久综合中文| 国产亚洲91精品色在线| 男女边吃奶边做爰视频| 各种免费的搞黄视频| 午夜激情久久久久久久| 在线观看三级黄色| 啦啦啦在线观看免费高清www| 日日撸夜夜添| 免费看光身美女| 成人一区二区视频在线观看| 国产高清三级在线| 亚洲人成网站在线播| 内地一区二区视频在线| 国产在线一区二区三区精| 伊人久久国产一区二区| 最近最新中文字幕大全电影3| 亚洲精品一区蜜桃| 乱码一卡2卡4卡精品| 又黄又爽又刺激的免费视频.| 久久久久久久亚洲中文字幕| 中文字幕久久专区| 小蜜桃在线观看免费完整版高清| 免费黄频网站在线观看国产| 中文在线观看免费www的网站| 亚洲av综合色区一区| 免费看日本二区| 内地一区二区视频在线| 欧美极品一区二区三区四区| 亚洲图色成人| av在线老鸭窝| 国产 一区 欧美 日韩| 80岁老熟妇乱子伦牲交| 小蜜桃在线观看免费完整版高清| kizo精华| 女人久久www免费人成看片| 国产黄片美女视频| 九九在线视频观看精品| 日本免费在线观看一区| 高清黄色对白视频在线免费看 | 国产黄片美女视频| 夫妻性生交免费视频一级片| 岛国毛片在线播放| 伦理电影大哥的女人| 精品国产露脸久久av麻豆| 在线看a的网站| 在线观看免费日韩欧美大片 | 国精品久久久久久国模美| 午夜免费鲁丝| 免费观看无遮挡的男女| 日韩成人av中文字幕在线观看| 国产精品精品国产色婷婷| 国产综合精华液| 久久久精品94久久精品| 亚洲欧美日韩卡通动漫| 99久久综合免费| 丰满少妇做爰视频| 一区二区三区乱码不卡18| 天天躁日日操中文字幕| 午夜老司机福利剧场| 下体分泌物呈黄色| 免费在线观看成人毛片| 99热这里只有是精品在线观看| 日韩一区二区三区影片| 99久久人妻综合| 99久久精品一区二区三区| 精品少妇黑人巨大在线播放| 亚洲性久久影院| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av涩爱| 人妻制服诱惑在线中文字幕| 国产精品.久久久| 免费观看av网站的网址| 日日啪夜夜撸| 免费观看a级毛片全部| 美女国产视频在线观看| 在线观看三级黄色| 久久久久久久精品精品| 最近手机中文字幕大全| a 毛片基地| 免费看日本二区| tube8黄色片| 另类亚洲欧美激情| 女性生殖器流出的白浆| 制服丝袜香蕉在线| 日韩人妻高清精品专区| 日韩av在线免费看完整版不卡| 日韩中字成人| 中文精品一卡2卡3卡4更新| 91久久精品国产一区二区三区| 一级二级三级毛片免费看| 天堂8中文在线网| 欧美xxxx黑人xx丫x性爽| 麻豆成人午夜福利视频| 欧美3d第一页| 成人午夜精彩视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 嫩草影院新地址| 亚洲国产最新在线播放| 久久久久网色| 最近2019中文字幕mv第一页| 精品99又大又爽又粗少妇毛片| 国产久久久一区二区三区| 亚洲图色成人| 日本欧美视频一区| 亚洲人成网站在线观看播放| 在线播放无遮挡| 色网站视频免费| 国产成人a区在线观看| 99热这里只有是精品在线观看| 性色av一级| 欧美成人午夜免费资源| 久久国产精品男人的天堂亚洲 | 久久婷婷青草| kizo精华| 精品国产露脸久久av麻豆| 高清黄色对白视频在线免费看 | 色5月婷婷丁香| 99精国产麻豆久久婷婷| 成人国产麻豆网| 美女福利国产在线 | 国产精品一区二区三区四区免费观看| 一级毛片黄色毛片免费观看视频| 国产一区二区三区综合在线观看 | 欧美+日韩+精品| 亚洲欧美日韩东京热| 黄色日韩在线| 天天躁夜夜躁狠狠久久av| 少妇人妻一区二区三区视频| 深夜a级毛片| 日韩中字成人| 亚洲av男天堂| 日本猛色少妇xxxxx猛交久久| 免费观看性生交大片5| 国产精品女同一区二区软件| 亚洲精品亚洲一区二区| 国产成人免费无遮挡视频| 日韩中文字幕视频在线看片 | 免费观看的影片在线观看| 色视频在线一区二区三区| 午夜免费鲁丝| 高清不卡的av网站| 久久久色成人| 美女高潮的动态| 成年av动漫网址| 青春草视频在线免费观看| 秋霞伦理黄片| 国产在线视频一区二区| 国产精品一区二区在线观看99| 身体一侧抽搐| 成人国产麻豆网| 国产高清国产精品国产三级 | 日韩在线高清观看一区二区三区| 岛国毛片在线播放| 日韩欧美 国产精品| 日本午夜av视频| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 免费黄色在线免费观看| 欧美成人午夜免费资源| 国产色爽女视频免费观看| 欧美老熟妇乱子伦牲交| 国产精品久久久久久久电影| 亚洲精品日韩av片在线观看| 亚洲内射少妇av| 久久精品久久精品一区二区三区| 99久国产av精品国产电影| 免费在线观看成人毛片| 又黄又爽又刺激的免费视频.| 成人高潮视频无遮挡免费网站| 亚洲精品aⅴ在线观看| 国内揄拍国产精品人妻在线| 国产爱豆传媒在线观看| 日韩精品有码人妻一区| 成人漫画全彩无遮挡| 热99国产精品久久久久久7| 99热6这里只有精品| 夜夜爽夜夜爽视频| 欧美人与善性xxx| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 中文精品一卡2卡3卡4更新| 男男h啪啪无遮挡| 免费观看的影片在线观看| 亚洲图色成人| 91狼人影院| 边亲边吃奶的免费视频| 日本av免费视频播放| 亚洲欧洲日产国产| 午夜老司机福利剧场| 国产v大片淫在线免费观看| 久久久精品免费免费高清| 国产精品久久久久久久电影| 少妇丰满av| 男女国产视频网站| 男女国产视频网站| 久久6这里有精品| 美女视频免费永久观看网站| 久久久a久久爽久久v久久| 夜夜爽夜夜爽视频| 99re6热这里在线精品视频| 99视频精品全部免费 在线| 欧美日韩在线观看h| 精品午夜福利在线看| 大片电影免费在线观看免费| a级毛片免费高清观看在线播放| 国产精品免费大片| 有码 亚洲区| 极品少妇高潮喷水抽搐| 国产精品久久久久久精品古装| 国产无遮挡羞羞视频在线观看| 亚洲精品国产av蜜桃| 激情 狠狠 欧美| 五月伊人婷婷丁香| 高清av免费在线| 一区二区三区免费毛片| 国产美女午夜福利| 久热久热在线精品观看| 国产色婷婷99| 欧美97在线视频| 国产av精品麻豆| 97超视频在线观看视频| 日韩欧美精品免费久久| 乱码一卡2卡4卡精品| 国产av一区二区精品久久 | 欧美xxⅹ黑人| 免费高清在线观看视频在线观看| 激情 狠狠 欧美| 亚洲国产精品一区三区| 国内精品宾馆在线| 尤物成人国产欧美一区二区三区| 久久精品国产鲁丝片午夜精品| 青春草视频在线免费观看| 久久国产精品男人的天堂亚洲 | 麻豆精品久久久久久蜜桃| 香蕉精品网在线| 国产色婷婷99| 亚洲,欧美,日韩| 欧美精品一区二区大全| 免费观看a级毛片全部| 噜噜噜噜噜久久久久久91| 亚洲av免费高清在线观看| 极品少妇高潮喷水抽搐| 九九在线视频观看精品| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 狂野欧美白嫩少妇大欣赏| 内地一区二区视频在线| 大香蕉久久网| 亚洲真实伦在线观看| 99九九线精品视频在线观看视频| 久久久久精品性色| 国产v大片淫在线免费观看| 久久国产精品男人的天堂亚洲 | 色网站视频免费| 久久国产乱子免费精品| 综合色丁香网| 51国产日韩欧美| 国产精品不卡视频一区二区| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 久久久久网色| 久热这里只有精品99| 亚洲最大成人中文| 黄片无遮挡物在线观看| 偷拍熟女少妇极品色| 国产乱来视频区| 午夜免费男女啪啪视频观看| 成人毛片60女人毛片免费| 狂野欧美激情性xxxx在线观看| 人妻少妇偷人精品九色| 精品亚洲成a人片在线观看 | 久久青草综合色| 99热全是精品| 18+在线观看网站| 欧美亚洲 丝袜 人妻 在线| 丰满迷人的少妇在线观看| a级毛色黄片| 蜜桃在线观看..| 国产免费福利视频在线观看| www.色视频.com| 亚洲欧美清纯卡通| 男女无遮挡免费网站观看| 成人毛片a级毛片在线播放| 亚洲av福利一区| 水蜜桃什么品种好| h视频一区二区三区| 久久久亚洲精品成人影院| 亚洲内射少妇av| 国产在视频线精品| 又黄又爽又刺激的免费视频.| 成年美女黄网站色视频大全免费 | 久久久a久久爽久久v久久| 成人亚洲精品一区在线观看 | 国语对白做爰xxxⅹ性视频网站| 在线观看人妻少妇| 久久久久久久久久人人人人人人| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜爱| 婷婷色av中文字幕| 精品酒店卫生间| 色婷婷av一区二区三区视频| 欧美成人a在线观看| h视频一区二区三区| 亚洲激情五月婷婷啪啪| 18禁在线播放成人免费| 免费看日本二区| 麻豆成人av视频| 精品国产乱码久久久久久小说| 国产黄片视频在线免费观看| 熟妇人妻不卡中文字幕| 免费av不卡在线播放| 亚州av有码| 插阴视频在线观看视频| 国产成人精品一,二区| 亚洲av欧美aⅴ国产| 偷拍熟女少妇极品色| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频| 国产大屁股一区二区在线视频| 亚洲精品亚洲一区二区| 一级二级三级毛片免费看| 日本色播在线视频| 日本爱情动作片www.在线观看| 一级av片app| 亚洲经典国产精华液单| 国产精品国产三级国产av玫瑰| 亚洲欧美中文字幕日韩二区| 日韩成人伦理影院| 最新中文字幕久久久久| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| freevideosex欧美| 国产黄片视频在线免费观看| 久久久久久久久久久丰满| av在线蜜桃| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 三级经典国产精品| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 最新中文字幕久久久久| 国产精品熟女久久久久浪| 国产淫语在线视频| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 国产乱人偷精品视频| 欧美精品人与动牲交sv欧美| 18禁在线播放成人免费| 亚洲成人一二三区av| 国产白丝娇喘喷水9色精品| 高清日韩中文字幕在线| 老司机影院成人| 亚洲精华国产精华液的使用体验| 免费人妻精品一区二区三区视频| 国精品久久久久久国模美| 国产高清三级在线| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 亚洲精品一区蜜桃| 亚洲精品视频女| 一二三四中文在线观看免费高清| 一级爰片在线观看| 一区二区三区精品91| 男男h啪啪无遮挡| 日韩视频在线欧美| 日本色播在线视频| 亚洲四区av| 精品视频人人做人人爽| 精品人妻偷拍中文字幕| 亚洲欧美日韩卡通动漫| 国产成人a区在线观看| 国产黄色免费在线视频| 国产黄片视频在线免费观看| 熟妇人妻不卡中文字幕| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| 欧美3d第一页| 亚洲色图av天堂| 午夜激情久久久久久久| 性色av一级| 欧美区成人在线视频| a级毛片免费高清观看在线播放| 女的被弄到高潮叫床怎么办| 亚洲第一区二区三区不卡| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆| 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 亚洲精品日本国产第一区| 国产精品国产av在线观看| 亚洲欧洲国产日韩| 一级黄片播放器| 你懂的网址亚洲精品在线观看| 欧美少妇被猛烈插入视频| 丝瓜视频免费看黄片| 只有这里有精品99| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 少妇人妻 视频| 亚洲精品日本国产第一区| 99国产精品免费福利视频| 中文精品一卡2卡3卡4更新| 直男gayav资源| 亚洲美女黄色视频免费看| 国产精品99久久99久久久不卡 | 国产高潮美女av| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 国产黄色免费在线视频| 在线观看免费高清a一片| 国产av一区二区精品久久 | 91精品国产国语对白视频| av视频免费观看在线观看| av线在线观看网站| 熟女av电影| 精品一区二区免费观看| 99热全是精品| 精品国产一区二区三区久久久樱花 | 久久亚洲国产成人精品v| 十分钟在线观看高清视频www | 免费大片18禁| 美女中出高潮动态图| 少妇丰满av| 在线免费观看不下载黄p国产| 成人亚洲精品一区在线观看 | 99久国产av精品国产电影| 久久鲁丝午夜福利片| 亚洲精品国产成人久久av| videos熟女内射| 久久99精品国语久久久| 日本欧美国产在线视频| .国产精品久久| 色视频在线一区二区三区| 一级爰片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 六月丁香七月| 日韩,欧美,国产一区二区三区| 亚洲国产精品一区三区| 亚洲人成网站高清观看| 亚洲美女视频黄频| 成年免费大片在线观看| 高清黄色对白视频在线免费看 | 六月丁香七月| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 日本一二三区视频观看| 免费大片黄手机在线观看| 黑人猛操日本美女一级片| 欧美一级a爱片免费观看看| 精品国产乱码久久久久久小说| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 免费观看无遮挡的男女| 伦精品一区二区三区| 夫妻午夜视频| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 51国产日韩欧美| 日韩人妻高清精品专区| 国内精品宾馆在线| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 深爱激情五月婷婷| 国产成人午夜福利电影在线观看| 亚洲自偷自拍三级| 涩涩av久久男人的天堂| 亚洲国产精品专区欧美| 特大巨黑吊av在线直播| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | av在线蜜桃| 国产精品久久久久成人av| 成人亚洲精品一区在线观看 | 国产无遮挡羞羞视频在线观看| av在线观看视频网站免费| 少妇人妻精品综合一区二区| 三级国产精品欧美在线观看| 亚洲综合精品二区| 人体艺术视频欧美日本| 亚洲成人手机| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| 国产成人一区二区在线| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区视频9| 久久久久性生活片| 这个男人来自地球电影免费观看 | 香蕉精品网在线| 免费高清在线观看视频在线观看| 久久久久精品性色| av在线蜜桃| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 久久97久久精品| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级 | 新久久久久国产一级毛片| 男女下面进入的视频免费午夜| 三级国产精品片| 婷婷色麻豆天堂久久| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 精品一区二区三区视频在线| 久久国产精品大桥未久av | 一本色道久久久久久精品综合| 亚洲不卡免费看| 精品国产三级普通话版| 女的被弄到高潮叫床怎么办| 欧美亚洲 丝袜 人妻 在线| 最近的中文字幕免费完整| 中文天堂在线官网| 精品一区二区三区视频在线| 国产高潮美女av| 简卡轻食公司| av.在线天堂| 亚洲av免费高清在线观看| 免费观看av网站的网址| 美女福利国产在线 | 亚洲一区二区三区欧美精品| 国产美女午夜福利| 在线观看av片永久免费下载| 男人和女人高潮做爰伦理| 久久人妻熟女aⅴ| 亚洲国产最新在线播放| 久久国产精品大桥未久av | 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 日韩欧美一区视频在线观看 | 欧美日韩精品成人综合77777| 三级国产精品片| 亚洲真实伦在线观看| 啦啦啦啦在线视频资源| 亚洲欧美精品专区久久| 国产亚洲一区二区精品| 国产精品无大码| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 国产69精品久久久久777片| 欧美日韩在线观看h|