• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    陽極氧化鋁模板法可控制備金屬納米線和納米管陣列的生長機(jī)制

    2010-12-12 02:46:14郭元元毛曉波蔣月秀楊延蓮
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:化學(xué)系廣西大學(xué)納米管

    郭元元 汪 明 毛曉波 蔣月秀 王 琛,* 楊延蓮,*

    (1廣西大學(xué)化學(xué)系,南寧 530004; 2國家納米科學(xué)中心,北京 100190)

    In recent years,one dimensional(1D)nanostructured materials, including nanowires,nanotubes,and nanorods,have attracted considerable attention because of their novel physical properties and potential applications in nanodevices,such as carbon[1-2], metals[3-5],metal sulfides[6-7],metal hydroxide[8],metal oxides[9-10], polymers[11],and some organic molecules[12-13].A variety of strategies,such as direct catalyzed growth,templated growth,and self-assembly and so on,have been utilized for successful fabri-cation of 1D nanomaterials[14-16].Among these methods,the templated synthesis of 1D nanomaterials using the anodic aluminum oxide(AAO)is an effective venue for fabricating nanotubes and nanowires of metals,metal oxides,fullerenes,organic molecules[17-19],as well as metallic 1D nanomaterials[20-22].The well-defined length and diameter of the AAO channels facilitate controlled fabrication of 1D nanostructures.Chemical replacement[23],chemical infiltration[24],chemical vapor deposition(CVD)[25],and electrochemical deposition[26-27]have been utilized for preparation of 1D nanomaterials within the porous alumina template.Among these techniques,electrodeposition method was widely used for preparing metallic and semiconducting nanowires,such as Ni, Cu,Au,Ag,bimetallic nanowire junctions for magnetic,catalytic applications[28-29].It could be noted that metal nanotubes are considered very promising for high performance catalysts[30-31],highly sensitive gas sensors[31-33],and up-conversion non-linear optics[34], etc.Thus,many efforts have been put into the controlled synthesis of metal nanotubes.As a general approach to fabricate well-defined metal nanotubes,the inner surfaces of the AAO channels are usually chemically modified with suitable functional groups-molecular anchors[35-36],so that the electrodeposited metal atoms can bind to the nanopore walls to form nanotubes. A number of metallic nanotubes have been successfully synthesized by this method,while the unavoidable organic impurities introduced from the chemical modification process limited its applications[37-38].Metal nanotubes can also be obtained by controlling the thickness of the electrode film for preventing the pores from being blocked[39-40]and followed by electrodeposition of the metals[41].The fabrication via multi-step template replication and electrodeposition approach was also reported to get metal nanotube array[42].

    Fundamentally the growth of metal nanotubes and nanowires is governed by the electrochemical deposition process and the concentration diffusion of the metal ions.The understanding of the growth mechanism would benefit the controlled fabrication of desired metal nanostructures for specific applications.Some reports have attributed the nanotube growth to the well-known tip effect[43-44].Recently,Yoo et al.[20]proposed the bottom-up and the wall-up growth modes to describe the metal nanotube formation,and also reported the preparation of Pt and Pd nanotubes by a wall-up growth mechanism at high current density.Cao et al.[45]also reported the controlled preparation of metal(Fe,Co, Ni)nanotube arrays and proposed a mechanism of competitive growth rates along two directions:parallel to and perpendicular to the current direction.The mechanisms proposed by Yoo[20]and Cao[45]et al.can be considered principally the same.In addition,Chowdhury et al.[46]put forward the mechanism related to overpotential increase by gas evolution for the central portion shielding and thus the promotion of the reaction at the sides of the porous templates.Common to these studies is that the nanotube formation is dependent on the different growth rates of the metal along the wall surface(Vw)and from the central bottom of the nanochannels(Vb),while systematic studies are still needed to fully understand the growth mechanisms which are critical for controlled growth of nanowires and nanotubes.In this work,we examined the controllable synthesis of Ni nanowires and nanotubes by electrodeposition method using AAO as template. Based on the systematic studies,mechanisms for the nanowire and nanotube growth were proposed.

    1 Experimental

    1.1 Templated electrodeposition

    The AAO templates used in our experiments were purchased from Whatman Company(Anodisc 47,200 nm in nominal pore diameter and 60 μm in thickness).The electrodeposition was carried out with the constant potential mode in a conventional three-electrode electrochemical cell.Before the electrodeposition,Au film was first deposited as an electrode on one side of the AAO membrane using a vacuum evaporation apparatus and a small portion of the inside channels were filled to shape a bowl-like structure[4,43].AAO template coated by Au layer,a piece of platinum plate(ca 1.0 cm2),and a calomel electrode were used as the working,counter,and reference electrodes,respectively. All the electrodeposition experiments were performed at room temperature and the deposition time was kept constant at 1000 s.

    The electrochemical deposition was conducted in aqueous solutions containing NiSO4·6H2O(AR),ethylenediaminetetraacetic acid(EDTA,AR),NaOH(AR),and K2HPO4(AR).The concentration of EDTA was two times higher than that of the Ni2+ions.The concentration of K2HPO4was kept constant at 20 g·L-1and the pH values were adjusted by NaOH to 11 for the solutions with EDTA.All the solutions were prepared with ultrapure Milli Q water(resistivity≥18 MΩ·cm).The electrodeposition was performed at room temperature and the detailed electrodeposition conditions are shown in Table 1.

    1.2 Characterization of Ni nanowires or nanotubes

    After electrodeposition,the AAO templates were removed by immersion in 2 mol·L-1NaOH solutions at 25℃for 2 h.Then,the as-prepared samples were thoroughly rinsed with distilled water and subsequently dried in air.Scanning electron microscopic(SEM)characterizations of the products were performed on a Hitachi S-3400N SEM apparatus.For transmission electron microscopic(TEM)characterizations,the samples were subjected to ultrasonic treatment in ultrapure water for 1 min,then a drop of suspension was dipped on the carbon-coated copper grid.All TEM characterizations were performed on an FEI TEM(Tecnai G2 20)at an accelerating voltage of 120 kV.X-ray photoelectron spectroscopic(XPS)measurements were conducted on an XPS spectrometer(VG Scientific ESCALab 220i-XL)operated at 300 W in vacuum(3×10-7Pa)with a monochromatic Al Kαradiation.The binding energies were corrected for charging by adventitious carbon(C 1s)at 284.8 eV.Curve fitting of the XPS spectra was performed by using XPS PEAK software.

    Table 1 Electrodeposition conditions for preparing Ni nanotubes and nanowires

    2 Results and discussion

    2.1 Impact of chelating agent EDTA

    Electrodeposition of Ni was conducted with the aid of the AAO template for the preparation of nanowire or nanotube arrays.All the samples were etched using NaOH solution for 2 h to remove the AAO membrane,thus the nanowires or nanotubes can be exposed from the template.The Ni nanowires can be obtained in the solution(the concentration of Ni ions,CNi2+=0.01 mol·L-1)without addition of EDTA at electrodeposition potential Ued=-1.5 V.SEM image in Fig.1(a)shows highly ordered Ni nanowire arrays with uniform structures in large area.The average diameter of the Ni nanowires is about 200 nm which resembles the pore diameter of the AAO template(200 nm).Upon the introduction of EDTA,nanotube arrays could be obtained with the same CNi2+(0.01 mol·L-1)and the same Ued(-1.5 V).SEM image in Fig.1(b)reveals the typical morphology of the highly ordered Ni nanotube arrays with clear open ends.The outer diameters of the nanotubes were around 200 nm(nearly the same as the pore diameter of the AAO template)and the inner diameters were around 140-160 nm.In other words,the thickness of nanotube walls was about 20-30 nm.The length of the nanotubes and nanowires could reach about 20 μm in 1000 s.

    Fig.1 SEM images of Ni nanowire and nanotube arrays without and with EDTA(a)top view of the Ni nanowires deposited from the solution with CNiSO4=0.01 mol·L-1at Ued=-1.5 V;(b)top view of the Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1at Ued=-1.5 V(sample 2)

    The conversion of the nanowire to nanotube morphology with the introduction of the EDTA into the solution demonstrated the impact of the coordination ion on the eletrodeposition mechanisms.The growth of nanowires and nanotubes can be viewed as a balance between two dominated growth rates,Vwand Vb. The bottom-up and the wall-up growth modes proposed by Yoo et al.[20],and the current-directed tubular growth(CDTG)mechanisms proposed by Cao et al.[45],have revealed the relationship between the morphologies of the 1D nanomaterials and the current densities at different locations.However,the underlying mechanism for the relationship of the current densities and the growth rates is still need to be clarified.In the reduction process of nickel ions,nanotubes can be obtained if Vw>Vb.It should be noted that both Vwand Vbcould be affected by the introduction of the chelating agent EDTA,and the well-known tip growth effect should be also taken into account.The electrochemical deposition process of Ni with EDTA can be divided into three steps as following.

    a)The coordination of Ni2+with EDTA.There are seven forms for EDTA in solution(H6Y2+,H5Y+,H4Y,H3Y-,H2Y2-,HY3-, Y4-)and their populations are dependent on the solution acidity. The complex NiY2-is the compound with the highest population when pH>10.The chelation and the dissociation balance of the complex can be described as below.

    Ni2++Y4-?NiY2-

    b)The diffusion of NiY2-and Ni2+ions to the surface of the electrode.When the Ni2+was depleted near the working electrode,it will be supplied by the dissociation of NiY2-.The concentration of Ni2+was limited in the range of 10-16mol·L-1,because the stability constant of the complex was 1018and the concentration of Y4-ions was kept in the range of 10-2mol·L-1.

    c)At last,Ni2+receives electrons on the surface of the cathode and forms nanotubes or nanowires.As mentioned above,Au film deposited as a working electrode at the bottom of the AAO membrane with bowl-shaped structures[4,43].Because of the tip effect,the edge tips of the initial bowl-shaped Au electrode give rise to higher electric field,which is electrochemically more active than the smooth surface.Meanwhile,the surface energy of the inner walls of the nanochannels[48]also facilitates the bottom edge of the nanochannels to be a preferential site for the deposition of metal ions.Considering that the effective growth rate is correlated to the effective Ni2+concentration,the addition of EDTA would result in decreased reduction rate of NiY2-compared with that of the Ni2+hydrate.Both Vwand Vbwere greatly reduced by the chelating agent.At this slower reduction rate,the tip effect of the electric field would render the predominance of the higher deposition rate of Vw(Vw>Vb)and finally give rise to the formation of metal nanotubes.On the contrary,both of the growth rates(Vwand Vb)are very fast in the solution without EDTA,so the tip effect could be ignored(Vw≈Vb),thus the nanowires can be obtained.

    2.2 Impact of electrodeposition potential and electrolyte concentration

    The electrodeposition potential is a key factor for the formation of metal nanotubes and nanowires.When other conditions are constant,more negative Ued(higher than the potential for gas evolution)would lead to the higher current density which is keenly related to the growth rates,Vband Vw,thus the final morphology of the 1D metallic nanostructures.Meantime,Uedalso influences the electromigration rate of the NiY2-,which has the opposite direction to the concentration diffusion in the solution.

    In order to further understand the growth mechanism for the formation of metal nanotubes and nanowires,systematic studies were performed under different conditions listed in Table 1.At a higher NiY2-ion concentration(sample 1),Ni nanotubes with thin wall could be gained at more negative Ued=-1.5 V.When the concentration of NiY2-decreases gradually(samples 1-4),at Ued= -1.5 V,the SEM images in Fig.2(a,d,e)clearly illustrate the evolution of the 1D nanomaterials from well-aligned nanotubes in sample 1,to coexistence of nanotubes and nanowires(mainly nanotubes)in sample 3 and finally to coexistence of nanowires and nanotubes(mainly nanowires)in sample 4.In addition,the gradual increase of the nanowire proportions is also accompanied by the gradual increase of the nanotube wall thickness.The TEM image in Fig.2(b)clearly shows the typical hollow structure of the nanotubes(sample 2).The selected-area electron diffraction pattern in Fig.2(c)was acquired from a 200 nm diameter Ni nanotubes in sample 2.The continuous bright rings indicate the polycrystalline structure with face-centered cubic Ni metals,in which the lattice parameters 0.202,0.175,and 0.124 nm correspond to the facets(111),(200),and(220),repectively.Fig.3(a) presents the XPS spectrum of Ni nanotubes,which are fabricated under the condition of sample 2.The binding energy of Ni (metal)is 853.1 eV which is consistent with the reported value inthe reference[49].Three Ni 2p3/2peaks(Ni,Ni(satellite),and NiO) reveal that the Ni nanotubes were mainly composed of metallic Ni.The existence of NiO is unavoidable due to the oxidation of the surface of Ni nanotubes exposed to the air.

    Interestingly,Ni nanowires could be obtained at less negative potential(Ued=-0.5 V,Table 1)in the solutions with higher NiY2-concentrations(samples 5 and 6).Ni nanotubes would gradually appearandcoexistwithNinanowiresinthesolutionwithmedium NiY2-concentration(sample 7).When the concentration of NiY2-was decreased to 0.001 mol·L-1(sample 8),Ni nanotubes became the dominant 1D nanostructures.The SEM images in Fig.4(a,c, d)(samples 5,6,8 correspondingly)present the evolution from Ni nanowires to nanotubes in view of the end features of the 1D nanostructures from flat ends(sample 5),bowl-shaped ends(sample6),toopenends(sample8).Thesolidstructureofthenanowire (sample 5)has also been proved by TEM characterizations(Fig. 4(b)).The XPS spectrum for Ni nanowires in sample 5(Fig.3 (b))shows that the metallic Ni is the main component with the appearanceofNiOascribedtotheoxidationofNiintheair,which is similar to the nanotubes in sample 2(Fig.3(a)).The evolution from nanotubes to nanowires at more negative Uedand from nanowires to nanotubes at less negative Uedindicated the coeffect of the electrolyte concentrations and the electrodeposition potentials.

    2.3 Proposed mechanism for electrodeposition of nanotubes or nanowires

    Fig.2 SEM and TEM images of Ni nanowire and nanotube arrays deposited at Ued=-1.5 V(a)top view of the Ni nanotubes deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1(sample 1),(b)typical TEM image of a piece of Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1(sample 2),(c)selected area electron diffraction pattern acquired from a Ni nanotube with 200 nm diameter(sample 2),(d)top view of the Ni nanotubes(nanowires)deposited from the solution with CNiSO4=0.005 mol·L-1, CEDTA=0.01 mol·L-1,CK2HPO4=20 g·L-1(sample 3),(e)top view of the Ni nanowires(nanotubes)deposited from the solution with CNiSO4=0.001 mol·L-1, CEDTA=0.002 mol·L-1,CK2HPO4=20 g·L-1(sample 4)

    From the systematic studies above,Fig.5(a,b)can be proposed to schematically illustrate the electrodeposition processes in the electrolytes with higher NiY2-ion concentration at Ued=-1.5 V and Ued=-0.5 V.The electromigration of NiY2-ions can be neglected when the NiY2-ion concentration near the working electrode is high enough.The faster reduction rate at more negative Uedwould enhance the tip effect leading to the nanotube formation due to Vw>Vb.The underlying mechanism may be proposed that the bottom and the wall will grow together at beginning, while the faster growth rate will deplete the NiY2-ions in the nanochannels.The shorter distance from the bulk solution to the nanochannels would lead to the faster diffusion of NiY2-ions to the far front ends of the deposited Ni,which renders the dominant tip effect for nanotube growth.When it comes to the solution with the same higher concentration of the NiY2-,while at less negative Ued(-0.5 V,Fig.5(b)),the reduction rate is much slower than that at-1.5 V.The diffusion rate of NiY2-ions from the bulk solution to the nanochannels is high enough to overcome the edge-predominance,which leads to the similar lower growth rates of the wall surface and the bottom (Vw≈Vb).Then the bottom and the wall would grow together and finally result in the formation of nanowire arrays(Fig.5(b)).

    Fig.3 XPS spectra of Ni nanotubes(sample 2)and nanowires(sample 5)(a)Ni 2p3/2peak in the XPS spectrum of Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1at Ued=-1.5 V(sample 2), (b)Ni 2p3/2peak in the XPS spectrum of Ni nanowires deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1at Ued=-0.5 V(sample 5). Curve fitting of the XPS spectra was performed by using XPS PEAK software.The corresponding peaks obtained from the curve fitting are asigned as Ni,Ni(satellite), and NiO,respectively.Full survey XPS spectra for the Ni nanotubes(sample 2)and Ni nanowires(sample 5)can be found in Supporting Information(Fig.S1), which are available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Fig.4 SEM and TEM images of Ni nanowire and nanotube arrays deposited at Ued=-0.5 V(a)top view of the Ni nanowires deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1(sample 5),(b)typical TEM image of a piece of Ni nanowire in sample 5,(c)top view of the Ni nanowires deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1(sample 6), (d)top view of the Ni nanotubes(nanowires)deposited from the solution with CNiSO4=0.001 mol·L-1,CEDTA=0.002 mol·L-1,CK2HPO4=20 g·L-1(sample 8)

    When the concentration of the NiY2-ions is decreased to very low level in Fig.5(c,d)(such as 0.001 mol·L-1),the fabricated nanostructures indicated the opposite trends for nanotube and nanowire compared with those at higher NiY2-ion concentrations,thatisnanowiresat-1.5Vandnanotubesat-0.5V.Besides the Uedmentioned above,the effect of electromigration on the growth rates,Vwand Vb,should also be taken into account at lower diffusion rate.The electromigration of NiY2-ions to the counter electrode and concentration diffusion to the work electrodes can both increase the overpotential for the electrochemical deposition.The increased overpotential could lead to the decrease of the Vwand the Vb.The reduction rate of the Ni2+is relatively faster at more negative Ued(Fig.5(c),such as-1.5 V),while the lower diffusion rate of the NiY2-ions would largely reduce the deposition rate.So the similar growth rate of the wall and the bottom Vw≈Vbwould be obtained for the nanowire formation. We believe that the similar growth rates at middle level in cases of Fig.5(b,c)give rise to the similar results,which is originated from the balance between the potential effect and the concentration effect.At less negative Ued(-0.5 V),the reduction rate of Ni2+should be very low at lower concentration of the NiY2-ions.The less influence of the NiY2-electromigration and the very low reduction rate make the diffusion of the NiY2-ions sufficient enough.The Ni2+ions on the edge can be supplemented in time and adsorbed on the edge preferentially.As the result,the Vwis relatively higher than the Vb,which leads to the final nanotube formation.

    Fig.5 Schematic diagrams of the growth processes of Ni nanotubes and nanowires at different electrodeposition conditions(a)and(b)are schematic diagrams of the growth processes of nanotubes at Ued=-1.5 V and nanowires at Ued=-0.5 V in the electrolytes with higher NiY2-concentrations, respectively,(c)and(d)are schematic diagrams of the growth processes of nanowires at Ued=-1.5 V and nanotubes at Ued=-0.5 V in the electrolytes with lower NiY2-concentrations,respectively.The dashed arrows represent the electromigration direction of NiY2-and their lengths show the different electromigration rates.The solid arrows represent the concentration diffusion direction of NiY2-.

    Based on the above mentioned mechanism,Cu nanotube and nanowire arrays have also been fabricated at higher electrolyte concentration with more negative Ued(Fig.S2,which is available free of charge via the internet at http://www.whxb.pku.edu.cn). The nanowires can be obtained without the introduction of the chelating agent EDTA,while the nanotube arrays can be obtained with EDTA.The common mechanism for 1D nanostructure growth of Ni and Cu indicates that it could be a general strategy for growth of metal nanotubes and nanowires.The controlled preparation of Au(Fig.S3)and Co(Fig.S4)(which are available free of charge via the internet at http://www.whxb.pku.edu.cn) nanotube arrays at the similar electrodeposition conditions with the chelating agent(EDTA)confirms the possible application of this mechanism in fabrication of other 1D metal nanomaterials.

    3 Conclusions

    In summary,controlled synthesis of Ni nanotube and nanowire arrays can be obtained by electrodeposition using AAO template. Both nanotubes and nanowires can be readily achieved by varying the electrodeposition potential and the concentration of NiY2-.The detailed growth mechanism for metal nanotubes and nanowires was proposed based on systematic studies.The crucial contributing factors of the chelating agent,the electrodeposition potential,the concentration of the NiY2-,and the electromigration were all taken into account for clarification of the growth process.This method could be applicable to fabrication of other metal nanotubes and nanowires,which has high potetials for applications in nanocatalyses,chemical sensors,and nanoscale electronic and magnetic devices.

    Acknowledgment: The authors would like to thank Dr.ZHONG Liang-Shu and Dr.LIANG Han-Pu at the Institute of Chemistry,Chinese Academy of Sciences for helpful discussion in electrodeposition experiments.

    1 Iijima,S.Nature,1991,354:56

    2 Li,Y.L.;Kinloch,A.;Windle,A.H.Science,2004,304:276

    3 Wirtz,M.;Martin,C.R.Adv.Mater.,2003,15:455

    4 Zhang,X.Y.;Zhang,L.D.;Lei,Y.;Zhao,L.X.;Mao,Y.Q. J.Mater.Chem.,2001,11:1732

    5 Hong,B.H.;Bae,S.C.;Lee,C.W.;Jeong,S.;Kim,K.S.Science, 2001,294:348

    6 Chen,J.;Tao,Z.;Li,S.Angew.Chem.Int.Edit.,2003,42:2147

    7 Xu,D.S.;Xu,Y.J.;Chen,D.P.;Guo,G.L.;Gui,L.L.;Tang,Y. Q.Chem.Phys.Lett.,2000,325:340

    8 Zhang,W.;Wen,X.;Yang,S.;Berta,Y.;Wang,Z.L.Adv.Mater., 2003,15:822

    9 Yan,C.;Xue,D.Adv.Mater.,2008,20:1055

    10 Huang,B.H.;Shen,P.Y.;Chen,S.Y.Nanoscale Res.Lett.,2009, 4:503

    11 Xiao,R.;Cho II,S.;Liu,R.;Lee,S.B.J.Am.Chem.Soc.,2007, 129:4483

    12 Lu,Q.;Gao,F.;Komarneni,S.;Mallouk,T.E.J.Am.Chem.Soc., 2004,126:8650

    13 Matsumoto,F.;Nishio,K.;Masuda,H.Adv.Mater.,2004,16: 2105

    14 Korgel,B.A.;Fitzmaurice,D.Adv.Mater.,1998,10:661

    15 Wang,M.H.;Li,Y.J.;Xie,Z.X.;Liu,C.;Yeung,E.S.Mater. Chem.Phys.,2010,119:153

    16 Gao,P.;Cai,Y.G.ACS Nano,2009,3:3475

    17 Xiao,Z.L.;Han,C.Y.;Welp,U.;Wang,H.H.;Kwok,W.K.; Hiller,J.M.;Cook,R.E.;Miller,D.J.;Crabtree,G.W.Nano Lett., 2002,2:1293

    18 Martin,C.R.Science,1994,266:1961

    19 Gao,H.;Mu,C.;Wang,F.;Xu,D.S.;Wu,K.;Xie,Y.C.;Liu,S.; Wang,E.G.;Xu,J.;Yu,D.P.J.Appl.Phys.,2003,93:5602

    20 Yoo,W.C.;Lee,J.K.Adv.Mater.,2004,16:1097

    21 Wang,Y.;Wu,K.J.Am.Chem.Soc.,2005,127:9686

    22 Qu,L.T.;Shi,G.Q.;Wu,X.F.;Fan,B.Adv.Mater.,2004,16: 1200

    23 Yan,C.;Xue,D.Electrochem.Commun.,2007,9:1247

    24 Wang,Y.;Lee,J.Y.;Zeng,H.C.Chem.Mater.,2005,17:3899

    25 Franklin,N.;Dai,H.Adv.Mater.,2000,12:890

    26 Routkevitch,D.;Bigioni,T.;Moskovits,M.;Xu,J.M.J.Phys. Chem.,1996,100:14037

    27 Kamalakar,M.V.;Raychaudhuri,A.K.Adv.Mater.,2008,20:149

    28 Wang,H.;Xu,C.W.;Cheng,F.L.;Jiang.S.P.Electrochem. Commun.,2007,9:1212

    29 Liang,H.P.;Guo,Y.G.;Hu,J.S.;Zhu,C.F.;Wan,L.J.;Bai,C. L.Inorg.Chem.,2005,44:3013

    30 Yang,L.X.;He,D.M.;Cai,Q.Y.J.Phys.Chem.C,2007,111: 8214

    31 Han,C.H.;Hong,D.W.;Kima,I.J.;Gwak,J.;Han,S.D.;Singh, K.C.Sens.Actuators B,2007,128:320

    32 Andzelm,J.;Govind,N.;Maiti,A.Chem.Phys.Lett.,2006,421:58

    33 Sadrzadeh,A.;Farajian,A.A.;Yakobson,B.I.Appl.Phys.Lett., 2008,92:022103

    34 Schider,G.;Krenn,J.R.;Gotschy,W.;Lamprecht,B.;Ditlbacher, H.;Leitner,A.;Aussenegg,F.R.J.Appl.Phys.,2001,90:3825

    35 Lee,W.;Scholz,R.;Lee,N.K.W.;Scholz,R.;Nielsch,K.;Gosele, U.Angew.Chem.Int.Edit.,2005,44:6050

    36 Bao,J.;Tie,C.;Xu,Z.;Zhou,Q.;Shen,D.;Ma,Q.Adv.Mater., 2001,13:1631

    37 Levina,L.;Sukhovatkin,V.;Musikhin,S.;Cauchi,S.;Nisman,R.; Bazett-Jones,D.P.;Sargent,E.H.Adv.Mater.,2005,17:1854

    38 Nanda,K.K.;Kruis,F.E.;Fissan,H.Nano Lett.,2001,1:605

    39 Li,L.;Pan,S.S.;Dou,X.C.;Zhu,Y.G.;Huang,X.H.;Yang,Y. W.;Li,G.H.;Zhang,L.D.J.Phys.Chem.C,2007,111:7288

    40 Zhang,X.Y.;Wang,H.T.;Bourgeois,L.;Pan,R.J.;Zhao,D.Y.; Webley,P.A.J.Mater.Chem.,2008,18:463

    41 Fu,J.;Cherevko,S.;Chung,C.H.Electrochem.Commun.,2008, 10:514

    42 Mu,C.;Yu,Y.X.;Wang,R.M.;Wu,K.;Xu,D.S.;Guo,G.L. Adv.Mater.,2004,16:1550

    43 Huang,C.W.;Hao,Y.W.Nanotechnology,2009,20:445607

    44 Liu,L.F.;Zhou,W.Y.;Xie,S.S.;Song,L.;Luo,S.D.;Liu,D.F.; Shen,J.;Zhang,Z.X.;Xiang,Y.J.;Ma,W.J.;Ren,Y.;Wang,C. Y.;Wang,G.J.Phys.Chem.C,2008,112:2256

    45 Cao,H.Q.;Wang,L.D.;Qiu,Y.;Wu,Q.Z.;Wang,G.Z.;Zhang, L.;Liu,X.W.ChemPhysChem,2006,7:1500

    46 Chowdhury,T.;Casey,D.P.;Rohan.J.F.Electrochem.Commun., 2009,11:1203

    47 Lahav,M.;Sehayek,T.;Vaskevich,A.;Rubinstein,I.Angew. Chem.Int.Edit.,2003,42:5576

    48 Liu,F.;Zhao,Z,J.;Qiu,L,M.;Zhao,L,Z.Anal.Test.Technol. Instrum.,2009,15:1

    猜你喜歡
    化學(xué)系廣西大學(xué)納米管
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    廣西大學(xué)為畢業(yè)生制作今昔對比照
    廣西大學(xué)廣西創(chuàng)新發(fā)展研究院簡介
    金色年華(2017年11期)2017-07-18 11:08:44
    廣西大學(xué)學(xué)報(bào)(自然科學(xué)版)2016年第41卷總目次
    權(quán)力控制:權(quán)力清單制度背后的公法思維
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    九草在线视频观看| 超碰av人人做人人爽久久| 久久人人爽av亚洲精品天堂 | 国产成人午夜福利电影在线观看| 中文字幕av成人在线电影| 国产成人91sexporn| av国产精品久久久久影院| 99久国产av精品国产电影| 日本黄色片子视频| 久久婷婷青草| 亚洲第一区二区三区不卡| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 国产精品蜜桃在线观看| 高清视频免费观看一区二区| 亚洲熟女精品中文字幕| 亚洲aⅴ乱码一区二区在线播放| 老司机影院成人| 老女人水多毛片| 久久久久久久久久久免费av| 草草在线视频免费看| 日本av手机在线免费观看| 久久精品夜色国产| 中文资源天堂在线| 久久99精品国语久久久| 成人影院久久| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 亚洲精品亚洲一区二区| 丰满迷人的少妇在线观看| 国产美女午夜福利| 中国美白少妇内射xxxbb| 亚洲精品乱码久久久久久按摩| 亚州av有码| 插阴视频在线观看视频| 国产色婷婷99| 亚洲av中文av极速乱| 日本猛色少妇xxxxx猛交久久| 男人和女人高潮做爰伦理| 欧美高清性xxxxhd video| 成人高潮视频无遮挡免费网站| 在线观看免费日韩欧美大片 | 成人综合一区亚洲| 午夜免费鲁丝| 精品少妇久久久久久888优播| 十分钟在线观看高清视频www | 免费观看在线日韩| 成年美女黄网站色视频大全免费 | 最近最新中文字幕大全电影3| 亚洲丝袜综合中文字幕| 尾随美女入室| 网址你懂的国产日韩在线| 22中文网久久字幕| 久久精品国产自在天天线| 精品国产三级普通话版| 亚洲内射少妇av| 成年人午夜在线观看视频| 国产成人精品一,二区| 久久人妻熟女aⅴ| 国产欧美另类精品又又久久亚洲欧美| 久久国内精品自在自线图片| 中文在线观看免费www的网站| av福利片在线观看| 黑人高潮一二区| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 在线播放无遮挡| 国产亚洲5aaaaa淫片| 丰满迷人的少妇在线观看| 妹子高潮喷水视频| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡动漫免费视频| 夜夜骑夜夜射夜夜干| 成人美女网站在线观看视频| 国产免费福利视频在线观看| 日韩av免费高清视频| 日韩亚洲欧美综合| 美女中出高潮动态图| 成人毛片60女人毛片免费| 五月玫瑰六月丁香| av女优亚洲男人天堂| 亚洲丝袜综合中文字幕| 中文欧美无线码| 久久久久久久精品精品| 97在线人人人人妻| 最近中文字幕2019免费版| 我的老师免费观看完整版| 身体一侧抽搐| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 天美传媒精品一区二区| 99久久人妻综合| 99精国产麻豆久久婷婷| 国产男人的电影天堂91| 精品一区二区三区视频在线| 91狼人影院| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 国产大屁股一区二区在线视频| 全区人妻精品视频| 777米奇影视久久| av女优亚洲男人天堂| 亚洲人成网站在线观看播放| av国产免费在线观看| 久久韩国三级中文字幕| 久久国产精品男人的天堂亚洲 | 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 超碰97精品在线观看| 黄色一级大片看看| 赤兔流量卡办理| 日韩人妻高清精品专区| 久久97久久精品| av线在线观看网站| 22中文网久久字幕| 亚洲精品久久午夜乱码| 国产精品麻豆人妻色哟哟久久| 夜夜看夜夜爽夜夜摸| 国产国拍精品亚洲av在线观看| 水蜜桃什么品种好| 一个人看视频在线观看www免费| 少妇人妻一区二区三区视频| 一区二区三区乱码不卡18| 精品久久久噜噜| 国产黄色免费在线视频| 国模一区二区三区四区视频| 赤兔流量卡办理| freevideosex欧美| 国产高清有码在线观看视频| 日韩视频在线欧美| 国产亚洲5aaaaa淫片| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 久久久亚洲精品成人影院| 偷拍熟女少妇极品色| 久久久久久久大尺度免费视频| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 国内精品宾馆在线| 欧美另类一区| 国产精品99久久99久久久不卡 | 国产精品人妻久久久久久| 我的老师免费观看完整版| 精品久久久久久久久av| 丝袜脚勾引网站| 欧美高清性xxxxhd video| 成年av动漫网址| 伊人久久精品亚洲午夜| 久久99蜜桃精品久久| 国产精品人妻久久久影院| 日本色播在线视频| 一本—道久久a久久精品蜜桃钙片| 91在线精品国自产拍蜜月| 欧美zozozo另类| 18禁在线无遮挡免费观看视频| 天堂俺去俺来也www色官网| 日韩一区二区视频免费看| 日本黄色日本黄色录像| 2022亚洲国产成人精品| 最近最新中文字幕免费大全7| 在线观看免费高清a一片| 久久精品夜色国产| 男人添女人高潮全过程视频| 精品国产露脸久久av麻豆| 久久精品久久久久久噜噜老黄| 校园人妻丝袜中文字幕| 三级国产精品片| 人妻 亚洲 视频| 亚洲av日韩在线播放| 十分钟在线观看高清视频www | 国产视频首页在线观看| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 久久99蜜桃精品久久| 一区二区三区免费毛片| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 成年免费大片在线观看| 国产精品一区二区性色av| 久久人人爽av亚洲精品天堂 | 国产亚洲最大av| 国产欧美日韩一区二区三区在线 | av福利片在线观看| 久久综合国产亚洲精品| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| 亚洲欧美日韩另类电影网站 | 成人漫画全彩无遮挡| 亚洲不卡免费看| 成人毛片a级毛片在线播放| 视频中文字幕在线观看| 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 韩国av在线不卡| 亚洲最大成人中文| 黑人高潮一二区| 亚洲精品中文字幕在线视频 | 中文欧美无线码| 高清欧美精品videossex| 在线播放无遮挡| 国产精品一及| 成年av动漫网址| 日韩一本色道免费dvd| 国产免费视频播放在线视频| 亚洲精华国产精华液的使用体验| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 成人特级av手机在线观看| 亚洲国产精品国产精品| 亚洲一区二区三区欧美精品| 日本欧美国产在线视频| 三级经典国产精品| 天美传媒精品一区二区| 国产精品人妻久久久久久| 高清日韩中文字幕在线| 纯流量卡能插随身wifi吗| 高清黄色对白视频在线免费看 | 亚洲人成网站在线播| 久久热精品热| 国产精品久久久久久av不卡| 国产在线视频一区二区| 日韩强制内射视频| 国产乱人偷精品视频| 免费人妻精品一区二区三区视频| 插阴视频在线观看视频| 亚洲色图av天堂| 激情五月婷婷亚洲| 日韩视频在线欧美| 一本—道久久a久久精品蜜桃钙片| 亚洲成人一二三区av| 身体一侧抽搐| 亚洲欧美清纯卡通| 成人免费观看视频高清| 免费观看性生交大片5| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 精品人妻熟女av久视频| av福利片在线观看| 久久国产亚洲av麻豆专区| 午夜免费男女啪啪视频观看| 大片电影免费在线观看免费| 久久精品国产亚洲av天美| av在线观看视频网站免费| 欧美成人a在线观看| 久久毛片免费看一区二区三区| 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 色5月婷婷丁香| 欧美精品国产亚洲| 少妇精品久久久久久久| 日韩制服骚丝袜av| 内地一区二区视频在线| av免费观看日本| 老司机影院成人| 欧美最新免费一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 大香蕉97超碰在线| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| av免费在线看不卡| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 韩国av在线不卡| 1000部很黄的大片| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 中文字幕精品免费在线观看视频 | 国产老妇伦熟女老妇高清| 亚洲成色77777| 人人妻人人添人人爽欧美一区卜 | 日韩三级伦理在线观看| 高清毛片免费看| 国产一区二区三区av在线| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 少妇精品久久久久久久| av免费在线看不卡| 新久久久久国产一级毛片| 久久精品国产自在天天线| 天堂俺去俺来也www色官网| 久久久久久九九精品二区国产| 夜夜骑夜夜射夜夜干| 亚洲在久久综合| 最近最新中文字幕免费大全7| 亚洲精品成人av观看孕妇| 岛国毛片在线播放| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 少妇的逼好多水| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 国产一级毛片在线| 欧美精品一区二区免费开放| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 日韩亚洲欧美综合| 成人毛片60女人毛片免费| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| 综合色丁香网| 久久久久久久久久成人| 国国产精品蜜臀av免费| 国产免费又黄又爽又色| 亚洲精品久久久久久婷婷小说| 亚洲精品,欧美精品| 国产av精品麻豆| 亚洲怡红院男人天堂| av卡一久久| 亚洲国产成人一精品久久久| 国产男女超爽视频在线观看| 高清av免费在线| 韩国高清视频一区二区三区| 国产有黄有色有爽视频| 搡老乐熟女国产| 99热这里只有精品一区| 大话2 男鬼变身卡| 精品少妇久久久久久888优播| 免费黄频网站在线观看国产| 男女边摸边吃奶| 女人十人毛片免费观看3o分钟| 国产色婷婷99| 亚洲丝袜综合中文字幕| 91久久精品电影网| 午夜免费鲁丝| 成人一区二区视频在线观看| 人体艺术视频欧美日本| 精品亚洲成a人片在线观看 | 天美传媒精品一区二区| 免费黄色在线免费观看| 人妻制服诱惑在线中文字幕| 久久久久久伊人网av| av在线播放精品| 国产 一区 欧美 日韩| 国产女主播在线喷水免费视频网站| 少妇丰满av| 亚洲av免费高清在线观看| 人人妻人人爽人人添夜夜欢视频 | 男人舔奶头视频| 美女内射精品一级片tv| 国产成人午夜福利电影在线观看| 99久久精品热视频| 亚洲欧美日韩另类电影网站 | 黑人高潮一二区| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 综合色丁香网| 成人美女网站在线观看视频| 亚洲欧美日韩无卡精品| 午夜福利影视在线免费观看| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 久久久久久人妻| 欧美日韩视频精品一区| 久久久久性生活片| 1000部很黄的大片| 中文字幕精品免费在线观看视频 | 日本av手机在线免费观看| 蜜桃在线观看..| 一级a做视频免费观看| 久久国产精品男人的天堂亚洲 | 欧美日韩亚洲高清精品| 永久网站在线| 一二三四中文在线观看免费高清| 性高湖久久久久久久久免费观看| 亚洲国产最新在线播放| 国产免费福利视频在线观看| 水蜜桃什么品种好| 一区二区三区精品91| 免费看av在线观看网站| 最新中文字幕久久久久| 精品亚洲成a人片在线观看 | 伊人久久精品亚洲午夜| 毛片一级片免费看久久久久| .国产精品久久| 亚洲高清免费不卡视频| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 日本免费在线观看一区| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 亚洲精品中文字幕在线视频 | 午夜激情久久久久久久| 国产又色又爽无遮挡免| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看 | av网站免费在线观看视频| 免费av中文字幕在线| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 毛片女人毛片| 成人高潮视频无遮挡免费网站| 2018国产大陆天天弄谢| 国产91av在线免费观看| 国产高潮美女av| 欧美zozozo另类| 亚洲精华国产精华液的使用体验| 18禁裸乳无遮挡动漫免费视频| 中文字幕制服av| 男女边摸边吃奶| 亚洲四区av| 亚洲经典国产精华液单| 青春草亚洲视频在线观看| 免费少妇av软件| 精品久久久久久电影网| 麻豆精品久久久久久蜜桃| 我的老师免费观看完整版| 亚洲国产最新在线播放| 国产精品一区二区三区四区免费观看| 精品一区在线观看国产| 精品久久久噜噜| 亚洲av男天堂| 晚上一个人看的免费电影| 国产爱豆传媒在线观看| 夜夜骑夜夜射夜夜干| 免费av不卡在线播放| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| 春色校园在线视频观看| 天天躁夜夜躁狠狠久久av| 免费黄色在线免费观看| 日韩中字成人| 国产色爽女视频免费观看| 亚洲av福利一区| 久久毛片免费看一区二区三区| 一级毛片久久久久久久久女| 岛国毛片在线播放| 中文字幕精品免费在线观看视频 | av在线观看视频网站免费| 麻豆乱淫一区二区| 精品国产乱码久久久久久小说| 97在线人人人人妻| 一级a做视频免费观看| 尾随美女入室| 亚洲成人手机| 交换朋友夫妻互换小说| 亚洲av综合色区一区| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| 亚洲精品国产色婷婷电影| 不卡视频在线观看欧美| 一区二区三区乱码不卡18| 国产高潮美女av| 色视频www国产| 看非洲黑人一级黄片| 亚洲美女搞黄在线观看| 精品人妻视频免费看| 99久久综合免费| 97热精品久久久久久| 久久精品国产亚洲av涩爱| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久亚洲| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 亚洲人与动物交配视频| 亚洲第一区二区三区不卡| 日韩免费高清中文字幕av| 亚洲成人av在线免费| 午夜福利视频精品| 黄色配什么色好看| 精品少妇久久久久久888优播| 欧美+日韩+精品| 一级二级三级毛片免费看| kizo精华| 激情五月婷婷亚洲| 人妻 亚洲 视频| 夫妻午夜视频| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| 99热这里只有是精品50| 中国三级夫妇交换| tube8黄色片| 精品午夜福利在线看| 日韩视频在线欧美| 一本色道久久久久久精品综合| 精品亚洲成国产av| 日韩强制内射视频| 波野结衣二区三区在线| 最近的中文字幕免费完整| 欧美日韩视频精品一区| 99热这里只有是精品50| 天堂8中文在线网| 色网站视频免费| 亚洲欧美一区二区三区国产| 久久久久精品久久久久真实原创| 国产色婷婷99| 啦啦啦中文免费视频观看日本| 久久人妻熟女aⅴ| 韩国高清视频一区二区三区| 色吧在线观看| 91精品一卡2卡3卡4卡| 国精品久久久久久国模美| 你懂的网址亚洲精品在线观看| 少妇人妻精品综合一区二区| 国产伦精品一区二区三区视频9| 欧美97在线视频| 日本av手机在线免费观看| 免费观看av网站的网址| 妹子高潮喷水视频| 日韩中文字幕视频在线看片 | 成人特级av手机在线观看| 伦理电影大哥的女人| av女优亚洲男人天堂| 观看av在线不卡| 成人美女网站在线观看视频| 校园人妻丝袜中文字幕| 男女免费视频国产| 18禁动态无遮挡网站| 一级片'在线观看视频| 久久久久久久久久成人| 日本欧美国产在线视频| 五月伊人婷婷丁香| 久久婷婷青草| 男男h啪啪无遮挡| 久久久亚洲精品成人影院| 九九爱精品视频在线观看| 精品久久久久久久久av| 三级经典国产精品| 午夜激情福利司机影院| 日本wwww免费看| 另类亚洲欧美激情| 亚洲成人手机| 国产极品天堂在线| 乱码一卡2卡4卡精品| 国产精品爽爽va在线观看网站| 性高湖久久久久久久久免费观看| 最近2019中文字幕mv第一页| 久久久成人免费电影| 亚洲欧美成人精品一区二区| 最后的刺客免费高清国语| 亚洲真实伦在线观看| 老女人水多毛片| 综合色丁香网| 纵有疾风起免费观看全集完整版| 晚上一个人看的免费电影| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 欧美精品亚洲一区二区| www.色视频.com| 亚洲国产精品999| 亚洲欧美清纯卡通| 一区在线观看完整版| 精品视频人人做人人爽| 嫩草影院入口| 亚洲精品,欧美精品| 一级爰片在线观看| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲av天美| 噜噜噜噜噜久久久久久91| 一级毛片黄色毛片免费观看视频| 干丝袜人妻中文字幕| 午夜激情久久久久久久| 网址你懂的国产日韩在线| 亚洲精品成人av观看孕妇| 最近最新中文字幕免费大全7| 99国产精品免费福利视频| 日本欧美国产在线视频| 精品国产乱码久久久久久小说| 国产av一区二区精品久久 | 久久鲁丝午夜福利片| 乱系列少妇在线播放| 日本vs欧美在线观看视频 | 免费观看a级毛片全部| 大又大粗又爽又黄少妇毛片口| 亚洲aⅴ乱码一区二区在线播放| 亚洲激情五月婷婷啪啪| 观看免费一级毛片| 一区二区三区四区激情视频| 久久热精品热| 精品亚洲成国产av| av国产精品久久久久影院| 亚洲激情五月婷婷啪啪| 丝袜喷水一区| 久久6这里有精品| freevideosex欧美| 一级爰片在线观看| 美女福利国产在线 | 老司机影院成人| 亚洲av成人精品一二三区| 欧美老熟妇乱子伦牲交| 五月天丁香电影| 亚洲国产av新网站| 国产精品国产av在线观看| 国产亚洲精品久久久com| 男女下面进入的视频免费午夜| 亚洲精品一二三| 热99国产精品久久久久久7| 婷婷色综合大香蕉| 18+在线观看网站| 毛片女人毛片| 亚洲欧美成人综合另类久久久| 久久av网站| 国产精品久久久久成人av| 欧美日韩精品成人综合77777| 国产又色又爽无遮挡免| 日本欧美国产在线视频| 草草在线视频免费看| 人人妻人人爽人人添夜夜欢视频 | 国产精品蜜桃在线观看| 国产视频首页在线观看| 三级国产精品欧美在线观看|