• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    陽極氧化鋁模板法可控制備金屬納米線和納米管陣列的生長機(jī)制

    2010-12-12 02:46:14郭元元毛曉波蔣月秀楊延蓮
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:化學(xué)系廣西大學(xué)納米管

    郭元元 汪 明 毛曉波 蔣月秀 王 琛,* 楊延蓮,*

    (1廣西大學(xué)化學(xué)系,南寧 530004; 2國家納米科學(xué)中心,北京 100190)

    In recent years,one dimensional(1D)nanostructured materials, including nanowires,nanotubes,and nanorods,have attracted considerable attention because of their novel physical properties and potential applications in nanodevices,such as carbon[1-2], metals[3-5],metal sulfides[6-7],metal hydroxide[8],metal oxides[9-10], polymers[11],and some organic molecules[12-13].A variety of strategies,such as direct catalyzed growth,templated growth,and self-assembly and so on,have been utilized for successful fabri-cation of 1D nanomaterials[14-16].Among these methods,the templated synthesis of 1D nanomaterials using the anodic aluminum oxide(AAO)is an effective venue for fabricating nanotubes and nanowires of metals,metal oxides,fullerenes,organic molecules[17-19],as well as metallic 1D nanomaterials[20-22].The well-defined length and diameter of the AAO channels facilitate controlled fabrication of 1D nanostructures.Chemical replacement[23],chemical infiltration[24],chemical vapor deposition(CVD)[25],and electrochemical deposition[26-27]have been utilized for preparation of 1D nanomaterials within the porous alumina template.Among these techniques,electrodeposition method was widely used for preparing metallic and semiconducting nanowires,such as Ni, Cu,Au,Ag,bimetallic nanowire junctions for magnetic,catalytic applications[28-29].It could be noted that metal nanotubes are considered very promising for high performance catalysts[30-31],highly sensitive gas sensors[31-33],and up-conversion non-linear optics[34], etc.Thus,many efforts have been put into the controlled synthesis of metal nanotubes.As a general approach to fabricate well-defined metal nanotubes,the inner surfaces of the AAO channels are usually chemically modified with suitable functional groups-molecular anchors[35-36],so that the electrodeposited metal atoms can bind to the nanopore walls to form nanotubes. A number of metallic nanotubes have been successfully synthesized by this method,while the unavoidable organic impurities introduced from the chemical modification process limited its applications[37-38].Metal nanotubes can also be obtained by controlling the thickness of the electrode film for preventing the pores from being blocked[39-40]and followed by electrodeposition of the metals[41].The fabrication via multi-step template replication and electrodeposition approach was also reported to get metal nanotube array[42].

    Fundamentally the growth of metal nanotubes and nanowires is governed by the electrochemical deposition process and the concentration diffusion of the metal ions.The understanding of the growth mechanism would benefit the controlled fabrication of desired metal nanostructures for specific applications.Some reports have attributed the nanotube growth to the well-known tip effect[43-44].Recently,Yoo et al.[20]proposed the bottom-up and the wall-up growth modes to describe the metal nanotube formation,and also reported the preparation of Pt and Pd nanotubes by a wall-up growth mechanism at high current density.Cao et al.[45]also reported the controlled preparation of metal(Fe,Co, Ni)nanotube arrays and proposed a mechanism of competitive growth rates along two directions:parallel to and perpendicular to the current direction.The mechanisms proposed by Yoo[20]and Cao[45]et al.can be considered principally the same.In addition,Chowdhury et al.[46]put forward the mechanism related to overpotential increase by gas evolution for the central portion shielding and thus the promotion of the reaction at the sides of the porous templates.Common to these studies is that the nanotube formation is dependent on the different growth rates of the metal along the wall surface(Vw)and from the central bottom of the nanochannels(Vb),while systematic studies are still needed to fully understand the growth mechanisms which are critical for controlled growth of nanowires and nanotubes.In this work,we examined the controllable synthesis of Ni nanowires and nanotubes by electrodeposition method using AAO as template. Based on the systematic studies,mechanisms for the nanowire and nanotube growth were proposed.

    1 Experimental

    1.1 Templated electrodeposition

    The AAO templates used in our experiments were purchased from Whatman Company(Anodisc 47,200 nm in nominal pore diameter and 60 μm in thickness).The electrodeposition was carried out with the constant potential mode in a conventional three-electrode electrochemical cell.Before the electrodeposition,Au film was first deposited as an electrode on one side of the AAO membrane using a vacuum evaporation apparatus and a small portion of the inside channels were filled to shape a bowl-like structure[4,43].AAO template coated by Au layer,a piece of platinum plate(ca 1.0 cm2),and a calomel electrode were used as the working,counter,and reference electrodes,respectively. All the electrodeposition experiments were performed at room temperature and the deposition time was kept constant at 1000 s.

    The electrochemical deposition was conducted in aqueous solutions containing NiSO4·6H2O(AR),ethylenediaminetetraacetic acid(EDTA,AR),NaOH(AR),and K2HPO4(AR).The concentration of EDTA was two times higher than that of the Ni2+ions.The concentration of K2HPO4was kept constant at 20 g·L-1and the pH values were adjusted by NaOH to 11 for the solutions with EDTA.All the solutions were prepared with ultrapure Milli Q water(resistivity≥18 MΩ·cm).The electrodeposition was performed at room temperature and the detailed electrodeposition conditions are shown in Table 1.

    1.2 Characterization of Ni nanowires or nanotubes

    After electrodeposition,the AAO templates were removed by immersion in 2 mol·L-1NaOH solutions at 25℃for 2 h.Then,the as-prepared samples were thoroughly rinsed with distilled water and subsequently dried in air.Scanning electron microscopic(SEM)characterizations of the products were performed on a Hitachi S-3400N SEM apparatus.For transmission electron microscopic(TEM)characterizations,the samples were subjected to ultrasonic treatment in ultrapure water for 1 min,then a drop of suspension was dipped on the carbon-coated copper grid.All TEM characterizations were performed on an FEI TEM(Tecnai G2 20)at an accelerating voltage of 120 kV.X-ray photoelectron spectroscopic(XPS)measurements were conducted on an XPS spectrometer(VG Scientific ESCALab 220i-XL)operated at 300 W in vacuum(3×10-7Pa)with a monochromatic Al Kαradiation.The binding energies were corrected for charging by adventitious carbon(C 1s)at 284.8 eV.Curve fitting of the XPS spectra was performed by using XPS PEAK software.

    Table 1 Electrodeposition conditions for preparing Ni nanotubes and nanowires

    2 Results and discussion

    2.1 Impact of chelating agent EDTA

    Electrodeposition of Ni was conducted with the aid of the AAO template for the preparation of nanowire or nanotube arrays.All the samples were etched using NaOH solution for 2 h to remove the AAO membrane,thus the nanowires or nanotubes can be exposed from the template.The Ni nanowires can be obtained in the solution(the concentration of Ni ions,CNi2+=0.01 mol·L-1)without addition of EDTA at electrodeposition potential Ued=-1.5 V.SEM image in Fig.1(a)shows highly ordered Ni nanowire arrays with uniform structures in large area.The average diameter of the Ni nanowires is about 200 nm which resembles the pore diameter of the AAO template(200 nm).Upon the introduction of EDTA,nanotube arrays could be obtained with the same CNi2+(0.01 mol·L-1)and the same Ued(-1.5 V).SEM image in Fig.1(b)reveals the typical morphology of the highly ordered Ni nanotube arrays with clear open ends.The outer diameters of the nanotubes were around 200 nm(nearly the same as the pore diameter of the AAO template)and the inner diameters were around 140-160 nm.In other words,the thickness of nanotube walls was about 20-30 nm.The length of the nanotubes and nanowires could reach about 20 μm in 1000 s.

    Fig.1 SEM images of Ni nanowire and nanotube arrays without and with EDTA(a)top view of the Ni nanowires deposited from the solution with CNiSO4=0.01 mol·L-1at Ued=-1.5 V;(b)top view of the Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1at Ued=-1.5 V(sample 2)

    The conversion of the nanowire to nanotube morphology with the introduction of the EDTA into the solution demonstrated the impact of the coordination ion on the eletrodeposition mechanisms.The growth of nanowires and nanotubes can be viewed as a balance between two dominated growth rates,Vwand Vb. The bottom-up and the wall-up growth modes proposed by Yoo et al.[20],and the current-directed tubular growth(CDTG)mechanisms proposed by Cao et al.[45],have revealed the relationship between the morphologies of the 1D nanomaterials and the current densities at different locations.However,the underlying mechanism for the relationship of the current densities and the growth rates is still need to be clarified.In the reduction process of nickel ions,nanotubes can be obtained if Vw>Vb.It should be noted that both Vwand Vbcould be affected by the introduction of the chelating agent EDTA,and the well-known tip growth effect should be also taken into account.The electrochemical deposition process of Ni with EDTA can be divided into three steps as following.

    a)The coordination of Ni2+with EDTA.There are seven forms for EDTA in solution(H6Y2+,H5Y+,H4Y,H3Y-,H2Y2-,HY3-, Y4-)and their populations are dependent on the solution acidity. The complex NiY2-is the compound with the highest population when pH>10.The chelation and the dissociation balance of the complex can be described as below.

    Ni2++Y4-?NiY2-

    b)The diffusion of NiY2-and Ni2+ions to the surface of the electrode.When the Ni2+was depleted near the working electrode,it will be supplied by the dissociation of NiY2-.The concentration of Ni2+was limited in the range of 10-16mol·L-1,because the stability constant of the complex was 1018and the concentration of Y4-ions was kept in the range of 10-2mol·L-1.

    c)At last,Ni2+receives electrons on the surface of the cathode and forms nanotubes or nanowires.As mentioned above,Au film deposited as a working electrode at the bottom of the AAO membrane with bowl-shaped structures[4,43].Because of the tip effect,the edge tips of the initial bowl-shaped Au electrode give rise to higher electric field,which is electrochemically more active than the smooth surface.Meanwhile,the surface energy of the inner walls of the nanochannels[48]also facilitates the bottom edge of the nanochannels to be a preferential site for the deposition of metal ions.Considering that the effective growth rate is correlated to the effective Ni2+concentration,the addition of EDTA would result in decreased reduction rate of NiY2-compared with that of the Ni2+hydrate.Both Vwand Vbwere greatly reduced by the chelating agent.At this slower reduction rate,the tip effect of the electric field would render the predominance of the higher deposition rate of Vw(Vw>Vb)and finally give rise to the formation of metal nanotubes.On the contrary,both of the growth rates(Vwand Vb)are very fast in the solution without EDTA,so the tip effect could be ignored(Vw≈Vb),thus the nanowires can be obtained.

    2.2 Impact of electrodeposition potential and electrolyte concentration

    The electrodeposition potential is a key factor for the formation of metal nanotubes and nanowires.When other conditions are constant,more negative Ued(higher than the potential for gas evolution)would lead to the higher current density which is keenly related to the growth rates,Vband Vw,thus the final morphology of the 1D metallic nanostructures.Meantime,Uedalso influences the electromigration rate of the NiY2-,which has the opposite direction to the concentration diffusion in the solution.

    In order to further understand the growth mechanism for the formation of metal nanotubes and nanowires,systematic studies were performed under different conditions listed in Table 1.At a higher NiY2-ion concentration(sample 1),Ni nanotubes with thin wall could be gained at more negative Ued=-1.5 V.When the concentration of NiY2-decreases gradually(samples 1-4),at Ued= -1.5 V,the SEM images in Fig.2(a,d,e)clearly illustrate the evolution of the 1D nanomaterials from well-aligned nanotubes in sample 1,to coexistence of nanotubes and nanowires(mainly nanotubes)in sample 3 and finally to coexistence of nanowires and nanotubes(mainly nanowires)in sample 4.In addition,the gradual increase of the nanowire proportions is also accompanied by the gradual increase of the nanotube wall thickness.The TEM image in Fig.2(b)clearly shows the typical hollow structure of the nanotubes(sample 2).The selected-area electron diffraction pattern in Fig.2(c)was acquired from a 200 nm diameter Ni nanotubes in sample 2.The continuous bright rings indicate the polycrystalline structure with face-centered cubic Ni metals,in which the lattice parameters 0.202,0.175,and 0.124 nm correspond to the facets(111),(200),and(220),repectively.Fig.3(a) presents the XPS spectrum of Ni nanotubes,which are fabricated under the condition of sample 2.The binding energy of Ni (metal)is 853.1 eV which is consistent with the reported value inthe reference[49].Three Ni 2p3/2peaks(Ni,Ni(satellite),and NiO) reveal that the Ni nanotubes were mainly composed of metallic Ni.The existence of NiO is unavoidable due to the oxidation of the surface of Ni nanotubes exposed to the air.

    Interestingly,Ni nanowires could be obtained at less negative potential(Ued=-0.5 V,Table 1)in the solutions with higher NiY2-concentrations(samples 5 and 6).Ni nanotubes would gradually appearandcoexistwithNinanowiresinthesolutionwithmedium NiY2-concentration(sample 7).When the concentration of NiY2-was decreased to 0.001 mol·L-1(sample 8),Ni nanotubes became the dominant 1D nanostructures.The SEM images in Fig.4(a,c, d)(samples 5,6,8 correspondingly)present the evolution from Ni nanowires to nanotubes in view of the end features of the 1D nanostructures from flat ends(sample 5),bowl-shaped ends(sample6),toopenends(sample8).Thesolidstructureofthenanowire (sample 5)has also been proved by TEM characterizations(Fig. 4(b)).The XPS spectrum for Ni nanowires in sample 5(Fig.3 (b))shows that the metallic Ni is the main component with the appearanceofNiOascribedtotheoxidationofNiintheair,which is similar to the nanotubes in sample 2(Fig.3(a)).The evolution from nanotubes to nanowires at more negative Uedand from nanowires to nanotubes at less negative Uedindicated the coeffect of the electrolyte concentrations and the electrodeposition potentials.

    2.3 Proposed mechanism for electrodeposition of nanotubes or nanowires

    Fig.2 SEM and TEM images of Ni nanowire and nanotube arrays deposited at Ued=-1.5 V(a)top view of the Ni nanotubes deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1(sample 1),(b)typical TEM image of a piece of Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1(sample 2),(c)selected area electron diffraction pattern acquired from a Ni nanotube with 200 nm diameter(sample 2),(d)top view of the Ni nanotubes(nanowires)deposited from the solution with CNiSO4=0.005 mol·L-1, CEDTA=0.01 mol·L-1,CK2HPO4=20 g·L-1(sample 3),(e)top view of the Ni nanowires(nanotubes)deposited from the solution with CNiSO4=0.001 mol·L-1, CEDTA=0.002 mol·L-1,CK2HPO4=20 g·L-1(sample 4)

    From the systematic studies above,Fig.5(a,b)can be proposed to schematically illustrate the electrodeposition processes in the electrolytes with higher NiY2-ion concentration at Ued=-1.5 V and Ued=-0.5 V.The electromigration of NiY2-ions can be neglected when the NiY2-ion concentration near the working electrode is high enough.The faster reduction rate at more negative Uedwould enhance the tip effect leading to the nanotube formation due to Vw>Vb.The underlying mechanism may be proposed that the bottom and the wall will grow together at beginning, while the faster growth rate will deplete the NiY2-ions in the nanochannels.The shorter distance from the bulk solution to the nanochannels would lead to the faster diffusion of NiY2-ions to the far front ends of the deposited Ni,which renders the dominant tip effect for nanotube growth.When it comes to the solution with the same higher concentration of the NiY2-,while at less negative Ued(-0.5 V,Fig.5(b)),the reduction rate is much slower than that at-1.5 V.The diffusion rate of NiY2-ions from the bulk solution to the nanochannels is high enough to overcome the edge-predominance,which leads to the similar lower growth rates of the wall surface and the bottom (Vw≈Vb).Then the bottom and the wall would grow together and finally result in the formation of nanowire arrays(Fig.5(b)).

    Fig.3 XPS spectra of Ni nanotubes(sample 2)and nanowires(sample 5)(a)Ni 2p3/2peak in the XPS spectrum of Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1at Ued=-1.5 V(sample 2), (b)Ni 2p3/2peak in the XPS spectrum of Ni nanowires deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1at Ued=-0.5 V(sample 5). Curve fitting of the XPS spectra was performed by using XPS PEAK software.The corresponding peaks obtained from the curve fitting are asigned as Ni,Ni(satellite), and NiO,respectively.Full survey XPS spectra for the Ni nanotubes(sample 2)and Ni nanowires(sample 5)can be found in Supporting Information(Fig.S1), which are available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Fig.4 SEM and TEM images of Ni nanowire and nanotube arrays deposited at Ued=-0.5 V(a)top view of the Ni nanowires deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1(sample 5),(b)typical TEM image of a piece of Ni nanowire in sample 5,(c)top view of the Ni nanowires deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1(sample 6), (d)top view of the Ni nanotubes(nanowires)deposited from the solution with CNiSO4=0.001 mol·L-1,CEDTA=0.002 mol·L-1,CK2HPO4=20 g·L-1(sample 8)

    When the concentration of the NiY2-ions is decreased to very low level in Fig.5(c,d)(such as 0.001 mol·L-1),the fabricated nanostructures indicated the opposite trends for nanotube and nanowire compared with those at higher NiY2-ion concentrations,thatisnanowiresat-1.5Vandnanotubesat-0.5V.Besides the Uedmentioned above,the effect of electromigration on the growth rates,Vwand Vb,should also be taken into account at lower diffusion rate.The electromigration of NiY2-ions to the counter electrode and concentration diffusion to the work electrodes can both increase the overpotential for the electrochemical deposition.The increased overpotential could lead to the decrease of the Vwand the Vb.The reduction rate of the Ni2+is relatively faster at more negative Ued(Fig.5(c),such as-1.5 V),while the lower diffusion rate of the NiY2-ions would largely reduce the deposition rate.So the similar growth rate of the wall and the bottom Vw≈Vbwould be obtained for the nanowire formation. We believe that the similar growth rates at middle level in cases of Fig.5(b,c)give rise to the similar results,which is originated from the balance between the potential effect and the concentration effect.At less negative Ued(-0.5 V),the reduction rate of Ni2+should be very low at lower concentration of the NiY2-ions.The less influence of the NiY2-electromigration and the very low reduction rate make the diffusion of the NiY2-ions sufficient enough.The Ni2+ions on the edge can be supplemented in time and adsorbed on the edge preferentially.As the result,the Vwis relatively higher than the Vb,which leads to the final nanotube formation.

    Fig.5 Schematic diagrams of the growth processes of Ni nanotubes and nanowires at different electrodeposition conditions(a)and(b)are schematic diagrams of the growth processes of nanotubes at Ued=-1.5 V and nanowires at Ued=-0.5 V in the electrolytes with higher NiY2-concentrations, respectively,(c)and(d)are schematic diagrams of the growth processes of nanowires at Ued=-1.5 V and nanotubes at Ued=-0.5 V in the electrolytes with lower NiY2-concentrations,respectively.The dashed arrows represent the electromigration direction of NiY2-and their lengths show the different electromigration rates.The solid arrows represent the concentration diffusion direction of NiY2-.

    Based on the above mentioned mechanism,Cu nanotube and nanowire arrays have also been fabricated at higher electrolyte concentration with more negative Ued(Fig.S2,which is available free of charge via the internet at http://www.whxb.pku.edu.cn). The nanowires can be obtained without the introduction of the chelating agent EDTA,while the nanotube arrays can be obtained with EDTA.The common mechanism for 1D nanostructure growth of Ni and Cu indicates that it could be a general strategy for growth of metal nanotubes and nanowires.The controlled preparation of Au(Fig.S3)and Co(Fig.S4)(which are available free of charge via the internet at http://www.whxb.pku.edu.cn) nanotube arrays at the similar electrodeposition conditions with the chelating agent(EDTA)confirms the possible application of this mechanism in fabrication of other 1D metal nanomaterials.

    3 Conclusions

    In summary,controlled synthesis of Ni nanotube and nanowire arrays can be obtained by electrodeposition using AAO template. Both nanotubes and nanowires can be readily achieved by varying the electrodeposition potential and the concentration of NiY2-.The detailed growth mechanism for metal nanotubes and nanowires was proposed based on systematic studies.The crucial contributing factors of the chelating agent,the electrodeposition potential,the concentration of the NiY2-,and the electromigration were all taken into account for clarification of the growth process.This method could be applicable to fabrication of other metal nanotubes and nanowires,which has high potetials for applications in nanocatalyses,chemical sensors,and nanoscale electronic and magnetic devices.

    Acknowledgment: The authors would like to thank Dr.ZHONG Liang-Shu and Dr.LIANG Han-Pu at the Institute of Chemistry,Chinese Academy of Sciences for helpful discussion in electrodeposition experiments.

    1 Iijima,S.Nature,1991,354:56

    2 Li,Y.L.;Kinloch,A.;Windle,A.H.Science,2004,304:276

    3 Wirtz,M.;Martin,C.R.Adv.Mater.,2003,15:455

    4 Zhang,X.Y.;Zhang,L.D.;Lei,Y.;Zhao,L.X.;Mao,Y.Q. J.Mater.Chem.,2001,11:1732

    5 Hong,B.H.;Bae,S.C.;Lee,C.W.;Jeong,S.;Kim,K.S.Science, 2001,294:348

    6 Chen,J.;Tao,Z.;Li,S.Angew.Chem.Int.Edit.,2003,42:2147

    7 Xu,D.S.;Xu,Y.J.;Chen,D.P.;Guo,G.L.;Gui,L.L.;Tang,Y. Q.Chem.Phys.Lett.,2000,325:340

    8 Zhang,W.;Wen,X.;Yang,S.;Berta,Y.;Wang,Z.L.Adv.Mater., 2003,15:822

    9 Yan,C.;Xue,D.Adv.Mater.,2008,20:1055

    10 Huang,B.H.;Shen,P.Y.;Chen,S.Y.Nanoscale Res.Lett.,2009, 4:503

    11 Xiao,R.;Cho II,S.;Liu,R.;Lee,S.B.J.Am.Chem.Soc.,2007, 129:4483

    12 Lu,Q.;Gao,F.;Komarneni,S.;Mallouk,T.E.J.Am.Chem.Soc., 2004,126:8650

    13 Matsumoto,F.;Nishio,K.;Masuda,H.Adv.Mater.,2004,16: 2105

    14 Korgel,B.A.;Fitzmaurice,D.Adv.Mater.,1998,10:661

    15 Wang,M.H.;Li,Y.J.;Xie,Z.X.;Liu,C.;Yeung,E.S.Mater. Chem.Phys.,2010,119:153

    16 Gao,P.;Cai,Y.G.ACS Nano,2009,3:3475

    17 Xiao,Z.L.;Han,C.Y.;Welp,U.;Wang,H.H.;Kwok,W.K.; Hiller,J.M.;Cook,R.E.;Miller,D.J.;Crabtree,G.W.Nano Lett., 2002,2:1293

    18 Martin,C.R.Science,1994,266:1961

    19 Gao,H.;Mu,C.;Wang,F.;Xu,D.S.;Wu,K.;Xie,Y.C.;Liu,S.; Wang,E.G.;Xu,J.;Yu,D.P.J.Appl.Phys.,2003,93:5602

    20 Yoo,W.C.;Lee,J.K.Adv.Mater.,2004,16:1097

    21 Wang,Y.;Wu,K.J.Am.Chem.Soc.,2005,127:9686

    22 Qu,L.T.;Shi,G.Q.;Wu,X.F.;Fan,B.Adv.Mater.,2004,16: 1200

    23 Yan,C.;Xue,D.Electrochem.Commun.,2007,9:1247

    24 Wang,Y.;Lee,J.Y.;Zeng,H.C.Chem.Mater.,2005,17:3899

    25 Franklin,N.;Dai,H.Adv.Mater.,2000,12:890

    26 Routkevitch,D.;Bigioni,T.;Moskovits,M.;Xu,J.M.J.Phys. Chem.,1996,100:14037

    27 Kamalakar,M.V.;Raychaudhuri,A.K.Adv.Mater.,2008,20:149

    28 Wang,H.;Xu,C.W.;Cheng,F.L.;Jiang.S.P.Electrochem. Commun.,2007,9:1212

    29 Liang,H.P.;Guo,Y.G.;Hu,J.S.;Zhu,C.F.;Wan,L.J.;Bai,C. L.Inorg.Chem.,2005,44:3013

    30 Yang,L.X.;He,D.M.;Cai,Q.Y.J.Phys.Chem.C,2007,111: 8214

    31 Han,C.H.;Hong,D.W.;Kima,I.J.;Gwak,J.;Han,S.D.;Singh, K.C.Sens.Actuators B,2007,128:320

    32 Andzelm,J.;Govind,N.;Maiti,A.Chem.Phys.Lett.,2006,421:58

    33 Sadrzadeh,A.;Farajian,A.A.;Yakobson,B.I.Appl.Phys.Lett., 2008,92:022103

    34 Schider,G.;Krenn,J.R.;Gotschy,W.;Lamprecht,B.;Ditlbacher, H.;Leitner,A.;Aussenegg,F.R.J.Appl.Phys.,2001,90:3825

    35 Lee,W.;Scholz,R.;Lee,N.K.W.;Scholz,R.;Nielsch,K.;Gosele, U.Angew.Chem.Int.Edit.,2005,44:6050

    36 Bao,J.;Tie,C.;Xu,Z.;Zhou,Q.;Shen,D.;Ma,Q.Adv.Mater., 2001,13:1631

    37 Levina,L.;Sukhovatkin,V.;Musikhin,S.;Cauchi,S.;Nisman,R.; Bazett-Jones,D.P.;Sargent,E.H.Adv.Mater.,2005,17:1854

    38 Nanda,K.K.;Kruis,F.E.;Fissan,H.Nano Lett.,2001,1:605

    39 Li,L.;Pan,S.S.;Dou,X.C.;Zhu,Y.G.;Huang,X.H.;Yang,Y. W.;Li,G.H.;Zhang,L.D.J.Phys.Chem.C,2007,111:7288

    40 Zhang,X.Y.;Wang,H.T.;Bourgeois,L.;Pan,R.J.;Zhao,D.Y.; Webley,P.A.J.Mater.Chem.,2008,18:463

    41 Fu,J.;Cherevko,S.;Chung,C.H.Electrochem.Commun.,2008, 10:514

    42 Mu,C.;Yu,Y.X.;Wang,R.M.;Wu,K.;Xu,D.S.;Guo,G.L. Adv.Mater.,2004,16:1550

    43 Huang,C.W.;Hao,Y.W.Nanotechnology,2009,20:445607

    44 Liu,L.F.;Zhou,W.Y.;Xie,S.S.;Song,L.;Luo,S.D.;Liu,D.F.; Shen,J.;Zhang,Z.X.;Xiang,Y.J.;Ma,W.J.;Ren,Y.;Wang,C. Y.;Wang,G.J.Phys.Chem.C,2008,112:2256

    45 Cao,H.Q.;Wang,L.D.;Qiu,Y.;Wu,Q.Z.;Wang,G.Z.;Zhang, L.;Liu,X.W.ChemPhysChem,2006,7:1500

    46 Chowdhury,T.;Casey,D.P.;Rohan.J.F.Electrochem.Commun., 2009,11:1203

    47 Lahav,M.;Sehayek,T.;Vaskevich,A.;Rubinstein,I.Angew. Chem.Int.Edit.,2003,42:5576

    48 Liu,F.;Zhao,Z,J.;Qiu,L,M.;Zhao,L,Z.Anal.Test.Technol. Instrum.,2009,15:1

    猜你喜歡
    化學(xué)系廣西大學(xué)納米管
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    廣西大學(xué)為畢業(yè)生制作今昔對比照
    廣西大學(xué)廣西創(chuàng)新發(fā)展研究院簡介
    金色年華(2017年11期)2017-07-18 11:08:44
    廣西大學(xué)學(xué)報(bào)(自然科學(xué)版)2016年第41卷總目次
    權(quán)力控制:權(quán)力清單制度背后的公法思維
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    免费一级毛片在线播放高清视频| 欧美+日韩+精品| 1024手机看黄色片| 97热精品久久久久久| 丰满乱子伦码专区| 国产黄a三级三级三级人| 精品午夜福利在线看| 亚洲av.av天堂| 看非洲黑人一级黄片| av国产免费在线观看| 搡老岳熟女国产| av天堂在线播放| 1000部很黄的大片| 三级国产精品欧美在线观看| 欧美日韩综合久久久久久| 成人高潮视频无遮挡免费网站| 丝袜喷水一区| 午夜福利成人在线免费观看| 干丝袜人妻中文字幕| 国产人妻一区二区三区在| 日韩 亚洲 欧美在线| 美女 人体艺术 gogo| 一级黄片播放器| 久久精品国产亚洲网站| 麻豆乱淫一区二区| 麻豆av噜噜一区二区三区| 欧美丝袜亚洲另类| 久久精品夜色国产| 久久久国产成人精品二区| 啦啦啦啦在线视频资源| 99热这里只有是精品在线观看| 99热6这里只有精品| 秋霞在线观看毛片| 又爽又黄无遮挡网站| 蜜桃亚洲精品一区二区三区| 日本黄色片子视频| 99久国产av精品| 国产精品永久免费网站| 亚洲第一电影网av| 99热这里只有是精品50| 中文字幕免费在线视频6| 亚洲国产色片| 国产麻豆成人av免费视频| 啦啦啦啦在线视频资源| 欧美极品一区二区三区四区| 欧美成人免费av一区二区三区| 久久精品国产99精品国产亚洲性色| 最近的中文字幕免费完整| 免费在线观看成人毛片| 老司机午夜福利在线观看视频| 成熟少妇高潮喷水视频| 亚洲人成网站在线播| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕大全电影3| 最近最新中文字幕大全电影3| 国内精品久久久久精免费| 美女被艹到高潮喷水动态| 国产精品电影一区二区三区| 又爽又黄a免费视频| 久久久久久久亚洲中文字幕| 亚洲av电影不卡..在线观看| 人妻久久中文字幕网| 国产aⅴ精品一区二区三区波| 久久人妻av系列| 看片在线看免费视频| 久久久欧美国产精品| 久久久久免费精品人妻一区二区| 国产亚洲精品综合一区在线观看| 亚洲欧美成人精品一区二区| 久久鲁丝午夜福利片| 国产精品1区2区在线观看.| 免费无遮挡裸体视频| 99视频精品全部免费 在线| 亚洲第一区二区三区不卡| 12—13女人毛片做爰片一| 亚洲激情五月婷婷啪啪| 蜜臀久久99精品久久宅男| 男女下面进入的视频免费午夜| 日韩欧美一区二区三区在线观看| 亚洲av免费在线观看| 91久久精品国产一区二区三区| 18禁在线播放成人免费| 久久午夜福利片| 中国美女看黄片| 毛片女人毛片| 久久久国产成人精品二区| 99热这里只有精品一区| 精品人妻一区二区三区麻豆 | 18+在线观看网站| 中国美白少妇内射xxxbb| 白带黄色成豆腐渣| .国产精品久久| 精品人妻偷拍中文字幕| 日本免费一区二区三区高清不卡| 国内精品美女久久久久久| 国产精品99久久久久久久久| 日日摸夜夜添夜夜添av毛片| 成人鲁丝片一二三区免费| 国产亚洲欧美98| 欧洲精品卡2卡3卡4卡5卡区| 日本三级黄在线观看| 淫妇啪啪啪对白视频| 联通29元200g的流量卡| 少妇的逼水好多| 欧美绝顶高潮抽搐喷水| 亚洲专区国产一区二区| 成人av一区二区三区在线看| 日日啪夜夜撸| 丰满的人妻完整版| 成年女人永久免费观看视频| а√天堂www在线а√下载| 日本欧美国产在线视频| 乱系列少妇在线播放| 亚洲一区高清亚洲精品| 亚洲图色成人| 欧美潮喷喷水| 欧美日本视频| 黄色日韩在线| 国产乱人视频| 最好的美女福利视频网| 精华霜和精华液先用哪个| 精品一区二区免费观看| 成人特级av手机在线观看| 免费人成视频x8x8入口观看| 人妻少妇偷人精品九色| 午夜福利成人在线免费观看| av在线老鸭窝| 国产伦一二天堂av在线观看| 寂寞人妻少妇视频99o| 国产蜜桃级精品一区二区三区| 免费大片18禁| 久久久久九九精品影院| 欧美色视频一区免费| 国产v大片淫在线免费观看| 亚洲av成人精品一区久久| 亚洲成av人片在线播放无| h日本视频在线播放| 久久欧美精品欧美久久欧美| 草草在线视频免费看| 99在线人妻在线中文字幕| 欧美在线一区亚洲| 简卡轻食公司| 又爽又黄a免费视频| 国产精品不卡视频一区二区| .国产精品久久| 啦啦啦韩国在线观看视频| 草草在线视频免费看| 国产爱豆传媒在线观看| 欧美区成人在线视频| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 国产精品久久视频播放| 国产精品一区www在线观看| 91精品国产九色| 精品国内亚洲2022精品成人| 老熟妇乱子伦视频在线观看| 我的老师免费观看完整版| 国产精品无大码| 丰满人妻一区二区三区视频av| 最近视频中文字幕2019在线8| 国产欧美日韩一区二区精品| 老司机影院成人| 美女 人体艺术 gogo| 99久国产av精品| 亚洲人成网站高清观看| 色5月婷婷丁香| 人妻夜夜爽99麻豆av| 看非洲黑人一级黄片| 亚洲国产欧美人成| 国产成人影院久久av| 三级毛片av免费| 日本三级黄在线观看| 少妇的逼水好多| 午夜福利在线观看免费完整高清在 | 在线观看午夜福利视频| 韩国av在线不卡| 老师上课跳d突然被开到最大视频| 欧美日韩国产亚洲二区| 亚洲av二区三区四区| 久久人人精品亚洲av| 国产一区亚洲一区在线观看| 日韩欧美免费精品| 最近2019中文字幕mv第一页| 亚洲图色成人| av在线亚洲专区| av在线蜜桃| 日韩欧美一区二区三区在线观看| 狠狠狠狠99中文字幕| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久丰满| 欧美人与善性xxx| 成人av一区二区三区在线看| 婷婷六月久久综合丁香| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 老师上课跳d突然被开到最大视频| 欧美日韩国产亚洲二区| 国产免费一级a男人的天堂| 精华霜和精华液先用哪个| 久久久久久久午夜电影| 亚洲欧美清纯卡通| 国产黄色视频一区二区在线观看 | 亚洲成人中文字幕在线播放| 国产精品人妻久久久影院| 在线观看午夜福利视频| 精品午夜福利视频在线观看一区| 晚上一个人看的免费电影| 直男gayav资源| 国产伦一二天堂av在线观看| 天天躁夜夜躁狠狠久久av| 一进一出抽搐gif免费好疼| 亚洲美女视频黄频| 男女做爰动态图高潮gif福利片| 99在线人妻在线中文字幕| 性色avwww在线观看| 国产精品久久久久久久久免| 成人美女网站在线观看视频| 一个人看的www免费观看视频| 亚洲精品日韩av片在线观看| 国产一区二区亚洲精品在线观看| 一边摸一边抽搐一进一小说| 蜜桃亚洲精品一区二区三区| 亚洲成av人片在线播放无| 精品熟女少妇av免费看| 欧美bdsm另类| 亚洲av一区综合| 三级毛片av免费| 麻豆一二三区av精品| 1000部很黄的大片| 色吧在线观看| 嫩草影院入口| 成熟少妇高潮喷水视频| 国产伦在线观看视频一区| 日本黄大片高清| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 色视频www国产| 成人精品一区二区免费| 色哟哟哟哟哟哟| 亚洲av免费在线观看| 久久久久国内视频| 干丝袜人妻中文字幕| 日韩成人伦理影院| 久久精品人妻少妇| 久久久精品94久久精品| 乱系列少妇在线播放| 国产在线精品亚洲第一网站| 国产视频一区二区在线看| 久久精品夜夜夜夜夜久久蜜豆| 午夜亚洲福利在线播放| 国产亚洲欧美98| 不卡视频在线观看欧美| 国产精品无大码| 欧美性感艳星| 久久精品久久久久久噜噜老黄 | 麻豆一二三区av精品| 我的老师免费观看完整版| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩卡通动漫| 亚洲精品456在线播放app| 欧美日本视频| 欧美日本亚洲视频在线播放| 久久久久久国产a免费观看| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 精品福利观看| 黄片wwwwww| av在线播放精品| 女人被狂操c到高潮| 尾随美女入室| 人人妻人人澡欧美一区二区| 深爱激情五月婷婷| 97超级碰碰碰精品色视频在线观看| 欧美最黄视频在线播放免费| 亚洲电影在线观看av| 亚洲av.av天堂| 好男人在线观看高清免费视频| 中文字幕免费在线视频6| 亚洲人成网站在线观看播放| 国产爱豆传媒在线观看| 国产国拍精品亚洲av在线观看| 亚洲最大成人手机在线| 国产色爽女视频免费观看| 成人特级黄色片久久久久久久| 黑人高潮一二区| 国产欧美日韩一区二区精品| 亚洲av成人精品一区久久| 国产亚洲精品久久久久久毛片| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 99久久成人亚洲精品观看| 在线a可以看的网站| 亚洲av.av天堂| 好男人在线观看高清免费视频| 99热这里只有是精品50| 午夜福利在线观看免费完整高清在 | 人妻制服诱惑在线中文字幕| 亚洲欧美日韩无卡精品| 一个人免费在线观看电影| 欧美3d第一页| 欧美+日韩+精品| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 秋霞在线观看毛片| 成人美女网站在线观看视频| 两个人的视频大全免费| 丰满乱子伦码专区| 色视频www国产| 亚洲欧美日韩东京热| 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| 插逼视频在线观看| 免费电影在线观看免费观看| 97热精品久久久久久| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 床上黄色一级片| 久久99热6这里只有精品| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| 美女内射精品一级片tv| 真实男女啪啪啪动态图| 日本成人三级电影网站| 国产精品,欧美在线| 国产真实乱freesex| 国产伦一二天堂av在线观看| 色综合亚洲欧美另类图片| 久久国内精品自在自线图片| 亚洲精品乱码久久久v下载方式| 一个人观看的视频www高清免费观看| 美女cb高潮喷水在线观看| 亚洲av中文字字幕乱码综合| 成人国产麻豆网| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 亚洲av熟女| 91在线观看av| 国内揄拍国产精品人妻在线| 最近在线观看免费完整版| 韩国av在线不卡| 最新在线观看一区二区三区| 内射极品少妇av片p| 精品一区二区免费观看| 99久国产av精品国产电影| 亚洲中文日韩欧美视频| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 中文字幕久久专区| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频 | 久久99热这里只有精品18| 午夜精品在线福利| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 色尼玛亚洲综合影院| 永久网站在线| 听说在线观看完整版免费高清| 成年女人毛片免费观看观看9| 色综合色国产| 亚洲av成人av| 麻豆精品久久久久久蜜桃| 变态另类成人亚洲欧美熟女| 国产成人福利小说| 又爽又黄无遮挡网站| 全区人妻精品视频| 激情 狠狠 欧美| 亚洲美女搞黄在线观看 | av卡一久久| 国产av麻豆久久久久久久| 亚洲精品一区av在线观看| 在线观看午夜福利视频| 国产av麻豆久久久久久久| www日本黄色视频网| 一本久久中文字幕| 久久亚洲国产成人精品v| avwww免费| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看| 搡女人真爽免费视频火全软件 | 99久久成人亚洲精品观看| ponron亚洲| 国产黄色小视频在线观看| 别揉我奶头~嗯~啊~动态视频| 内射极品少妇av片p| 搡女人真爽免费视频火全软件 | 又黄又爽又刺激的免费视频.| 天天躁夜夜躁狠狠久久av| 六月丁香七月| 欧美潮喷喷水| 精品久久久久久久久亚洲| 国内精品宾馆在线| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片| 国产麻豆成人av免费视频| 亚洲av二区三区四区| 淫秽高清视频在线观看| 久久精品国产鲁丝片午夜精品| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 日韩欧美在线乱码| 国产一区二区在线观看日韩| 久久久国产成人免费| 免费无遮挡裸体视频| 久久久久久久午夜电影| 中出人妻视频一区二区| 国产成人精品久久久久久| 日韩强制内射视频| 欧美国产日韩亚洲一区| 日日啪夜夜撸| 少妇猛男粗大的猛烈进出视频 | 国产精品女同一区二区软件| 成年av动漫网址| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| av在线亚洲专区| 亚洲av成人av| 如何舔出高潮| 国产高清视频在线播放一区| 69av精品久久久久久| 成人综合一区亚洲| 婷婷六月久久综合丁香| 久久久国产成人免费| 亚洲专区国产一区二区| 色综合站精品国产| 直男gayav资源| 日产精品乱码卡一卡2卡三| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av香蕉五月| 一本一本综合久久| 少妇熟女aⅴ在线视频| 日本精品一区二区三区蜜桃| 亚洲欧美精品综合久久99| 天天躁夜夜躁狠狠久久av| 18禁在线无遮挡免费观看视频 | 日韩三级伦理在线观看| 女人被狂操c到高潮| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人| 麻豆一二三区av精品| 国产蜜桃级精品一区二区三区| 中出人妻视频一区二区| 亚洲激情五月婷婷啪啪| 中国美女看黄片| 亚洲无线观看免费| 精品久久国产蜜桃| 亚洲不卡免费看| 2021天堂中文幕一二区在线观| 99久久精品国产国产毛片| 色综合色国产| 免费大片18禁| 99热精品在线国产| 国产av在哪里看| 精品一区二区三区人妻视频| 欧美性猛交╳xxx乱大交人| 成人综合一区亚洲| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频 | 国产精品一及| 欧美中文日本在线观看视频| 国产一级毛片七仙女欲春2| 久久人人爽人人爽人人片va| 少妇熟女欧美另类| 亚洲人成网站在线播放欧美日韩| 国产成人91sexporn| 亚洲人与动物交配视频| 精品熟女少妇av免费看| 天天躁日日操中文字幕| 欧美+日韩+精品| 一级毛片电影观看 | 日韩中字成人| 99热全是精品| 久久久久久九九精品二区国产| 亚洲精品国产av成人精品 | 综合色丁香网| 午夜免费男女啪啪视频观看 | 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 99久国产av精品国产电影| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 亚洲成av人片在线播放无| 天堂√8在线中文| 国产成人a区在线观看| 久久久久久久久大av| 午夜福利成人在线免费观看| 久久人人精品亚洲av| 亚洲国产精品成人久久小说 | 日本黄大片高清| 国产精品久久久久久av不卡| 日本熟妇午夜| 超碰av人人做人人爽久久| 日韩在线高清观看一区二区三区| 天堂√8在线中文| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 日韩,欧美,国产一区二区三区 | 网址你懂的国产日韩在线| 日本免费a在线| 久久久欧美国产精品| 精品久久久久久久久av| 日本一本二区三区精品| 国产精品久久久久久精品电影| 欧美另类亚洲清纯唯美| www日本黄色视频网| 成人鲁丝片一二三区免费| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验 | 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 亚洲国产精品国产精品| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩av片在线观看| 久久人人爽人人片av| 亚洲精品在线观看二区| 人妻少妇偷人精品九色| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 亚洲第一区二区三区不卡| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 欧美色视频一区免费| 日韩人妻高清精品专区| 久久人人爽人人片av| 欧美日韩在线观看h| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| 最近最新中文字幕大全电影3| 黑人高潮一二区| 欧美一级a爱片免费观看看| 国产私拍福利视频在线观看| 久久久a久久爽久久v久久| 免费不卡的大黄色大毛片视频在线观看 | 床上黄色一级片| 亚洲三级黄色毛片| 国产成人福利小说| 真人做人爱边吃奶动态| 精品久久国产蜜桃| 中文字幕av在线有码专区| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| 免费观看人在逋| 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久| 欧美区成人在线视频| 春色校园在线视频观看| 99视频精品全部免费 在线| 久久天躁狠狠躁夜夜2o2o| .国产精品久久| 插阴视频在线观看视频| 永久网站在线| 简卡轻食公司| 久久久午夜欧美精品| 欧美丝袜亚洲另类| 久久欧美精品欧美久久欧美| 色视频www国产| 少妇丰满av| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 淫妇啪啪啪对白视频| 国产成人福利小说| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 97超碰精品成人国产| 听说在线观看完整版免费高清| 在线播放无遮挡| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| av.在线天堂| 成人av在线播放网站| 91午夜精品亚洲一区二区三区| 在线看三级毛片| 一级a爱片免费观看的视频| 内地一区二区视频在线| 精品乱码久久久久久99久播| 成人一区二区视频在线观看| 国产精品三级大全| 久久亚洲国产成人精品v| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 男人的好看免费观看在线视频| 亚洲中文字幕一区二区三区有码在线看| 乱系列少妇在线播放| 日产精品乱码卡一卡2卡三| 亚洲一区高清亚洲精品| 国产不卡一卡二| 久久人妻av系列| 精品久久国产蜜桃| 欧美日韩国产亚洲二区| 免费搜索国产男女视频| 亚洲电影在线观看av| 熟女人妻精品中文字幕| 婷婷精品国产亚洲av在线| 人妻久久中文字幕网| 国产成年人精品一区二区| 国产精品野战在线观看| 乱人视频在线观看| 白带黄色成豆腐渣|