• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    混合量子-經(jīng)典方法計算電荷轉移速率及其在實際體系中的應用

    2010-12-12 02:45:02南廣軍鄭仁慧帥志剛
    物理化學學報 2010年7期
    關鍵詞:中國科學院研究所分子

    南廣軍 鄭仁慧 史 強,* 帥志剛

    (1中國科學院化學研究所,分子動態(tài)與穩(wěn)態(tài)結構國家重點實驗室,北京分子科學國家實驗室,北京 100190; 2哈爾濱工業(yè)大學基礎與交叉科學研究院理論與模擬化學研究所,哈爾濱 150080; 3中國科學院化學研究所,有機固體院重點實驗室,北京分子科學國家實驗室,北京 100190;4清華大學化學系,北京 100084)

    Considerable progresses have been made recently in methods to rigorously calculate quantum dynamics in multi-dimensional systems[1-5].However,applications of these exact methods are still limited,and approximate methods are of great interest.In particular,various mixed quantum-classical methods have been developed.The strategy of the mixed quantum-classical methods is to describe the slow nuclear dynamics by classical mechanics while retaining quantum description for the fast electronic(or light weighted atomic)degrees of freedom(DoFs).Equations of motion for the quantum and classical DoFs are coupled together: the motion of the classical DoFs results in a time-dependent quantum Hamiltonian,while at the same time,evolution of the quantum DoFs alters the forces acting on the classical ones.A critical challenge in developing mixed quantum-classical methods is to properly treat the coupled motion of the quantum and classical DoFs.Different approaches have been developed to simulate the mixed quantum-classical dynamics,among which the most commonly used methods are the Ehrenfest method[6-8], the surface hopping(SH)method[9-16],and the more recently developed mixed quantum-classicalLiouville(MQCL)method[17-22].

    In both the Ehrenfest and SH methods,dynamics of the quantum subsystem is propagated fully coherently under the influence of a classical trajectory,which is sampled from a classical or quasi-classical initial distribution.However,the back-reaction to the classical dynamics is treated differently in these two methods.In the Ehrenfest method,the classical DoFs evolve on a mean field potential energy surface calculated from the expectation value of the electronic-nuclear potential energy with respect to the time-dependent quantum wave function.In the SH method,the classical DoFs move on a fixed potential surface at a given time,with localized(instantaneous)transitions between different potential surfaces using a transition probability determined by the motion of the quantum subsystem.In the MQCL method,the mixed quantum-classical dynamics is first formulated in the form of coupled Liouville equations,various propagation schemes are then designed to simulate the dynamics of these phase space equations.

    All these methods have been applied to wide ranges of problems.An interesting and often overlooked problem is the validity of these methods in specific kinds of applications.Berne and coworkers have investigated the applicability of the mixed quantum-classical approaches in calculation of relaxation rate constants[23-25]and vibronic spectra[26-27].In this paper,we perform similar studies in the charge transfer rate calculations by first explicitly deriving the rate constants from the Ehrenfest,SH,and MQCL methods,and then applying them to calculate charge transfer rates in organic semiconductors.The nonadiabatic limit is considered in this study since exact results can be obtained and compared with the mixed quantum-classical approaches.Charge transfer process in organic semiconductors has attracted much theoretical attentions in the emerging field of organic electronics[28-30].We will show that the Ehrenfest and SH methods may fail when high frequency modes are involved,and should be used with caution.The remaining parts of the article are organized as follows.In Sec.1,we present the model Hamiltonian and derive the charge transfer rate expressions in the nonadiabatic limit using the Ehrenfest,SH(in the diabatic representation,see Sec.1.2), and MQCL methods.Numerical results for realistic examples of charge transfer rates in organic semiconductor materials are presented in Sec.2.The reason that the Ehrenfest and SH results deviate from the correct ones is also analyzed.The conclusions are made in Sec.3.

    1 Theory

    We will consider the spin-boson(SB)Hamiltonian[31-32]as a simple model to study charge transfer reactions.The total system and bath Hamiltonian is written as

    where σxand σzare the Pauli matrices,Δ is the electronic matrix element that couples the donor state|1〉and the acceptor state|2〉,ε is the energy difference between the two states.HBand HCare the bath Hamiltonian and the system-bath coupling Hamiltonian,respectively,and can be written as

    Here,pjand xjare the jth mass-weighted nuclear normal momentum and coordinate,respectively,ωjis the frequency of the jth normal mode and cjis the coupling coefficient between the charge and the jth nuclear normal mode.The essential property of the harmonic bath is characterized by its spectral density J(ω), which is defined as

    where ω is electric frequency.The reorganization energy λ can be calculated from J(ω)as

    To calculate the charge transfer rates,we assume that the initial state is equilibrated on the donor state ρ0=e-β(HB-HC)/Z1?|1〉〈1|, where Z1=Tre-β(HB-HC).β=1/(kBT),kBis the Boltzmann constant and T is temperature.We will also consider the nonadiabatic limit where Δ is small,such that,during the establishment of the rate dynamics,the charge population on the donor state is almost unchanged,and a perturbation treatment of Δ can be applied.In the following subsections,we will derive the charge transfer rates for the Ehrenfest,SH,and MQCL methods by treating only the electronic DoFs quantum mechanically.

    For both the Ehrenfest and SH methods,dynamics of the quantum subsystem is governed by a time-dependent Hamiltonian that depends on the classical DoFs.We expand the wave function of the quantum subsystem|ψ(t)〉as

    where a1(t)and a2(t)are the complex-valued expansion coefficients.It is convenient to use the density matrix notation by defining Sx(t)=a1(t)a2(t)*+a1(t)*a2(t),Sy(t)=-i[a1(t)*a2(t)-a1(t)a2(t)*], Sz(t)=a1(t)a1(t)*-a2(t)*a2(t),where Szis the population difference between state|1〉and state|2〉,Sxand Syare two times of the real and imaginary parts of the coherence term between the two states,respectively.The equations of motion can now be written as(for simplicity,we have assumed that ?=1 throughout the paper)

    1.1 The Ehrenfest method

    In the Ehrenfest method,the nuclear potential energy function that determines the classical dynamics is the expectation value of the electronic-nuclear potential energy with respect to the electronic wave function,

    The simultaneous propagation of Eqs.(9-10)and Eqs.(6-8) defines the Ehrenfest method for the SB model.As we have assumed that the initial state is on the donor state,Sx(0)=Sy(0)=0 and Sz(0)=1.In the weak coupling limit and at short time,Sz(t)≈1, and we have

    xj(t)can then be solved from Eqs.(9)and(11)

    where xj0and pj0are the initial coordinate and momentum of the jth bath mode.

    Dynamics of the quantum DoFs can also be calculated analytically.It can be shown that the following equation now provides the solution to Eqs.(6-8)

    such that

    The dynamics of the quantum system can be obtained by averaging over mixed quantum-classical trajectories.

    Now we define P1(t)as the population on the donor state.Since P1(t)≈1 at short time,we can obtain from Eq.(14)that

    where the time dependent rate constant k(t)is as follows,

    Here,the average is taken over the initial probability distribution of the classical DoFs.As time increases,k(t)reaches a plateau, and the electronic dynamics can be described as a rate process. The charge transfer rate can then be obtained by taking t→∞in Eq.(16),when also using the stationary property of HC(t),

    We will use the Wigner transformed distribution to include the quantum effects in the initial sampling[33-36],which is important to account for the quantum zero-point motion for high frequency modes.Since the initial distribution is assumed to be the thermal equilibrium on the donor state,it can be calculated as

    where x0=(x1,x2,…)Tand Δx=(Δx1,Δx2,…)Tare column vectors, respectively.Using the above Eqs.(17-18),

    It should be noted that in calculating linear absorption spectra[25-27],the mixed quantum-classical result can be obtained by taking the classical limit of the full quantum formula.Although a similar route may also be taken here,our derivation above is more direct from the mixed quantum-classical equations when considering the static quantum effects described using the initial distribution Eq.(18).

    1.2 The surface hopping method

    In the SH calculations presented below,the diabatic representation is used.Although the adiabatic representation was often found to be superior in many applications[16],in the case of the nonadiabatic limit for the SB model,the small coupling Δ will cause singularity for the coupling vectors in the adiabatic representation.Instead,the diabatic representation becomes more convenient.

    The equations of motion for the nuclear DoFs on the two different surfaces are found to be

    where+(-)is used for dynamics on the donor(acceptor)surface.

    In the SH method,dynamics of the classical DoFs hops between different electronic surfaces.Different hopping algorithms have been proposed in the literature,among which the“fewest switches”algorithm,suggested by Tully[10,16]has been widely used. According to this algorithm,the probability per unit time of a hop from quantum state|1〉to state|2〉is given by

    Dynamics of the quantum DoFs is the same as that in the Ehrenfestmethod,so we can applyEq.(16)to calculate k(t)forthe SH method.The only difference here is that HC(τ)is now calculated along a“hopping”trajectory that switches between donor and acceptor states.After a short relaxation time,k(t)will reach a plateau,which allows us to calculate the charge transfer rate from the SH method by taking t→∞.

    From Eq.(21),we know that the hopping probability is proportional to Δ2.Such that in the weak electronic coupling limit, the probability for propagation on the acceptor surface is small, and the majority of the trajectories propagates on the donor surface before k(t)reaches the plateau.In such cases,the effect of surface hopping on the trajectory averaging can be neglected, and the SH rate constant is the same as the Ehrenfest result,

    1.3 The MQCL method

    In the mixed quantum-classical Liouville equation method, dynamics of the Wigner transform of the quantum density matrix isfirst obtained usingthe quantum-classicalapproximation[17-18,21-22]. For the SB model,the MQCL equations can be obtained as

    Intheaboveequations,the densitydistribution ρab(x,p)isthe multidimensional Wigner transform of the total density operator ρ:

    where a,b=1,2,denote the electronic states and x=(x1,x2,…)Tand Δx=(Δx1,Δx2,…)Tare column vectors,respectively.

    Eqs.(23-26)are known to be exact for the spin-boson model (e.g.,Refs.[20,37]).However,this set of multi-dimensional coupled partial differential equations is still hard to solve.In the nonadiabatic limit,the MQCL method will give the correct Fermi golden rule(FGR).The following derivation is for the reason of completeness and comparison with the Ehrenfest and SH methods.

    We first define

    then integrate the phase space variables x and p in Eq.(23),

    The perturbation calculation can be performed by setting ρ22and ρ11as their initial values in Eq.(25),ρ12can then be calculated using classical trajectory method,

    The initial distribution is taken from Eq.(18),while the dynamics is on the average surface,

    Assuming that P1(t)≈1 when the plateau is reached,by combining Eqs.(29)and(30)

    This is the FGR result.

    2 Results and discussion

    The Ehrenfest and SH rates(Eq.(19)and Eq.(22))only have subtle difference with the FGR rate(Eq.(32)):in calculating the oscillatory part of the integrand,the sinωjt term in Eq.(32)is replaced by the ωjt term.This will not cause a problem when only low frequency modes are involved,or when the exponential part decays very quickly.As in such cases,it becomes safe to replace sinωjt with ωjt,and the two rate expressions are equivalent. However,this is not the case when high frequency modes are involved,and we will present two such examples in calculating charge transfer rates in organic semiconductors below.In such systems,high frequency vibrations are ubiquitous and their contributions to the reorganization energy are usually large[28-29,38-39].

    We choose rubrene and sexithiophene as two examples to show the problem when high frequency modes are involved. Molecular structure of the two systems,as well as the methods to obtain the parameters used in the SB model are described in Ref.[40-41].The hole self-exchange reactions were considered in this paper,such that ε=0.The weak electronic coupling approximation is valid for the charge transfer in the c direction of rubrene(Δ=12.1 cm-1)and sexithiophene(Δ=5.8 cm-1)[40-41].

    In the hole self-exchange reactions considered for a molecular dimer,the two electronic states are|M+1M2〉and|M1M+2〉,where the positive charge resides on monomers 1 and 2,respectively. The harmonic boson modes that couple to the electronic DoFs consist of normal modes from both the neutral and cationic molecules.The contributions to the reorganization energy from each intramolecular mode of both the neutral and cationic molecules are shown in Fig.1.Using these parameters,the charge transfer rates were obtained from Eqs.(19),(22),and(32) and are shown in Fig.2.We can see that the difference between the Ehrenfest and SH methods and the FGR is significant.For rubrene,the rates from the Ehrenfest and SH methods are found to be larger than the result of FGR in very low temperatures and become substantially lower than the result of FGR when the temperature is higher than 20 K.For sexithiophene,the rates from the Ehrenfest and SH methods are consistently lower than the FGR result in the investigated temperature region.

    The common feature of the two systems is that the high frequency modes contribute significantly to the reorganization energy,which leads to different rates calculated from Eqs.(19),(22), and(32).To see more explicitly that the difference be-tween the Ehrenfest(SH)and FGR rates is mainly due to the high frequencymodes,we calculated the integrands of Eqs.(19),(22),and(32) as a function of time for rubrene,and the results are shown in Fig.3.The inset shows the contributions from the low frequency (ω<500 cm-1)and high frequency(ω>500 cm-1)modes to the total integrand.It can be seen that when all modes are considered,the integrands of Eqs.(19)and(22)differ significantly from that of Eq.(32),and the difference is largely caused by the high frequency modes,which eventually leads to the different electron transfer(ET)rates.

    Fig.1 Individual vibrational frequency ωjfor rubrene and sexithiophene,and their contributions to the total reorganization energy λj(a)neutral rubrene,(b)cationic rubrene,(c)neutral sexithiophene,(d)cationic sexithiophene; The total reorganization energies for rubrene and sexithiophene are 1212.3 and 2061.0 cm-1,respectively.

    Fig.2 Charge transfer rates as a function of temperature in nonadiabatic limit(a)rubrene,(b)sexithiophene;solid line:Fermi golden rule result, dashed line:Ehrenfest method or SH method;k0=Δ2/λ

    Fig.3 The integrand of Eqs.(19),(22),(32)at 300 K as functions of time for rubrene with all the modes shown in Fig.1The inset shows the results with the modes whose frequencies are(a)below 500 cm-1and(b)above 500 cm-1.solid line:Fermi golden rule result, dashed line:Ehrenfest or SH result

    As the MQCL method is exact in the nonadiabatic limit in the spin-boson model considered here,comparison of the three mixed quantum-classical methods reveals the problem of the Ehrenfest and SH methods found in the examples presented in this section:the critical problem is the treatment of the dynamics of the coherence terms(Sxand Syin the Ehrenfest and SH methods,and ρ12in the MQCL method).As shown in the MQCL method,dynamics of this term should be calculated on the average potential surface for the SB model.However,the Ehrenfest method describes it on the ensemble averaged potential,and SH method calculates its propagation by hopping between two surfaces.In the special case considered in this paper(weak electronic coupling,initial nuclear distribution equilibrated on the donor surface),both methods are applied to calculate the dynamics of the coherence term on the donor surface,which leads to the different rate constant expressions from the MQCL method.The above findings indicate that the Ehrenfest and SH methods should be used with caution when high frequency motions are important in the system-bath coupling.

    3 Conclusions

    In this paper,we have derived the charge transfer rate constants from the Ehrenfest,SH,and MQCL methods in the nonadiabatic limit.The results are applied to calculate charge transfer rates in organic semiconductor materials.It is found that the rate constants from Ehrenfest and SH methods can differ significantly from the correct result.Analysis shows that the dynamics of the off-diagonal terms of the density matrix are not correctly described in both methods,and the deviation is more severe when high frequency modes are involved.

    1 Makri,N.J.Math.Phys.,1995,36:2430

    2 Makri,N.Ann.Rev.Phys.Chem.,1999,50:167

    3 Beck,M.H.;Jackle,A.;Worth,G.A.;Meyer,H.D.Phys.Rep., 2000,324:1

    4 Thoss,M.;Wang,H.B.;Miller,W.H.J.Chem.Phys.,2001,115: 2991

    5 Wang,H.;Thoss,M.J.Chem.Phys.,2003,119:1289

    6 Micha,D.A.J.Chem.Phys.,1983,78:7138

    7 Billing,G.D.J.Chem.Phys.,1993,99:5849

    8 Stock,G.J.Chem.Phys.,1995,103:1561

    9 Tully,J.C.;Pretson,R.K.J.Chem.Phys.,1971,55:562

    10 Tully,J.C.J.Chem.Phys.,1990,93:1061

    11 Webster,F.J.;Wang,E.T.;Rossky,P.J.;Friesner,R.A.J.Chem. Phys.,1994,100:4835

    12 Coker,D.F.;Xiao,L.J.Chem.Phys.,1995,102:496.

    13 Prezhdo,O.V.;Kisil,V.V.Phys.Rev.A,1997,56:162

    14 Müller,U.;Stock,G.J.Chem.Phys.,1997,107:6230

    15 Fang,J.Y.;Hammes-Schiffer,S.J.Phys.Chem.A,1999,103: 9399

    16 Tully,J.C.Faraday Discuss.,1998,110:407

    17 Martens,C.C.;Fang,J.Y.J.Chem.Phys.,1997,106:4918

    18 Kapral,R.;Ciccotti,G.J.Chem.Phys.,1999,110:8919

    19 Santer,M.;Manthe,U.;Stock,G.J.Chem.Phys.,2001,114:2001

    20 Mac Kernan,D.;Ciccotti,G.;Kapral,R.J.Chem.Phys.,2002, 116:2346

    21 Shi,Q.;Geva,E.J.Chem.Phys.,2004,121:3393

    22 Kapral,R.Annu.Rev.Phys.Chem.,2006,57:129

    23 Bader,J.S.;Berne,B.J.J.Chem.Phys.,1994,100:8359

    24 Egorov,S.A.;Rabani,E.;Berne,B.J.J.Phys.Chem.B,1999, 103:10978

    25 Egorov,S.A.;Rabani,E.;Berne,B.J.J.Chem.Phys.,1999,110: 5238

    26 Egorov,S.A.;Rabani,E.;Berne,B.J.J.Chem.Phys.,1998,108: 1407

    27 Rabani,E.;Egorov,S.A.;Berne,B.J.J.Chem.Phys.,1998,109: 6376

    28 Brédas,J.L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem.Rev., 2004,104:4971

    29 Coropceanu,V.;Cornil,J.;da Silva Filho,D.A.;Oliver,Y.;Silbey, R.;Brédas,J.L.Chem.Rev.,2007,107:926

    30 Gershenson,M.E.;Podzorov,V.;Morpurgo,A.F.Rev.Mod. Phys.,2006,78:973

    31 Leggett,A.J.;Chakravarty,S.;Dorsey,A.T.;Fisher,M.;Garg,A.; Zwerger,W.Rev.Mod.Phys.,1987,59:1

    32 Weiss,U.Quantum dissipative systems.2nd ed.London:World Scientific,1999

    33 Heller,E.J.J.Chem.Phys.,1976,65:1289

    34 Filinov,V.S.;Medevedev,V.V.;Kamskyi,V.L.Mol.Phys., 1995,85:711

    35 Sun,X.;Miller,W.H.J.Chem.Phys.,1997,106:916

    36 Pollak,E.;Liao,J.L.J.Chem.Phys.,1998,108:2733

    37 Frantsuzov,P.A.J.Chem.Phys.,1999,111:2075

    38 da Silva Filho,D.A.;Kim,E.G.;Brédas,J.L.Adv.Mater.,2005, 17:1072

    39 Yang,X.D.;Wang,L.J.;Wang,C.L.;Long,W.;Shuai,Z.G. Chem.Mater.,2008,20:3205

    40 Nan,G.J.;Yang,X.D.;Wang,L.J.;Shuai,Z.G.;Zhao,Y.Phys. Rev.B,2009,79:115203

    41 Nan,G.J.;Wang,L.J.;Yang,X.D.;Shuai,Z.G.;Zhao,Y. J.Chem.Phys.,2009,130:024704

    猜你喜歡
    中國科學院研究所分子
    《中國科學院院刊》新媒體
    中國科學院院士
    ——李振聲
    睡眠研究所·Arch
    睡眠研究所民宿
    未來研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    分子的擴散
    祝賀戴永久編委當選中國科學院院
    “精日”分子到底是什么?
    新民周刊(2018年8期)2018-03-02 15:45:54
    米和米中的危險分子
    飲食科學(2017年12期)2018-01-02 09:23:20
    《中國科學院院刊》創(chuàng)刊30周年
    日本在线视频免费播放| 欧美日韩精品成人综合77777| 美女大奶头视频| 天堂动漫精品| 亚洲最大成人手机在线| 亚洲第一电影网av| 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 床上黄色一级片| 男女视频在线观看网站免费| 亚洲美女搞黄在线观看 | 免费av毛片视频| 狠狠狠狠99中文字幕| 久99久视频精品免费| 观看免费一级毛片| 黄色日韩在线| 精品国产三级普通话版| 欧美xxxx黑人xx丫x性爽| 人妻久久中文字幕网| 色5月婷婷丁香| 久久精品人妻少妇| 我要看日韩黄色一级片| 日本撒尿小便嘘嘘汇集6| 国产伦精品一区二区三区四那| 亚洲电影在线观看av| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 亚洲美女视频黄频| 亚洲欧美清纯卡通| 国产探花在线观看一区二区| 天天躁夜夜躁狠狠久久av| 日韩三级伦理在线观看| 亚洲国产精品成人久久小说 | 在线观看免费视频日本深夜| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 日本在线视频免费播放| 亚洲无线观看免费| 女同久久另类99精品国产91| 欧美3d第一页| 99热6这里只有精品| 干丝袜人妻中文字幕| 又爽又黄无遮挡网站| 级片在线观看| 日日摸夜夜添夜夜添小说| 欧美高清成人免费视频www| 免费一级毛片在线播放高清视频| 久久久久久久久中文| 在线播放无遮挡| 国产探花极品一区二区| 看十八女毛片水多多多| 国产亚洲精品久久久久久毛片| 国产精品综合久久久久久久免费| 国产高清视频在线播放一区| 免费看a级黄色片| 成人国产麻豆网| 色哟哟·www| 日韩强制内射视频| 18禁在线无遮挡免费观看视频 | 伊人久久精品亚洲午夜| 你懂的网址亚洲精品在线观看 | 精品久久久久久久人妻蜜臀av| 观看免费一级毛片| 尤物成人国产欧美一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品永久免费网站| 国产精品永久免费网站| av在线老鸭窝| 日日摸夜夜添夜夜添小说| 日韩国内少妇激情av| 国产熟女欧美一区二区| 午夜福利高清视频| 欧美日韩精品成人综合77777| 免费不卡的大黄色大毛片视频在线观看 | 国产高清三级在线| 国产av麻豆久久久久久久| 91久久精品电影网| 国产精品日韩av在线免费观看| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 高清毛片免费看| 波野结衣二区三区在线| 国产av不卡久久| 亚洲国产色片| 亚洲,欧美,日韩| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看| 99久久精品热视频| 久久国内精品自在自线图片| 99久久精品一区二区三区| 日韩一本色道免费dvd| 九九热线精品视视频播放| 秋霞在线观看毛片| 国产白丝娇喘喷水9色精品| 男女做爰动态图高潮gif福利片| 99九九线精品视频在线观看视频| 99久国产av精品国产电影| 成人综合一区亚洲| 在线观看av片永久免费下载| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 哪里可以看免费的av片| 国产亚洲欧美98| 欧美绝顶高潮抽搐喷水| 国产精品国产三级国产av玫瑰| 日韩欧美精品免费久久| 国产精品野战在线观看| 村上凉子中文字幕在线| 性色avwww在线观看| 中文字幕久久专区| 大型黄色视频在线免费观看| 深爱激情五月婷婷| 色尼玛亚洲综合影院| 熟女电影av网| 国产精品精品国产色婷婷| 欧美成人精品欧美一级黄| 成年版毛片免费区| 国产成人福利小说| 亚洲av不卡在线观看| 在线观看66精品国产| 久久中文看片网| 麻豆国产av国片精品| 赤兔流量卡办理| 久久人人精品亚洲av| 亚洲国产精品成人综合色| 又爽又黄a免费视频| 亚洲一区二区三区色噜噜| 女生性感内裤真人,穿戴方法视频| 国产精品一区www在线观看| 尾随美女入室| 精品乱码久久久久久99久播| 久久人人爽人人片av| 天天一区二区日本电影三级| 免费高清视频大片| 色av中文字幕| 国产女主播在线喷水免费视频网站 | 精品久久久久久成人av| 欧美三级亚洲精品| 一a级毛片在线观看| 国产午夜福利久久久久久| 99热全是精品| 亚洲va在线va天堂va国产| 99热6这里只有精品| 级片在线观看| 亚洲,欧美,日韩| 色5月婷婷丁香| 亚洲欧美成人精品一区二区| 看十八女毛片水多多多| 亚洲激情五月婷婷啪啪| 久久精品夜夜夜夜夜久久蜜豆| 成年女人永久免费观看视频| 禁无遮挡网站| 欧美另类亚洲清纯唯美| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 日韩欧美三级三区| 六月丁香七月| 亚洲欧美精品综合久久99| 搡老熟女国产l中国老女人| 大型黄色视频在线免费观看| 哪里可以看免费的av片| 亚洲av电影不卡..在线观看| 22中文网久久字幕| 一区二区三区四区激情视频 | 国产精品人妻久久久久久| av国产免费在线观看| 日韩高清综合在线| 国产伦一二天堂av在线观看| 国产一区亚洲一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品自产自拍| 淫秽高清视频在线观看| 久久久国产成人精品二区| 三级男女做爰猛烈吃奶摸视频| 国产国拍精品亚洲av在线观看| 国产视频内射| 一级黄色大片毛片| 日韩成人av中文字幕在线观看 | 国产成人福利小说| 亚洲第一电影网av| 深夜a级毛片| 国产成人影院久久av| 波多野结衣巨乳人妻| eeuss影院久久| 给我免费播放毛片高清在线观看| 欧美激情国产日韩精品一区| 天堂√8在线中文| 欧美3d第一页| 日本黄色视频三级网站网址| 欧美zozozo另类| 99精品在免费线老司机午夜| 亚洲精品成人久久久久久| 给我免费播放毛片高清在线观看| 91狼人影院| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| 亚洲精品国产成人久久av| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 午夜福利在线观看吧| 天堂av国产一区二区熟女人妻| 看非洲黑人一级黄片| 国产淫片久久久久久久久| 日韩精品中文字幕看吧| 床上黄色一级片| 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站 | 成人美女网站在线观看视频| 国产三级在线视频| 精品人妻熟女av久视频| 欧美三级亚洲精品| 一个人免费在线观看电影| 国产在线精品亚洲第一网站| 精品国产三级普通话版| 成人二区视频| 欧美又色又爽又黄视频| 久久午夜亚洲精品久久| av天堂中文字幕网| 欧美激情在线99| 欧美潮喷喷水| 美女黄网站色视频| 亚洲图色成人| eeuss影院久久| 亚洲成人久久爱视频| 波野结衣二区三区在线| 国产高清有码在线观看视频| 成人欧美大片| 国产高清视频在线观看网站| 级片在线观看| 日韩精品有码人妻一区| 三级毛片av免费| 在线观看66精品国产| av在线天堂中文字幕| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 有码 亚洲区| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠久久av| 18禁在线无遮挡免费观看视频 | 一边摸一边抽搐一进一小说| 大香蕉久久网| 嫩草影院新地址| 成人欧美大片| 97超视频在线观看视频| 99久久成人亚洲精品观看| 免费看a级黄色片| 老司机影院成人| 国产精品国产高清国产av| 波多野结衣高清作品| 亚洲精品456在线播放app| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 国产av麻豆久久久久久久| 免费av毛片视频| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 国产精品久久久久久av不卡| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 精品人妻一区二区三区麻豆 | 秋霞在线观看毛片| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 小蜜桃在线观看免费完整版高清| av免费在线看不卡| 国产乱人偷精品视频| 色在线成人网| aaaaa片日本免费| 国产精品一区二区性色av| 18禁在线无遮挡免费观看视频 | 美女cb高潮喷水在线观看| 国产精品国产高清国产av| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av香蕉五月| 又爽又黄无遮挡网站| 大型黄色视频在线免费观看| 精品一区二区三区视频在线| 国内精品美女久久久久久| 亚洲国产精品成人综合色| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 亚洲18禁久久av| 国产久久久一区二区三区| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 嫩草影院入口| 黄色日韩在线| 精品久久久久久久末码| 亚洲av二区三区四区| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 久久久精品大字幕| 亚洲国产欧洲综合997久久,| 淫妇啪啪啪对白视频| 九九久久精品国产亚洲av麻豆| 亚洲精品456在线播放app| 日日啪夜夜撸| 在线免费观看不下载黄p国产| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 亚洲av五月六月丁香网| 欧美性猛交黑人性爽| 久久草成人影院| 少妇的逼水好多| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 成熟少妇高潮喷水视频| 国产亚洲精品av在线| 草草在线视频免费看| 97热精品久久久久久| 国产精品伦人一区二区| 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 久久精品影院6| 久久99热6这里只有精品| 国产视频一区二区在线看| av在线天堂中文字幕| 国产在线精品亚洲第一网站| 美女免费视频网站| 99久国产av精品国产电影| 天堂网av新在线| 日韩av不卡免费在线播放| а√天堂www在线а√下载| 国内久久婷婷六月综合欲色啪| 两个人的视频大全免费| 亚洲av一区综合| 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 日韩成人av中文字幕在线观看 | 69人妻影院| 欧美日本视频| 舔av片在线| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 日韩一区二区视频免费看| 亚洲18禁久久av| 国产在线精品亚洲第一网站| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添小说| 九色成人免费人妻av| 成人综合一区亚洲| 长腿黑丝高跟| 亚洲av中文字字幕乱码综合| 91久久精品国产一区二区三区| 如何舔出高潮| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 欧美三级亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 网址你懂的国产日韩在线| 狠狠狠狠99中文字幕| 少妇熟女aⅴ在线视频| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区 | 亚洲人成网站高清观看| 少妇的逼好多水| 免费人成在线观看视频色| 99在线人妻在线中文字幕| 免费观看精品视频网站| 久久久精品94久久精品| 色5月婷婷丁香| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 午夜福利在线观看吧| 一级黄色大片毛片| 久久午夜亚洲精品久久| 大型黄色视频在线免费观看| 久久精品国产亚洲网站| 亚洲国产精品sss在线观看| 男人狂女人下面高潮的视频| eeuss影院久久| 成年av动漫网址| 久久99热这里只有精品18| 国产久久久一区二区三区| 精品一区二区免费观看| 国产在线精品亚洲第一网站| 国产一区二区激情短视频| 亚洲中文日韩欧美视频| 亚洲av一区综合| 天天一区二区日本电影三级| 亚洲高清免费不卡视频| 永久网站在线| 国产成人aa在线观看| 欧美又色又爽又黄视频| 极品教师在线视频| 国产精品久久久久久精品电影| 日韩欧美国产在线观看| 欧美精品国产亚洲| 赤兔流量卡办理| 欧美性猛交╳xxx乱大交人| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 在线a可以看的网站| 亚洲欧美清纯卡通| 在线观看av片永久免费下载| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 蜜桃亚洲精品一区二区三区| 亚洲欧美成人综合另类久久久 | 国产真实伦视频高清在线观看| 一级av片app| 欧美日韩精品成人综合77777| 九九爱精品视频在线观看| 99热网站在线观看| 丝袜喷水一区| 麻豆国产97在线/欧美| 观看免费一级毛片| 一a级毛片在线观看| 简卡轻食公司| 成年版毛片免费区| АⅤ资源中文在线天堂| 国产成人a区在线观看| 亚洲国产精品sss在线观看| 一本一本综合久久| 久久亚洲国产成人精品v| 黑人高潮一二区| 欧美成人精品欧美一级黄| 国产爱豆传媒在线观看| 最近手机中文字幕大全| 成年版毛片免费区| 超碰av人人做人人爽久久| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 欧美成人免费av一区二区三区| av在线观看视频网站免费| 能在线免费观看的黄片| 中文亚洲av片在线观看爽| 国产精品久久久久久av不卡| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 国产黄色视频一区二区在线观看 | 人妻夜夜爽99麻豆av| 少妇熟女欧美另类| 色噜噜av男人的天堂激情| 国内久久婷婷六月综合欲色啪| 精品午夜福利在线看| 国产伦精品一区二区三区四那| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 一夜夜www| 在线a可以看的网站| 国产片特级美女逼逼视频| 亚洲精品日韩在线中文字幕 | 婷婷亚洲欧美| 久久国内精品自在自线图片| 久久欧美精品欧美久久欧美| 国产91av在线免费观看| 亚洲国产欧洲综合997久久,| 国产午夜精品论理片| 天天躁日日操中文字幕| 日韩欧美 国产精品| 久久99热6这里只有精品| 日本 av在线| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 午夜精品在线福利| 午夜福利18| 国产乱人偷精品视频| 精品久久久久久久久av| 日本熟妇午夜| 亚洲va在线va天堂va国产| 久久精品人妻少妇| 99热这里只有精品一区| 亚洲熟妇中文字幕五十中出| 色5月婷婷丁香| 久久午夜福利片| 我的老师免费观看完整版| 国产亚洲欧美98| 国产高清激情床上av| 大又大粗又爽又黄少妇毛片口| 偷拍熟女少妇极品色| .国产精品久久| 亚洲国产色片| 亚洲精品成人久久久久久| 真实男女啪啪啪动态图| or卡值多少钱| 国产精品1区2区在线观看.| 人妻少妇偷人精品九色| 欧美bdsm另类| 欧美一级a爱片免费观看看| 久久综合国产亚洲精品| 亚洲人成网站在线播放欧美日韩| 在线免费观看不下载黄p国产| 男女下面进入的视频免费午夜| 国产色婷婷99| 男女之事视频高清在线观看| 日本-黄色视频高清免费观看| 国产中年淑女户外野战色| 国产一区二区在线观看日韩| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 国产极品精品免费视频能看的| 少妇熟女欧美另类| 国产成人91sexporn| 亚洲人成网站在线观看播放| 夜夜爽天天搞| 日韩欧美 国产精品| 精品日产1卡2卡| 精品午夜福利在线看| 国产免费男女视频| 午夜精品在线福利| 搡老岳熟女国产| 亚洲在线观看片| 18禁在线播放成人免费| 国产熟女欧美一区二区| 国产精品一二三区在线看| 日韩制服骚丝袜av| 麻豆一二三区av精品| 69av精品久久久久久| 一区二区三区高清视频在线| 国产91av在线免费观看| 成年女人永久免费观看视频| 白带黄色成豆腐渣| 乱系列少妇在线播放| 一区福利在线观看| 国产精品野战在线观看| 少妇猛男粗大的猛烈进出视频 | 中文字幕熟女人妻在线| 欧美区成人在线视频| 久久精品国产亚洲网站| 国产私拍福利视频在线观看| 看黄色毛片网站| 国产精品久久视频播放| 男人舔奶头视频| 别揉我奶头 嗯啊视频| 亚洲国产欧美人成| 国语自产精品视频在线第100页| 在线免费十八禁| 少妇丰满av| 一级毛片aaaaaa免费看小| 两个人视频免费观看高清| 91久久精品电影网| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久国产a免费观看| 精品福利观看| 久久精品夜色国产| 久久久久久伊人网av| 久久久久免费精品人妻一区二区| 国产亚洲av嫩草精品影院| 国产一区二区三区av在线 | 一进一出抽搐gif免费好疼| 欧美另类亚洲清纯唯美| 久久久久久大精品| 熟女电影av网| 成人二区视频| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 少妇人妻精品综合一区二区 | 成人特级av手机在线观看| 小说图片视频综合网站| 麻豆av噜噜一区二区三区| 久久久久久久久久黄片| 91狼人影院| 亚洲最大成人手机在线| 看非洲黑人一级黄片| 赤兔流量卡办理| 插阴视频在线观看视频| 美女大奶头视频| 国产av麻豆久久久久久久| 99久久无色码亚洲精品果冻| 嫩草影视91久久| 级片在线观看| 男女之事视频高清在线观看| 久久久久久九九精品二区国产| 国内久久婷婷六月综合欲色啪| 国产精品女同一区二区软件| 亚洲一区二区三区色噜噜| 99热这里只有精品一区| 我要看日韩黄色一级片| 国产一级毛片七仙女欲春2| 精品99又大又爽又粗少妇毛片| 日韩强制内射视频| 精品一区二区三区视频在线观看免费| 精品日产1卡2卡| or卡值多少钱| 国产成人精品久久久久久| 国产精品久久电影中文字幕| 听说在线观看完整版免费高清| 日本-黄色视频高清免费观看| 成人亚洲精品av一区二区| 露出奶头的视频| 永久网站在线| 欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 寂寞人妻少妇视频99o| 亚洲国产精品久久男人天堂| 一级毛片久久久久久久久女| 一进一出抽搐gif免费好疼| 久久久久精品国产欧美久久久| 男女之事视频高清在线观看| 又粗又爽又猛毛片免费看| 亚洲人成网站高清观看| 毛片一级片免费看久久久久| 人人妻人人澡欧美一区二区| 中文字幕久久专区| 亚洲精品久久国产高清桃花|