• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    蛋白質(zhì)與線性DNA片斷結(jié)合過程中的末端效應(yīng)

    2010-12-12 02:46:10楊曉靜劉曦勵(lì)婁春波歐陽頎
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:生物學(xué)物理

    楊曉靜 劉曦勵(lì) 婁春波 歐陽頎

    (北京大學(xué)理論生物學(xué)中心,物理學(xué)院,北京 100871)

    How a protein molecule searches for short pieces of targets amid a flood of non-target sequences in the genome is a central question in molecular biology[1-5].Many in vitro techniques have been employed to investigate the DNA-protein interaction:filter binding is based on the protein′s ability to bind to nitrocellulose[6-7],while the electrophoretic mobility shift assay(EMSA)is operated on the principle that DNA-protein complexes migrate more slowly than an unbound DNA probe[8].One of the biggest differences between in vitro and in vivo experiments is that DNA fragments used for in vitro experiments are usually much shorter than genomic DNA.As a result,a significantly higher concentration of DNA ends exists in vitro than in vivo.Therefore,it is necessary to consider the potential effects caused by linear DNA ends before comparing in vitro and in vivo data.

    The first potential end effect in linear DNA is the possibility that a protein has a higher probability of dissociating from end sites than from internal sites.Several investigators have addressed this issue in different systems,and the various studies have surprisingly produced contradictory results.In 1996,Surby et al.[9]showed that EcoRI methyltransferase have a higher dissociation rate from DNA ends during facilitated diffusion by simultaneously monitoring dissociation from a circularized DNA and its identical linearized form.Two years later,the opposite result was reported from a study comparing EcoRV(one kind of restriction endonucleases,an enzyme that cuts double-stranded or single-stranded DNA at specific recognition nucleotide sequences[10])cleavage rates of a biotinylated DNA fragment with approximately 500 bp(base pair)long in the absence and presence of avidin[11].In this report,a similar cleavage rate led to the conclusion that proteins do not exhibit an increased dissociation rate at DNA ends.However,both studies failed to control for multiple factors other than end effects,such as super-helix formation by closed-circular DNA in the Surby experiments[9]and the potential effect of negatively charged biotin on the chargecharge interaction between DNA and the protein in the EcoRV experiment.These multiple variables complicate interpretation of the results,so the issue of end effects remains uncertain.

    Motivated by the open questions,we conducted a series of realtime experiments examining the binding of transcription factors (TFs)to DNA.To simplify the issue of the end effect,we employed nonspecific DNA fragments of different lengths,where each fragment could be considered to have comparable number of potential binding sites.In order to monitor both the association and dissociation processes in real time,especially for cases of nonspecific binding,we used surface plasmon resonance (SPR).In order to maintain the ends of the DNA fragments in a free state,we immobilized the protein on the chip surface.In order to investigate effects of the location of the binding sites on the fragment,we measured the binding affinities between protein and DNA fragments that contained a defined binding site at various positions.In order to be able to evaluate the effects of DNA sequence and to avoid nonspecific binding to secondary sites,we employed the Mnt repressor,which has an established specific binding energy matrix that can be used to evaluate sequence specificity[12-14].

    The Mnt repressor is a DNA-binding protein that acts as a transcription inhibitor in the Salmonella phage P22.It has a ribbonhelix-helix structure and exists as a tetramer in solution,with each dimer binding to one half of a nearly symmetric 21 bp operator:ATAGGTCCACGGTGGACCTGT.Only the 17 bp underlined sequence in the center contributes significantly to binding[12-13,15].For all of our experiments,the reported concentrations of Mnt repressor refer to concentrations of the tetramer.

    1 Materials and methods

    1.1 Protein expression and purification

    The gene encoding wild-type Mnt repressor was generated by PCR from the genome of Salmonella phage P22 and subsequently cloned into the NdeI/XhoI site of pET-21a(+)(Novagen), which contains a T7-promoter and His6tag at the C-terminus. The protein was expressed in Escherichia coli strain BL21 and purified under denaturing conditions by chromatography on ProBond resin(Invitrogen),with 100 mmol·L-1imidazole in the elution buffer.The purified protein was dialyzed against 2 L buffer containing 50 mmol·L-1Tris-Cl,pH 7.5,100 mmol·L-1KCl,0.1 mmol·L-1EDTA,and 50 g·L-1glycerol,and stored at -80℃.Purity of the protein was found to be at least 95%by SDS-PAGE and Coomassie blue staining.Protein concentration was determined using the Bradford method[16],with spectrophotometric analysis at 595 nm.

    1.2 Oligonucleotide design and synthesis

    A 71-nt(units of nucleotides)DNA fragment containing a natural Mnt repressor binding site was synthesized by Sango(China) or Takara(Japan).Following the manufacturer′s instructions, plasmid pQO2 was constructed by inserting the 71 bp DNA fragment into the pMD 18-T vector(Takara Bio,Japan),whereas pQO1 was constructed directly by ligating the two ends of the pMD 18-T vector.Different linear DNA fragments for SPR experiments were generated by PCR using different primers under the following conditions:94℃for 5 min,1 cycle;94℃for 30 s,60℃for 30 s,72℃for 30 s,25 cycles;72℃for 7 min,1 cycle.Table 1 lists the primers used for each fragment.Products were electrophoresed on 10-20 g·L-1agarose gels,and the bands of appropriate size were removed and purified with the QIAquick gel extraction kit(QIAGEN).The DNA concentrations were measured by calculating the difference between absorption at 260 nm and 320 nm(A260-A320).A schematic view of the experimental design is shown in Fig.1.

    To ensure that the Mnt repressor could bind to the DNA fragments only at the natural Mnt repressor binding site,all fragments used in the interaction experiments were scanned using a specific binding energy matrix[14].We obtained a mean relative energy value of~21kBT,except for one potential binding site, which received a maximum score of~6.8kBT.The binding energy difference between specific and nonspecific binding is~7kBT in the DNA Mnt repressor system under our experimental conditions[17].Thus our calculations indicate that secondary binding to sites other than the canonical Mnt repressor site is highly unlikely and can be ignored in our discussion.

    1.3 Surface plasmon resonance

    The kinetics and equilibrium constants of the protein-DNA interactions were measured by surface plasmon resonance(SPR) using the BIAcoreTM3000(BIAcore AB)at 25℃.The NTA sensor chip surface was initially equilibrated with binding buffer (30 mmol·L-1Tris-Cl,pH 7.5,100 mmol·L-1KCl,0.1 mmol·L-1EDTA,50 g·L-1glycerol,0.005%Tween-20)at a flow rate of 5 μL·min-1.Ni2+was loaded onto the sensor chip surface by injection of 10 μL of 100 mmol·L-1NiCl2in binding buffer.The His6-tagged Mnt-repressor was subsequently immobilized on the chip in binding buffer.To prevent DNA fragments from binding to more than one protein,we applied a very low density of protein(~200 Response Unit(RU))on the chip.DNA dissolved in binding buffer at concentrations from 2.5 to 100 nmol·L-1were injected at a flow rate of 30 μL·min-1.Elution was achieved with buffer containing the same components as the binding buffer,but with a pH of 9.0.

    Table 1 Primers used in this study

    In order to increase the nonspecific binding and thus obtain a better resolution on nonspecific binding measurement,we decreased the salt concentration to 100 mmol·L-1K+,which is much lower than the estimated intracellular salt concentration of~160 mmol·L-1K+and 5-10 mmol·L-1Mg2+in E.coli[3].

    1.4 Kinetic analysis

    Kinetic analysis was performed using BIA evaluation 4.1 software(BIAcore AB)according to the manufacturer′s instructions. The results reported here were obtained using the one-step biomolecular association reaction model(1∶1 Langmuir mode), which is described by the equation A+B?AB,where A and B represent the DNA fragments and the surface-bound Mnt repressor,respectively.Assuming pseudo-first order interaction kinetics,the rate of complex formation during sample injection is given by d[AB]/dt=ka[A][B]-kd[AB],which is expressed in terms of the SPR signal as dR/dt=kaCRmax-(kaC+kd)R,where dR/ dt is the rate of change of the SPR signal,C is the DNA concentration,Rmaxis the maximum protein binding capacity in RU, and R is the SPR signal in RU at time t,kais the association rate constent,kdis the dissociation rate constant.The dissociation phase is described by dR/dt=-kdR.

    2 Results and discussion

    The interactions between the Mnt repressor and a variety of DNA fragments were monitored in real time using SPR.All measurements were repeated at least four times for each of the different DNA fragments at different concentrations.

    Fig.1 Schematic of the experimental design

    2.1 The higher dissociation rate near the end of linear DNA fragments

    2.1.1 Experimental results

    To investigate whether proteins have a high dissociation rate at the end of linear DNA,we monitored both the association and dissociation of the Mnt repressor with a series of nonspecific DNA fragments of different lengths,ranging from 103 to 503 bp. Our results show that kais linearly proportional to the length of the DNA fragment,kddecreases nonlinearly with DNA length, and the binding equilibrium constant(KA)is linearly proportional to the length of the DNA fragment(Fig.2).

    2.1.2 Theoretical analysis

    Because Mnt binds a 17-base target sequence,any continuous stretch of 17 bases can theoretically act as a binding target for the Mnt repressor.Since the association rate(or dissociation rate) ofagivenDNAfragmentto(orfrom)theMntrepressoristhesum of all association(or dissociation)probabilities at each position along the DNA,the association rate kaand the dissociation rate kdof a DNA fragment can be expressed as follows:

    where konjand koffjdenote the microscopic association and dissociation rates at a given position j,respectively.Ponjand Poffjare the probabilities of efficient collisions and of residence at position j,respectively.N is the number of potential binding sites on the DNA fragment.

    (A)If one assumes that the structure of the end has no effect on protein binding,then each position will be equivalent in any one nonspecific DNA fragment,ka,kd,and KAcan be expressed as follows:

    where konnonspecificand koffnonspecificare the microscopic association and dissociation rates for one nonspecific binding site,respectively. As for the kd,since the sum of the residence probabilities at each position of a DNA fragmentis always equal to 1,equation (4)will be

    Fig.2 Experimental results with nonspecific DNA fragments(a)length dependence of association rate constant,(b)length dependence of dissociation rate constant,(c)length dependence of equilibrium constant

    As a result,

    If this is the case,both kaand KAwill be proportional to the number of potential binding sites(the length of the DNA fragment),and kdwill be independent of the length of DNA fragment(Fig.3a).

    However,in our experiments,the kdclearly correlated with the DNA fragment length.Therefore,each position should not be equivalent in one nonspecific DNA fragment,and the end structure has some effect on protein binding.

    (B)If the structure of the end has some effect on the protein binding at the ends,then there are energetic possibilities.

    (a)The end structure influences the activation energy of protein binding at the DNA ends.In this case,the activation energy of the binding reaction at the end position of the DNA fragment will be different from that at internal positions(koninternal≠konend; koffinternal≠koffend),but the free energies of the protein-DNA complex will be the same at different positions(koninternal/koffinternal=konend/koffend). Here koninternaland konendare the microscopic association rate constants for internal and end positions,respectively;whereas koffinternaland koffendare the microscopic dissociation rate constants from internal and end positions,respectively.In order to simplify the analysis,we assume that only the potential binding site closest to the end will be influenced by the end structure.In this case,kaand kdcan be expressed as:

    Since the free energy of the binding state at each position is the same in this case,the corresponding residence probability at each position is also the same(1/N).Therefore,equation(7)can be written as:

    As a result,

    If this is the case,kawill be proportional to the number of po-tential binding sites(the length of the DNA fragment),kdwill be proportional to the reciprocal of the length(1/N),and whether increases or decreases with the length will depend on whether protein dissociation from the end is faster or slower than from internal positions.In addition,KAwill also be proportional to the length of DNA(Fig.3b).

    (b)The DNA structure influences the free energy of the DNA-protein complex when the protein is bound at the end.In this case,not only will the konand koffat the end position be different from those at internal positions,but the energy of DNA-protein complex when the protein is bound at the end will also be different from that at internal positions.(koninternal≠konend;koffinternal≠koffend; (koninternal/koffinternal)/(konend/koffend)=eI/eS,where S and I are relative energy differences of protein binding at the end position and at internal positions,respectively.)In this case,ka,kdand KAcan be expressed as follows:

    Fig.3 Theoretical changes of ka,kd,and KAas a function of length(a)calculations assume that each position is equivalent for a given nonspecific DNA fragment, (b)calculations assume that the structure influences the activation energy of dissociation from the DNA end position, (c)calculations assume that the structure influences the free energy of the protein-DNA complex when the protein is at the end of the DNA.

    If this is the case,kawill be proportional to the number of potential binding sites(the length of the DNA fragment),kdwill be proportional to a function of lengthand whether kdincreases or decreases with the length will depend on whether protein dissociation from the end is faster or slower than from the other positions.In addition,KAwill be proportional to the length of DNA(Fig.3c).

    By comparing the theoretical results with experimental measurements,we found that both cases shown in Fig.3b(koffend> koffinternal)and Fig.3c(koffend>koffinternal)agree reasonably well with experiment.Unfortunately,since the difference between the cases shown in Fig.3(b,c)depends on eI-S,which is very difficult to measure,we cannot rule out either of these two possibilities. However,koffend>koffinternalis required for both cases.Therefore,we conclude that end positions are thermodynamically different from internal positions of the DNA fragment during Mnt repressor binding,and the dissociation rate from the end is larger than from internal positions(koffend>koffinternal).

    It has been proposed that DNA phosphates located at the ends of DNA fragments bind counterions less effectively than those in the middle of a long DNA strand,and thus experience less counterion displacement upon protein binding[18].This may explain the change in the activation energy or free energy of the binding state at the end position.

    In addition,the intersection of the linear fit curve with the xaxis is greater than zero in Fig.2(a,c),suggesting that a minimum DNA length is required for binding by the Mnt repressor.This has also been found in structural studies of the Mnt repressor[19].

    2.2 The structure of the ends and the specific binding to the Mnt repressor

    To further address whether the structure of the end affects sequence-specific protein binding to a linear DNA fragment even when the binding site is not located at the very end,we measured the binding constant of the Mnt repressor interacting with a variety of DNA fragments containing the specific binding site at either middle or side positions.

    First,the equilibrium constant correlated with the length of DNA fragments,as expected,in both Specific-Middle and Specific-Side cases.Nevertheless,for all five different fragments lengths,KAdiffered appreciably between the Specific-Middle case and the Specific-Side case.This strongly suggests that protein bind-ing to DNA is affected by the position of the binding site along the linear DNA fragment(Fig.4(a-c)).

    To understand the cause of the position effect,we conducted further theoretical analysis on the DNA binding process.As in equation(11),the binding equilibrium constant of a DNA fragment containing a specific binding site can be expressed as

    whereeΔGnonspecificandeΔGspecificnote the relative free energy changes of the nonspecific and specific binding reactions,respectively. Combined with the KAresults from Nonspecific DNA fragments, we obtained an eΔGspecific~(1.5±0.7)×1010/~(5.4±1.1)×109(Specific-Side/Specific-Middle),and an eΔGnonspecific~(1.54±0.78)×107.Here we ignore the end effect,since the difference between specific and nonspecific binding is much larger than the difference between nonspecific bindings at different positions.)

    Since eΔGspecificis much larger than eΔGnonspecific,we assume that mostproteinbindsSpecific-Middle/Specific-Side DNA fragments at the specific binding site instead of at the other positions.Then, in principle,the binding process of a Mnt repressor to Specific-Middle/Specific-Side can be divided into two steps:first,the Mnt repressor binds nonspecifically to DNA at any position;second,the Mnt repressor translocates to the specific binding site. Then,the equilibrium binding constant can be expressed as

    where KA1middleand KA2middleare the equilibrium constants of the first and second steps for Specific-Middle cases,respectively, KA1sideand KA2sideare the equilibrium constants of the first and second steps for Specific-Side DNA cases,respectively.Since the first step is independent of the specific binding site,KA1middleshould be equal to KA1side.Therefore,the difference between KAmiddleand KAsidereflects the difference between KA2middleand KA2side,indicating a difference in the free energy change of sequence-specific proteinbindingbetweentheSpecific-MiddleandSpecific-Sidecases:

    where ΔGmiddleand ΔGsideare the relative free energy changes of the specific binding reaction for the specific-middle and specificside cases,respectively.

    To further investigate the length range across which the position effect occurs,we analyzed the differences between Specific-Middle and Specific-Side for five different fragment lengths. Our results show that the differences in free energy change reach a plateau around 300 bp(Fig.4d).As for DNA fragments with the same length,the difference between specific-middle and specificside comes from both ends.The plateau of the difference indicates that the difference at both ends reaches a plateau.Therefore,the position effect ranges from approximately 1-150 bp in our experimental system.

    It has been proposed that the binding between the Mnt repressor and the operator can be divided into three steps:(1)bimolecular binding of one dimeric DNA-binding domain to a single operator half-site;(2)intramolecular docking of the second dim-eric DNA-binding domain to the adjacent operator half site;and (3)formation of cooperative contacts between DNA-binding domains[20].The third step relates to DNA bending.This suggests that a likely explanation for the position effect on protein binding to linear DNA is that the lack of rigid structure at the ends of linear DNA may influence the bending of DNA induced during protein binding.

    Fig.4 Experimental data for Specific-Middle and Specific-Side DNA fragments(a)length dependence of equilibrium constant,(b)length dependence of dissociation rate constant,(c)length dependence of equilibrium constant, (d)length dependence of the ratio between the equilibrium constants of Specific-Middle and Specific-Side DNA fragments

    2.3 The contribution of nonspecific binding sites on equilibrium constants of DNA fragments

    From equations(5)and(10),we determined that the difference in KAbetween nonspecific and specific DNA is always given byIn our case,the difference between the Nonspecific case and corresponding Specific-Side case is~(1.5±0.7)×1010mol-1·L,and the difference between the Nonspecific case and corresponding Specific-Middle cases is~(5.4± 1.1)×109mol-1·L.Although the difference is independent of the DNA fragment length,the influence on KAof having a specific binding site on a DNA fragment decreases with the increase in length,as shown in Fig.5.This is because the contribution of nonspecific binding sites will mask the effect of increasing length.

    In practice,since the lack of rigid structure at the ends may influence the binding affinity to transcription factors,we should exercise caution when comparing the binding affinities to DNA fragments of different lengths,or to DNA fragments that contain a specific binding site at different positions,especially when one of the DNA fragments contains a binding site near the end.

    In some SPR experiments,control channels were loaded with nonspecific DNA fragments of the same length as the experimental fragments.This control binding curve was subtracted from the binding curve for the corresponding experimental DNA fragment in order to calculate the final specific binding curve for further analysis.Given the complexity of nonspecific binding observed in our protein-DNA system,this direct subtraction procedure may not be ideal for isolating sequence-specific binding.

    Fig.5 Binding equilibrium constants for Mnt repressor to DNA fragments

    3 Conclusions

    Using SPR,we monitored both the association and dissociation process of Mnt-repressor with a series of nonspecific DNA fragments.Combined with further theoretical analysis,we clearly conclude that Mnt-repressor dissociation from DNA at the end position is faster than from other positions.In addition, we found that the end can directly influence the protein specific binding when the binding site is too close to the end.

    1 von Hippel,P.H.;Rees,W.A.;Rippe,K.;Wilson,K.S.Biophys. Chem.,1996,59:231

    2 Halford,S.E.;Szczekun,M.D.Eur.Biophys.J.,2002,31:257

    3 von Hippel,P.H.Annu.Rev.Biophys.Biomol.Struct.,2007,36: 79

    4 Blainey,P.C.;van Oijen,A.M.;Banerjee,A.;Verdine,G.L.;Xie, X.S.Proc.Natl.Acad.Sci.U.S.A.,2006,103:5752

    5 Elf,J.;Li,G.W.;Xie,X.S.Science,2007,316:1191

    6 Winter,R.B.;Berg,O.G.;von Hippel,P.H.Biochemistry,1981, 20:6961

    7 Winter,R.B.;von Hippel,P.H.Biochemistry,1981,20:6948

    8 Vossen,K.M.;Fried,M.G.Anal.Biochem.,1997,245:85

    9 Surby,M.A.;Reich,N.O.Biochemistry,1996,35:2209

    10 Roberts,R.J.CRC Crit.Rev.Biochem.,1976,4(2):123

    11 Jeltsch,A.;Pingoud,A.Biochemistry,1998,37:2160

    12 Knight,K.L.;Sauer,R.T.J.Biol.Chem.,1989,264:13706

    13 Knight,K.L.;Sauer,R.T.Proc.Natl.Acad.Sci.U.S.A.,1989, 86:797

    14 Fields,D.S.;He,Y.;Al-Uzri,A.Y.;Stormo,G.D.J.Mol.Biol., 1997,271:178

    15 Vershon,A.K.;Liao,S.M.;Mcclure,W.R.;Sauer,R.T.J.Mol. Biol.,1987,195:311

    16 Bradford,M.M.Anal.Biochem.,1976,72:248

    17 Yang,X.;Liu,X.;Lou,C.;Chen,J.;Ouyang,Q.J.Mol.Evol., 2009,68(1):14

    18 Record,M.T.;Lohman,T.M.Biopolymers,1978,17:159

    19 Rajendrakumar,G.V.;Ganesh,K.N.;Chatterji,D.J.Biol.Chem., 1990,265:22300

    20 Berggrun,A.;Sauer,R.T.Proc.Natl.Acad.Sci.U.S.A.,2001, 98:2301

    猜你喜歡
    生物學(xué)物理
    只因是物理
    井岡教育(2022年2期)2022-10-14 03:11:44
    谷稗的生物學(xué)特性和栽培技術(shù)
    如何打造高效物理復(fù)習(xí)課——以“壓強(qiáng)”復(fù)習(xí)課為例
    處處留心皆物理
    初中生物學(xué)糾錯(cuò)本的建立與使用
    初中生物學(xué)糾錯(cuò)本的建立與使用
    我心中的物理
    Keller-Segel生物學(xué)方程組周期解的爆破
    三腳插頭上的物理知識(shí)
    PEDF抗腫瘤的生物學(xué)作用
    高清黄色对白视频在线免费看 | 人妻人人澡人人爽人人| 人妻少妇偷人精品九色| 免费人成在线观看视频色| 亚洲经典国产精华液单| 一区二区av电影网| 91在线精品国自产拍蜜月| 99热全是精品| 亚洲第一av免费看| 三级国产精品欧美在线观看| 桃花免费在线播放| 我要看黄色一级片免费的| 中文字幕免费在线视频6| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 国产高清国产精品国产三级| 亚洲精品国产成人久久av| 校园人妻丝袜中文字幕| 久久午夜综合久久蜜桃| 高清不卡的av网站| 中国国产av一级| 国产精品三级大全| 一级毛片久久久久久久久女| 久久久久人妻精品一区果冻| 日韩不卡一区二区三区视频在线| 久久久久精品久久久久真实原创| 99re6热这里在线精品视频| 看十八女毛片水多多多| 欧美精品一区二区大全| 亚洲精品视频女| 午夜av观看不卡| 亚洲av.av天堂| 国产亚洲午夜精品一区二区久久| 日本爱情动作片www.在线观看| 久久 成人 亚洲| 亚洲国产精品成人久久小说| 天堂俺去俺来也www色官网| 国产日韩欧美亚洲二区| 国产av一区二区精品久久| 女性生殖器流出的白浆| 永久网站在线| 亚洲欧美精品专区久久| 国产成人精品久久久久久| 99热6这里只有精品| 国产淫片久久久久久久久| 久久久久国产精品人妻一区二区| 国产一级毛片在线| 91成人精品电影| 蜜桃在线观看..| h日本视频在线播放| 一级,二级,三级黄色视频| 日韩精品有码人妻一区| 色哟哟·www| 精品卡一卡二卡四卡免费| 中文精品一卡2卡3卡4更新| 爱豆传媒免费全集在线观看| 日本爱情动作片www.在线观看| 最后的刺客免费高清国语| 久久精品国产亚洲av天美| 九草在线视频观看| 亚洲伊人久久精品综合| 亚洲av免费高清在线观看| 国产高清三级在线| 天堂中文最新版在线下载| 18禁裸乳无遮挡动漫免费视频| 亚洲va在线va天堂va国产| 又爽又黄a免费视频| 亚洲成人av在线免费| av免费在线看不卡| 人妻人人澡人人爽人人| 久久久久久久亚洲中文字幕| 日本免费在线观看一区| 国国产精品蜜臀av免费| 啦啦啦啦在线视频资源| .国产精品久久| 日本vs欧美在线观看视频 | 欧美人与善性xxx| 亚洲美女黄色视频免费看| 一级二级三级毛片免费看| 丰满饥渴人妻一区二区三| 亚洲,欧美,日韩| 久久国产乱子免费精品| 久久午夜福利片| 97在线人人人人妻| 免费观看在线日韩| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| 99视频精品全部免费 在线| 亚洲av.av天堂| 国产精品久久久久成人av| 亚洲国产毛片av蜜桃av| 午夜福利网站1000一区二区三区| 午夜久久久在线观看| 在线免费观看不下载黄p国产| 熟女av电影| 中文欧美无线码| 午夜免费鲁丝| 亚洲精品乱码久久久v下载方式| 最近中文字幕2019免费版| 久久久久久伊人网av| 日韩免费高清中文字幕av| 国产成人精品一,二区| 亚洲av欧美aⅴ国产| 久久久精品94久久精品| 在线观看www视频免费| 蜜桃在线观看..| 日本av免费视频播放| 亚洲色图综合在线观看| 精品久久久噜噜| 成人毛片a级毛片在线播放| 一级片'在线观看视频| a 毛片基地| 免费看不卡的av| 欧美日韩视频精品一区| 插阴视频在线观看视频| 两个人免费观看高清视频 | 欧美 日韩 精品 国产| 亚洲经典国产精华液单| √禁漫天堂资源中文www| 韩国av在线不卡| 日韩成人伦理影院| av免费观看日本| 午夜福利视频精品| 99热这里只有是精品50| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 久久97久久精品| 国产日韩欧美视频二区| 国产高清不卡午夜福利| 国产精品三级大全| 国产一级毛片在线| 女性生殖器流出的白浆| 高清av免费在线| 一级黄片播放器| 国产探花极品一区二区| 日本vs欧美在线观看视频 | 如日韩欧美国产精品一区二区三区 | 97超视频在线观看视频| 日本黄色片子视频| 亚洲第一区二区三区不卡| 成人特级av手机在线观看| 妹子高潮喷水视频| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 久久久久国产精品人妻一区二区| 国产成人freesex在线| 日韩中字成人| 国产淫片久久久久久久久| 欧美老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 日韩亚洲欧美综合| 内射极品少妇av片p| 九九久久精品国产亚洲av麻豆| av不卡在线播放| 赤兔流量卡办理| 精品久久久久久久久亚洲| 卡戴珊不雅视频在线播放| 又黄又爽又刺激的免费视频.| 日韩av在线免费看完整版不卡| 久久久久久久精品精品| 99热这里只有精品一区| 日韩av不卡免费在线播放| 观看美女的网站| 日日啪夜夜爽| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 亚洲无线观看免费| 日本vs欧美在线观看视频 | 最黄视频免费看| 成人无遮挡网站| 夜夜爽夜夜爽视频| 欧美bdsm另类| 51国产日韩欧美| 黄色一级大片看看| 亚洲欧洲精品一区二区精品久久久 | 亚洲四区av| 国产精品人妻久久久久久| 美女主播在线视频| 欧美日韩av久久| 精品人妻熟女毛片av久久网站| 我的女老师完整版在线观看| 国产成人aa在线观看| 99国产精品免费福利视频| 亚洲av.av天堂| 亚洲精品第二区| 成人亚洲精品一区在线观看| 九色成人免费人妻av| 妹子高潮喷水视频| 中文天堂在线官网| 精品久久久精品久久久| 伊人久久精品亚洲午夜| 国国产精品蜜臀av免费| 免费黄频网站在线观看国产| 久久热精品热| 丰满少妇做爰视频| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 午夜福利视频精品| 色5月婷婷丁香| 十分钟在线观看高清视频www | 两个人的视频大全免费| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 妹子高潮喷水视频| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 国产色婷婷99| 99热网站在线观看| 嘟嘟电影网在线观看| 免费观看在线日韩| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 日本黄色片子视频| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 亚洲丝袜综合中文字幕| 日本黄大片高清| 97超视频在线观看视频| 性色avwww在线观看| 一级爰片在线观看| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 国产高清有码在线观看视频| 韩国高清视频一区二区三区| 女性生殖器流出的白浆| 国产日韩一区二区三区精品不卡 | 成人二区视频| 国产黄色免费在线视频| 日韩欧美精品免费久久| 内射极品少妇av片p| 啦啦啦在线观看免费高清www| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 91久久精品国产一区二区成人| 人妻 亚洲 视频| 精品久久久久久电影网| 一级av片app| 亚洲国产精品一区二区三区在线| 国产av国产精品国产| a级一级毛片免费在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 青青草视频在线视频观看| 欧美精品高潮呻吟av久久| 国产一区二区三区av在线| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| .国产精品久久| 亚洲国产精品专区欧美| 一区二区三区免费毛片| 高清毛片免费看| 色94色欧美一区二区| 99热网站在线观看| 日本欧美国产在线视频| 精品一品国产午夜福利视频| 自拍偷自拍亚洲精品老妇| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 高清在线视频一区二区三区| 久久久久久久国产电影| 日韩视频在线欧美| 亚洲av日韩在线播放| 精品一区在线观看国产| 六月丁香七月| 久久久久网色| 亚洲人成网站在线观看播放| 男女免费视频国产| 成人国产麻豆网| 丝袜脚勾引网站| 亚洲欧美日韩东京热| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 国产免费又黄又爽又色| 永久免费av网站大全| 久久午夜综合久久蜜桃| 国产精品麻豆人妻色哟哟久久| 亚洲精品视频女| 91久久精品国产一区二区三区| 免费在线观看成人毛片| 免费看光身美女| 一本—道久久a久久精品蜜桃钙片| 午夜老司机福利剧场| 国产日韩欧美在线精品| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| 久久久久精品性色| 两个人免费观看高清视频 | 久久综合国产亚洲精品| 午夜老司机福利剧场| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 噜噜噜噜噜久久久久久91| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩av久久| 麻豆成人av视频| 日本vs欧美在线观看视频 | 男女啪啪激烈高潮av片| 视频中文字幕在线观看| 亚洲av免费高清在线观看| 丰满乱子伦码专区| 97精品久久久久久久久久精品| 国产伦理片在线播放av一区| 91aial.com中文字幕在线观看| 国产av国产精品国产| videos熟女内射| av网站免费在线观看视频| 美女xxoo啪啪120秒动态图| 免费黄网站久久成人精品| 国产日韩欧美在线精品| 特大巨黑吊av在线直播| 国产探花极品一区二区| 街头女战士在线观看网站| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 久久99一区二区三区| av天堂久久9| 三上悠亚av全集在线观看 | 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 永久网站在线| 亚洲情色 制服丝袜| 丝瓜视频免费看黄片| 久久99一区二区三区| 在线观看美女被高潮喷水网站| 新久久久久国产一级毛片| 亚洲激情五月婷婷啪啪| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 日韩欧美精品免费久久| 少妇的逼水好多| 亚洲欧洲国产日韩| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 青青草视频在线视频观看| 亚洲精品一二三| √禁漫天堂资源中文www| 日韩电影二区| 国产精品三级大全| 国产又色又爽无遮挡免| 国产亚洲最大av| av专区在线播放| 免费久久久久久久精品成人欧美视频 | 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 人人妻人人澡人人看| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 18禁动态无遮挡网站| 日本av免费视频播放| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 午夜日本视频在线| 国产69精品久久久久777片| 久久99蜜桃精品久久| 欧美丝袜亚洲另类| 观看av在线不卡| 国产精品久久久久久精品古装| 国产精品福利在线免费观看| 久久精品久久久久久久性| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 亚洲精品日韩在线中文字幕| 麻豆精品久久久久久蜜桃| 最新的欧美精品一区二区| 人妻系列 视频| 国产精品偷伦视频观看了| 亚洲国产色片| 国产黄片美女视频| 国产有黄有色有爽视频| 最新中文字幕久久久久| 91精品国产国语对白视频| 日韩电影二区| 欧美日韩精品成人综合77777| 国产精品熟女久久久久浪| 九草在线视频观看| 欧美另类一区| 九九爱精品视频在线观看| 久久久午夜欧美精品| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 国产男女内射视频| 中文字幕制服av| 婷婷色麻豆天堂久久| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 人妻系列 视频| 制服丝袜香蕉在线| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 亚洲欧洲国产日韩| 欧美丝袜亚洲另类| 91久久精品电影网| 国产老妇伦熟女老妇高清| 中文天堂在线官网| 丰满饥渴人妻一区二区三| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 国产欧美日韩综合在线一区二区 | 国产熟女欧美一区二区| 麻豆成人午夜福利视频| 免费高清在线观看视频在线观看| 男人狂女人下面高潮的视频| 免费播放大片免费观看视频在线观看| 新久久久久国产一级毛片| 国产一区亚洲一区在线观看| h视频一区二区三区| 日韩强制内射视频| 免费看光身美女| 男男h啪啪无遮挡| 九九在线视频观看精品| a 毛片基地| 国产亚洲5aaaaa淫片| 免费看av在线观看网站| 国产精品秋霞免费鲁丝片| 日本91视频免费播放| 大片电影免费在线观看免费| 亚洲欧美成人精品一区二区| 久久97久久精品| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 日日啪夜夜撸| 在线亚洲精品国产二区图片欧美 | 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 免费在线观看成人毛片| 日韩伦理黄色片| 中文在线观看免费www的网站| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 嫩草影院新地址| 夫妻性生交免费视频一级片| 亚洲精品日本国产第一区| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 五月伊人婷婷丁香| 久久久a久久爽久久v久久| 国产精品三级大全| 国产在线视频一区二区| 亚洲精品国产av成人精品| 交换朋友夫妻互换小说| 免费看av在线观看网站| 久久久久久伊人网av| 久久国产精品男人的天堂亚洲 | 国产男人的电影天堂91| 中文资源天堂在线| 18禁在线无遮挡免费观看视频| 久久鲁丝午夜福利片| 精品一区二区三区视频在线| 性高湖久久久久久久久免费观看| 天美传媒精品一区二区| 国产又色又爽无遮挡免| 色哟哟·www| 夜夜爽夜夜爽视频| 爱豆传媒免费全集在线观看| 中文在线观看免费www的网站| 九九久久精品国产亚洲av麻豆| 三上悠亚av全集在线观看 | 水蜜桃什么品种好| 亚洲av中文av极速乱| 国产精品一二三区在线看| 欧美精品一区二区免费开放| 美女视频免费永久观看网站| 3wmmmm亚洲av在线观看| 国产精品伦人一区二区| 亚洲熟女精品中文字幕| 纯流量卡能插随身wifi吗| 国产一区二区在线观看日韩| 美女视频免费永久观看网站| 国产午夜精品久久久久久一区二区三区| 美女视频免费永久观看网站| 最新中文字幕久久久久| 男人添女人高潮全过程视频| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花| 国产淫片久久久久久久久| 国产午夜精品久久久久久一区二区三区| 乱人伦中国视频| 国产精品免费大片| 精品少妇黑人巨大在线播放| 日韩欧美精品免费久久| 婷婷色麻豆天堂久久| 蜜桃久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 成人二区视频| 国产欧美日韩精品一区二区| 色吧在线观看| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 欧美 日韩 精品 国产| 日韩中文字幕视频在线看片| 午夜福利,免费看| 丰满少妇做爰视频| 最新的欧美精品一区二区| 老熟女久久久| 国产精品免费大片| 亚洲中文av在线| 日韩亚洲欧美综合| 国产精品无大码| 日本91视频免费播放| 在线观看国产h片| 黄色一级大片看看| av女优亚洲男人天堂| 日本色播在线视频| 99热这里只有是精品50| 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 亚洲精品456在线播放app| 亚洲自偷自拍三级| 亚洲精品一二三| 美女内射精品一级片tv| 一级,二级,三级黄色视频| 久久久久久人妻| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 丝袜脚勾引网站| 又大又黄又爽视频免费| 成人午夜精彩视频在线观看| 91久久精品国产一区二区成人| 亚洲av欧美aⅴ国产| 国产欧美日韩一区二区三区在线 | 国产高清有码在线观看视频| 国产女主播在线喷水免费视频网站| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 免费大片黄手机在线观看| 一本一本综合久久| 美女主播在线视频| 男人添女人高潮全过程视频| 久久 成人 亚洲| 在线观看av片永久免费下载| 熟妇人妻不卡中文字幕| 男女边吃奶边做爰视频| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 人人妻人人澡人人看| 少妇被粗大的猛进出69影院 | 美女国产视频在线观看| 97超碰精品成人国产| 午夜福利影视在线免费观看| 91aial.com中文字幕在线观看| 欧美精品高潮呻吟av久久| 久久99热这里只频精品6学生| 国产成人精品无人区| 国产91av在线免费观看| a级毛片免费高清观看在线播放| 久久女婷五月综合色啪小说| a级毛色黄片| 亚洲精品色激情综合| 人妻 亚洲 视频| 18禁在线播放成人免费| 亚洲国产日韩一区二区| 91精品国产国语对白视频| 国产熟女欧美一区二区| 日本欧美国产在线视频| 国内少妇人妻偷人精品xxx网站| 一级黄片播放器| 国内揄拍国产精品人妻在线| 精品视频人人做人人爽| 一级二级三级毛片免费看| 人妻制服诱惑在线中文字幕| 丰满少妇做爰视频| 成人二区视频| 久久久午夜欧美精品| 久久久久久久国产电影| 色婷婷av一区二区三区视频| 欧美97在线视频| 亚洲av电影在线观看一区二区三区| 另类亚洲欧美激情| 午夜福利视频精品| 我的老师免费观看完整版| 丰满饥渴人妻一区二区三| 日韩中字成人| av在线老鸭窝| 777米奇影视久久| 少妇被粗大的猛进出69影院 | 老女人水多毛片| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 亚洲成人手机| 91午夜精品亚洲一区二区三区| 亚洲国产成人一精品久久久| 亚州av有码| 久久av网站| 成人无遮挡网站| 这个男人来自地球电影免费观看 | 国产精品欧美亚洲77777| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 熟女电影av网| 黄色视频在线播放观看不卡| 久久99蜜桃精品久久| 精品亚洲乱码少妇综合久久| 国产精品三级大全| 亚洲国产精品国产精品| 欧美国产精品一级二级三级 | 一区二区av电影网|