• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無(wú)底物情況下來(lái)白R(shí)hoclococcus zopfii的腈水解酶中親核進(jìn)攻試劑CYS165的活性狀態(tài)的探究(英文)

    2025-01-22 00:00:00張慧珠高旭丹梅曄
    關(guān)鍵詞:能壘水解酶底物

    關(guān)鍵詞:ONIOM (the Own n?Layered Integrated Molecular Orbital and Molecular Mechanics),腈水解酶,能壘,催化機(jī)制

    中圖分類號(hào):O643 文獻(xiàn)標(biāo)志碼:A

    Abstract: Nitrilase,as a class of green biocatalysts of great value in industrial applications,can efficiently catalyze thehydrolysis of nitrile compounds into carboxylic acids. Despite its wide application,the specific catalytic mechanism of nitrilaseremains elusive. Previous studies have revealed that the GLU?LYS?GLU?CYS tetrad in the active center of nitrilase plays apivotal role in the catalysis,where the CYS residue acts as a nucleophile attacking the nitrile,and the ionization of its thiolgroup is a key step in the reaction. However,the process of deprotonation of CYS has not been clearly illustrated. This studyfocuses on the nitrilase from Rhodococcus zopfii (RzNIT) and investigates the protonation state of CYS165 when thesubstrate has not yet entered the enzyme′s active site. Through detailed analysis of possible pathways for CYS165deprotonation,it is confirmed that CYS165 in RzNIT is in its neutral state in the absence of substrate. This finding lays thefoundation for further studies on the catalytic mechanism of RzNIT.

    Keywords: ONIOM (the Own n ?Layered Integrated Molecular Orbital and Molecular Mechanics),nitrilase,energy barrier,catalytic mechanism

    Nitrilase (EC 3. 5. 5. 1),a key green bioca ?talyst in industry,hydrolyzes nitriles to carboxylicacids and ammonia[1-2]. Nitrile compounds pose aserious threat to human health due to their high toxi?city and potential carcinogenicity[3]. They are wide?ly present in wastewater generated from industrialactivities such as mining,refining,and automobilemanufacturing[4]. Microbial degradation,especiallyhydrolysis by nitrilase,offers an effective methodfor removing highly toxic nitriles from industrialwastewater [5-8]. Furthermore,the carboxylic acidsproduced by nitrilase hydrolysis,such as (R)?man?delic acid[9-10],nicotinic acid[11],and 2?chloronico?tinic acid[12-13],are key intermediates in the synthe?sis of many compounds and pharmaceuticals[2,12].Nitrilase,with its mild reaction conditions,environ?ment ? friendly,and sustainable characteristics,hasbecome a biocatalyst of significant commercialvalue[14]. Its potential applications span from envi?ronmental management to industrial manufactur?ing,representing an essential shift towards greenchemistry and sustainable industrial processes[15].

    Nitrilases are widely distributed in nature,in?cluding in plants,animals,and microbes[16]. Basedon the analysis of nitrilase sequence similarity andfunctional domains,Nitrilases have been classifiedinto thirteen different branches[16-17]. The nitrilasesof the first branch mainly hydrolyze nitriles to am ?monia and carboxylic acids,while other branchesexhibit characteristics of hydrolyzing or synthesiz?ing amides[17]. Notably,some nitrilases in the firstbranch not only show hydrolysis activity but alsohydration activity,capable of generating carboxylicacids or amides. For example,the nitrilase fromPseudomonas fluorescens EBC191 can catalyze thetransformation of (S)? mandelonitrile to mande?loamide and (S)? mandelic acid[18-19]. Meanwhile,the nitrilase from Rhodococcus zopfii (RzNIT)demonstrates high catalytic activity towards 2?chlo?ronicotinonitrile,with hydratase activity playing adominant role[12]. The application of these nitrilas?es in actual production is limited by the difficulty inseparating by?products[20]. Additionally,due to thelack of detailed crystal structures and explanationsof catalytic mechanisms,designing enzyme struc?tures to balance catalytic efficiency and reactionspecificity faces challenges[21]. The advent of Al?phaFold in 2021 marked a significant advance?ment,as this artificial intelligence platform can pre?dict protein 3D structures with high precision[22].

    Nitrilases are commonly found as homopoly?mers in nature[23]. Studies on the crystal structuresof microbial nitrilases,such as the nitrilase fromPyrococcus abyssi (PDB:3KLC)[24] and Synecho?cystis sp (PDB: 3WUY)[25],have revealed that ni?trilases possess an α?β?β?α sandwich structure. Ad?ditionally,homodimers exhibit a superstructure ofα?β?β?α?α?β?β?α[23,26-28]. Research has shown thatthe GLU ?LYS?GLU ?CYS catalytic tetrad plays adecisive role in the enzyme′s catalytic activity[25,29].Mutation experiments on various nitrilases haveshown that altering any residue in the catalytic tet?rad leads to a loss or significant reduction in en?zyme activity[30-32]. While these experiments un?derscore the importance of the catalytic tetrad,theprecise mechanism of catalysis remains unclear.The current understanding of the nitrilase catalyticmechanism is primarily based on experimental re?sults and analogy studies with other enzyme mecha?nisms. In the mechanism study of N ?carbamyl?D ?amino acid amidohydrolase,it was proposed thatthe nucleophilic attack and deprotonation of CYSoccur simultaneously[33]. Meanwhile,the study ofthe hydrolysis mechanism of mouse Nit2 (PDB:2W1V) in converting α ? ketosuccinamate (KSM)to oxaloacetate suggested that under physiologicalconditions with substrate,a steady?state process ex?ists,where the catalytic tetrad′s CYS can be in twostates:protonated and ionized. Being in the ionizedstate is a prerequisite for the nucleophilic attack[34].The deprotonation of the CYS residue is a key stepin the nitrilase catalytic reaction,affecting the en?zyme′s activity and the substrate selectivity. Sincethe deprotonation of CYS is directly related to theenzyme catalytic mechanism,determination of thetiming of deprotonation is crucial for understandingthe enzyme efficiently.

    The study aims to investigate the protonationstate of the CYS residue of the catalytic tetrad inRzNIT in the absence of a substrate. The dimericstructure and catalytic tetrad are shown in Fig. 1.

    1 Methods

    1. 1 AlphaFold2 prediction of RzNIT 3D struc?ture The sequence for the RzNIT (WP_138999863) was obtained by searching the NCBIdatabase (https://www. ncbi. nlm. nih. gov/).The dimeric structure of the RzNIT was predictedusing AlphaFold2[22]. Certain protein regions ofthe predicted structure of the full length have in?complete folds,as evidenced by Integrated Dis?tance Difference Test (IDDT) scores lower than40. Consequently,these regions were excised fromthe sequence,leaving only residues 1 to 310 for asecond round of prediction. The structure with thehighest IDDT score from the second predictionwas selected as the structure for subsequent molec?ular dynamics( MD) simulations.

    1. 2Molecular dynamics simulations The pro?tein was assigned the Amber ff19SB force field[35]The protein was placed in a cubic TIP3P waterbox[36] with the distance between the protein andthe boundary of the box no less than 15 ?. Na+ions were added for charge neutralization. Thesystem was optimized using 500 steps of steepest"descent followed by 500 steps of conjugate gradi?ent optimization with the protein structure re?strained with a force constant of 10 kcal·mol-1·?-2on the backbone atoms. In the second stage of en?ergy minimization,the entire system was optimizedusing 500 steps of steepest descent followed by500 steps of conjugate gradient optimization with?out any restraint applied. Then,the temperaturewas gradually raised to 300 K in 100 ps,with aforce constant of 5 kcal·mol-1· ?-2 to the proteinbackbone atoms. A 100 ? ps simulations was per?formed under the NPT ensemble to further relaxthe system with the restraint removed. After that,a 200 ? ns production run was conducted under theNPT ensemble. The SHAKE algorithm[37] wasused to constrain all bonds involving hydrogen at?oms. The integration time step was 2 fs. Temper?ature regulation was achieved using a Langevinthermostat[38] with a collision frequency of 1. 0ps-1. Pressure regulation was managed by theBerendsen barostat,with long ? range electrostaticinteractions treated using particle mesh Ewald witha real ? space cutoff of 12 ?. All the simulationswere performed using Amber20[ 39].

    1. 3 ONIOM calculations Two representativestructures were extracted from the MD trajectory.The protein and the water molecules within 3 ?from the protein were preserved. Na+ cations wereadded using the leap module in AMBERTools toneutralize the charge. Following this treatment,the two structures contained 14038 and 14122atoms,respectively. These structures served asthe initial configurations for the ONIOM[40-42] cal?culations using Gaussian16[43]. The quantum me?chanics(QM) region contains 45 atoms in total,en?compassing the side chains of GLU138,LYS131,GLU48,and CYS165,as well as two water mole?cules. One water molecule acts as a medium forproton transfer,while the other imitates the aque?ous environment surrounding the active site. Struc?ture optimization for the QM region was performedat the B3LYP/6 ? 31G(d) level of theory[44]. Themolecular mechanical (MM) region was modeledusing the Amber ff99SB force field parameters.An electrostatic embedding scheme was employedto implement the electrostatic polarization effect onthe QM region from the MM region.

    Due to the complexity of the system,an inde?pendent optimization of the atoms within the QMregion was initially performed ,using a clustermodel to optimize the transition states. During thisprocess,main chain atoms were removed,the CBatoms of each residue were fixed ,and hydrogenatoms were added to saturate the CB atoms. Oncethe transition state structure was confirmed,it wasreintegrated into the initial structure for ONIOMcalculations. The transition state structure was fur?ther optimized under the condition that atoms be?yond 6 ? from the catalytic tetrad were frozen.Based on the optimized transition state structure,all atoms in the MM region were frozen,and thestructures of the transition state,reactant,and pro?duct were optimized again to minimize energy fluc?tuations caused by movements of atoms in the MMregion,ensuring the accuracy of the energy differ?ences between the QM region,reactant,product,and transition states. Finally,the correctness ofthe transition state structure and the feasibility ofthe reaction path were determined by calculatingthe intrinsic reaction coordinate( IRC).

    2 Results and discussion

    The AlphaFold 2 IDDT scores of the predict?ed structure is shown in Fig. 2. The predictedstructure of the complete sequence shows that resi?dues 311 to 366 are structureless,which are,there?fore,truncated in the second?round of structure pre?diction to avoid unrealisitc interaction between thisshort squence and the ordered region. Among thefive structures obtained in the second?round of pre?diction,the one with the highest confidence,therank_1 structure,was selected for the subsequentstudy.

    The root mean square deviation (RMSD) of the protein backbone atoms along the 200 ns simu?lations is shown in Fig. 3. It was observed that dur?ing the first 60 ns the RMSD plateaued at 2. 0 ?,but it increased to 2. 5 ? at around 80 ns. At around 80 ns,an influx of water into the active sitewas observed, which caused the increase inRMSD. Despite this,the protein maintained rela?tively stable from 80 ns to 200 ns,corroboratingthe stability of RzNIT structure as predicted by Al?phaFold2.

    Further analysis of the trajectory showed thatthe active site of the protein was enriched with wa?ter molecules. Especially a stable water molecule(WAT3030) was found within the catalytic tetrad,of which the Root Mean Square Fluctuation(RMSF) is 0. 50 ? within 120~200 ns. Thestructural characteristics of WAT3030 are show inFig. 4. The distance between the carboxyl oxygenatom of GLU48 and the oxygen atom ofWAT3030 centered at 2. 6 ? and the distance be?tween the carboxyl oxygen atom of GLU138 andthe oxygen atom of WAT3030 centered at 2. 7 ?.These distances indicate hydrogen bonding interac?tions between WAT3030 and the carboxyl groupsof GLU48 and GLU138,anchoring WAT3030centrally within the catalytic tetrad. The oxygenatom of WAT3030 is 3. 1 ? away from the sulfuratom of CYS165,indicating a relatively weak inter?action between them.

    Additionally,GLU48 and GLU138 were iden?tified as the only amino acid residues potentially ca?pable of abstracting a proton from CYS165. Thedistance distribution between the sulfur atom of"CYS165 and the carboxyl oxygen atom ofGLU138 and the distance distribution between thesulfur atom of CYS165 and the carboxyl oxygen at?om of GLU48 are shown in Fig. 5. The distancebetween the sulfur atom of CYS165 and the car?boxyl oxygen atom of GLU138 centered at 5. 6 ?,and that between the sulfur atom of CYS165 andthe carboxyl oxygen atom of GLU48 centered at4. 6 ?,respectively. Both of them are larger than 3?,suggesting that proton transfer from CYS165 toGLU48 and GLU138 cannot occur directly. Giventhe discovery of a stable WAT3030 within the cat?alytic tetrad,it was hypothesized that the protontransfer is mediated through WAT3030. Thus,WAT3030,involved in the reaction,and a watermolecule representing the aqueous environmentwere included in the QM region. Two representa?tive structures were selected from the MD trajecto?ry. The QM regions of the two structures areshown in Fig. 6.

    The QM region for the study of proton trans?fer from CYS165 to GLU138 is shown in Fig. 6a.In this structure,the distance between the oxygenatoms of WAT2900 and WAT3030 is 3. 1 ?.The distance between the sulfur atom of CYS165and the oxygen atom of WAT3030 is 3. 0 ?,andthe distance between carboxyl oxygen atom ofGLU138 and the oxygen atom of WAT3030 is2. 6 ?. These distances are consistent with theaforementioned distributions,indicating that thisstructure represents a characteristic structure with?in the MD trajectory. Additionally,the angle madeby the thiol hydrogen atom of CYS165 and the ox?ygen atom and one of the hydrogen atoms inWAT3030 is 109 degrees,which closely approxi?mates the bond angle of water molecules. This isconducive for the water ? bridged proton transferfrom CYS165 to GLU138. Therefore,this struc?ture has been selected for studying the proton trans?fer pathway from CYS165 to GLU138. The QMregion for the study of the proton transfer fromCYS165 to GLU48 is shown in Fig. 6b. The hy?drogen bonding network in this structure can ac?commodate the proton transfer from CYS165 toGLU48.

    In the proton transfer from CYS165 toGLU138 via WAT3030,a concerted process wasconsidered. While the thiol hydrogen atom ofCYS165 is being transferred to WAT3030 ,a"hydrogen atom in WAT3030 is abstracted bycarboxyl group of GLU138 simultaneously. Thequasi ? stable structures for this reaction are shownin Fig. 7. In the reactant,the distance between thethiol hydrogen atom of CYS165 and the oxygenatom in WAT3030 is 1. 9 ?. The hydrogen bonddistance between WAT3030 and one of the oxy?gen atoms in the carboxyl group of GLU138 is1. 7 ?. The distance between the positivelycharged α?amino group in LYS131 and the carbox?yl group in GLU48 is 1. 5 ?( hydrogen?oxygen dis?tance),forming a strong salt bridge that stabilizesthe entire structure. The hydrogen bond anglebetween CYS165 and WAT3030 and thatbetween WAT3030 and GLU138 are close to 180degrees,indicating a favorable configuration forproton transfer.

    The transition state( TS) has an imaginary vi?bration model of 611. 55 cm-1 linking the reactantand the product. In the transition state,the hydro?gen bond distance between CYS165 andWAT3030 decreases to 1. 1 ?,the bond length be?tween WAT3030 and GLU138 (hydrogen?oxygendistance) shrinks to 1. 2 ?. This structuralchange results in a tetrahedral configuration involv?ing the thiol hydrogen atom of CYS165 and all thethree atoms in WAT3030.

    In the product structure,the hydrogen bondlength between WAT3030 and GLU48 is 1. 7 ?.The hydrogen bond length between the oxygen ofWAT3030 and the hydrogen transferred fromWAT3030 to GLU138 is 1. 4 ?. The stronghydrogen bond interaction between the side chainsof LYS131 and GLU48 still exists,stabilizing theentire product structure.

    Energy calculations for the CYS165 protontransfer reaction yielded an energy barrier of 16. 29kcal·mol-1 between the transition state and reactant(shown in Fig. 8),and the product is 15. 88 kcal ·mol-1 higher in energy than that of the reactant.These calculations suggest that although the reac?tion is theoretically feasible from an energy per?spective,the significant energy difference betweenthe product and reactant renders the probability ofthe product of this reaction pathway extremely lowunder physiological conditions. This outcome indi?cates that GLU138 does not effectively abstract aproton from CYS165 in the absence of the sub?strate binding.

    The water ? bridged proton transfer fromCYS165 to GLU48 also follows a concerted path?way. As the thiol hydrogen atom of CYS165 is"relocated to WAT3030,a hydrogen atom inWAT3030 is abstracted concurrently by the car?boxyl group in GLU48. The reactant,transitionstate and product structures of this reaction areshown in Fig. 9. In the reactant ,the distancebetween the thiol hydrogen atom of CYS165 andthe oxygen atom in WAT3030 is 1. 8 ?. Thehydrogen bond distance between WAT3030 andone of the oxygen atoms in the carboxyl group ofGLU48 is 1. 8 ?,and the distance between thepositively charged α ? amino group in LYS131 andthe carboxyl group in GLU48 is 1. 5 ? (hydrogen?oxygen distance),constructing a strong salt bridgethat stabilizes the entire structure. The hydrogenbond angle between CYS165 and WAT3030 andthat between WAT3030 and GLU48 are near 180degrees,suggesting a favorable configuration forproton transfer.

    The transition state is characterized by animaginary vibration model of 895. 65 cm-1. In thetransition state,the hydrogen bond distance be?tween CYS165 and WAT3030 decreases to 1. 2 ?and the hydrogen bond length between WAT3030and GLU48 decreases to 1. 3 ?. The hydrogenbond distance between the side chains of LYS131and GLU48 increases to 1. 7 ?,denoting a weak?ening of the hydrogen bond interaction.

    In the product,the hydrogen bond length be?tween WAT3030 and GLU138 is 1. 7 ?. The hy?drogen bond length between the oxygen ofWAT3030 and the hydrogen transferred fromWAT3030 to GLU48 is 1. 5 ?. The salt bridgedistance between LYS131 and GLU48 increasesto 1. 8 ?,denoting a further weakening of the Cou?lomb interaction.

    The energy involved in the CYS165 protontransfer reaction were calculated (show inFig. 10). The results show an energy barrier of10. 86 kcal·mol-1 between the transition state andreactant,and the product is 8. 04 kcal·mol-1 higher in energy than that of the reactant. These calcula?tions indicate that the probability of product forma?tion along this pathway is extremely low underphysiological conditions.

    3 Summary

    Upon analysis of the active site of the RzNITprotein,two pathways of water? mediated protontransfer from CYS165 to GLU residues nearbywere investigated. The computational results dem ?onstrated that in the absence of its substrate,the"nucleophilic agent (CYS165) of the RzNIT pro?tein remains in a neutral state under physiologicalconditions. These insights are important for under?standing the characteristics of the RzNIT protein′sactive site in a substrate?free state and its behaviorunder physiological conditions,laying the ground?work for further studies on the protein′s reactionmechanism and functional activity.

    Acknowledgement CPU time was provided bythe Supercomputer Center of East China NormalUniversity (ECNU Public Platform for InnovationNo.001).

    References

    [1] Yamamoto K,Ueno Y,Otsubo K,et al. Productionof S ? (+ ) ? ibuprofen from a nitrile compound byAcinetobacter sp. Strain AK226. Applied andEnvironmental Microbiology,1990,56(10):3125-3129.

    [2] Shen J D,Cai X,Liu Z Q,et al. Nitrilase:Apromising biocatalyst in industrial applications forgreen chemistry. Critical Reviews in Biotechnology,2021,41(1):72-93.

    [3] Alvillo?Rivera A,Garrido?Hoyos S,Buitrón G,et al.Biological treatment for the degradation of cyanide:Areview. Journal of Materials Research andTechnology,2021,12:1418-1433.

    [4] Kuyucak N,Akcil A. Cyanide and removal optionsfrom effluents in gold mining and metallurgicalprocesses. Minerals Engineering, 2013, 50-51:13-29.

    [5] Gong J S,Lu Z M,Li H,et al. Nitrilases in nitrilebiocatalysis: Recent progress and forthcomingresearch. Microbial Cell Factories,2012,11(1):142.

    [6] Dash R R,Gaur A,Balomajumder C. Cyanide inindustrial wastewaters and its removal:A review onbiotreatment. Journal of Hazardous Materials,2009,163(1):1-11.

    [7] Menashe O, Raizner Y, Kuc M E, et al.Biodegradation of the endocrine ? disrupting chemical17α ? ethynylestradiol (EE2) by Rhodococcus zopfiiand Pseudomonas putida encapsulated in small"bioreactor platform (SBP) capsules. AppliedSciences,2020,10(1):336.

    [8] Holtze M S,S?rensen S R,S?rensen J,et al.Microbial degradation of the benzonitrile herbicidesdichlobenil, bromoxynil and ioxynil in soil andsubsurface environments – insights into degradationpathways, persistent metabolites and involveddegrader organisms. Environmental Pollution,2008,154(2):155-168.

    [9] Singh R V,Sambyal K. Green synthesis aspects of(R) ? (- ) ? mandelic acid; a potent pharmaceuticallyactive agent and its future prospects. Critical Reviewsin Biotechnology,2023,43(8):1226-1235.

    [10] Zhang X H,Liu Z Q,Xue Y P,et al. Production of R?mandelic acid using nitrilase from recombinant E. colicells immobilized with tris (hydroxymethyl)phosphine. Applied Biochemistry and Biotechnology,2018,184(3):1024-1035.

    [11] Mathew C D,Nagasawa T,Kobayashi M,et al.Nitrilase?catalyzed production of nicotinic acid from3 ? cyanopyridine in Rhodococcus rhodochrous J1.Applied and Environmental Microbiology,1988,54(4):1030-1032.

    [12] Dai A D,Tang X L,Wu Z M,et al. Rationalregulation of reaction specificity of nitrilase forefficient biosynthesis of 2 ? chloronicotinic acidthrough a single site mutation. Applied andEnvironmental Microbiology,2022,88(5):e0239721.

    [13] Jin L Q,Li Y F,Liu Z Q,et al. Characterization of anewly isolated strain Rhodococcus erythropolis ZJB ?09149 transforming 2 ? chloro ? 3 ? cyanopyridine to2 ? chloronicotinic acid. New Biotechnology,2011,28(6):610-615.

    [14] Wohlgemuth R. Biocatalysis ? key to sustainableindustrial chemistry. Current Opinion in Biotech ?nology,2010,21(6):713-724.

    [15] Alcántara A R,Domínguez De María P,Littlechild JA,et al. Biocatalysis as key to sustainable industrialchemistry. ChemSusChem,2022,15(9):e202102709.

    [16] Pace H C,Brenner C. The nitrilase superfamily:Classification, structure and function. GenomeBiology,2001,2(1):REVIEWS0001.

    [17] Brenner C. Catalysis in the nitrilase superfamily.Current Opinion in Structural Biology,2002,12(6):775-782.

    [18] Sosedov O,Matzer K,Bürger S,et al. Constructionof recombinant Escherichia coli catalysts whichsimultaneously express an (S) ? oxynitrilase anddifferent nitrilase variants for the synthesis of (S) ?mandelic acid and (S) ? mandelic amide frombenzaldehyde and cyanide. Advanced Synthesis amp;Catalysis,2009,351(10):1531-1538.

    [19] Sosedov O,Stolz A. Improvement of the amidesforming capacity of the arylacetonitrilase fromPseudomonas fluorescens EBC191 by site ? directedmutagenesis. Applied Microbiology andBiotechnology,2015,99(6):2623-2635.

    [20] Han C,Yao P F,Yuan J,et al. Nitrilase ? catalyzedhydrolysis of 3 ? aminopropionitrile at high concen ?tration with a tandem reaction strategy for shifting thereaction to β ?alanine formation. Journal of MolecularCatalysis B:Enzymatic,2015,115:113-118.

    [21] Gong J S,Li H,Lu Z M,et al. Engineering of afungal nitrilase for improving catalytic activity andreducing by ? product formation in the absence ofstructural information. Catalysis Science amp;Technology,2016,6(12):4134-4141.

    [22] Jumper J,Evans R,Pritzel A,et al. Highly accurateprotein structure prediction with AlphaFold. Nature,2021,596(7873):583-589.

    [23] Thuku R N,Brady D,Benedik M J,et al. Microbialnitrilases: Versatile, spiral forming, industrialenzymes. Journal of Applied Microbiology,2009,106(3):703-727.

    [24] Raczynska J E,Vorgias C E,Antranikian G,et al.Crystallographic analysis of a thermoactive nitrilase.Journal of Structural Biology, 2011, 173(2):294-302.

    [25] Zhang L J,Yin B,Wang C,et al. Structural insightsinto enzymatic activity and substrate specificitydetermination by a single amino acid in nitrilase fromSyechocystis sp. PCC6803. Journal of StructuralBiology,2014,188(2):93-101.

    [26] Barglow K T,Saikatendu K S,Bracey M H,et al.Functional proteomic and structural insights intomolecular recognition in the nitrilase family enzymes.Biochemistry,2008,47(51):13514-13523.

    [27] Liu H,Gao Y,Zhang M,et al. Structures of enzyme–intermediate complexes of yeast Nit2:Insights intoits catalytic mechanism and different substratespecificity compared with mammalian Nit2. ActaCrystallographica Section D:Biological Crystallo ?graphy,2013,69(8):1470-1481.

    [28] Pace H C,Hodawadekar S C,Draganescu A,et al.Crystal structure of the worm NitFhit Rosetta Stoneprotein reveals a Nit tetramer binding two Fhitdimers. Current Biology,2000,10(15):907-917.

    [29] Soriano?Maldonado P,Martínez?Gómez A I,Andújar?Sánchez M,et al. Biochemical and mutational studiesof the Bacillus cereus CECT 5050T formamidasesupport the existence of a CEEK tetrad in severalmembers of the nitrilase superfamily. Applied andEnvironmental Microbiology,2011,77(16):5761-5769.

    [30] Chien C H,Gao Q Z,Cooper A J L,et al. Structuralinsights into the catalytic active site and activity ofhuman Nit2/ω ?amidase:Kinetic assay and moleculardynamics simulation. Journal of BiologicalChemistry,2012,287(31):25715-25726.

    [31] Novo C ,F(xiàn)arnaud S ,Tata R ,et al. Support for athree?dimensional structure predicting a Cys?Glu?Lyscatalytic triad for Pseudomonas aeruginosa amidasecomes from site ? directed mutagenesis and mutationsaltering substrate specificity. Biochemical Journal,2002,365(3):731-738.

    [32] Liu D J,Xi L J,Han D Y,et al. Cloning,expression,and characterization of a novel nitrilase,PaCNit,fromPannonibacter carbonis Q4.6. BiotechnologyLetters,2019,41(4):583-589.

    [33] Nakai T,Hasegawa T,Yamashita E,et al. Crystalstructure of N ? carbamyl ? D ? amino acid amido ?hydrolase with a novel catalytic framework commonto amidohydrolases. Structure,2000,8(7):729-738.

    [34] Silva Teixeira C S,Sousa S F,Cerqueira N M F SA. An unsual Cys ? Glu ? Lys catalytic triad isresponsible for the catalytic mechanism of thenitrilase superfamily:A QM/MM study on Nit2.ChemPhysChem,2021,22(8):796-804.

    [35] Tian C,Kasavajhala K,Belfon K A A,et al. ff19SB:Amino ? acid ? specific protein backbone parameterstrained against quantum mechanics energy surfaces insolution. Journal of Chemical Theory andComputation,2020,16(1):528-552.

    [36] Jorgensen W L,Chandrasekhar J,Madura J D,et al.Comparison of simple potential functions for"simulating liquid water. The Journal of ChemicalPhysics,1983,79(2):926-935.

    [37] Miyamoto S,Kollman P A. Settle:An analyticalversion of the SHAKE and RATTLE algorithm forrigid water models. Journal of ComputationalChemistry,1992,13(8):952-962.

    [38] Davidchack R L,Handel R,Tretyakov M V.Langevin thermostat for rigid body dynamics. TheJournal of Chemical Physics,2009,130(23):234101.

    [39] Case D A,Aktulga H M,Belfon K,et al. Amber2021. San Francisco:University of California,2021.

    [40] Svensson M,Humbel S,F(xiàn)roese R D J,et al.ONIOM: A multilayered integrated MO+ MMmethod for geometry optimizations and single pointenergy predictions. A test for Diels ? Alder reactionsand Pt(P(t?Bu)3)2+ H2 oxidative addition. The Journalof Physical Chemistry,1996,100(50):19357-19363.

    [41] Dapprich S,Komáromi I,Byun K S,et al. A newONIOM implementation in Gaussian98. Part I. Thecalculation of energies, gradients, vibrationalfrequencies and electric field derivatives. Journal ofMolecular Structure:THEOCHEM,1999,461-462:1-21.

    [42] Bakowies D,Thiel W. Hybrid models for combinedquantum mechanical and" molecular mechanicalapproaches. The Journal of Physical Chemistry,1996,100(25):10580-10594.

    [43] Frisch M E,Trucks G,Schlegel H B,et al. Gaussian16. Wallingford,CT:Gaussian,Inc.,2016.

    [44] Tirado ? Rives J,Jorgensen W L. Performance ofB3LYP density functional" methods for a large set oforganic molecules. Journal of Chemical Theory andComputation,2008,4(2):297-306.

    (責(zé)任編輯 楊可盛)

    猜你喜歡
    能壘水解酶底物
    腈水解酶反應(yīng)機(jī)制與催化性能調(diào)控研究進(jìn)展
    聚對(duì)苯二甲酸丁二醇酯二聚體熱降解機(jī)理的理論研究
    氨基甲酸乙酯水解酶的家族生物信息學(xué)分析
    兩種品牌大腸菌群酶底物法檢測(cè)試劑性能的比較
    云南化工(2021年6期)2021-12-21 07:30:56
    化學(xué)反應(yīng)歷程教學(xué)的再思考
    重質(zhì)有機(jī)資源熱解過(guò)程中自由基誘導(dǎo)反應(yīng)的密度泛函理論研究
    解析參與植物脅迫應(yīng)答的蛋白激酶—底物網(wǎng)絡(luò)
    科學(xué)(2020年2期)2020-08-24 07:57:00
    神奇水解酶?!俺浴彼芰?/a>
    泛素連接酶-底物選擇關(guān)系的研究進(jìn)展
    元素?fù)诫s對(duì)Bi電遷移影響的第一原理計(jì)算
    男女边吃奶边做爰视频| 在线国产一区二区在线| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 成年女人毛片免费观看观看9| 男人狂女人下面高潮的视频| 女人被狂操c到高潮| 欧美极品一区二区三区四区| 久久亚洲真实| 国产真实乱freesex| 欧美中文日本在线观看视频| 九色国产91popny在线| 中文字幕av在线有码专区| 搡老熟女国产l中国老女人| 欧美人与善性xxx| 国产精品1区2区在线观看.| 夜夜看夜夜爽夜夜摸| 亚洲av二区三区四区| 网址你懂的国产日韩在线| 又紧又爽又黄一区二区| 国产 一区精品| 免费电影在线观看免费观看| 男女之事视频高清在线观看| 亚洲欧美日韩高清专用| 欧美中文日本在线观看视频| 小蜜桃在线观看免费完整版高清| 99久久九九国产精品国产免费| 内射极品少妇av片p| 国产精品1区2区在线观看.| 亚洲 国产 在线| 午夜福利欧美成人| 中文字幕熟女人妻在线| 国内精品宾馆在线| 日本三级黄在线观看| a级一级毛片免费在线观看| 成人国产综合亚洲| 淫妇啪啪啪对白视频| 国产单亲对白刺激| 国内精品久久久久久久电影| 久99久视频精品免费| 国产精品女同一区二区软件 | 国产91精品成人一区二区三区| 国产高清激情床上av| 国内揄拍国产精品人妻在线| 久久精品夜夜夜夜夜久久蜜豆| 国内少妇人妻偷人精品xxx网站| 12—13女人毛片做爰片一| 麻豆成人av在线观看| 亚洲av五月六月丁香网| 婷婷精品国产亚洲av| 精品福利观看| 黄色一级大片看看| 白带黄色成豆腐渣| 欧美激情国产日韩精品一区| 一本精品99久久精品77| 在线播放国产精品三级| 免费在线观看日本一区| 国产在视频线在精品| 中文在线观看免费www的网站| av在线老鸭窝| 又黄又爽又刺激的免费视频.| 欧美另类亚洲清纯唯美| 老司机午夜福利在线观看视频| 久久99热6这里只有精品| 给我免费播放毛片高清在线观看| 99久久无色码亚洲精品果冻| 日韩欧美三级三区| h日本视频在线播放| 日本黄色片子视频| 91麻豆av在线| 波多野结衣高清作品| 日韩欧美在线乱码| 性插视频无遮挡在线免费观看| 我的女老师完整版在线观看| 欧美精品国产亚洲| 村上凉子中文字幕在线| 深夜a级毛片| 亚洲成人中文字幕在线播放| 欧美日韩黄片免| 22中文网久久字幕| 国产亚洲精品久久久久久毛片| 亚洲三级黄色毛片| av女优亚洲男人天堂| 日本a在线网址| 丝袜美腿在线中文| 日日干狠狠操夜夜爽| 五月玫瑰六月丁香| 欧美一区二区国产精品久久精品| 天堂动漫精品| 香蕉av资源在线| 村上凉子中文字幕在线| 免费人成在线观看视频色| 亚洲精品影视一区二区三区av| 国产免费一级a男人的天堂| 三级毛片av免费| 男女之事视频高清在线观看| 俄罗斯特黄特色一大片| 12—13女人毛片做爰片一| 欧美极品一区二区三区四区| 天堂动漫精品| 国产精品99久久久久久久久| 性插视频无遮挡在线免费观看| 成人毛片a级毛片在线播放| 午夜爱爱视频在线播放| 91午夜精品亚洲一区二区三区 | 中亚洲国语对白在线视频| 网址你懂的国产日韩在线| 国产欧美日韩一区二区精品| 亚洲精品亚洲一区二区| 女人被狂操c到高潮| 十八禁网站免费在线| 国产亚洲精品综合一区在线观看| 国产高清有码在线观看视频| 人妻夜夜爽99麻豆av| 特大巨黑吊av在线直播| 亚洲自偷自拍三级| 亚洲欧美日韩东京热| 精品欧美国产一区二区三| 美女大奶头视频| 国产色婷婷99| 亚洲国产精品成人综合色| 婷婷六月久久综合丁香| 在线观看免费视频日本深夜| 国产在视频线在精品| 亚洲最大成人手机在线| 国产av不卡久久| 91午夜精品亚洲一区二区三区 | 日韩精品有码人妻一区| 99久久精品一区二区三区| 91久久精品国产一区二区成人| 久久久久久九九精品二区国产| 九九爱精品视频在线观看| 久久久久久久午夜电影| 国产精品98久久久久久宅男小说| 成人av在线播放网站| 午夜a级毛片| 午夜免费男女啪啪视频观看 | 午夜激情欧美在线| 亚洲综合色惰| 成人高潮视频无遮挡免费网站| 久9热在线精品视频| 国产美女午夜福利| 亚洲av不卡在线观看| 真实男女啪啪啪动态图| aaaaa片日本免费| 一卡2卡三卡四卡精品乱码亚洲| 男女那种视频在线观看| 国产激情偷乱视频一区二区| 色综合婷婷激情| 亚洲欧美日韩东京热| 又紧又爽又黄一区二区| 久久精品国产亚洲av涩爱 | 搞女人的毛片| 九九在线视频观看精品| 国产女主播在线喷水免费视频网站 | 少妇猛男粗大的猛烈进出视频 | 97人妻精品一区二区三区麻豆| 中文在线观看免费www的网站| 俄罗斯特黄特色一大片| 久久久久久久久久成人| 能在线免费观看的黄片| 黄片wwwwww| 人人妻人人看人人澡| 久久国内精品自在自线图片| 国产高清激情床上av| 搡女人真爽免费视频火全软件 | 日本一本二区三区精品| 淫妇啪啪啪对白视频| 国产色爽女视频免费观看| 午夜视频国产福利| 两性午夜刺激爽爽歪歪视频在线观看| 日本黄色视频三级网站网址| 国产午夜精品久久久久久一区二区三区 | 国产三级中文精品| 在线观看av片永久免费下载| 久久精品久久久久久噜噜老黄 | 噜噜噜噜噜久久久久久91| 99久久中文字幕三级久久日本| 日日啪夜夜撸| 美女免费视频网站| 最新中文字幕久久久久| 精品久久国产蜜桃| 国产日本99.免费观看| a级一级毛片免费在线观看| 一区二区三区高清视频在线| 亚洲狠狠婷婷综合久久图片| 久久午夜福利片| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 男人舔女人下体高潮全视频| 丝袜美腿在线中文| 久久精品国产亚洲av天美| 少妇高潮的动态图| 日本色播在线视频| 嫩草影院精品99| 韩国av在线不卡| 91在线观看av| 国产男靠女视频免费网站| 极品教师在线免费播放| 欧美极品一区二区三区四区| 少妇高潮的动态图| 亚洲av美国av| 国产精品美女特级片免费视频播放器| 91在线观看av| 深夜a级毛片| av在线天堂中文字幕| 欧美丝袜亚洲另类 | 国产精品亚洲一级av第二区| 久久久久久久久大av| 男人的好看免费观看在线视频| 天堂影院成人在线观看| 国产精品亚洲美女久久久| 国产女主播在线喷水免费视频网站 | 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 久久99热这里只有精品18| 舔av片在线| bbb黄色大片| 亚洲人成网站高清观看| 九九在线视频观看精品| 精品久久久久久久久av| 欧美中文日本在线观看视频| 欧美不卡视频在线免费观看| 亚洲18禁久久av| 1024手机看黄色片| 窝窝影院91人妻| 此物有八面人人有两片| 欧美性猛交╳xxx乱大交人| 桃色一区二区三区在线观看| 色综合色国产| 久久久久久伊人网av| 亚洲黑人精品在线| 日本一本二区三区精品| 99国产极品粉嫩在线观看| 精品人妻视频免费看| 久久精品国产亚洲av香蕉五月| 成人精品一区二区免费| 欧美在线一区亚洲| 精品免费久久久久久久清纯| 搡女人真爽免费视频火全软件 | 成年免费大片在线观看| av在线亚洲专区| 色在线成人网| 亚洲精品影视一区二区三区av| 啦啦啦观看免费观看视频高清| av中文乱码字幕在线| 天美传媒精品一区二区| 成熟少妇高潮喷水视频| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩欧美精品在线观看| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 狂野欧美白嫩少妇大欣赏| 亚洲成av人片在线播放无| 国产精品福利在线免费观看| 最近视频中文字幕2019在线8| 99久国产av精品| 午夜a级毛片| 综合色av麻豆| 亚洲欧美清纯卡通| aaaaa片日本免费| 中文资源天堂在线| 最好的美女福利视频网| 女人十人毛片免费观看3o分钟| 老司机福利观看| 国产精品久久久久久久电影| 欧美黑人欧美精品刺激| 日韩高清综合在线| 中文在线观看免费www的网站| 久久久久国产精品人妻aⅴ院| 99久久精品热视频| 精品一区二区三区视频在线| 国产精品人妻久久久久久| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 一卡2卡三卡四卡精品乱码亚洲| 国产视频一区二区在线看| 日韩中字成人| 露出奶头的视频| 97超级碰碰碰精品色视频在线观看| 乱码一卡2卡4卡精品| 1000部很黄的大片| 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 看黄色毛片网站| 波多野结衣高清无吗| 欧美性猛交黑人性爽| 非洲黑人性xxxx精品又粗又长| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄 | 国产久久久一区二区三区| 亚洲av二区三区四区| 色综合亚洲欧美另类图片| 久久久国产成人免费| 国产aⅴ精品一区二区三区波| 成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 中文字幕精品亚洲无线码一区| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆| 淫秽高清视频在线观看| 亚洲avbb在线观看| 欧美三级亚洲精品| 精品国产三级普通话版| 久久久久九九精品影院| 欧美成人免费av一区二区三区| 成年版毛片免费区| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 国产乱人视频| 亚洲七黄色美女视频| 九色国产91popny在线| 久久精品人妻少妇| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 欧美一区二区精品小视频在线| 成人特级av手机在线观看| 国产精品久久久久久久久免| 老熟妇乱子伦视频在线观看| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类 | 一级毛片久久久久久久久女| 日韩欧美国产在线观看| 国产女主播在线喷水免费视频网站 | 婷婷亚洲欧美| 国产成年人精品一区二区| bbb黄色大片| 女同久久另类99精品国产91| 超碰av人人做人人爽久久| 精品久久久久久成人av| 国产精品一区二区性色av| 一个人免费在线观看电影| 午夜久久久久精精品| 亚洲第一区二区三区不卡| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 日韩在线高清观看一区二区三区 | 久久久成人免费电影| 好男人在线观看高清免费视频| 91精品国产九色| 黄色配什么色好看| 日韩精品有码人妻一区| 欧美激情在线99| 精品人妻一区二区三区麻豆 | 国产成人aa在线观看| 午夜免费男女啪啪视频观看 | 成人精品一区二区免费| 少妇被粗大猛烈的视频| 成人无遮挡网站| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 国产精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 国产淫片久久久久久久久| 欧美国产日韩亚洲一区| 精品不卡国产一区二区三区| 高清日韩中文字幕在线| 成人无遮挡网站| 国产激情偷乱视频一区二区| 久久亚洲精品不卡| 久9热在线精品视频| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 日韩精品青青久久久久久| 免费高清视频大片| 国产亚洲精品久久久com| 欧美人与善性xxx| 日韩中字成人| 午夜福利视频1000在线观看| 在线观看舔阴道视频| 少妇被粗大猛烈的视频| 男人的好看免费观看在线视频| 久久精品国产鲁丝片午夜精品 | 亚洲自偷自拍三级| 亚洲成人久久爱视频| av在线亚洲专区| 波多野结衣高清作品| 超碰av人人做人人爽久久| 亚洲欧美清纯卡通| 日韩在线高清观看一区二区三区 | 最近中文字幕高清免费大全6 | 国产视频一区二区在线看| 最近视频中文字幕2019在线8| 亚洲不卡免费看| 国产三级在线视频| 国产真实乱freesex| 色综合色国产| 俄罗斯特黄特色一大片| av在线老鸭窝| 亚洲美女黄片视频| 国产中年淑女户外野战色| 亚洲成人免费电影在线观看| 琪琪午夜伦伦电影理论片6080| 特大巨黑吊av在线直播| 精品人妻偷拍中文字幕| 久久午夜福利片| 久久久久久久久久成人| АⅤ资源中文在线天堂| 亚洲不卡免费看| 在线观看一区二区三区| 久久午夜亚洲精品久久| 日韩一区二区视频免费看| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 久久久久久久久大av| 真人一进一出gif抽搐免费| 变态另类成人亚洲欧美熟女| 变态另类丝袜制服| 精品人妻一区二区三区麻豆 | 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 精品久久久久久久人妻蜜臀av| 国产蜜桃级精品一区二区三区| 麻豆精品久久久久久蜜桃| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 欧美潮喷喷水| 久久精品国产亚洲av香蕉五月| 99热这里只有是精品在线观看| 亚洲成人免费电影在线观看| 久久6这里有精品| 亚洲,欧美,日韩| 欧美精品国产亚洲| 九色国产91popny在线| 日本黄大片高清| av视频在线观看入口| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| 免费看av在线观看网站| 国产免费一级a男人的天堂| 日本 欧美在线| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 99久久精品一区二区三区| 久久久久久伊人网av| 国产v大片淫在线免费观看| 国产三级在线视频| 国产精品美女特级片免费视频播放器| 欧美日韩综合久久久久久 | 成人二区视频| 欧美一区二区精品小视频在线| 最后的刺客免费高清国语| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 黄色欧美视频在线观看| 九九久久精品国产亚洲av麻豆| 美女高潮的动态| 色在线成人网| 别揉我奶头 嗯啊视频| 亚洲av免费在线观看| 日日摸夜夜添夜夜添小说| 露出奶头的视频| 欧美激情久久久久久爽电影| 俺也久久电影网| 不卡一级毛片| 国产69精品久久久久777片| 色噜噜av男人的天堂激情| 级片在线观看| 国产一区二区亚洲精品在线观看| 国产精品99久久久久久久久| 久久天躁狠狠躁夜夜2o2o| 夜夜看夜夜爽夜夜摸| 真人一进一出gif抽搐免费| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| 久久久成人免费电影| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 禁无遮挡网站| 婷婷精品国产亚洲av在线| 亚洲av不卡在线观看| 88av欧美| 午夜日韩欧美国产| 欧美成人a在线观看| 国产一区二区三区视频了| 亚洲成a人片在线一区二区| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 日韩欧美免费精品| 又紧又爽又黄一区二区| 午夜激情福利司机影院| 久久这里只有精品中国| 成人美女网站在线观看视频| 免费观看人在逋| 国产视频一区二区在线看| 欧美xxxx性猛交bbbb| 一a级毛片在线观看| 亚洲人成网站高清观看| 亚洲性夜色夜夜综合| .国产精品久久| 亚洲人与动物交配视频| 精品国产三级普通话版| 99久久精品一区二区三区| 成人午夜高清在线视频| 两个人的视频大全免费| 精品日产1卡2卡| 免费不卡的大黄色大毛片视频在线观看 | 亚洲午夜理论影院| 国产精品久久视频播放| 波多野结衣高清无吗| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 看黄色毛片网站| 日韩av在线大香蕉| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 日韩欧美三级三区| 国产精品亚洲美女久久久| 一本久久中文字幕| 色在线成人网| 淫妇啪啪啪对白视频| 观看美女的网站| 波野结衣二区三区在线| 很黄的视频免费| 他把我摸到了高潮在线观看| 在线播放无遮挡| 久久久久国内视频| 自拍偷自拍亚洲精品老妇| 国产大屁股一区二区在线视频| 女生性感内裤真人,穿戴方法视频| 又黄又爽又免费观看的视频| 日韩亚洲欧美综合| 精品人妻视频免费看| 亚洲在线观看片| 免费大片18禁| 日本黄大片高清| 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 国产精品国产高清国产av| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 看黄色毛片网站| 成人无遮挡网站| 国产男靠女视频免费网站| av黄色大香蕉| 成人特级av手机在线观看| 亚洲专区国产一区二区| 欧美色欧美亚洲另类二区| 国产精品国产三级国产av玫瑰| 中国美白少妇内射xxxbb| 禁无遮挡网站| 亚洲精品成人久久久久久| 欧美潮喷喷水| 啪啪无遮挡十八禁网站| 国产精品久久久久久亚洲av鲁大| 国产大屁股一区二区在线视频| 免费大片18禁| 国产一级毛片七仙女欲春2| 特大巨黑吊av在线直播| 可以在线观看毛片的网站| 久久亚洲真实| 精品人妻1区二区| 国产大屁股一区二区在线视频| 一级毛片久久久久久久久女| 色哟哟哟哟哟哟| 婷婷丁香在线五月| 九色成人免费人妻av| 黄色日韩在线| 非洲黑人性xxxx精品又粗又长| 久久久成人免费电影| 国产成人一区二区在线| 亚洲最大成人手机在线| 一a级毛片在线观看| 色综合婷婷激情| www.www免费av| 亚洲国产精品sss在线观看| 免费人成在线观看视频色| 欧美在线一区亚洲| 神马国产精品三级电影在线观看| 又爽又黄a免费视频| 18禁在线播放成人免费| 人妻夜夜爽99麻豆av| 两人在一起打扑克的视频| 亚洲国产欧洲综合997久久,| 免费无遮挡裸体视频| 少妇人妻精品综合一区二区 | av.在线天堂| 免费看日本二区| 亚洲国产欧美人成| 国产熟女欧美一区二区| 精品午夜福利视频在线观看一区| 有码 亚洲区| 九九在线视频观看精品| 99久国产av精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美98| 九色成人免费人妻av| 婷婷精品国产亚洲av| 欧美3d第一页| 男女边吃奶边做爰视频| 麻豆成人av在线观看| 如何舔出高潮| 日韩强制内射视频| 欧美三级亚洲精品| 亚洲美女搞黄在线观看 | 最新在线观看一区二区三区| 国产男人的电影天堂91| 亚洲精品一卡2卡三卡4卡5卡| 免费看av在线观看网站|