中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)07-1467-12
Abstract: 【Objective】 Fruit trees as perennial plants, can produce a large number of branches in the annual production due to pruning,which are rich in lignin and polyphenolsand other organic matter,and are aresource that canbe used,butby the impactof traditionalconceptdevelopment ofbranch crusher and limitations by other orchard machinery and equipment level,most Chinese fruit growers will prune down the branches as a waste,discarding in the orchard outside or adopting direct incineration, which not only wastes the effective resources,but also causes the environment pollution.With the overall development of social economy and the emergence of smallbranch crusher and other modern machinery, waste branches can be crushed and return to the orchard,as a labor-saving practice,not only to solve the environmental pollution,but also increase soil porosity,raise soil organic mater content,and improve soil structure at the same time. It can effectively increase the content of available nutrients. In addition,itcan increase the quick-acting nutrient content effectively and improve the soil structure,significantly improve the crop yield and fruit quality,and make the waste branches utilised in a resourceful way.This experiment aims to improve the utilization rate of waste branches and soil environmental conditions in the orchard,and to screen out the treatment methods suitable for the growth and development of fruit trees.【Methods】The crushed branch mulching experiment began in April 2O22,using the branch fragments for mulching in the scientific research base of Shenyang Agricultural University,After the branches were crushed into fragments of about 2cm with the GTS1300 model tree branch crusher,the seven-year-old Longfeng apple orchards were treated with mulching. In first and second year, the mulching treatments were carried out in May 2022 and May 2023.This experiment was a 2-year replicated experiment,with tree disk clearing as the control.Manual weeding was applied in the clearing area,and crushed branches were returned to the field,with bare land in a diameter of 20cm in the centre of the base, and mulched 150cm in length, 50cm in width, and 2cm in thickness. Three treatments were setup in the experiment: Tl treatment was surface mulching of crushed branches,T2 treatment was covering a layer of horticultural ground cloth on top of the T1 treatment,and T3 treatment was rototilling an equal amount of crushed branches into the soil layer of 0-20cm . Five trees were selected for each treatment as five replications,totaling for 2O trees,and other management conditions like water and fertilizer management kept consistent. Sampling times were in April 2022, July 2022, October 2022,April 2023,July 2023,and October 2023,with advance planning to avoid rainy day sampling if continuous rain was encountered. 【Results】The results showed that apple branch debris mulching can improve soil quality, promote tree growth and development,and enhance fruit quality.After 1 year of mulching,all the crushed branches were decomposed by microorganisms,and the mulching of branch fragments around the tree tray could improve the soil structure,and the wood chips in contact with the soil would gradually decompose and turn into organic substances to provide nutrients for the trees. In the 0-20cm soil layer in the second year of the experiment, the treatment of crushed branches + ground cloth mulching increased the content of organic matter and quick-acting potassium,and the effect was more significant; all three treatments increased the contents of alkali-hydrolyzable nitrogen (AN) and available phosphorous (AP); and the treatment of mulching apple branch fragments had a promoting effect on the growth offruit trees.In the second year of the experiment,the three treatments were able to promote the growth of new shoots; the treatment of crushed branches + ground cloth mulching could increase the net photosynthetic rate; and the treatment of mulching apple branch fragments could improve the fruit quality. In the 2nd year of the experiment,all the treatments can significantly increase the single fruit mass,soluble solids and soluble sugar contents,and basically the crushed branches + ground cloth mulching treatment had a better effect.【Conclusion】 Different ways of mulching with apple branches fragments can create a more suitable growing environment for fruit trees by improving the soil conditions around the trees,thus favoring the growth and development of fruit trees,and improving economic benefits while saving production costs. Comprehensively analyzing the effects of different mulching methods with apple crushed branches on soil properties,it was found that crushed branches + ground cloth mulching may be a more beneficial mulching method for actual production.
Key words:Apple; Crushed branches; Mulching; Soil properties; Growth and development
中國(guó)是世界蘋果種植大國(guó),截至2022年,我國(guó)的蘋果種植面積達(dá)200萬(wàn) hm2 ,產(chǎn)量為4757.18萬(wàn)t,居世界第一。我國(guó)北方大多數(shù)蘋果園土壤的有機(jī)質(zhì)含量平均不到 1.0% ,立地條件一般都比較差,園內(nèi)土壤有機(jī)質(zhì)含量長(zhǎng)期得不到補(bǔ)充,迫切需要向土壤補(bǔ)充有機(jī)碳源物質(zhì)[2。在實(shí)際生產(chǎn)過(guò)程中,大多數(shù)果農(nóng)往往更重視果園地上部的管理,如整形修剪、病蟲(chóng)害防治等工作,輕視園內(nèi)土壤的管理,特別是園地土壤的改良與碳素營(yíng)養(yǎng)的供給[3]。
果園每年都會(huì)因修剪產(chǎn)生大量的枝條廢棄物,而枝條中含有的有機(jī)物質(zhì)又是一種潛在的可利用生物質(zhì)資源,然而在生產(chǎn)過(guò)程中,受傳統(tǒng)觀念影響及果園適宜機(jī)械設(shè)備限制,大多數(shù)果農(nóng)處理枝條的方式仍然以堆放、焚燒等為主,不僅沒(méi)有充分利用現(xiàn)有的自然資源,還造成了環(huán)境污染和病蟲(chóng)害的傳播5]。隨著社會(huì)經(jīng)濟(jì)發(fā)展及小型樹(shù)枝粉碎機(jī)等現(xiàn)代化機(jī)械的出現(xiàn),將果樹(shù)廢棄枝條粉碎后還田作為一種省力化的處理方式,對(duì)果園土壤質(zhì)量的提升具有重要意義。
果樹(shù)枝條內(nèi)含有纖維素、半纖維素和木質(zhì)素等營(yíng)養(yǎng)成分以及其他有機(jī)物質(zhì),堆肥腐熟后可以加速促進(jìn)枝條中礦質(zhì)營(yíng)養(yǎng)和有機(jī)碳的釋放。粉碎枝條還田不僅能夠解決堆放、焚燒引起的環(huán)境污染問(wèn)題,若利用合理,還可增加土壤孔隙度,在改良土壤結(jié)構(gòu)的同時(shí),能夠有效提高土壤有機(jī)質(zhì)含量及速效養(yǎng)分含量],同時(shí)有助于果樹(shù)光合器官的建成與光合性能的增強(qiáng)[],并且顯著提高作物產(chǎn)量與品質(zhì)[12],使廢棄枝條得到資源化利用。
枝條與傳統(tǒng)覆蓋物、傳統(tǒng)耕作技術(shù)等的結(jié)合是否有更好的效果,目前相關(guān)方面的研究較少,因此筆者以提高廢棄枝條利用率、改善果園土壤環(huán)境條件為主要自的,以農(nóng)業(yè)大學(xué)果樹(shù)栽培與生理生態(tài)團(tuán)隊(duì)科研基地內(nèi)修剪下來(lái)的果樹(shù)廢棄枝條作為試材,將其粉碎后對(duì)龍豐蘋果進(jìn)行覆蓋處理,分析其對(duì)土壤性質(zhì)的影響,從中篩選出綜合表現(xiàn)較好、適合生產(chǎn)實(shí)際的處理方式,以使廢棄枝條得到最優(yōu)化處理并發(fā)揮最大效用,為蘋果園土壤培肥及節(jié)本提質(zhì)增效提供參考。
1 材料和方法
1.1 試驗(yàn)地概況
試驗(yàn)在農(nóng)業(yè)大學(xué)果樹(shù)栽培與生理生態(tài)團(tuán)隊(duì)科研基地蘋果試驗(yàn)園內(nèi)進(jìn)行。試驗(yàn)地屬溫帶半濕潤(rùn)大陸性氣候,四季分明,海拔 76.2m ,年日照時(shí)數(shù)2481h ,年平均降水量 721mm ,無(wú)霜期 155~180d 9土壤類型為棕壤。試驗(yàn)蘋果園中的7年生龍豐蘋果為南北行向,株行距為 1.5m×4.0m ,樹(shù)形為紡錘形,植株生長(zhǎng)健壯,無(wú)病蟲(chóng)害,園內(nèi)實(shí)行行間自然生草制管理,主要依靠天然降水補(bǔ)充水分。試驗(yàn)植株僅在春季降雨時(shí)撒施少量尿素于地表,秋季在地表撒施少量牛糞基質(zhì)有機(jī)肥。
1.2 試驗(yàn)材料及處理
粉碎枝條覆蓋試驗(yàn)開(kāi)始于2022年4月,以農(nóng)業(yè)大學(xué)果樹(shù)栽培與生理生態(tài)團(tuán)隊(duì)科研基地內(nèi)的寒富、龍豐蘋果以及山定子、觀賞海棠等蘋果屬植株冬季修剪枝條作為覆蓋材料來(lái)源,通過(guò)GTS1300型號(hào)樹(shù)枝粉碎機(jī)將枝條粉碎成 2cm (碎片最大長(zhǎng)度)的碎片后,對(duì)園內(nèi)7年生龍豐蘋果進(jìn)行樹(shù)盤覆蓋處理。本試驗(yàn)以樹(shù)盤人工除草為對(duì)照(CK)。為避免枝條碎片直接與根頸接觸,降低直接傳病風(fēng)險(xiǎn),以果樹(shù)基部為中心留出 20cm 直徑的圓形區(qū)域。按照長(zhǎng)度 150cm 、寬度 50cm 、厚度 2cm 的標(biāo)準(zhǔn)進(jìn)行覆蓋。設(shè)置3個(gè)處理:T1處理為粉碎枝條表面覆蓋,T2處理是在T1處理的基礎(chǔ)上覆蓋一層園藝地布,T3處理是將等量的粉碎枝條旋耕進(jìn) 0~20cm 土壤。每個(gè)處理選取5株樹(shù),作為5次重復(fù),共計(jì)20株樹(shù),其他水肥等管理?xiàng)l件一致。
1.3 檢測(cè)指標(biāo)與方法
1.3.1粉碎枝條的掃描電鏡觀察2023年4月,將不同處理下的枝條碎片隨機(jī)取出一部分裝于自封袋中并做好標(biāo)記(T3處理下的枝條碎片用小鏟子取出),帶回實(shí)驗(yàn)室用刷子清理枝條表面的土壤,然后烘干,以備后續(xù)掃描電鏡觀察。采用農(nóng)業(yè)大學(xué)儀器分析中心的S-4800型掃描電子顯微鏡(SEM),先將碎片裁切到適宜大小,放入載物臺(tái)上用導(dǎo)電膠將其固定,以防在抽真空的過(guò)程中樣品傾斜,影響后續(xù)觀察。因樣品是非導(dǎo)電物質(zhì)不能直接進(jìn)行掃描,為了產(chǎn)生更強(qiáng)的信號(hào),提高掃描電鏡的分辨率,對(duì)樣品采用離子濺射鍍膜法噴金處理。利用掃描電子顯微鏡對(duì)不同覆蓋處理下枝條碎片的橫切面和縱切面的形態(tài)進(jìn)行觀察,在高真空的條件下拍攝倍數(shù)為150倍和500倍。
1.3.2土壤樣品的采集覆蓋處理后于2022年4月、2022年7月、2022年10月、2023年4月、2023年7月和2023年10月分別取土樣,在每次取樣前一周內(nèi)避開(kāi)下雨天,第2年的處理和采樣時(shí)間與第1年保持一致。清除果樹(shù)周圍地表的雜物,然后用小鏟子取樣,用于土壤特性的測(cè)定,在分裝樣品的過(guò)程中剔除雜草、根系和石塊等雜物,將樣品帶回實(shí)驗(yàn)室后置于土庫(kù),風(fēng)干后再做處理,過(guò)篩后用于測(cè)定土壤的有機(jī)質(zhì)、堿解氮及速效養(yǎng)分含量。
1.3.3土壤性質(zhì)的測(cè)定土壤有機(jī)質(zhì)、堿解氮、速效磷和速效鉀含量分別按《土壤農(nóng)化分析》3中的重鉻酸鉀外加熱法、堿解擴(kuò)散法、碳酸氫鈉浸提-鉬銻抗比色法、乙酸銨浸提-火焰分光光度法測(cè)定。
1.3.4植株基本生理及形態(tài)指標(biāo)的測(cè)定利用卷尺豎直測(cè)量基部到頂部之間的距離作為株高;利用卷尺測(cè)量冠徑,東西和南北方向各測(cè)量1次,計(jì)算其平均值;利用JS108F150型數(shù)顯游標(biāo)卡尺測(cè)量莖粗;在6月份,在每株試驗(yàn)樹(shù)的4個(gè)方向(東、南、西、北)分別選3個(gè)長(zhǎng)勢(shì)基本一致的新梢,利用JS108F150型數(shù)顯游標(biāo)卡尺測(cè)量新梢長(zhǎng)度和粗度。在每株試驗(yàn)樹(shù)的4個(gè)方向(東、南、西、北)分別選3個(gè)長(zhǎng)勢(shì)基本一致且在同一水平高度的葉片,共計(jì)60枚葉片,利用CIRAS-2全自動(dòng)便捷式光合作用測(cè)定系統(tǒng)測(cè)量光合參數(shù)(凈光合速率、蒸騰速率、氣孔導(dǎo)度、胞間 CO2 濃度);凈光合速率與對(duì)應(yīng)的蒸騰速率比值為光合水分利用效率。
1.3.5果實(shí)品質(zhì)的測(cè)定在每株樹(shù)的4個(gè)方向(東、南、西、北)分別取樣品果,共取30個(gè)大小、著色程度等基本一致的龍豐蘋果,分別用來(lái)測(cè)量基本指標(biāo)和口感評(píng)價(jià),留出備用的蘋果。利用YP4001型電子天平測(cè)量單果質(zhì)量;在去掉果皮后使用GY-4型臺(tái)式硬度計(jì)測(cè)量果實(shí)硬度;使用LYT-330型手持折光儀測(cè)定可溶性固形物含量;采用乙醇浸提-蒽酮比色法測(cè)定可溶性糖含量[4;利用酚酞指示劑滴定法測(cè)定可滴定酸含量[5;可溶性糖含量與對(duì)應(yīng)的可滴定酸含量比值為糖酸比;可溶性固形物含量與對(duì)應(yīng)的可滴定酸含量比值為固酸比;果形指數(shù)利用JS108F150型數(shù)顯游標(biāo)卡尺分別測(cè)量果實(shí)的橫徑、縱徑并通過(guò)計(jì)算得出??诟性u(píng)價(jià)采用多次重復(fù)感官評(píng)價(jià),尋找同課題組的同學(xué)、朋友和室友等,組成20人的評(píng)價(jià)小組,在品嘗評(píng)價(jià)前講解操作方法及評(píng)分標(biāo)準(zhǔn),每品嘗一組試驗(yàn)果,要用清水漱口并等 2min 再進(jìn)行下一組評(píng)價(jià),打分的指標(biāo)包括外觀品質(zhì)、硬度、脆度等,采取百分制打分,打分區(qū)間為60\~100分,根據(jù)分?jǐn)?shù)作相應(yīng)的加權(quán)處理,記錄相應(yīng)的數(shù)據(jù)后進(jìn)行總體分析。
1.4 數(shù)據(jù)分析
使用Excel2020軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行梳理分析和作圖,使用SPSSStatistics22.0軟件對(duì)數(shù)據(jù)進(jìn)行顯著性檢驗(yàn) (plt;0.05) )°
2 結(jié)果與分析
2.1不同覆蓋處理對(duì)枝條腐解的影響
通過(guò)對(duì)不同倍數(shù)下粉碎枝條的橫、縱切面超微結(jié)構(gòu)進(jìn)行電鏡觀察(圖1和圖2)可知,未處理的枝條碎片管胞結(jié)構(gòu)完整、均勻有序,組織排列較規(guī)整,管胞間黏結(jié)緊密,胞間層完好,微纖絲沉積的方向比較有規(guī)則,呈現(xiàn)網(wǎng)狀排列,細(xì)胞腔呈中空狀,相互整齊地排列在一起,但是斜度不同。處理1年后的枝條碎片在微生物的作用下發(fā)生腐解,T1處理下碎片的組織排列比較松散,部分細(xì)胞壁坍塌,網(wǎng)狀結(jié)構(gòu)稍有
變形;T2處理下的枝條碎片出現(xiàn)較多空隙,細(xì)胞壁坍塌落入細(xì)胞腔中,仔細(xì)觀察能夠看到有些土壤顆粒附著在壁上,在整個(gè)區(qū)域上出現(xiàn)大量絲狀物,可明顯看出規(guī)整的結(jié)構(gòu)遭到破壞,失去細(xì)胞輪廓,可以清晰地看到徑向壁上的紋孔,也可以明顯地看到管胞中的徑列條;T3處理下的枝條碎片管胞結(jié)構(gòu)已潰散,空隙更大,管胞間失去黏附力,細(xì)胞殘壁被嚴(yán)重破壞呈無(wú)規(guī)則分布,大部分細(xì)胞壁坍塌,細(xì)胞壁存在嚴(yán)重的劣化特征,此外,表面還可以觀察到大量的土壤顆粒。據(jù)此可知,T3處理下粉碎枝條碎片能夠充分地與土壤接觸,使更多的微生物參與到降解的過(guò)程中,因而T3處理能更大程度地促進(jìn)腐解進(jìn)程。
2.2不同覆蓋處理對(duì)土壤性質(zhì)的影響
2.2.1不同覆蓋處理對(duì)土壤有機(jī)質(zhì)含量的影響處理的第1年土壤有機(jī)質(zhì)含量變化如圖3-A\~B所示,0~20cm 土層在覆蓋90d時(shí),T2處理的有機(jī)質(zhì)含量顯著高于對(duì)照,其他處理之間無(wú)顯著差異;在覆蓋180d時(shí),T1、T2和T3處理的有機(jī)質(zhì)含量分別較對(duì)照顯著提高了 16.8%.23.0% 和 14.0% ,并且均高于覆蓋前的含量。 20~40cm 王層在覆蓋90d時(shí),各處理之間無(wú)顯著差異;在覆蓋180d時(shí),只有T3處理的有機(jī)質(zhì)含量較對(duì)照顯著提高了 19.4% 。
處理的第2年土壤有機(jī)質(zhì)含量變化如圖3-C\~D所示, 0~20cm 土層在覆蓋90d和180d時(shí),3個(gè)處理的有機(jī)質(zhì)含量均顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理的有機(jī)質(zhì)含量分別較對(duì)照顯著提高了 26.9%,34.4% 和 24.8% ,其中T2處理的作用效果顯著高于其他處理。 20~40cm 土層在覆蓋90d時(shí),3個(gè)處理的有機(jī)質(zhì)含量顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理分別較對(duì)照顯著提高了21.7%.28.4% 和 29.7% 0
2.2.2不同覆蓋處理對(duì)土壤堿解氮含量的影響根系吸收和微生物活動(dòng)會(huì)將深層土部分的氮素帶到表層。處理的第1年土壤堿解氮含量變化如圖4-A\~B所示, 0~20cm 土層在覆蓋90d時(shí),T3處理的堿解氮含量顯著高于對(duì)照,而其他處理之間無(wú)顯著差異;在覆蓋180d時(shí),T1、T2和T3處理的堿解氮含量較對(duì)照分別顯著提高了 4.8%6.5% 和 7.8% 。 20~40cm 王層在覆蓋90d時(shí),各處理之間無(wú)顯著差異;在覆蓋180d時(shí),T2和T3處理的堿解氮含量較對(duì)照分別顯著提高了 5.2% 和 5.5% 。
處理的第2年土壤堿解氮含量變化如圖4-C\~D所示, 0~20cm 土層在覆蓋90d時(shí),T2處理的作用效果顯著高于T1處理;在覆蓋180d時(shí),T1、T2和T3處理的堿解氮含量分別較對(duì)照顯著提高了 8.5% 、14.5% 和 9.7% 。 20~40cm 土層在覆蓋90d時(shí),3個(gè)處理的堿解氮含量顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理的堿解氮含量較對(duì)照顯著提高了11.4%.15.4% 和 13.8% 。
2.2.3不同覆蓋處理對(duì)土壤速效磷含量的影響處理的第1年土壤速效磷含量變化如圖5-A\~B所示,0~20cm 王層在覆蓋90d時(shí),T2和T3處理的速效磷含量顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理的速效磷含量較對(duì)照分別顯著提高 9.3%.11.2% 和 13.7% 。 20~40cm 土層在覆蓋90d時(shí),只有T3處理的速效磷含量顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理的土壤速效磷含量較對(duì)照分別顯著提高了 19.8%.18.3% 和 11.9% ,這與 0~20cm 土層的變化趨勢(shì)一致。
處理的第2年土壤速效磷含量變化如圖5-C\~D所示,在兩個(gè)土層中,3個(gè)處理的速效磷含量均顯著高于對(duì)照。 0~20cm 土層在覆蓋180d時(shí),T1、T2和T3處理的速效磷含量分別較對(duì)照顯著提高了28.1%.39.4% 和 32.7% 。 20~40cm 土層在覆蓋180d時(shí),T1、T2和T3處理的土壤速效磷含量較對(duì)照分別顯著提高了 32.7%.36.7% 和 47.5% 0
2.2.4不同覆蓋處理對(duì)土壤速效鉀含量的影響處理的第1年土壤速效鉀含量變化如圖6-A~B所示,0~20cm 土層在覆蓋90d時(shí),3個(gè)處理的速效鉀含量均顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理的速效鉀含量較對(duì)照分別顯著提高了 20.9%.23.2% 和 19.0% 。 20~40cm 王層在覆蓋90d時(shí),3個(gè)處理的速效鉀含量顯著高于對(duì)照;在覆蓋180d時(shí),T1、T2和T3處理的速效鉀含量較對(duì)照分別顯著提高了16.3%.23.3% 和 20.6% 。
處理的第2年土壤速效鉀含量變化如圖6-C~D所示, 0~20cm 土層在覆蓋90d時(shí),T2處理的作用效果更顯著;在覆蓋180d時(shí),T1、T2和T3處理分別較對(duì)照顯著提高 15.7%.21.8% 和 11.9% 。 20~40cm 土層在覆蓋90d時(shí),3個(gè)處理的速效鉀含量均顯著高于對(duì)照;在覆蓋180d時(shí),T2和T3處理的速效鉀含量較對(duì)照分別顯著提高了 10.8% 和 10.1% ,T1處理
與對(duì)照差異不顯著。
2.3不同覆蓋處理對(duì)果樹(shù)生長(zhǎng)發(fā)育的影響
2.3.1不同覆蓋處理對(duì)試驗(yàn)樹(shù)株高、莖粗、冠徑和新梢的影響不同覆蓋處理對(duì)試驗(yàn)樹(shù)株高、莖粗、冠徑和新稍的影響如表1所示。處理第一年,各處理的株高、莖粗、冠徑、新梢長(zhǎng)度和新梢粗度與對(duì)照相比均無(wú)顯著差異。在處理的第二年,3個(gè)處理對(duì)株高、莖粗、冠徑相比于對(duì)照無(wú)顯著影響,3個(gè)處理的新梢長(zhǎng)度、新梢粗度均顯著高于對(duì)照,新梢長(zhǎng)度較對(duì)照分別顯著提高了 14.0%.24.4% 和 19.3% ,新梢粗度較對(duì)照分別顯著提高了 15.1%.32.1% 和 19.3% 。在處理的第二年,對(duì)照的樹(shù)枝被大風(fēng)折斷,所以株高較第一年的低。
2.3.2不同覆蓋處理對(duì)試驗(yàn)樹(shù)光合作用的影響不同覆蓋處理對(duì)試驗(yàn)樹(shù)光合作用的影響如表2所示。處理的第一年,T1和T2處理的凈光合速率較對(duì)照分別顯著提高了 13.8% 和 18.5% ;各處理的氣孔導(dǎo)度、蒸騰速率、胞間二氧化碳濃度和光合水分利用效率與對(duì)照均無(wú)顯著差異。在處理的第二年,T2處理的凈光合速率較對(duì)照顯著提高了 16.6% ;T1處理的氣孔導(dǎo)度和蒸騰速率較對(duì)照分別顯著提高了 28.0% 和 32.4% ;各處理的胞間二氧化碳濃度與對(duì)照均無(wú)顯著差異;T1處理的光合水分利用率較對(duì)照顯著降低了 19.2% 。
2.4不同覆蓋處理對(duì)龍豐蘋果果實(shí)品質(zhì)的影響
在果園地面覆蓋粉碎枝條可以抑制雜草生長(zhǎng),減少其與果樹(shù)的營(yíng)養(yǎng)競(jìng)爭(zhēng),提高土壤中的有機(jī)質(zhì)、速效養(yǎng)分等含量,進(jìn)而可以提高果實(shí)的內(nèi)在及外在品質(zhì)。不同覆蓋處理對(duì)龍豐蘋果果實(shí)品質(zhì)的影響如表3和表4所示,在處理第一年,T1處理對(duì)果實(shí)品質(zhì)指標(biāo)的影響相比于對(duì)照無(wú)顯著差異;T2處理的單果質(zhì)量、可溶性糖含量較對(duì)照分別顯著提高了 5.63% 、5.64% ;T3處理的可溶性糖含量較對(duì)照顯著提高了7.13% ,可滴定酸含量較對(duì)照顯著降低了 6.52% 。糖酸比和固酸比是影響果實(shí)口感風(fēng)味和成熟度的重要因素,各處理的糖酸比和固酸比均表現(xiàn)為 T3gt;T2gt; CKgt;T1 ;各處理果形指數(shù)基本一致,均偏向于扁圓形;各處理下果實(shí)的口感表現(xiàn)出 T2gt;T3gt;T1gt;C K。
處理的第二年,T1處理的單果質(zhì)量、硬度、可溶性固形物含量、可溶性糖含量較對(duì)照分別顯著提高了 13.49%?22.22%?6.48%?12.21%;T2 處理的單果質(zhì)量、可溶性固形物含量、可溶性糖含量較對(duì)照分別顯著提高了 38.60%.8.88%.22.02% ,可滴定酸含量較對(duì)照顯著降低了 4.55% ;T3處理的單果質(zhì)量、可溶性固形物含量、可溶性糖含量較對(duì)照分別顯著提高了 21.54%?4.99%?10.21% 。各處理的糖酸比和固酸比均表現(xiàn)為 T2gt;T1gt;T3gt;CK;T1 和T3處理的果形指數(shù)和對(duì)照的基本一致,均偏向于扁圓形,而T2處理的果形偏向近圓形;各處理下果實(shí)的口感表現(xiàn)出T2gt;T1gt;T3gt;CK 。
3討論
覆蓋具有保持土壤水分、提高土壤肥力、促進(jìn)作物生長(zhǎng)等功能[。在本試驗(yàn)中,蘋果粉碎枝條的不同覆蓋方式均可不同程度地提高果園土攘的有機(jī)質(zhì)以及速效氮、磷和鉀含量,并且隨著覆蓋時(shí)間的增加效果更為明顯。這是因?yàn)橹l中含有易于分解的碳,如半纖維素和果膠,為土壤微生物提供基質(zhì),在微生物的作用下促進(jìn)枝條分解。未分解的作物殘?bào)w大部分留在土壤中,對(duì)土壤中的碳儲(chǔ)量有貢獻(xiàn),提高了土壤中有機(jī)質(zhì)含量和中微量元素含量8]。此外,隨著覆蓋年限的增加,枝條逐漸腐解,可以直接提高土壤有機(jī)質(zhì)含量。在本試驗(yàn)中不同的覆蓋方式對(duì)提高土壤養(yǎng)分含量的影響不同,其中以粉碎枝條 + 地布覆蓋的效果最佳,相比于其他兩個(gè)處理更佳的原因可能是地布覆蓋會(huì)通過(guò)改變土壤的溫度和濕度,從而有利于土壤中微生物的活動(dòng),促使土壤有機(jī)物和養(yǎng)分礦化速率加快[2]。
葉片是進(jìn)行光合作用的主要器官,為果樹(shù)生長(zhǎng)發(fā)育提供所需的有機(jī)物和化學(xué)能[21]。枝條還田可提高果樹(shù)植株葉片的凈光合速率。在本試驗(yàn)中,粉碎枝條的不同覆蓋方式均可以提升光合作用強(qiáng)度,其中以粉碎枝條 + 地布覆蓋處理下的作用效果最顯著,原因可能是果園地面被覆蓋后,改善了果樹(shù)根系生長(zhǎng)的微域環(huán)境,提高了根系對(duì)土壤養(yǎng)分的吸收利用,從而促進(jìn)果樹(shù)的營(yíng)養(yǎng)生長(zhǎng)[22]。本試驗(yàn)處理的第二年,3種處理促進(jìn)了蘋果新梢的生長(zhǎng),前人在研究不同覆蓋措施對(duì)棗樹(shù)生長(zhǎng)的影響時(shí)發(fā)現(xiàn),覆蓋棗樹(shù)枝條可以提高葉面積指數(shù)和莖粗[23]。這可能是因?yàn)樘O果枝條和棗樹(shù)枝條覆蓋具有調(diào)節(jié)土壤水分和溫度的良好效果,從而改善了根系發(fā)育的環(huán)境并促進(jìn)了蘋果樹(shù)和棗樹(shù)的生長(zhǎng),這與其他學(xué)者研究的結(jié)果一
致[24]。
筆者在本研究中發(fā)現(xiàn),粉碎枝條 + 地布覆蓋處理對(duì)提高單果質(zhì)量和可溶性糖含量的效果最佳,這可能得益于地布的保水、防雜草功效,并提高了底層樹(shù)冠的光合效率[25]。將園藝地布覆蓋于桃園,桃的單果質(zhì)量和營(yíng)養(yǎng)品質(zhì)同樣得到了提高[26-27]。果實(shí)品質(zhì)與果樹(shù)的生長(zhǎng)發(fā)育密切相關(guān),更大的樹(shù)冠能夠降低果實(shí)日灼現(xiàn)象的發(fā)生,并降低土壤的太陽(yáng)輻射熱效應(yīng),從而更好地保護(hù)樹(shù)體下部的果實(shí),提高果實(shí)品質(zhì)和市場(chǎng)價(jià)值[28]。本研究發(fā)現(xiàn),在處理第一年,T1處理對(duì)果實(shí)品質(zhì)指標(biāo)的影響相比于對(duì)照無(wú)顯著差異,而T2處理和T3處理對(duì)果實(shí)品質(zhì)均有不同程度的提高。到了處理的第二年,T1、T2和T3處理對(duì)果實(shí)品質(zhì)均有不同程度的提高。這說(shuō)明,粉碎枝條表面覆蓋相比于粉碎枝條 + 園藝地布覆蓋和粉碎枝條旋耕至 0~20cm 土層對(duì)果實(shí)品質(zhì)的影響較慢,若想短期內(nèi)提升果實(shí)品質(zhì),應(yīng)該選用粉碎枝條 + 地布處理或?qū)⒎鬯橹l旋耕至 0~20cm 土層處理。
研究表明,黃冠梨和鴨梨修剪枝中氮、磷、鉀的含量隨著枝條生長(zhǎng)年限的增加而降低[29,并且枝條的降解速率與枝條品種、溫度、降水等因素息息相關(guān)[30-31]。因此,未來(lái)可以進(jìn)一步探究不同生長(zhǎng)年限蘋果枝條、不同覆蓋量以及不同環(huán)境因素對(duì)土壤養(yǎng)分、果樹(shù)生長(zhǎng)發(fā)育和果實(shí)品質(zhì)的影響。
4結(jié)論
不同方式覆蓋蘋果枝條碎片可以通過(guò)改善果樹(shù)樹(shù)體周圍的土壤條件,為果樹(shù)創(chuàng)造更適宜的生長(zhǎng)環(huán)境,從而有利于果樹(shù)的生長(zhǎng)發(fā)育。綜合分析蘋果粉碎枝條的不同覆蓋方式對(duì)土壤性質(zhì)、果樹(shù)生長(zhǎng)發(fā)育和果實(shí)品質(zhì)的影響發(fā)現(xiàn),粉碎枝條 + 地布覆蓋是更有利于實(shí)際生產(chǎn)的覆蓋方式。
參考文獻(xiàn)References:
[1] 李逢梅.復(fù)合微生物菌劑對(duì)云南昭通蘋果產(chǎn)量及品質(zhì)的影 響[J].南方農(nóng)業(yè),2024,18(9):169-171. LIFengmei.Effects of compound microbial agents on the yield and qualityof“Zhaotongapples”[J].South China Agriculture, 2024,18(9): 169-171.
[2] 張秋月,周桐羽,何佳麗,呂德國(guó),秦嗣軍.北方中大型果園枝 條類廢棄物綜合生態(tài)利用研究:以東北地區(qū)果園枝條類廢棄 物利用為例[J].農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2019,21 (6):641-645. ZHANG Qiuyue,ZHOU Tongyu,HE Jiali,LU Deguo,QIN Sijun. Comprehensive ecological utilization of abandoned branches of fruit trees in medium and large-sized orchards in northern China:Taking the utilization of abandoned branches of fruit trees in orchards in northeastern China as a case[J]. Journal of Shenyang Agricultural University (Social Sciences Edition), 2019,21(6):641-645.
[3]XIEB,CHENYH,CHENGCG,MARP,ZHAODY,LIZ, LIYQ,AN XH,YANG X Z.Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil[J].Applied Soil Ecology,2022,180:104627.
[4] MIA M J,MASSETANIF,MURRI G,NERI D. Sustainable alternativestochemicals forweed control in theorchard-Areview[J]. Horticultural Science,2020,47(1):1-12.
[5]劉春榮,劉麗麗,孫建城,王登亮,鄭雪良,吳雪珍,陳駿,程慧 林.果樹(shù)廢棄物資源化利用研究進(jìn)展[J].東南園藝,2022,10 (1):70-77. LIU Chunrong,LIU Lili, SUN Jiancheng, WANG Dengliang, ZHENG Xueliang,WU Xuezhen,CHEN Jun,CHENG Huilin. Research advances on the resource utilization of orchard waste[J]. Southeast Horticulture,2022,10(1):70-77.
[6]張躍,何佳麗,李麗杰,呂德國(guó),秦嗣軍.不同地區(qū)寒富蘋果產(chǎn) 量品質(zhì)變化及其發(fā)展趨勢(shì):以中國(guó)知網(wǎng)、Nature 和 Springer等 數(shù)據(jù)庫(kù)文獻(xiàn)為依據(jù)[J].農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版), 2021,23(2):147-153. ZHANG Yue,HE Jiali,LI Lijie,LU Deguo,QIN Sijun. Analysis of yield and quality change and development trend of hanfu apple planted in different areas: Based on CNKI,nature,springer and other databases[J]. Journal of Shenyang Agricultural University(Social Sciences Edition),2021,23(2):147-153.
[7] 梁金鳳,于躍躍,文方芳,金強(qiáng),賈小紅.添加腐熟菌劑對(duì)園林 綠色廢棄物堆肥化效果的影響[J].中國(guó)土壤與肥料,2013(6): 97-100. LIANG Jinfeng,YU Yueyue,WEN Fangfang,JIN Qiang,JIA Xiaohong.Effects of micro- inoculants on garden green waste composting[J]. Soil and Fertilizer Sciences in China,2013(6): 97-100.
[8]游浩宇,陳大剛,徐開(kāi)未,彭丹丹,肖蘇杰,羅中魏,王祖華,陳遠(yuǎn) 學(xué).不同改良措施對(duì)獼猴桃園土壤理化性質(zhì)變化的影響[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,40(6):826-837. YOU Haoyu,CHEN Dagang,XU Kaiwei,PENG Dandan, XIAO Sujie,LUO Zhongwei,WANG Zuhua,CHEN Yuanxue. Effect of different improvement treatments on the soil physicochemical property changes of kiwifruit orchard[J]. Journal of Sichuan Agricultural University,2022,40(6):826-837.
[9]李秀麗,張躍,呂德國(guó),秦嗣軍.枝條堆肥及其還田后對(duì)蘋果 園土壤養(yǎng)分狀況和植株光合性能的影響[J].土壤通報(bào),2024, 55(1):113-120. LI Xiuli,ZHANG Yue,LU Deguo,QIN Sijun. Effects of branch compost and its return to the field on soil nutrient status and phoChinese Journal of Soil Science,2024,55(1):113-120.
[10]聶佩顯,周菲,劉偉云,劉霞,薛曉敏,陶吉寒.蘋果修剪枝條還 田處理方式對(duì)土壤性狀和植株光合性能的影響[J].落葉果樹(shù), 2024,56(1):16-19. NIE Peixian,ZHOU Fei,LIU Weiyun,LIU Xia,XUE Xiaomin, TAO Jihan. Effect of apple pruning branch returning treatments on soil properties and plant photosynthetic performance[J]. Deciduous Fruits,2024,56(1):16-19.
[11]齊邊斌,張鵬,呂德國(guó),秦嗣軍.添加蘋果枝條碎片對(duì)土壤養(yǎng)分 及平邑甜茶幼苗光合性能的影響[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018,40(3):304-310. QI Bianbin,ZHANG Peng,LU Deguo,QIN Sijun.Effects of adding apple branch chips into soil on soil nutrients and photosynthetic performance of Malus hupehensis Rehd. seedlings[J]. JournalofJilinAgricultural University,2018,40(3):304-310.
[12]韋茂春,李祥,韓智勇,鄂濤,李艷,姚義清,羅銀浩.枝條原位 還田方式對(duì)葡萄霜霉病發(fā)病率及其產(chǎn)質(zhì)量的影響[J].貴州農(nóng) 業(yè)科學(xué),2023,51(12):31-38. WEIMaochun,LI Xiang,HAN Zhiyong,E Tao,LI Yan,YAO Yiqing,LUO Yinhao.Effectsof branch insitu returning to the fieldon incidence of downy mildew,yield and quality of grape[J]. Guizhou Agricultural Sciences,2023,51(12):31-38.
[13]鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國(guó)農(nóng)業(yè)出版社, 2000. BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed.Beijing:China Agriculture Press,2000.
[14]張自強(qiáng),王森,胡瓊,朱江華,張萍.南方鮮食棗正常果與裂果 不同時(shí)期內(nèi)含物含量的比較[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2018,38(1):37-42. ZHANG Ziqiang,WANG Sen,HU Qiong,ZHU Jianghua, ZHANG Ping.Cracked jujube and normal internal substance content comparative study in different periodsof southern fresheat jujube[J]. Journal of Central South Universityof Forestry amp; Technology,2018,38(1):37-42.
[15]楊蘭蘭,盧凱政,鄒平,齊國(guó)輝,張雪梅,李寒,郭素萍.蘋果苦 痘病與果實(shí)品質(zhì)及礦質(zhì)元素含量的相關(guān)性分析[J].經(jīng)濟(jì)林研 究,2019,37(2):134-140. YANG Lanlan,LU Kaizheng,ZOU Ping,QI Guohui,ZHANG Xuemei,LIHan,GUO Suping.Correlation analysis of apple bitter pit with fruit quality and mineral element contents in fruits[J]. Non-wood Forest Research,2019,37(2):134-140.
[16]KADER M A,SENGE M,MOJID MA,ONISHI T,ITO K. Effects of plastic-hole mulching on effective rainfall and readily available soil moisture under soybean (Glycine max) cultivation[J].Paddyand WaterEnvironment,2017,15(3):659-668.
[17]RUPASINGHE H PV,KEAN C,NICHOLS D,EMBREE C. Orchard waste as a valuable bio-resource:A chemical composition analysis[J].ActaHorticulturae,2007(737):17-23.
[18]ADHIKARI A D,SHRESTHA P,GHIMIRE R,LIU Z M,POLLOCKD A,ACHARYA P,ARYAL D R. Cover crop residue quality regulates litter decomposition dynamics and soil carbon mineralization kinetics in semi-arid cropping systems[J].Applied SoilEcology,2024,193:105160.
[19]QIANX,GU J,PANHJ,ZHANGKY,SUNW,WANG XJ, GAO H. Effects of living mulches on the soil nutrient contents, enzymeactivities,and bacterialcommunitydiversities ofapple orchard soils[J].EuropeanJournal of Soil Biology,2015,70:23- 30.
[20]侯婷,閆鵬科,龐群虎,馬婷慧,齊雁冰,王銳.行內(nèi)覆蓋對(duì)果 園土壤特性及釀酒葡萄產(chǎn)量和品質(zhì)的影響[J].河南農(nóng)業(yè)大學(xué) 學(xué)報(bào),2019,53(6):869-875. HOUTing,YANPengke,PANGQunhu,MA Tinghui,QI Yanbing,WANG Rui.Effects of intra-row coverage on orchard soil features and wine grape yield and quality[J]. Journal of Henan Agricultural University,2019,53(6):869-875.
[21]NEILSENG,F(xiàn)ORGET,ANGERSD,NEILSEND,HOGUE E. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance[J].Plant and Soil,2014,378(1):325-335.
[22]GALANTI R,CHO A,AHMADA,RADOVICH T.Soil amendmentsand soil profiling impact on macadamia growth and yield performance[J].HortScience,2019,54(3):519-527.
[23]TANG M,GAO X D,WU P T,LI HC,ZHANG C. Effects of living mulch and branches mulching on soil moisture,temperature and growth of rain-fed jujube trees[J].Plants,2022,11(19): 2654.
[24]PAUNOVIC S M,MILINKOVIC M, PESAKOVIC M. Effect of sawdust and foil mulches on soil properties,growth and yield of black currant[J].Erwerbs-Obstbau,2020,62(4):429-435.
[25]成文競(jìng),張琴,佘為為,許太白,張微微.不同覆蓋方式對(duì)桃園 土壤性狀及果實(shí)產(chǎn)量品質(zhì)的影響[J].中國(guó)南方果樹(shù),2024,53 (5):124-129. CHENG Wenjing,ZHANG Qin,SHE Weiwei,XU Taibai, ZHANG Weiwei.Effects of different mulchingmethods on soil propertiesand fruit yield and quality inpeach orchard[J].South China Fruits,2024,53(5):124-129.
[26]鄭青松.錦繡黃桃地布覆蓋栽培技術(shù)的效果分析[J].落葉果 樹(shù),2021,53(3):21-23. ZHENG Qingsong.Analysis of ground cloth mulching cultivation technology on Jinxiu yellow peach[J].Deciduous Fruits, 2021,53(3):21-23.
[27]楊熠路,胡楓,倪照君,黃霄,侍婷,田傳正,盧炫羽,高志紅.園 藝地布覆蓋對(duì)桃園土壤和桃果實(shí)品質(zhì)的影響[J].中國(guó)果樹(shù), 2021(8):24-30. YANG Yilu,HU Feng,NI Zhaojun,HUANG Xiao,SHI Ting, TIANChuanzheng,LU Xuanyu,GAO Zhihong. Effectsof blackground fabric mulchingonfruit qualityand soil in peach orchard[J].China Fruits,2021(8):24-30.
[28] SALAMAB,ABOU-HADID A,ABDELHAMIDN,EL-SHINAWY M.Effect of prunning pattern and soil mulching on yield and quality of keitt mango in new reclaimed lands[J].ArabUniversities JournalofAgricultural Sciences,2018,26(1):147-159.
[29]張乃文,董彩霞,徐陽(yáng)春.梨樹(shù)修剪枝和果實(shí)從樹(shù)體移走的養(yǎng) 分研究[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,36(4):37-42. ZHANG Naiwen,DONG Caixia,XU Yangchun. Nutrient amountsremoved bythe pruningbranchesand the fruit harvest from the pear tree[J]. Journal of Nanjing Agricultural University,2013,36(4):37-42.
[30]WAHDAN SFM,JIL,SCHADLERM,WUY T,SANSUPA C,TANUNCHAI B,BUSCOTF,PURAHONGW.Futureclimate conditions accelerate wheat straw decomposition alongside altered microbial community composition,assembly patterns, and interaction networks[J].The ISME Journal,2022,17(2): 238-251.
[31]LISKI J,NISSINEN A,ERHARD M,TASKINEN O. Climatic effects on litter decomposition from arctic tundra to tropical rainforest[J].Global Change Biology,2003,9(4):575-584.