中圖分類號:R730.5文獻標(biāo)識碼:A 文章編號:1000-503X(2025)03-0470-08
DOI:10.3881/j.issn.1000-503X.16282
Advances in Influencing Mechanisms and Therapeutic Effects of Bacteriophages on Cancer
XIAO Yuyang,MA Yuyang, ZHANG Yibo,CHEN Cheng,MENG Yang, ZHAO Mingyi
DepartmentofPediatrics,The Third Xiangya HospitalofCentral South University,Changsha41OO13,China
Corresponding author:ZHAO Mingyi Tel:17773135083,E-mail:zhao_mingyi@csu.edu.cn
ABSTRACT:Cancer brings about an enormous threat to human health,making the exploration of its mechanisms and therapeutic strategies a current focal point and chalenge in research. Bacteriophages are integral components of the human microbiome,and studies have shown their influences on tumor growth and metastasis and their pivotal roleincancer treatment.Thisarticleelucidates the mechanisms bywhich bacteriophages impact the occurence and development of cancer from their interactions with cancer cells,effcts on bacteria,and influence on the immune system.Additionally,it explores bacteriophage-based strategies in cancer treatment andtheir potential inthis field.Thisarticleaims tobring newthoughtsand insights to theresearch inthis field.
Key words:bacteriophage;cancer;bacteriophage-bacterium interaction;bacteriophage therapy
ActaAcadMedSin,2025,47(3):470-477
癌癥是全球公共衛(wèi)生領(lǐng)域面臨的主要威脅之一,對人類健康與社會經(jīng)濟發(fā)展造成嚴(yán)重的負(fù)面影響[1]對癌癥發(fā)生發(fā)展機制及其預(yù)防、診斷和治療的探究一直是醫(yī)學(xué)研究的熱點。目前癌癥的治療手段主要為手術(shù)切除、放療和化療等[2],但傳統(tǒng)治療方法有復(fù)發(fā)轉(zhuǎn)移的風(fēng)險,且不良反應(yīng)較大,探索新型癌癥治療策略刻不容緩。噬菌體是一種專門感染并寄生在細菌細胞內(nèi)的病毒,其具有獨特的生命周期,包括吸附、侵入、復(fù)制和組裝,這一過程最終導(dǎo)致宿主細胞破裂并釋放出新的噬菌體顆粒。研究表明,噬菌體可以通過影響細菌、免疫系統(tǒng)等進一步影響腫瘤的發(fā)生發(fā)展[3]。1940年研究發(fā)現(xiàn)噬菌體可能具有抗癌活性,其在癌組織中聚集可抑制腫瘤生長,Kantoch等[4]隨后通過體外實驗證明了這一觀點。近年來,噬菌體對癌癥的治療作用逐漸引起重視,2018年噬菌體展示技術(shù)獲得諾貝爾生理學(xué)或醫(yī)學(xué)獎,是目前較為成熟的噬菌體靶向治療癌癥的方案之一[5]。本文將從噬菌體與癌細胞的相互作用、對細菌的作用和對免疫系統(tǒng)的影響3個方面闡述噬菌體影響腫瘤發(fā)生發(fā)展的機制,并介紹噬菌體在腫瘤治療中的策略及其應(yīng)用潛力,旨在幫助研究者更深入地了解噬菌體和腫瘤之間的聯(lián)系,為臨床治療提供新的視角。
1噬菌體影響腫瘤的可能機制
微生物組與腫瘤聯(lián)系緊密,噬菌體作為微生物組的一員,對腫瘤的發(fā)生發(fā)展也產(chǎn)生重要影響[6-7],其可以直接與癌細胞相互作用,也能通過影響細菌及機體免疫功能干擾腫瘤的發(fā)展和轉(zhuǎn)移(圖1)。
1.1噬菌體與癌細胞相互作用對腫瘤的影響
傳統(tǒng)觀點認(rèn)為,噬菌體不會與真核細胞相互作用,但Kantoch等[4]通過體外實驗證明,噬菌體可以與腫瘤細胞結(jié)合。研究發(fā)現(xiàn),入噬菌體具有與人類成纖維細胞相互作用的能力[8]。噬菌體在某些癌癥的腫瘤組織微生物組中普遍存在,并直接與癌細胞相互作用以刺激腫瘤細胞增殖[9]。研究表明,野生型T4噬菌體可以與異常增殖的黑素細胞結(jié)合[10-11],降低黑色素瘤的侵襲性,這可能與噬菌體衣殼蛋白中的賴氨酸-甘氨酸-天冬氨酸基序與靶細胞表面β1或β3整合素受體之間的特異性相互作用有關(guān)[10-11],β3 整合素在癌細胞中普遍存在,被認(rèn)為是促進腫瘤轉(zhuǎn)移的重要因素之-[12-13]。T4 和 M13 噬菌體特異性結(jié)合人前列腺癌細胞中的熱休克蛋白90受體,抑制HSP90基因的表達,從而刺激有絲分裂、DNA修復(fù)和預(yù)防細胞凋亡[3]。純化后的T4 噬菌體有抑制腫瘤生長、對抗腫瘤轉(zhuǎn)移的效果[14]。大腸桿菌噬菌體PK1A2可以通過細胞膜表面的聚唾液酸與人神經(jīng)母細胞瘤細胞kSK-N-SH特異性結(jié)合,并侵入細胞內(nèi)。噬菌體通過內(nèi)溶酶體途徑實現(xiàn)細胞內(nèi)化,能在細胞內(nèi)維持生存狀態(tài)長達24h[15]
1.2 噬菌體作用于細菌對腫瘤的影響
噬菌體分為烈性噬菌體和溫和噬菌體兩種,其區(qū)分標(biāo)準(zhǔn)為是否參與溶源周期[16-17]。烈性噬菌體可以通過吸附穿入、生物合成和成熟釋放3個階段在細菌內(nèi)增殖并殺滅細菌,而溫和噬菌體感染細菌后并不增殖,但可以把自身基因整合至細菌染色體中[16-17]。噬菌體通過這兩種方式影響細菌的數(shù)量、種類、功能、毒性及耐藥性[18-19]。此外,細菌的抗噬菌體策略和噬菌體的抗防御策略相互作用,推動了兩者的共同進化[20]。研究表明,細菌與癌癥之間存在密切聯(lián)系[21]幽門螺桿菌會誘發(fā)胃癌[22-23],傷寒沙門菌會誘發(fā)膽囊癌[24],結(jié)核分枝桿菌會誘發(fā)肺癌[25],檸檬酸桿菌可能是結(jié)直腸癌的主要誘因之一[26]。除了誘發(fā)癌癥,銅綠假單胞菌[27-28]、肺炎克雷伯菌[29]、梭狀芽胞桿菌[30]、沙門菌[3]等細菌或其分泌物也顯示出抗癌活性,其抗癌效果可能是通過促進腫瘤細胞凋亡和/或免疫系統(tǒng)激活等實現(xiàn)的。目前,關(guān)于噬菌體通過細菌影響腫瘤的研究主要集中在腸道腫瘤領(lǐng)域,這可能是由于腸道內(nèi)存在大量細菌和噬菌體,兩者相互作用明顯[32-33]。通過宏基因組測序結(jié)果表明,結(jié)直腸癌患者體內(nèi)細菌多樣性減少,噬菌體豐度增加[34]。對腸道病毒組的分類和豐度分析可以用于結(jié)直腸癌的診斷、分期和預(yù)后預(yù)測[34]。噬菌體對結(jié)直腸癌的影響可能與感染革蘭氏陰性菌的噬菌體相關(guān),如大腸桿菌、具核梭桿菌、脆弱擬桿菌等[35]。Hannigan 等[36]采用多種基因測序技術(shù)對糞便樣本進行分析發(fā)現(xiàn),癌癥相關(guān)病毒組與健康狀態(tài)病毒組存在差異,癌癥相關(guān)的病毒組主要由溫和噬菌體組成,其通過改變細菌群落組成進而影響結(jié)直腸癌的進展和腫瘤負(fù)荷。噬菌體通過細菌影響其他腫瘤的直接證據(jù)有待進一步闡明,但可以肯定這種間接影響是存在的。有些細菌在腫瘤組織中普遍存在,他們可能通過抑制免疫反應(yīng)、刺激促炎性細胞因子的釋放以及與癌細胞直接作用來促進腫瘤的生長,噬菌體提供了一種精準(zhǔn)靶向腫瘤組織微生物群中腫瘤相關(guān)細菌的方法,通過裂解腫瘤相關(guān)細菌,為現(xiàn)有腫瘤治療提供了一種輔助手段[9」。
1.3噬菌體調(diào)節(jié)機體免疫系統(tǒng)對腫瘤的影響
機體免疫系統(tǒng)在腫瘤的發(fā)生發(fā)展中扮演著關(guān)鍵角色[37]。噬菌體作為一種抗原可以調(diào)節(jié)腫瘤免疫微環(huán)境,促進抗腫瘤免疫,從而抑制腫瘤進展和擴散[33]噬菌體對免疫功能的影響涉及固有免疫和適應(yīng)性免疫[38],兩者均與腫瘤的發(fā)生發(fā)展相關(guān)[39]。1987年Kucharewicz-Krukowska等[40]發(fā)現(xiàn)噬菌體療法可以誘導(dǎo)產(chǎn)生抗體,從而治療患者的疾病。對于固有免疫,噬菌體可以裂解細菌,釋放細菌表面和細菌內(nèi)的物質(zhì),激活Toll樣受體,致使機體產(chǎn)生固有免疫應(yīng)答[41];噬菌體還可以影響自由基的產(chǎn)生,調(diào)節(jié)吞噬細胞的功能[42];含有M13噬菌體的單鏈DNA具有高免疫原性,可以引發(fā)炎癥并侵襲激活的先天性免疫細胞,克服腫瘤相關(guān)的免疫抑制,促進抗腫瘤免疫反應(yīng)[43]。對于適應(yīng)性免疫,腸球菌噬菌體抗原與腫瘤主要組織相容性復(fù)合體I類限制性抗原有交叉反應(yīng)性,可以刺激記憶T細胞,對癌癥起治療作用[44];T4噬菌體能夠激活樹突狀細胞,促進T細胞活化,并增加 γ? 干擾素濃度,從而發(fā)揮抗腫瘤作用[45];噬菌體與白細胞介素(interleukin,IL) -2[46] ,腫瘤壞死因子(tumor necro-sis factor,TNF)[47]等細胞因子的水平也存在密切關(guān)聯(lián),這些細胞因子在調(diào)節(jié)免疫反應(yīng)和影響腫瘤發(fā)展中起著重要作用。值得注意的是,噬菌體對腫瘤的影響并非是相同的,同細菌一樣,噬菌體也分為促癌噬菌體和抑癌噬菌體[33],后者已經(jīng)被廣泛應(yīng)用于腫瘤的臨床治療中。
圖1噬菌體影響腫瘤的機制
2噬菌體在腫瘤治療中的應(yīng)用
噬菌體與腫瘤發(fā)生發(fā)展存在潛在關(guān)聯(lián),噬菌體療法在腫瘤臨床治療中的應(yīng)用也日益廣泛[48]。噬菌體療法的優(yōu)勢顯著,具有針對性強、不良反應(yīng)小、不易耐藥、療效顯著、成本低廉等不可替代的優(yōu)點[48]。除噬菌體展示技術(shù)外,噬菌體療法還包括直接靶向腫瘤細胞的治療方法、作用于細菌的治療方法、調(diào)節(jié)機體免疫系統(tǒng)的免疫療法以及針對遺傳物質(zhì)的基因療法等,這為腫瘤的個性化治療提供了多樣化的選擇。
2.1 噬菌體展示技術(shù)
噬菌體展示技術(shù)通過基因工程技術(shù)將外源蛋白質(zhì)的編碼基因插人至噬菌體衣殼蛋白基因中,使外源蛋白隨子代噬菌體的重新組裝在噬菌體表面表達,從而保留外源蛋白的空間結(jié)構(gòu)和生物活性[5]。1985年,Smith等[49]利用基因技術(shù)將外源DNA片段插入絲狀噬菌體Ⅲ基因中,產(chǎn)生中間有外源序列的融合蛋白,開創(chuàng)了噬菌體展示的先河,并因此榮獲2018年諾貝爾獎。隨著基因技術(shù)和分子生物學(xué)技術(shù)的不斷發(fā)展成熟,噬菌體展示技術(shù)逐漸顯現(xiàn)其優(yōu)勢,在臨床治療和科學(xué)研究領(lǐng)域的應(yīng)用逐漸廣泛。目前,噬菌體展示技術(shù)已成為一種較為成熟的腫瘤靶向治療策略,用于腫瘤的臨床治療中,并取得了良好的療效。
噬菌體展示技術(shù)在腫瘤靶向肽的篩選、化療藥物等的靶向運輸和腫瘤特異性抗體制備中應(yīng)用廣泛[50]。通過噬菌體展示技術(shù),已篩選出多種腫瘤靶向肽,如定位骨肉瘤的寡肽 PT6 和 PI7[51] ,定位結(jié)腸癌的 TPC-1[52],定位膀胱癌的多肽NYZL1[53],定位前列腺癌的多肽PKRGFQD和SNTRVAP[54]和定位卵巢癌的七肽 0SIP[55] 0噬菌體展示技術(shù)為腫瘤的靶向治療提供了精準(zhǔn)靶點[50],靶向神經(jīng)膠質(zhì)瘤多肽基團鏈接的多西環(huán)素脂質(zhì)體可有效抑制神經(jīng)膠質(zhì)瘤的生長[56],非小細胞肺癌靶向肽LPLTPLP修飾的多西紫杉醇納米顆粒的抗腫瘤療效顯著提高[57]。
除篩選腫瘤靶向肽,噬菌體還可以作為納米靶向載體運輸化療藥物。研究發(fā)現(xiàn),利用噬菌體展示技術(shù)遞送化療藥物阿霉素,小鼠乳腺癌得到有效控制[58];利用絲狀噬菌體攜帶海格霉素展現(xiàn)了對腫瘤細胞的強殺傷力[59];利用M13噬菌體搭載化療藥物可以有效治療前列腺癌[6];利用雜交腺相關(guān)病毒和噬菌體(adeno-associatedvirusandphage,AAVP)搭載生長抑素類似物奧曲肽可以靶向治療胰腺神經(jīng)內(nèi)分泌腫瘤[61]。此外,還可以利用噬菌體展示技術(shù)制備腫瘤特異性抗體。Ayat等[6]利用噬菌體展示技術(shù)從乳腺癌患者淋巴結(jié)中獲得人表皮生長因子受體2和癌胚抗原,并進一步合成相應(yīng)的抗體;Romani等[63]利用噬菌體展示技術(shù)設(shè)計出一種全人源抗緊密連接蛋白 3IgG1 抗體(IgGH6),可用于卵巢癌的治療;Lin等[64]利用噬菌體展示技術(shù)分離出一種針對人滋養(yǎng)層細胞表面抗原2胞外結(jié)構(gòu)域的Fab抗體,可以用于乳腺癌的治療。
2.2 靶向腫瘤細胞
多項研究揭示T4噬菌體在治療黑色素瘤方面的潛力,其可以通過與癌細胞結(jié)合抑制黑色素瘤的生長和轉(zhuǎn)移[10-11]。T4 噬菌體的亞株 HAP1 對黑色素瘤細胞具有更高的親和力,從而發(fā)揮了更為顯著的抑制腫瘤轉(zhuǎn)移的作用[65]。這些發(fā)現(xiàn)也為噬菌體治療其他類型腫瘤提供了科學(xué)依據(jù)。
2.3 作用于細菌
噬菌體與細菌聯(lián)系密切,噬菌體療法利用噬菌體的細菌識別和攻擊能力間接作用于腫瘤細胞,展示出其在腫瘤治療領(lǐng)域臨床應(yīng)用的潛力。Dong等[66]發(fā)現(xiàn)將納米銀顆粒置于與核梭桿菌特異性結(jié)合的M13噬菌體衣殼蛋白上,可以有效清除腸道內(nèi)的核梭桿菌,從而抑制小鼠的結(jié)直腸腫瘤。此外,腫瘤患者在醫(yī)院內(nèi)易合并醫(yī)源性細菌感染,這種感染的細菌通常具有較高的耐藥性,使用常規(guī)抗生素難以達到預(yù)期的治療效果。多項研究表明,利用噬菌體治療癌癥并發(fā)的感染效果良好??诜烊皇删w裂解物可以有效緩解金黃色葡萄球菌等細菌的感染[67];噬菌體K與阿霉素聯(lián)用可以有效治療肺癌患者的金黃色葡萄球菌感染[68];噬菌體療法可以有效治療多重耐藥的鮑曼不動桿菌 感染[69]
2.4調(diào)節(jié)機體免疫系統(tǒng)
噬菌體通常是通過噬菌體展示技術(shù)調(diào)節(jié)機體的免疫系統(tǒng)[70]。Hwang 等[71]構(gòu)建了一種工程噬菌體T7,其攜帶并展示與小鼠黑色素瘤細胞相對應(yīng)的肽段,通過在腫瘤組織表達粒細胞-巨噬細胞集落刺激因子(granulo-cyte-macrophagecolony-stimulatingfactor,GM-CSF),使血清細胞因子 IL-1α 、TNF- α 和GM-CSF水平顯著升高,促進巨噬細胞、樹突狀細胞和 CD8+T 細胞在腫瘤組織的浸潤,有效控制黑色素瘤的進展。Asavarut等[72]采用跨形態(tài)噬菌體/腺相關(guān)病毒進行腫瘤免疫治療,其攜帶的IL-12、IL-15和TNF- ∝ 等細胞因子表現(xiàn)出顯著的抗腫瘤效果。此外,研究人員利用噬菌體展示技術(shù)獲得單克隆抗體[73]、新型疫苗[74]等免疫活性因子,這些因子在腫瘤的免疫治療中發(fā)揮了重要的作用。
2.5 作用于遺傳物質(zhì)
廣義而言,對遺傳物質(zhì)產(chǎn)生影響的治療方法均可認(rèn)為是基因療法,包括體細胞基因治療和生殖細胞基因治療[75]。對真核細胞感染概率低、具有更高的克隆能力、易于修飾等特點使噬菌體成為一種極具潛力的癌癥基因治療工具[3]。大量研究表明,AAVP在腫瘤自殺基因療法中療效顯著,對卡波西肉瘤、膀胱癌、前列腺癌、乳腺癌等均有較好的治療效果[76]。AAVP可將HSVtk基因遞送至乳腺癌周圍的內(nèi)皮細胞,使用更昔洛韋靶向治療可導(dǎo)致近 80% 的癌癥和內(nèi)皮細胞死亡[77]。噬菌體與成簇規(guī)律間隔短回文重復(fù)序列及其相關(guān)蛋白9技術(shù)結(jié)合具有廣泛的應(yīng)用前景[78],利用AAVP作為載體,將TP53基因?qū)敕蜗侔┘毎?,可恢?fù)P53蛋白功能,從而實現(xiàn)肺癌的TP53替代療法。此外,噬菌體M13和T4可以增加前列腺癌細胞系中錨定依賴性存活通路基因的表達,并下調(diào)雄激素受體表達,從而治療前列腺癌[79]
3總結(jié)與展望
在腫瘤的發(fā)生發(fā)展過程中,噬菌體、細菌和機體免疫之間會相互影響,構(gòu)成一個錯綜復(fù)雜的網(wǎng)絡(luò)關(guān)系[48]。噬菌體也可以與易感基因相互作用,其具體機制有待進一步的探討。鑒于人體腸道菌群復(fù)雜,當(dāng)前研究多聚焦于腸道,但未來噬菌體在腸道外組織對腫瘤作用的研究有望成為新的探索方向。
目前,噬菌體在免疫調(diào)節(jié)及腫瘤治療方面的的應(yīng)用價值正日益受到關(guān)注。噬菌體展示技術(shù)的突破讓噬菌體成為腫瘤靶向肽篩選、藥物靶向運輸和單克隆抗體制備的新手段。然而,噬菌體介導(dǎo)的癌癥基因療法的進一步發(fā)展仍須開發(fā)新型重組原核病毒載體技術(shù)、改進現(xiàn)有載體系統(tǒng),同時解決可能出現(xiàn)的免疫反應(yīng)及癌癥耐藥性等問題[3]。
近些年噬菌體因易獲得、結(jié)構(gòu)簡單,在實驗室和臨床應(yīng)用廣泛。噬菌體展示技術(shù)縮短單克隆抗體制備周期,降低成本,推動其在多種疾病中的應(yīng)用。此外,由于抗生素耐藥菌愈發(fā)普遍,噬菌體可用于控制致病菌生長,防止腸道菌群失衡,維持免疫功能。但因細菌耐藥性和宿主免疫反應(yīng),噬菌體療法通常僅限于短期使用[80]。目前,利用口服噬菌體作為長期治療胃腸道非傳染性疾病的策略仍在研究階段。細菌的抗噬菌體防御機制,如限制性核酸內(nèi)切酶、成簇規(guī)律間隔短回文重復(fù)及其相關(guān)蛋白系統(tǒng)等,其原理和作用尚需進一步研究[81-84]。相信隨著對噬菌體、人體微生態(tài)及腸-腦軸調(diào)節(jié)機制研究的不斷深入,噬菌體的臨床應(yīng)用前景將會更加廣闊。
利益沖突 所有作者聲明無利益沖突
作者貢獻聲明肖宇洋:設(shè)計和撰寫論文;馬毓陽:論文圖表繪制;張奕博:撰寫論文;陳橙、孟陽:論文修訂;趙明一:申請基金資助和指導(dǎo)論文撰寫、并同意對研究工作誠信負(fù)責(zé)
參考文獻
[1] YinW,WangJ,JiangL,et al.Cancer and stem cells[J]. ExpBiol Med(Maywood),2021,246(16):1791-1801. DOI:10.1177/15353702211005390.
[2] KaurR,Bhardwaj A,Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers[J].Mol Biol Rep,2023,50(11):9663-9676.D01:10.1007/s11033- 023-08809-3.
[3]Petrov G,Dymova M,Richter V.Bacteriophage-mediated cancergene therapy[J].IntJMol Sci,2022,23(22):14245. DOI:10.3390/ijms232214245.
[4] Kantoch M,Mordarski M.Binding of bacterial viruses by tumor cellsin vitro[J].PostepyHigMed Dosw,1958,12(2): 191-192.
[5] SawPE,Song EW.Phage display screening of therapeutic peptide forcancertargeting and therapy[J].Protein Cell, 2019,10(11) :787-807. DO1:10.1007/s13238-019-0639-7.
[6] El-SayedA,AleyaL,Kamel M.Microbiota’srole inhealth and diseases[J].Environ Sci Pollut Res Int,2021,28(28): 36967-36983. DOI:10. 1007/s11356-021-14593- z. (2
[7]Wang Q.Building personalized cancer therapeutics through multi-omics assays and bacteriophage-eukaryotic cell interactions[J].Int JMol Sci,2021,22(18):9712.DOI:10. 3390/ijms22189712.
[8]Geier MR,Merrl CR.Lambda phage transcription in human fibroblasts[J].Virology,1972,47(3):638-643.DOI:10. 1016/0042-6822(72)90553-3.
[9]Kabwe M,Dashper S,Bachrach G,et al.Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response [J]. FEMS Microbiol Rev,2021,45(5):fuab017.DOI:10.1093/ femsre/fuab017.
[10]Dabrowska K,Opolski A,Wietrzyk J,et al.Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway[J].Acta Virol,2004,48(4):241-248.
[11]Gorski A,Dabrowska K,Switala- Jelen K,et al. New insights into the possible role of bacteriophages in host defense and disease[J].Med Immunol,2003,2(1):2.DOI:10. 1186/1476-9433-2-2.
[12]Wen S,HouY,F(xiàn)uL,et al Cancer-assciated fibroblast(CAF)- derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signallng[J]. Cancer Lett, 2019,442:320-332. DOI:10.1016/j.canlet.2018.10.015.
[13]Su X,Esser AK,Amend SR,et al. Antagonizing integrin β3 increases immunosuppression in cancer[J]. Cancer Res, 2016,76(12):3484-3495.DOI: 10.1158/0008-5472. Can15-2663.
[14]Dabrowska K,Opolski A,Wietrzyk J,et al.Anticancer activity of bacteriophage T4 and its mutant HAPl in mouse experimental tumour models[J].Anticancer Res,2004,24(6): 3991-3995.
[15]Lehti TA,Pajunen MI, Skog MS,et al. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells[J].Nat Commun,2017,8(1) : 1915. DOI:10. 1038/s41467-017-02057-3.
[16]Monteiro R,Pires DP,Costa AR,et al. Phage therapy:going temperate[J]. Trends Microbiol,2019,27(4): 368- 378. DOI:10.1016/j. tim. 2018.10. 008.
[17]Kimchi O,Meir Y,Wingreen NS.Lytic and temperate phage naturally coexist in a dynamic population model[J]. ISME J, 2024,18(1) :wrae093.DOI:10.1093/ismejo/wrae093.
[18]Kirsch JM,Brzozowski RS,F(xiàn)aith D,et al. Bacteriophagebacteriainteractionsin the gut:from invertebrates to mammals[J].Annu Rev Virol,2021,8(1):95-113.DOI:10. 1146/annurev- virology-091919-101238.
[19]Wahida A,Tang F,Barr J Rethinking phage- bacteria-eukaryotic relationships and their influence on human health [J]. Cell Host Microbe,2021,29(5):681-688.D0I:10.1016/ j. chom. 2021. 02.007.
[20]Wang Y,F(xiàn)an H,Tong Y.Unveil the Secret of the Bacteria and Phage ArmsRace[J].Int JMol Sci,2023,24(5). DOI:10. 3390/ijms24054363.
[21]Laliani G,Ghasemian Sorboni S,LariR,etal.Bacteria and cancer:different sides of the same coin[J].Life Sci,2020, 246:117398. DOI:10. 1016/j. Ifs. 2020. 117398.
[22]Senchukova MA. Helicobacter pylori and gastric cancer progression [J]. Curr Microbiol, 2022,79(12):383.DOI:10. 1007/s00284-022-03089-9.
[23]Salvatori S,Marafini I,LaudisiF,et al. Helicobacter pylori and gastric cancer:pathogenetic mechanisms[J]. Int JMol Sci,2023,24(3):2895.DOI:10.3390/ijms24032895.
[24]Samaras V,Rafailidis PI,Mourtzoukou EG,et al. Chronic bacterial and parasitic infections and cancer:a review[J].J Infect Dev Ctries,2010,4(5):267-281.DOI:10.3855/jidc. 819.
[25]Qin Y,ChenY,Chen J,et al.The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future[J]. InfectAgent Cancer,2022,17(1):20.DOI: 10.1186/s13027-022-00434-2.
[26]Ai D,Pan H,Li X,et al.Identifying gut microbiota associated with colorectal cancer using a zero- inflated lognormal model[J].Front Microbiol,2019,10:826.DOI:10.3389/ fmicb. 2019.00826.
[27]Bala K,Husain I,Sharma A.Arginine deaminase from Pseudomonas aeruginosa PS2 :purification,biochemical characterization and in-vitro evaluation of anticancer activity [J]. 3 Biotech,2020,10(5):226.D01:10.1007/s13205-020- 02212-6.
[28]Abdelaziz AA,Kamer AMA,Al-Monofy KB, et al. Pseudomonas aeruginosa’s greenish- blue pigment pyocyanin:its production and biological activities[J].Microb Cell Fact, 2023,22(1) :110. DOI:10.1186/s12934-023-02122-1.
[29]Hetz C,Bono MR,Barros LF,et al.Microcin E492,a channel-forming bacteriocin from Klebsiella pneumoniae,induces apoptosis in some human cellines [J]. Proc Natl Acad Sci U S A,2002,99(5) : 2696-2701.D0I:10.1073/pnas. 052709699.
[30]Xu H,Luo H, Zhang J,et al. Therapeutic potential of Clostridium butyricum anticancer effcts in colorectal cancer[J]. Gut Microbes,2023,15(1):2186114. D01:10.1080/1949 0976. 2023. 2186114.
[31]Jazeea K, Chakraborty A,Karunasagar I,et al. Nontyphoidal Salmonella:a potential anticancer agent[J]. JAppl Microbiol,2020,128(1):2-14.D01:10.1111/jam.14297.
[32]Gutiéerrez B,Domingo-Calap P.Phage therapy in gastrointestinal diseases[J].Microorganisms,2020,8(9):1420.DOI: 10.3390/microorganisms8091420.
[33]Shuwen H,Kefeng D.Intestinal phages interact with bacteria and are involved in human diseases[J]. Gut Microbes,2022, 14(1) :2113717. DOI:10. 1080/19490976. 2022.2113717.
[34]Nakatsu G, Zhou H,Wu WKK,et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes[J].Gastroenterology,2018,155(2):529-541,e5. DOI:10. 1053/j. gastro. 2018. 04. 018.
[35]Li S,Liu J,Zheng X,et al. Tumorigenic bacteria in colorectal cancer:mechanisms and treatments [J].Cancer Biol Med,2021,19(2) : 147-162. D0I: 10.20892/j. issn. 2095- 3941.2020. 0651.
[36]Hannigan GD,Duhaime MB,Ruffin MTT,et al. Diagnostic potential and interactive dynamics of the colorectal cancer virome[J].mBio,2018,9(6):e02248-18.DO1:10.1128/ mBio. 02248-18.
[37]Rui R,Zhou L,He S. Cancer immunotherapies:advances and bottlenecks[J].Front Immunol,2023,14: 1212476. DOI:10. 3389/fimmu. 2023.1212476.
[38]Van Belleghem JD,Da_browska K,Vaneechoutt M,et al. Interactions between bacteriophage,bacteria,and the mammalian immune system[J]. Viruses,2018,11(1):10. DOI: 10.3390/v11010010.
[39]Gubin MM,Vesely MD.Cancer immunoediting in the era of immuno-oncology[J].Clin Cancer Res,2022,28(18): 3917-3928.DOI:10.1158/1078-0432. Ccr-21-1804.
[40]Kucharewicz- krukowska A, Slopek S. Immunogenic effect of bacteriophage in patients subjected to phage therapy [J]. Arch Immunol Ther Exp(Warsz),1987,35(5):553-561.
[41]Gogokhia L,Round JL. Immune-bacteriophage interactions in inflammatory bowel diseases[J].Curr Opin Virol,2021, 49:30-35. DOI:10. 1016/j. coviro. 2021. 04. 010.
[42]Jofczyk-Matysia E,Weber-DabrowskaB,Owczarek B,et al.Phage- phagocyte interactionsand their implicationsfor phage application as therapeutics [J]. Viruses, 2017,9(6): 150.DOI:10.3390/v9060150.
[43]Murgas P,Bustamante N,Araya N,et alA filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer[J]. Cancer Immunol Immunother,2018,67(2) :183-193. DOI: 10.1007/s00262-017-2076- x. (204號
[44]Fluckiger A,Daillere R,Sassi M,et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage[J]. Science,2020,369(6506):936- 942. DOI:10. 1126/science. aax0701.
[45]Pajtasz-Piasecka E,Rossowska J,Dus D,et al. Bacteriophages support anti- tumor response initiated by DC- based vaccine against murine transplantable colon carcinoma[J]. Immunol Lett,2008,116(1):24-32.D01:10.1016/j. imlet. 2007.11. 004.
[46]Rojas G,Carmenate T,Garcia-Pérez G,et al.Phagekines: directed evolution and characterization of functional cytokines displayed on phages[J].Methods Mol Biol,2023,2702: 149-189. DOI:10.1007/978-1-0716-3381-6_8.
[47]Perea L,Rodriguez-Rubio L,Nieto JC,et al.Bacteriophages immunomodulate the response of monocytes[J].Exp Biol Med(Mayw00d),2021,246(11):1263-1268.DOI: 10. 1177/1535370221995154.
[48]ThiHV,Ngo AD,Tran LT,et al. Phage for cancer therapy[J].Prog Mol Biol Transl Sci,2023,201:225-239. DOI:10.1016/bs. pmbts.2023. 03. 015.
[49]Smith GP.Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface [J]. Science, 1985,228(4705):1315-1317. DOI:10.1126/science.4001944.
[50]Wang Y,Gao S,LVJ,et al.Phage display technology and its applications in cancer immunotherapy[J].Anticancer Agents Med Chem,2019,19(2):229-235.D0I:10.2174/ 1871520618666181029140814.
[51]Ma Z,Qin H,Chen H,et al. Phage display-derived oligopeptide-functionalized probes for invivo specific photoacoustic imaging of osteosarcoma[J].Nanomedicine,2017, 13(1):11-121. DOI:10.1016/j. nano. 2016.09.002.
[52]Liu Z,Gray BD,Barber C,et al.Characterization of TCP-1 probes for molecular imaging of colon cancer[J]. J Control Release,2016,239:223-230. DOI:10.1016/j. jconrel. 2016, 08,033.
[53]Yang X, Zhang F,Luo J,et al. A new non-muscle-invasive bladder tumor-homing peptide identified by phage display in vivo[J].Oncol Rep,2016,36(1):79-89.DOI:10.3892/or. 2016. 4829.
[54]Mandelin J,Card6- Vila M,Driessen WH,et al. Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors [J]. Proc Natl Acad SciU SA,2015,112(12):3776-3781. DOI:10.1073/pnas. 1500128112.
[55]Yang C,He X,Liu X,et al. OSTP as a novel peptide specifically targeting human ovarian cancer[J]. OncolRep, 2015,34(2) :972-978. D0I:10.3892/or. 2015.4066.
[56]Loi M,Di Paolo D,Soster M,et al.Novel phage displayderived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings [J].J Control Release,2013,170(2):233-241.D01: 10.1016/j jeonrel. 2013.04. 029.
[57]Jiang Y, Yang N, Zhang H,et al. Enhanced in vivo antitumor efficacyof dual-functional peptide-modified docetaxelnanoparticles through tumor targeting and Hsp9O inhibition [J].J Control Release,2016,221:26-36.DOI:10.1016/j. jconrel. 2015.11. 029.
[58]Choi H,Kim HD,Choi YW,et al. T7 phage display reveals NOLC1 as a GM3 binding partner in human breast cancer MCF-7 cels[J].Arch Biochem Biophys,2023,750:109810. DOI:10.1016/j.abb.2023.109810.
[59]BarH,YacobyI,Benhar I. Kiling cancer cellsby targeted drug-carrying phage nanomedicines [J]. BMC Biotechnol, 2008,8:37. D01:10.1186/1472-6750-8-37.
[60]Deporter SM,Mcnaughton BR.Engineered M13 bacteriophage nanocarrers for intracellular delivery of exogenous proteins to human prostate cancer cells[J]. Bioconjug Chem, 2014,25(9) :1620-1625.D0I:10.1021/bc500339k.
[61]Smith TL, Yuan Z,Card6- Vila M,et al. AAVP displaying octreotide for ligand-directed therapeutic transgene delivery in neuroendocrine tumors of thepancreas[J]. Proc Natl Acad Sci U S A,2016,113(9):2466-2471. D01:10.1073/pnas. 1525709113.
[62]Ayat H,Burrone OR,Sadghizadeh M,et al.Isolation of scFv antibody fragments against HER2 and CEA tumor antigens from combinatorial antibody libraries derived from cancer patients[J].Biologicals,2013,41(6):345-354.DOI:10. 1016/j. biologicals. 2013. 05. 004.
[63]Romani C,Cocco E,Bignoti E,et al Evaluation of a novel human IgGlanti-claudin3antibody thatspecificallyrecognizes its aberrantly localized antigen in ovarian cancer cells and that issuitable for selective drug delivery[J]. Oncotarget, 2015,6(33):34617-34628. DOI:10.18632/oncotarget.5315.
[64]Lin H,Zhang H,Wang J,et al.A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo[J]. Int JCancer,2014,134(5):1239-1249.DOI:10. 1002/ijc. 28451.
[65]Dabrowska K,Skaradzinski G, Jofczyk P,et al. The effect of bacteriophages T4and HAPl on in vitro melanoma migration[J].BMC Microbiol,2009,9:13.DOI:10.1186/1471- 2180-9-13.
[66]Dong X,Pan P,Zheng DW,et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor- immune microenvironment against colorectal cancer[J]. Sci Adv,2020,6(20):eaba1590.D0I:10.1126/sciadv. aba1590.
[67]MiedzybrodzkiR,F(xiàn)ortuna W,Weber-DabrowskaB,etal. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses[J].Clin Exp Med, 2009,9(4):303-312.D0I:10.1007/s10238-009-0044-2.
[68]Li J,Zheng H,Leung SSY.Potential of bacteriophage therapy in managing Staphylococcus aureus infections during chemotherapy for lung cancer patients [J]. Sci Rep,2023,13(1) : 9534. DOI:10.1038/s41598-023-36749-2.
[69] Abdul-Mutakabbir JC,Griffith NC,ShieldRK,etal.Contemporary perspective on the treatment of acinetobacter baumannii infections:insights from the society of infectious diseases pharmacists [J].Infect Dis Ther,2021,10(4):2177- 2202. DOI:10.1007/s40121-021-00541-4.
[70]Lu J,Ding J,Liu Z,et al. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment(Review)[J].IntJOncol,2022,60(2):12.DOI: 10.3892/ijo. 2022. 5302.
[71]Hwang YJ,Myung H. Engineered bacteriophage T7 as a potentanticancer agent in vivo [J].Front Microbiol,2020, 11:491001.DOI:10.3389/fmicb.2020.491001.
[72]Asavarut P,Waramit S,Suwan K,et al. Systemicaly targeted cancer immunotherapy and gene delivery using transmorphic particles[J]. EMBO Mol Med,2022,14(8):e15418. DOI:10.15252/emmm. 202115418.
[73]Frenzel A,Schirrmann T,Hust M. Phage display- derived human antibodies in clinical development and therapy [J]. MAbs,2016,8(7) : 1177-1194.D0I:10.1080/19420862. 2016.1212149.
[74]Petrenko VA. Landscape phage: evolution from phage display to nanobiotechnology[J]. Viruses,2018,10(6):311.DOI: 10.3390/v10060311.
[75]Cesur-Erguin B,Demir-Dora D. Gene therapy in cancer[J]. J Gene Med,2023,25(11) :e3550.D0I:10.1002/jgm.3550.
[76]HajitouA,TrepelM,LilleyCE,etal.Ahybrid vector for ligand-directed tumor targeting and molecular imaging[J]. Cell,2006,125(2) :385-398.D01:10.1016/j.cell.2006. 02. 042.
[77]Dobroff AS,D’Angelo S,Eckhardt BL,etal. Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes[J].Proc Natl Acad SciU SA,2016, 113(45) :12780-12785.DOI:10.1073/pnas. 1615288113.
[78]Chira S,Gulei D,Hajitou A,et al.Restoring the p53‘ guardian’phenotype in p53- deficient tumor cellswith CRISPR/Cas9[J].TrendsBiotechnol,2018,36(7):653- 660.DOI:10.1016/j. tibtech. 2018.01.014.
[79]Sanmukh SG,Dos Santos NJ,Barquilha CN,et al.Bacteriophages M13 and T4 increase the expression of anchoragedependent survival pathway genes and down regulate androgen receptor expression in LNCaP prostate celline [J]. Viruses, 2021,13(9) :1754. DOI:10. 3390/v13091754.
[80]Hodyra-Stefaniak K,MiernikiewP,DrapalaJ,etal. Mammalian host- versus- phage immune response determines phage fate in vivo[J].SciRep,2015,5:14802.DO1:10. 1038/srep14802.
[81]Barrangou R,F(xiàn)remaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science,2007,315(5819):1709-1712.D01:10.1126/science.1138140.
[82]Labrie SJ, Samson JE,Moineau S. Bacteriophage resistance mechanisms[J].Nat Rev Microbiol,2010,8(5):317-327. DOI:10.1038/nrmicro2315.
[83]Federici S,Kredo-Russo S,Valdés-Mas R,etal. Targeted suppression of human IBD-associated gut microbiota commensalsby phage consortia for treatment of intestinal inflammation[J].Cell,2022,185(16):2879-2898.e24.DOI:10. 1016/j. cell. 2022. 07. 003.
[84]Doron S,Melamed S,Ofir G,et al. Systematic discovery of antiphage defense systems in the microbial pangenome [J]. Science,2018,359(6379): eaar4120.D0I: 10.1126/science. aar4120.
(收稿日期:2024-07-18)