中圖分類號:R614 文獻(xiàn)標(biāo)識碼:A 文章編號:1000-503X(2025)03-0441-06
DOI:10.3881/j. issn.1000-503X.16245
Research Advancements in the Role of the Brain Dopaminergic System in General Anesthesia
LUO Wei 1,2 ,YUAN Chengdong1,2,HAO Mengnan1,2, ZHANG Jie’, ZHANG Yi 1,2
(20 1 Department ofAnesthesiology,The Second Afiliated Hospitalof Zunyi Medical University,Zunyi,Guizhou 5630,China 2 KeyLaboratoryofAnesthesiaandOrganProtectionofGuizhouProvince,ZunyiMedical University,Zunyi,Guizhou5630oo,China
Corresponding author:ZHANGYi Tel:15329716676,E-mail:chersishher1998@126.com
ABSTRACT:General anesthesia is widely used in clinical practice,whereas the exact mechanism behind thegeneral anesthetic-induced reversible loss of consciousness remains unclear.Recent studies have revealeda close relationship between the dopaminergic system and general anesthetic-induced lossof consciousness.This system,encompassing dopamine neurons,dopamine receptors,and related neural pathways,regulates functions such as movement,memory,arousal,and cognition.The dopaminergic neurons in the ventral periaqueductal gray and ventral tegmental area,along with D1 receptors,have been shown to facilitate emergence from anesthesia.However,theroleof D2receptors remains controversial.Thisreview summarizes recentadvancementsinthe roleof the dopaminergic system in general anesthesia and theunderlying mechanism,with the aim of clarifying he mechanism of general anesthesia and providing atheoretical basis forpreventing delayed emergence fromanesthesia.
Key words:dopaminergic system;general anesthesia;dopamine neuron;neural pathway;dopamine receptor ActaAcadMedSin,2025,47(3):441-446
全身麻醉是一種由麻醉藥物誘導(dǎo)的可逆性狀態(tài),包括意識消失、順行遺忘、鎮(zhèn)痛和肌肉松弛[1]。全身麻醉導(dǎo)致意識消失的作用機(jī)制經(jīng)歷了非特異性脂質(zhì)雙分子層理論、特異性分子靶點學(xué)說、蛋白質(zhì)靶向?qū)W說及神經(jīng)網(wǎng)絡(luò)等幾個階段[2-4]。目前研究發(fā)現(xiàn)全身麻醉所致的意識消失是多種神經(jīng)系統(tǒng)相互作用和共同調(diào)節(jié)的結(jié)果[5]。多巴胺能系統(tǒng)參與調(diào)控中樞神經(jīng)系統(tǒng)的多種功能,包括運(yùn)動、記憶、覺醒和認(rèn)知等[6]。多巴胺能核團(tuán)如腹側(cè)被蓋區(qū)(ventraltegmentalarea,VTA)、腹側(cè)導(dǎo)水管周圍灰質(zhì)(ventral periaqueductal gray,vPAG)和中縫背核的激活可促進(jìn)覺醒[7],這些核團(tuán)通過多巴胺能神經(jīng)元釋放多巴胺遞質(zhì)到多個腦區(qū)并與多巴胺受體結(jié)合,在全身麻醉過程中發(fā)揮促蘇醒作用。本文系統(tǒng)綜述了多巴胺能系統(tǒng)在全身麻醉中的作用及其分子機(jī)制,為深入探討全身麻醉機(jī)制以及預(yù)防術(shù)后蘇醒延遲提供理論依據(jù)。
1多巴胺能神經(jīng)元與全身麻醉的關(guān)系
1.1 多巴胺能神經(jīng)元
多巴胺能神經(jīng)元僅占腦內(nèi)神經(jīng)元總數(shù)的 1% ,廣泛分布于中腦( 90% )、間腦和嗅球[8]。在哺乳動物的中腦腹側(cè)部分,有兩個富含多巴胺能神經(jīng)元的區(qū)域,分別是黑質(zhì)和 VTA[9] 。盡管這些神經(jīng)元數(shù)量相對較少,但他們在調(diào)節(jié)腦的基本功能方面發(fā)揮著重要作用,主要參與3種類型的生理活動:(1)錐體外系運(yùn)動的協(xié)調(diào),如黑質(zhì)中多巴胺能神經(jīng)元異常會出現(xiàn)典型運(yùn)動特征的帕金森病[0];(2)精神活動的調(diào)節(jié),涉及學(xué)習(xí)、記憶、認(rèn)知、情緒、情感和睡眠-覺醒周期等功能[6,11-12];(3)內(nèi)分泌系統(tǒng)功能的調(diào)節(jié),如結(jié)節(jié)漏斗多巴胺能神經(jīng)元調(diào)節(jié)催乳素分泌、VTA多巴胺能神經(jīng)元調(diào)節(jié)下丘腦-垂體-腎上腺軸[13-14]。
1.2多巴胺能神經(jīng)元在全身麻醉中的作用
多巴胺能神經(jīng)元是神經(jīng)網(wǎng)絡(luò)調(diào)節(jié)的關(guān)鍵組成部分,在認(rèn)知、記憶、睡眠和全身麻醉中發(fā)揮重要作用。中樞神經(jīng)系統(tǒng)有許多促覺醒核團(tuán),其中,vPAG和VTA多巴胺能神經(jīng)元共同參與全身麻醉的蘇醒調(diào)節(jié)。研究發(fā)現(xiàn),采用6-羥基多巴胺選擇性破壞vPAG多巴胺能神經(jīng)元可顯著縮短異氟醚麻醉誘導(dǎo)時間并延長恢復(fù)時間;全腦膜片鉗結(jié)果顯示,異氟醚通過增加自發(fā)性抑制性突觸后電流的頻率和衰減時間,顯著增加vPAG多巴胺能神經(jīng)元突觸前抑制性神經(jīng)遞質(zhì) γ? 氨基丁酸( γ -aminobutyricacid,GABA)的釋放,延長異氟烷麻醉恢復(fù)時間,提示vPAG多巴胺能神經(jīng)元可促進(jìn)全身麻醉的恢復(fù)[15]。丙泊酚麻醉可損傷vPAG多巴胺能神經(jīng)元,腦電圖顯示8波增高,小鼠翻正反射消失時間縮短而恢復(fù)時間延長;機(jī)制研究表明,丙泊酚可促進(jìn)突觸前GABA釋放,抑制突觸前谷氨酸釋放,增強(qiáng)突觸后GABAA型受體的敏感性,最終抑制vPAG多巴胺能神經(jīng)元的活性,從而影響意識狀態(tài)[16」。
VTA多巴胺能神經(jīng)元在全身麻醉藥物誘導(dǎo)的意識狀態(tài)調(diào)控中發(fā)揮關(guān)鍵作用。在異氟烷或丙泊酚全身麻醉期間,電刺激VTA可釋放多巴胺并促進(jìn)全身麻醉蘇醒[17]。采用光遺傳學(xué)技術(shù)激活VTA多巴胺能神經(jīng)元可產(chǎn)生喚醒作用,能在持續(xù)穩(wěn)定的異氟烷麻醉狀態(tài)下恢復(fù)意識行為[18]。右美托咪定誘導(dǎo)成年小鼠VTA多巴胺能神經(jīng)元的激活,通過遞質(zhì)探針技術(shù)檢測發(fā)現(xiàn)前腦中的多巴胺濃度升高,全腦膜片鉗和免疫組織化學(xué)染色結(jié)果顯示右美托咪定灌注后VTA多巴胺能神經(jīng)元放電頻率明顯增加,說明VTA多巴胺能神經(jīng)元的激活有助于快速喚醒[9]。雙側(cè)VTA多巴胺能神經(jīng)元破壞可顯著延長丙泊酚麻醉的蘇醒時間,但其誘導(dǎo)時間和50% 有效劑量未發(fā)生明顯改變;而異氟烷和氯胺酮的麻醉效應(yīng)不受VTA損傷的影響,提示VTA多巴胺能神經(jīng)元可能參與丙泊酚麻醉蘇醒過程[20]。離體膜片鉗實驗發(fā)現(xiàn),體外灌注食欲素-A可直接提高異氟烷麻醉時VTA多巴胺能神經(jīng)元的動作電位頻率;在大鼠VTA微量注射食欲素-A可降低異氟烷麻醉維持期間的皮層腦電波爆發(fā)抑制率,表明食欲素能神經(jīng)元可投射至VTA多巴胺能神經(jīng)元并增強(qiáng)其活性,進(jìn)而促進(jìn)異氟烷麻醉后的蘇醒過程[21]。vPAG與VTA多巴胺能神經(jīng)元可促進(jìn)全身麻醉的蘇醒,但不同核團(tuán)中的多巴胺能神經(jīng)元在全身麻醉所致意識改變中的具體作用機(jī)制仍需更多的研究來闡明。
2多巴胺受體與全身麻醉的關(guān)系
2.1 多巴胺受體
多巴胺受體是G蛋白偶聯(lián)受體,具有典型的7個跨膜 ∝ 螺旋結(jié)構(gòu),通過G蛋白依賴性和非依賴性機(jī)制發(fā)出信號,在中樞神經(jīng)系統(tǒng)中廣泛表達(dá),并參與調(diào)節(jié)運(yùn)動、覺醒以及獎賞等多種功能[22]。根據(jù)其與不同配體的結(jié)合特性、藥理學(xué)性質(zhì)以及信號傳導(dǎo)途徑,多巴胺受體可分為D1類和D2類受體。多巴胺D1類受體包含D1和D5受體,在紋狀體、殼核、伏隔核、網(wǎng)狀核和嗅球中分布密度較高。D1類受體通過結(jié)合G蛋白激活腺苷酸環(huán)化酶(adenylatecyclase,AC)活性,并產(chǎn)生環(huán)磷酸腺苷酸(cyclic adenosine monophosphate,cAMP)作為次級信使[23]。此外,D1類受體能夠通過激活磷脂酶C誘導(dǎo)細(xì)胞內(nèi)鈣離子釋放實現(xiàn)信號轉(zhuǎn)導(dǎo)[24]。多巴胺 D2 類受體包含D2、D3 和D4受體,主要在腦內(nèi)紋狀體、蒼白球、伏隔核核心、杏仁核、大腦皮層、海馬體和垂體中表達(dá)。D2類受體的激活抑制AC的活性,同時抑制cAMP和蛋白激酶A(proteinki-nase A,PKA)水平[23]??傊?,多巴胺受體的功能調(diào)控主要依賴于經(jīng)典的AC/cAMP/PKA信號通路,但也受到第二信使的級聯(lián)反應(yīng)、突觸后膜離子通道和蛋白質(zhì)表達(dá)譜的影響[23,25],進(jìn)而在調(diào)控獎賞系統(tǒng)、運(yùn)動活動、學(xué)習(xí)和記憶中起著重要作用。
2.2多巴胺受體在全身麻醉中的作用
近年來,多巴胺受體在全身麻醉致意識可逆性消失中的作用機(jī)制被進(jìn)一步發(fā)現(xiàn)。研究表明,在全身麻醉過程中多巴胺D1類和D2類受體發(fā)揮不同的效應(yīng)。D1類受體在全身麻醉中通常與興奮性神經(jīng)傳導(dǎo)相關(guān),主要作用是促進(jìn)蘇醒。研究表明,激活D1受體可縮短異氟烷麻醉的蘇醒時間,加快異氟烷麻醉的復(fù)蘇過程[26]。向伏隔核殼中微量注射D1受體激動劑可加速小鼠從異氟烷麻醉中蘇醒,而注射D1受體拮抗劑可延遲蘇醒[27]。同樣腹腔注射和局部微量注射多巴胺D1受體激動劑(Chloro-APB)至前額葉皮質(zhì)可促進(jìn)七氟烷麻醉下的大鼠蘇醒,而注射多巴胺D1受體拮抗劑則可加深麻醉[28]。采用光遺傳學(xué)技術(shù)激活VTA多巴胺能神經(jīng)元可縮短異氟烷的蘇醒時間,然而,對使用D1受體拮抗劑處理的 ChR2+ 小鼠進(jìn)行光激活時,蘇醒反應(yīng)明顯受到抑制[18]。此外,多巴胺D1類受體在伏隔核和紋狀體多棘神經(jīng)元中發(fā)揮著至關(guān)重要的調(diào)控作用。丙泊酚麻醉可特異性增強(qiáng)該區(qū)域D1受體介導(dǎo)的抑制性突觸傳遞,表現(xiàn)為微型抑制性突觸后電流的頻率增加及衰減時間延長,提示D1受體活化對丙泊酚誘導(dǎo)的意識消失后的恢復(fù)非常關(guān)鍵[29]。通過光遺傳學(xué)激活伏隔核中D1受體神經(jīng)元可促進(jìn)七氟烷麻醉期間的皮層激活及行為恢復(fù),表明伏隔核中的D1受體型神經(jīng)元可促進(jìn)全身麻醉相關(guān)的意識恢復(fù)[30]。D-苯丙胺通過促進(jìn)多巴胺釋放和激活大腦中的D1、D5受體來逆轉(zhuǎn)右美托咪定誘導(dǎo)的意識消失[3I]。近年來,也有研究發(fā)現(xiàn)多巴胺能系統(tǒng)功能會隨著多個大腦區(qū)域的衰老而下降,衰老可能通過下調(diào)伏隔核外殼中D1受體的表達(dá)來減弱D1受體對蘇醒的調(diào)節(jié)能力[27]。
關(guān)于D2類受體在全身麻醉中的調(diào)控作用尚存爭議。研究發(fā)現(xiàn),外周注射D2受體拮抗劑氟哌利多可增強(qiáng) ∝ 和8-0波段的雙相干性,降低 α∝- 雙相干峰頻率,通過GABA介導(dǎo)的振蕩網(wǎng)絡(luò)增強(qiáng)七氟烷麻醉對腦電圖的調(diào)控效應(yīng),表明D2受體拮抗劑可增強(qiáng)七氟烷在人體中的麻醉深度[32]。然而,在小鼠模型中,七氟烷麻醉被發(fā)現(xiàn)能夠抑制伏隔核D2受體陽性神經(jīng)元的活性,提示D2受體可促進(jìn)麻醉誘導(dǎo)的意識消失的過程[33]。另有研究證據(jù)顯示嗅結(jié)節(jié)在異氟烷麻醉蘇醒階段呈現(xiàn)特異性激活,局部注射多巴胺D1受體激動劑和D2受體激動劑進(jìn)人嗅結(jié)節(jié)可加速異氟烷麻醉后的蘇醒,而D1受體或D2受體拮抗劑則顯著延遲蘇醒[34]。在臨床實踐中,為達(dá)到理想的麻醉效果通常需要聯(lián)合應(yīng)用鎮(zhèn)靜藥、鎮(zhèn)痛藥和肌松劑等藥物,這些復(fù)雜的藥物相互作用與D2受體相關(guān)的神經(jīng)調(diào)節(jié)機(jī)制共同影響意識恢復(fù)過程,而嚴(yán)格控制變量的動物實驗?zāi)芨苯咏沂酒叻閷2受體神經(jīng)環(huán)路的特異性抑制作用。此外,臨床麻醉蘇醒評估一般采用多維度指標(biāo),例如自主呼吸恢復(fù)、對語言指令有正確反應(yīng)、自主睜眼等綜合表現(xiàn)來判斷蘇醒程度和狀態(tài)[35];而動物實驗多是通過監(jiān)測相對單一的行為學(xué)指標(biāo)(翻正反射消失等)或腦電圖等手段來判定麻醉深度及意識狀態(tài)變化。這種判定標(biāo)準(zhǔn)的差異可能導(dǎo)致D2受體作用研究結(jié)果的偏差,實際上小鼠意識狀態(tài)變化可能比現(xiàn)有指標(biāo)反映的神經(jīng)機(jī)制更為復(fù)雜??傊?,多巴胺受體在全身麻醉中的具體作用機(jī)制仍需要大量研究來進(jìn)一步闡明。
3多巴胺能神經(jīng)通路與全身麻醉的關(guān)系
3.1多巴胺能神經(jīng)通路
在哺乳動物中樞神經(jīng)系統(tǒng)中存在4種主要的多巴胺能神經(jīng)通路:(1)黑質(zhì)-紋狀體通路是大腦基底核中的一條主要通路,負(fù)責(zé)調(diào)控運(yùn)動控制、動作學(xué)習(xí)和運(yùn)動執(zhí)行[36];(2)中腦邊緣-皮質(zhì)通路是神經(jīng)系統(tǒng)中的一個重要連接路徑,負(fù)責(zé)認(rèn)知功能以及注意力等方面的神經(jīng)調(diào)控[37];(3)血液中的催乳素水平由中樞神經(jīng)系統(tǒng)通過結(jié)節(jié)-漏斗通路的多巴胺能神經(jīng)元直接調(diào)節(jié),并對垂體中的泌乳素細(xì)胞產(chǎn)生抑制作用[38];(4)中腦-邊緣系統(tǒng)通路涉及到多個腦區(qū)域,該通路在情緒調(diào)節(jié)、應(yīng)激反應(yīng)、自主神經(jīng)系統(tǒng)調(diào)節(jié)以及疼痛感知等方面起著重要作用[39]。近年研究發(fā)現(xiàn)下丘腦背側(cè)A11區(qū)作為多巴胺能系統(tǒng)的特殊組成部分,其異常激活與偏頭痛病理機(jī)制密切相關(guān)。盡管該核團(tuán)未被納入經(jīng)典通路體系,但其獨特的解剖連接方式提示其可能在疼痛-覺醒調(diào)控中具有特殊功能定位[40]。
3.2多巴胺能神經(jīng)通路在全身麻醉中的作用
在腦內(nèi)的多巴胺能神經(jīng)通路中,多巴胺是一種重要的神經(jīng)遞質(zhì),全身麻醉藥物可通過作用于多巴胺能神經(jīng)遞質(zhì)進(jìn)而調(diào)節(jié)多巴胺能神經(jīng)通路,從而實現(xiàn)對患者意識狀態(tài)的調(diào)控。研究發(fā)現(xiàn),采用鈣信號、化學(xué)遺傳學(xué)及光遺傳學(xué)方法能夠激活VTA-伏隔核多巴胺能神經(jīng)通路,通過行為學(xué)和腦電圖等方法證實該通路可促進(jìn)小鼠在七氟烷麻醉下的蘇醒[41]。敲除VTA區(qū)域的多巴胺轉(zhuǎn)運(yùn)蛋白后,大鼠在丙泊酚麻醉期間皮層腦電圖顯示 β 波頻率增加,0波頻率降低,并且前額葉皮層中 c -Fos蛋白表達(dá)增加;在麻醉恢復(fù)期間 ∝ 波和β 波頻率均有所增加,這些結(jié)果表明VTA-前額葉皮層通路中的多巴胺轉(zhuǎn)運(yùn)蛋白參與了丙泊酚麻醉下大鼠的蘇醒過程[42]。Cao 等[43]發(fā)現(xiàn)激活VTA至前邊緣皮層的多巴胺上行通路具有延長麻醉誘導(dǎo)期、縮短恢復(fù)期的雙相調(diào)節(jié)特性。同時七氟烷麻醉的意識調(diào)節(jié)與VTA至前邊緣皮層的多巴胺能投射有關(guān),化學(xué)遺傳學(xué)和光遺傳學(xué)實驗表明,VTA-前邊緣皮層多巴胺能通路可延長麻醉誘導(dǎo)時間并縮短恢復(fù)時間[28]。
近年來研究發(fā)現(xiàn)伏隔核可投射至腹側(cè)蒼白球,在七氟烷麻醉中發(fā)揮重要作用。伏隔核中 95% 神經(jīng)元是中棘神經(jīng)元,根據(jù)多巴胺受體表達(dá)的不同,可進(jìn)一步分為多巴胺D1和D2受體陽性神經(jīng)元[44]。采用遞質(zhì)探針技術(shù)對GABA神經(jīng)遞質(zhì)進(jìn)行實時監(jiān)測,結(jié)果發(fā)現(xiàn)在伏隔核-腹側(cè)蒼白球通路中伏隔核多巴胺D1受體陽性神經(jīng)元可調(diào)節(jié)其下游腹側(cè)蒼白球中GABA的釋放;同時,在小鼠翻正反射恢復(fù)期間,伏隔核多巴胺神經(jīng)遞質(zhì)的熒光信號顯著增強(qiáng),這表明麻醉期伏隔核細(xì)胞外多巴胺遞質(zhì)數(shù)量明顯低于清醒期,因此,伏隔核-腹側(cè)蒼白球通路可促進(jìn)七氟烷麻醉狀態(tài)下的意識恢復(fù)[45]。另有研究顯示,光遺傳學(xué)激活伏隔核-腹側(cè)蒼白球通路中D2受體陽性神經(jīng)元可縮短七氟烷麻醉的誘導(dǎo)時間,但對麻醉蘇醒期無影響,這可能與伏隔核D2受體陽性神經(jīng)元通過其他投射途徑調(diào)節(jié)全身麻醉有關(guān),具體機(jī)制仍需要進(jìn)一步探索[33]。此外,中樞神經(jīng)系統(tǒng)中存在許多促覺醒核團(tuán),例如基底前腦、藍(lán)斑和腹外側(cè)視前區(qū)等,vPAG多巴胺能神經(jīng)元可通過與這些核團(tuán)的投射來調(diào)節(jié)意識狀態(tài)[46-47]??傊?,多巴胺能神經(jīng)通路在全身麻醉的調(diào)控中發(fā)揮重要作用,然而,除已知的經(jīng)典通路外,是否還存在其他多巴胺能神經(jīng)投射參與麻醉意識的調(diào)節(jié)目前仍不清楚,需要更多深入的研究來進(jìn)一步探討。
4總結(jié)與展望
隨著神經(jīng)科學(xué)技術(shù)的不斷發(fā)展和創(chuàng)新,研究人員對多巴胺能系統(tǒng)的研究日益深入,這為全面探討全身麻醉導(dǎo)致意識消失的機(jī)制提供了可能性。本文系統(tǒng)梳理了腦內(nèi)多巴胺能系統(tǒng)在全身麻醉過程中的效用及機(jī)制,從神經(jīng)元、受體以及相關(guān)神經(jīng)通路層面深入分析,為闡明全身麻醉藥物調(diào)控意識改變提供理論依據(jù)。未來研究可進(jìn)一步深人探究在全身麻醉期間如何調(diào)控神經(jīng)遞質(zhì)和多巴胺受體的活性,明確他們參與意識轉(zhuǎn)變的具體作用方式。這將有助于優(yōu)化麻醉復(fù)蘇效果,為開發(fā)新型全身麻醉藥物提供關(guān)鍵靶點,同時也為與多巴胺系統(tǒng)相關(guān)疾病的診斷和治療開辟新的途徑。
利益沖突所有作者聲明無利益沖突
作者貢獻(xiàn)聲明羅薇:文獻(xiàn)檢索與文章撰寫;袁城棟、郝孟楠、張潔:論文修訂和質(zhì)量控制;張益:研究思路的提出、同意對研究工作的誠信負(fù)責(zé)
參考文獻(xiàn)
[1]Moody OA,Zhang ER,Vincent KF,etal.The neural circuits underlying general anesthesia and sleep[J].Anesth Analg,2021,132(5):1254-1264.D0I:10.1213/ANE. 0000000000005361.
[2]Alkire MT,Hudetz AG,Tononi G. Consciousness and anesthesia[J].Science,2008,322(5903):876-880.DOI:10. 1126/science.1149213.
[3]Hu JJ,Liu Y,Yao H,et al.Emergence of consciousness fromanesthesia through ubiquitin degradation of KCC2 in the ventral posteromedial nucleus of the thalamus[J].Nat Neurosci,2023,26(5) : 751-764. D0I:10.1038/s41593-023- 01290-y.
[4]Franks NP.General anaesthesia:from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci,2008,9(5) :370-386.D01:10.1038/nrn2372.
[5]Hemmings HJ,Riegelhaupt PM,Kelz MB,et al. Towards a comprehensive understanding of anesthetic mechanisms ofaction:a decade of discovery [J].Trends Pharmacol Sci, 2019,40(7) :464-481. DOI:10.1016/j. tips.2019. 05.001.
[6]Engelhard B,F(xiàn)inkelstein J,Cox J,et al.Specialized coding of sensory,motor and cognitive variablesin VTA dopamine neurons[J].Nature,2019,570(7762):509-513.DOI:10. 1038/s41586-019-1261-9.
[7]Wu M, Zhang X,F(xiàn)eng S,et al. Dopamine pathways mediating affective state transitions after sleep loss [J]. Neuron, 2024,112(1) :141-154. DOI:10.1016/j. neuron.2023.10.002.
[8]Chinta SJ,Andersen JK.Dopaminergic neurons[J].Int J BiochemCell Biol,2005,37(5):942-946.DOI:10.1016/ j.biocel. 2004.09.009.
[9]Islam K,Meli N,Blaess S.The development of the mesoprefrontal dopaminergic system in health and disease[J].Front Neural Circuits,2021,15: 746582.DOI:10.3389/fncir.2021. 746582.
[10]Watanabe H,Dijkstra JM,Nagatsu T.Parkinson’s disease: cells succumbing to lifelong dopamine-related oxidative stress and other bioenergetic challenges[J]. IntJMol Sci,2024, 25(4):2009. DOI:10.3390/ijms25042009.
[11]Gupta S,Bharatha A,Cohall D,et al. Aerobic exercise and endocannabinoids:a narrative review of stress regulation and brain reward systems[J]. Cureus,2024,16(3): e55468. DOI:10. 7759/cureus. 55468.
[12]Tomaso CC,Johnson AB,Nelson TD.The efect of sleep deprivation and restriction on mood,emotion,and emotion regulation:three meta- analyses in one[J]. Sleep,2021, 44(6) :zsaa289.DOI:10.1093/sleep/zsaa289.
[13]Grattan DR. 6O Yearsof neuroendocrinology: the hypothalamo-prolactin axis[J].JEndocrinol,2015,226(2): T101-T122. DOI:10.1530/JOE-15-0213.
[14]DiT,Wang Y,Zhang Y,et al.Dopaminergic afferents from midbrain to dorsolateral bed nucleusof stria terminalis inhibit release and expression of corticotropin-releasing hormonein paraventricular nucleus[J].J Neurochem,2020,154(2): 218-234.DOI:10.1111/jnc.14992.
[15]Liu C, Zhou X,ZhuQ,et al. Dopamine neurons in the ventral periaqueductal gray modulate isoflurane anesthesia in rats [J]. CNS Neurosci Ther,2020,26(11):1121-1133.DOI: 10. 1111/cns. 13447.
[16]Li J,Yu T,ShiF,et al.Involvement of ventral periaqueductal gray dopaminergic neurons in propofol anesthesia[J]. Neurochem Res,2018,43(4): 838-847.D0I:10.1007/ s11064-018-2486-y.
[17]Solt K,Van Dort CJ,Chemali JJ,et al. Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia[J].Anesthesiology,2014,121(2):311- 319.DOI:10.1097/ALN.0000000000000117.
[18]Taylor NE,Van Dort CJ,Kenny JD,et al. Optogenetic activation of dopamine neurons in the ventral tegmental area inducesreanimation from general anesthesia[J].Proc Natl Acad SciU SA,2016,113(45):12826-12831.DOI: 10.1073/pnas. 1614340113.
[19]QiuG,WuY,Yang Z,etal.Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice [J].Anesthesiology,2020, 133(2) :377-392. DOI:10.1097/ALN. 0000000000003347.
[20]Zhou X,Wang Y, Zhang C, et al. The role of dopaminergic VTA neurons in general anesthesia[J].PLoS One,2015, 10(9):e0138187. DOI:10.1371/journal. pone. 0138187.
[21]Li J,LiH,Wang D,et al. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats [J].Br JAnaesth,2019, 123(4):497-505. D0I:10. 1016/j. bja.2019.07. 005.
[22]Beaulieu JM,Gainetdinov RR.The physiology, signaling, and pharmacology of dopamine receptors [J]. Pharmacol Rev, 2011,63(1):182-217. D0I:10.1124/pr.110.002642.
[23]Mishra A,Singh S,Shukla S.Physiological and functional basis of dopamine receptors and their role in neurogenesis: possible implication for Parkinson’s disease[J].JExp Neurosci,2018,12:2083187275. DOI:10.1177/1179069518779829.
[24]Dziedzicka-Wasylewska M,Polit A,Blasiak E,et al. G protein-coupled receptor dimerization-What next [J].Int J Mol Sci,2024,25(6) :3089.DOI:10.3390/ijms25063089.
[25]Lu Y,Hatzipantelis CJ,Langmead CJ,et al.Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia[J].BrJPharmacol,2024,181(14):2095- 2113.DOI:10.1111/bph.16221.
[26]Taylor NE,Chemali JJ,Brown EN,et al.Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia[J].Anesthesiology,2013,118(1):30-39. DOI: 10.1097/ALN. 0b013e318278c896.
[27]Zhang Y,Gui H,HuL,etal. Dopamine Dl receptor in the NAc shell is involved in delayed emergence from isoflurane anesthesia inaged mice[J].Brain Behav,2O21,11(1): e01913.DOI:10.1002/brb3.1913.
[28]Song Y,Chu R,Cao F,et al. Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia [J]. Neurosci Bull,2022, 38(4) :417-428.D0I:10.1007/s12264-021-00809-2.
[29]ZhangY,Gui H,Duan Z,et al. Dopamine D1 receptor in the nucleus accumbens modulates the emergence from propofol anesthesia in rat[J].Neurochem Res,2021,46(6):1435- 1446.DOI:10.1007/s11064-021-03284-3.
[30]Bao WW,Xu W,Pan GJ,et al.Nucleus accumbens neurons expressing dopamine Dl receptors modulate states of consciousness in sevoflurane anesthesia [J]. Curr Biol,2021, 31(9):1893-1902.DOI:10.1016/j. cub.2021.02. 011.
[31]Kato R,Zhang ER,Mallari OG,et al. D-amphetamine rapidly reverses dexmedetomidine-induced unconsciousness in rats[J].Front Pharmacol,2021,12:668285.DOI:10.3389/ fphar. 2021. 668285.
[32]Araki R,Hayashi K, Sawa T. Dopamine D2-receptor antagonist droperidol deepens sevoflurane anesthesia [J].Anesthesiology,2018,128(4):754-763.DOI:10.1097/ALN.00000 00000002046
[33]Niu L,Hao M,Wang Y,et al Dopamine D2-receptor neurons in nucleus accumbens regulate sevoflurane anesthesia in mice[J].Front Mol Neurosci,2023,16:1287160.DOI: 10.3389/fnmol.2023.1287160.
[34] YangB,AoY,LiuY,etal.Activationof dopaminesignals intheolfactory tubercle facilitates emergence from isoflurane anesthesia in mice[J].Neurochem Res,2021,46(6): 1487-1501. DOI:10.1007/s11064-021-03291-4.
[35] RogobeteAF,Sandesc D.General anesthesia asa multimodal individualized clinical concept[J].Medicina(Kaunas), 2022,58(7) :956.DOI:10.3390/medicina58070956.
[36] Dovonou A,Bolduc C,Soto LV,et al.Animal modelsof Parkinson’s disease:bridging the gap between disease hallmarksand research questions [J].Transl Neurodegener, 2023,12(1) :36.D01:10.1186/s40035-023-00368-8.
[37] Noursadeghi E,Haghparast A.Modulatoryrole of intra-accumbal dopamine receptors in the restraint stress-induced antinociceptive responses[J].Brain Res Bull,2O23,195: 172-179. DOI:10. 1016/j. brainresbull.2023.03.003.
[38] Wang J,Miao X,Sun Y,et al. Dopaminergic system in promoting recovery from general anesthesia [J].Brain Sci, 2023,13(4) :538.DOI:10.3390/brainsci13040538.
[39] Shu SY,Bao XM,Ning Q,et al.New component of the limbicsystem:marginal division of the neostriatum that links thelimbic system to the basal nucleus of meynert[J].JNeurosciRes,2003,71(5) :751-757.D0I:10.1002/jnr.10518.
[40] LiC,LiY,ZhangW,etal.Dopaminergic projections from thehypothalamic A11 nucleus to the spinal trigeminal nucleus areinvolved in bidirectional migraine modulation[J].IntJMol Sci,2023,24(23):16876.DOI:10.3390/ijms242316876.
[41] Gui H,Liu C,He H,et al.Dopaminergic projections from theventral tegmental area to thenucleusaccumbensmodulate sevoflurane anesthesia in mice [J].Front Cell Neurosci, 2021,15:671473. DOI:10.3389/fncel.2021. 671473.
[42]Guo J,Xu K,Yin JW,et al.Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesiainrats[J].JChemNeuroanat,2022,121:102083. DOI:10.1016/j. jchemneu. 2022. 102083.
[43] CaoF,Guo Y,GuoS,etal.Prelimbiccorticalpyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia[J].CNS Neurosci Ther,2024, 30(3) :e14675.D0I:10. 1111/cns.14675.
[44]Zhu Y,Wang K,Ma T,et al. Nucleus accumbens D1/D2 circuits control opioid withdrawal symptoms in mice [J].J Clin Invest,2023,133(18):e163266.DOI:10.1172/JCI163266.
[45]ZhangJ,PengY,Liu C,et al.Dopamine D1-receptor-expressing pathway from the nucleus accumbens to ventral pallidum-mediated sevofluraneanesthesia in mice[J].CNSNeurosci Ther,2023,29(11):3364-3377.D01:10.1111/cns. 14267.
[46]Wang D,Guo Y,Li H,et al. Selective optogenetic activationof orexinergic terminalsinthe basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats[J].BrJAnaesth,2021,126(1):279-292.DOI: 10.1016/j. bja. 2020. 09. 037.
[47]Arrigoni E,F(xiàn)uller PM. The sleep-promoting ventrolateral preoptic nucleus:what have we learned over the past 25 years [J]. IntJMol Sci,2022,23(6):2905.DOI:10.3390/ijms23062905.
(收稿日期:2024-06-27)
中國醫(yī)學(xué)科學(xué)院學(xué)報2025年3期