[摘要] 腦卒中具有高發(fā)病率、高致殘率、高復(fù)發(fā)率、高經(jīng)濟(jì)負(fù)擔(dān)、高死亡率五大特點(diǎn),是嚴(yán)重威脅人類健康的神經(jīng)系統(tǒng)疾病。缺血性腦卒中是最主要的腦卒中形式,約占腦卒中患者總數(shù)的85%。受損腦組織可釋放損傷相關(guān)分子模式,激活免疫炎癥反應(yīng)。白細(xì)胞介素-1家族是急性和慢性炎癥的主要調(diào)節(jié)因子,處于炎癥級(jí)聯(lián)反應(yīng)的最前端,這些分子在促進(jìn)和抑制炎癥之間保持微妙平衡,這種平衡對(duì)決定缺血后患者恢復(fù)過程及長(zhǎng)期預(yù)后至關(guān)重要。本綜述闡述白細(xì)胞介素-1家族在缺血性腦卒中中的作用機(jī)制、相關(guān)研究現(xiàn)狀及潛在治療靶點(diǎn),旨在為診斷和治療缺血性腦卒中開辟新的途徑。
[關(guān)鍵詞] 缺血性腦卒中;白細(xì)胞介素-1家族;炎癥反應(yīng)
[中圖分類號(hào)] R743.32" """"[文獻(xiàn)標(biāo)識(shí)碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.17.027
腦卒中是全球第2大致殘和死亡原因,具有高發(fā)病率、高致殘率、高復(fù)發(fā)率、高死亡率和高經(jīng)濟(jì)負(fù)擔(dān)五大特點(diǎn)[1]。腦卒中可分為缺血性腦卒中和出血性腦卒中。缺血性腦卒中是一種以血栓或栓子阻塞動(dòng)脈進(jìn)而導(dǎo)致腦血流中斷為特征的疾病,可導(dǎo)致腦組織損傷[2-3]。缺血性腦卒中作為最主要的腦卒中形式,約占腦卒中患者總數(shù)的85%,給患者生活質(zhì)量造成巨大威脅[4-5]。腦組織缺血缺氧可引發(fā)一系列有害生化事件,如氧化應(yīng)激反應(yīng)、興奮性毒性和細(xì)胞死亡,這些過程進(jìn)展最終導(dǎo)致不可逆腦損傷區(qū)域的形成,即腦梗死區(qū)。受損腦組織可釋放損傷相關(guān)分子模式激活大腦免疫細(xì)胞,特別是小膠質(zhì)細(xì)胞,一旦被激活,便可促使炎癥細(xì)胞因子和趨化因子的產(chǎn)生,進(jìn)而啟動(dòng)一系列涉及先天和適應(yīng)性免疫系統(tǒng)的炎癥級(jí)聯(lián)反應(yīng)。血-腦脊液屏障的完整性最初受到腦卒中本身機(jī)械作用的損害。一系列促炎性細(xì)胞因子、趨化因子和基質(zhì)金屬蛋白酶的分泌及細(xì)胞黏附分子表達(dá)水平的上調(diào)可進(jìn)一步損害血-腦脊液屏障的完整性。這種破壞使外周免疫細(xì)胞滲透到腦組織中,進(jìn)一步放大炎癥反應(yīng)。白細(xì)胞介素(interleukin,IL)-1家族成員處于炎癥級(jí)聯(lián)反應(yīng)的最前端。這些分子在促進(jìn)和抑制炎癥之間保持微妙平衡,這種平衡對(duì)決定缺血后患者的恢復(fù)過程及長(zhǎng)期預(yù)后發(fā)揮重要作用[6-7]。本綜述闡述IL-1家族在缺血性腦卒中中的作用機(jī)制及潛在治療靶點(diǎn)研究進(jìn)展,旨在為缺血性腦卒中的診斷和治療開辟新的途徑。
1" IL-1家族概述
IL-1家族是一組多樣化的細(xì)胞因子,包括促炎和抗炎成員,是炎癥反應(yīng)過程的重要介質(zhì)。截至目前,已知IL-1家族成員包括IL-1α、IL-1β、IL-18、IL-33、IL-36同工型、IL-37和IL-38;另外,還包括IL-1受體拮抗劑和IL-36受體拮抗劑(IL-36 receptor antagonist,IL-36Ra)[8]。IL-1家族還在不斷擴(kuò)大。IL-1α可直接發(fā)揮活性作用,其他IL-1家族成員均需先表達(dá)成前體,再經(jīng)胱天蛋白酶-1水解加工成活性分子,才能發(fā)揮相應(yīng)的生物學(xué)效用。這些細(xì)胞因子介導(dǎo)的免疫反應(yīng)可引發(fā)或加劇疾病過程,包括哮喘、類風(fēng)濕關(guān)節(jié)炎、動(dòng)脈粥樣硬化、炎癥性腸病、銀屑病、腦卒中和2型糖尿病。
2" IL-1家族與缺血性腦卒中
2.1" IL-1與缺血性腦卒中
IL-1包括IL-1α和IL-1β,是由活化的小膠質(zhì)細(xì)胞產(chǎn)生的促炎性細(xì)胞因子。IL-1α和IL-1β的補(bǔ)充來源并不相同。IL-1α由積聚在損傷部位的血小板補(bǔ)充,IL-1β則由響應(yīng)炎癥信號(hào)遷移到缺血區(qū)域的白細(xì)胞補(bǔ)充[9]。缺血性腦損傷后,IL-1α在大腦中的表達(dá)先于IL-1β,且主要局限于局灶性神經(jīng)元損傷和血-腦脊液屏障附近,證實(shí)IL-1α作為炎癥早期介質(zhì)發(fā)揮作用[10]。相比之下,IL-1β水平的上升則較緩慢,其在缺血性腦卒中發(fā)病數(shù)小時(shí)內(nèi)增加,并可持續(xù)數(shù)天,導(dǎo)致急性和慢性炎癥反應(yīng)[11-12]。IL-1α和IL-1β主要通過與其共同受體白細(xì)胞介素-1受體1(interleukin-1 receptor 1,IL-1R1)結(jié)合發(fā)揮生物學(xué)作用[13-14]。
腦水腫可影響腦卒中死亡率,10%~78%的缺血性腦卒中患者可發(fā)生腦水腫。動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn),腦卒中后星形膠質(zhì)細(xì)胞中水通道蛋白4(aquaporin 4,AQP4)表達(dá)增加,而其缺失則可顯著減少腦腫脹。Murata等[15]研究發(fā)現(xiàn)IL-1α在調(diào)節(jié)星形膠質(zhì)細(xì)胞的反應(yīng)性及促進(jìn)AQP4表達(dá)中起重要作用,與癥狀較輕動(dòng)物相比,癥狀較嚴(yán)重動(dòng)物缺血核心的AQP4和IL-1α水平均顯著升高。調(diào)節(jié)IL-1α水平可改善腦水腫情況。血管生成是腦卒中后腦損傷修復(fù)的重要組成部分,有助于恢復(fù)缺血大腦區(qū)域血流。Salmeron等[16]研究發(fā)現(xiàn),缺血性腦卒中后大腦中的IL-1α水平長(zhǎng)期升高;且IL-1α可強(qiáng)化血管生成的關(guān)鍵階段,并以IL-1R1依賴性方式誘導(dǎo)重要促血管生成介質(zhì)趨化因子配體1和IL-6的生成。Salmeron等[17]研究發(fā)現(xiàn)缺血性腦卒中后經(jīng)靜脈給予IL-1α對(duì)神經(jīng)有保護(hù)作用,可顯著縮小缺血性梗死灶體積,減少凋亡細(xì)胞數(shù)量,降低神經(jīng)炎性激活水平。IL-1β在缺血性腦卒中后腦損傷進(jìn)展中起重要作用。Murray等[18]研究證實(shí)IL-1β水平升高和腦梗死面積增大相關(guān)。Catan?等[19]發(fā)現(xiàn)IL-1β水平與缺血性腦卒中嚴(yán)重程度呈正相關(guān)。
2.2" IL-18與缺血性腦卒中
IL-18是一種促炎性細(xì)胞因子,由人IL-18基因編碼,是大腦的一線免疫防御,主要由巨噬細(xì)胞、小膠質(zhì)細(xì)胞、外周血單核細(xì)胞和神經(jīng)元分泌[20]。IL-18可刺激包括CD4+T細(xì)胞、CD8+T細(xì)胞、巨噬細(xì)胞和自然殺傷細(xì)胞在內(nèi)的細(xì)胞合成γ干擾素(interferon-γ,IFN-γ)。IL-18通過結(jié)合IL-18 R α鏈,并隨后募集IL-18受體β鏈,形成IL-18/IL-18 Rα/IL-18 Rβ復(fù)合物,最終激活下游絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和核因子κB(nuclear factor-κB,NF-κB)信號(hào)通路[21]。單獨(dú)IL-18并不能誘導(dǎo)IFN-γ的產(chǎn)生,IL-18的促炎作用在很大程度上依賴于其他細(xì)胞因子的協(xié)同作用,特別是IL-12和IL-15。這些細(xì)胞因子可促進(jìn)IL-18 R在細(xì)胞表面的表達(dá),增強(qiáng)細(xì)胞對(duì)IL-18的反應(yīng)性。Martirosian等[22]研究顯示,血清中以IL-18為中心的炎癥生物標(biāo)志物水平升高與腦卒中、認(rèn)知障礙風(fēng)險(xiǎn)增加相關(guān)。Hao等[23]研究證實(shí),腦卒中患者的IL-18水平高于對(duì)照組,且IL-18水平隨腦卒中嚴(yán)重程度的增加而升高。綜上,IL-18水平升高有助于監(jiān)測(cè)缺血性腦卒中的發(fā)展并評(píng)估疾病的嚴(yán)重程度。
2.3" IL-33與缺血性腦卒中
在缺血性腦損傷反應(yīng)中,受損的中樞神經(jīng)系統(tǒng)細(xì)胞,特別是少突膠質(zhì)細(xì)胞迅速釋放IL-33,IL-33水平升高可反映腦損傷和血–腦脊液屏障的破壞程度[24]。IL-33通過與其特異性受體ST2(IL-1 R家族成員)結(jié)合,啟動(dòng)并放大輔助性T細(xì)胞2(T helper 2 cell,Th2細(xì)胞)的生物效應(yīng)[25]。ST2跨膜形式主要在Th2細(xì)胞上表達(dá),以介導(dǎo)Th2效應(yīng)功能[26]。除T細(xì)胞外,IL-33還可激活其他類型細(xì)胞,包括肥大細(xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞、嗜酸性粒細(xì)胞、嗜堿性粒細(xì)胞、自然殺傷細(xì)胞等,這些細(xì)胞有助于Th2型反應(yīng)的放大[27]。臨床研究表明循環(huán)中Th2相關(guān)細(xì)胞數(shù)量增加可降低心血管事件風(fēng)險(xiǎn)[28]。與促進(jìn)促炎介質(zhì)產(chǎn)生的輔助性T細(xì)胞1(T helper 1 cell,Th1細(xì)胞)反應(yīng)不同,Th2型反應(yīng)可導(dǎo)致抗炎細(xì)胞因子的產(chǎn)生,包括IL-4、IL-5、IL-9、IL-13、IL-25和IL-33。Zhang等[29]研究表明短期給予Th2型細(xì)胞因子IL-33可在腦缺血后對(duì)神經(jīng)發(fā)揮保護(hù)作用,這涉及Th2∶Th1細(xì)胞因子譜的增強(qiáng)、促炎性和細(xì)胞毒性免疫細(xì)胞亞群的減少及表達(dá)IL-10的調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg細(xì)胞)浸潤(rùn)損傷大腦的增加;但研究發(fā)現(xiàn)給予IL-33可加速/加劇腦卒中后Th2介導(dǎo)的全身免疫抑制反應(yīng),導(dǎo)致肺部感染,患者死亡率增加。聯(lián)合抗生素治療或減少IL-33劑量可緩解上述全身不良反應(yīng)。作為IL-33的誘餌受體,血清中可溶性ST2受體可阻止IL-33介導(dǎo)的Th2免疫反應(yīng)。Chen等[30]研究顯示缺血性腦卒中患者的可溶性ST2水平明顯高于健康個(gè)體,且可溶性ST2升高水平與梗死面積和疾病嚴(yán)重程度呈正相關(guān)。此外,Wolcott等[31]研究發(fā)現(xiàn)較高的可溶性ST2水平與缺血性腦卒中患者死亡率增加有關(guān)。綜上,通過人為補(bǔ)充IL-33或拮抗可溶性ST2作用可為缺血性腦卒中的治療提供新靶點(diǎn)。
2.4" IL-36與缺血性腦卒中
IL-36對(duì)觸發(fā)多種炎癥介質(zhì)的合成和釋放至關(guān)重要。IL-36細(xì)胞因子包括IL-36α、IL-36β和IL- 36γ[32-33]。IL-36細(xì)胞因子可從多種細(xì)胞中釋放,包括上皮細(xì)胞、角質(zhì)形成細(xì)胞、成纖維細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞、單核細(xì)胞、淋巴細(xì)胞和神經(jīng)元[34-35]。這些細(xì)胞因子通過與IL-36 R相互作用發(fā)揮作用。當(dāng)IL-36激動(dòng)劑與IL-36R結(jié)合后,下游細(xì)胞內(nèi)信號(hào)傳導(dǎo)導(dǎo)致NF-κB和MAPK激活,并隨后分泌多種有效促炎介質(zhì),包括腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、IL-1β、IL-6和IL-8。IL-36α、IL-36β和IL-36γ三種激動(dòng)劑的作用可被天然存在的IL-36Ra和IL-38抑制,其通過與IL-1受體相關(guān)蛋白2競(jìng)爭(zhēng)性結(jié)合發(fā)揮作用[36]。El-Awaisi等[37]研究發(fā)現(xiàn)IL-36R、IL-36α和IL-36β的表達(dá)水平隨缺血再灌注損傷的增加而升高,特別是在微血管系統(tǒng)上,且3種IL-36激動(dòng)劑均可增加機(jī)體中性粒細(xì)胞的募集,進(jìn)而促進(jìn)炎癥反應(yīng)的發(fā)生。這種促炎反應(yīng)非常迅速,隨著時(shí)間的推移而增強(qiáng),約60min時(shí)達(dá)到穩(wěn)定水平;而使用IL-36Ra可減輕中性粒細(xì)胞浸潤(rùn),改善血流動(dòng)力學(xué),減輕內(nèi)皮細(xì)胞損傷并降低血管細(xì)胞黏附分子-1的表達(dá)。這些作用有助于顯著縮小梗死面積。
2.5" IL-37與缺血性腦卒中
IL-37在多種人體細(xì)胞和組織中表達(dá),主要來源于外周血單核細(xì)胞和樹突狀細(xì)胞。在正常生理?xiàng)l件下,IL-37水平維持在低濃度;然而,在各種炎癥刺激和促炎性細(xì)胞因子的作用下,其表達(dá)水平可顯著上調(diào)[38]。IL-37被認(rèn)為是炎癥反應(yīng)的抑制因子,通過負(fù)反饋機(jī)制防止過度炎癥和組織損傷[39]。IL-37對(duì)缺血性腦卒中的作用是矛盾且復(fù)雜的。研究表明在人和小鼠中,缺血性腦卒中后IL-37表達(dá)水平明顯升高,且可通過調(diào)節(jié)腦卒中后大腦和周圍區(qū)域炎癥發(fā)揮保護(hù)作用[40]。Zhang等[41]研究發(fā)現(xiàn)急性缺血性腦卒中患者血漿IL-37水平顯著高于對(duì)照組,且大動(dòng)脈粥樣硬化患者的IL-37水平明顯高于小動(dòng)脈閉塞患者;血漿IL-37水平與美國(guó)國(guó)立衛(wèi)生研究院腦卒中量表評(píng)分和病變體積呈正相關(guān);血漿IL-37水平升高與3個(gè)月不良預(yù)后獨(dú)立相關(guān)。研究發(fā)現(xiàn)缺血性腦卒中后患者血清IL-37水平升高,其升高水平與腦卒中復(fù)發(fā)事件和不良腦卒中結(jié)局相關(guān)[42]。
2.6" IL-38與缺血性腦卒中
IL-38在多種疾病中發(fā)揮重要作用[43]。IL-38主要表達(dá)于腦、心、肺、脾、胸腺、扁桃體和皮膚[44]。當(dāng)細(xì)胞凋亡或壞死時(shí),IL-38通過自分泌、旁分泌或內(nèi)分泌途徑分泌。目前已知與IL-38結(jié)合的受體主要有3類,IL-1R1、IL-36R和IL-1受體輔助蛋白樣1[45]。IL-1R1對(duì)IL-38發(fā)揮其生物學(xué)作用并不是必需的[46]。目前,IL-38信號(hào)傳導(dǎo)的公認(rèn)受體是IL-36R。研究發(fā)現(xiàn)IL-38可抑制Th17細(xì)胞的成熟和活化,限制后續(xù)IL-17的分泌[47]。此外,IL-38可促進(jìn)Treg細(xì)胞的增殖,阻止其轉(zhuǎn)化為Th17細(xì)胞[48]。IL-38通過限制Th17細(xì)胞的生成和IL-17的分泌減輕炎癥反應(yīng)。在Zare Pafie等[49]的研究中,與預(yù)處理水平組相比,給予組織型纖溶酶原激活劑(tissue plasminogen activator,tPA)24h后觀察到IL-38水平顯著升高;入院時(shí)初始神經(jīng)功能缺陷較輕患者在給予tPA后IL-38水平升高更明顯;此外,在tPA治療前和治療后24h測(cè)量的IL-38水平變化與第3個(gè)月功能結(jié)局之間存在顯著負(fù)相關(guān),表明IL-38可減輕腦血管損傷的有害影響。
3" 小結(jié)與展望
IL-1家族在缺血性腦卒中的發(fā)生發(fā)展過程中扮演重要角色,通過多種機(jī)制參與炎癥反應(yīng)、血–腦脊液屏障破壞、神經(jīng)元損傷等病理過程。盡管目前針對(duì)IL-1家族的研究已取得一定進(jìn)展,但仍有許多問題需要進(jìn)一步探索。深入研究IL-1家族在缺血性腦卒中中的作用機(jī)制,尋找安全有效的靶向治療方法將為缺血性腦卒中患者的治療帶來新的希望。IL-1家族相關(guān)生物標(biāo)志物的探索應(yīng)側(cè)重于探究其在缺血性腦卒中后不同時(shí)間點(diǎn)的作用,包括急性期和慢性期,但這些測(cè)量研究需在當(dāng)前標(biāo)準(zhǔn)治療的背景下進(jìn)行。未來研究需進(jìn)一步優(yōu)化治療策略,明確治療時(shí)機(jī)和藥物劑量,提高缺血性腦卒中的治療效果,改善患者的預(yù)后和生活質(zhì)量。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" LINDSAY M P, NORRVING B, SACCO R L, et al. World Stroke Organization (WSO): Global stroke fact sheet 2019[J]. Int J Stroke, 2019, 14(8): 806–817.
[2]"" CAPLAN L R, WONG K S, GAO S, et al. Is hypoperfusion an important cause of strokes? If so, how?[J]. Cerebrovasc Dis, 2006, 21(3): 145–153.
[3]"" QIAN L, YUANSHAO L, WENSI H, et al. Serum IL-33 is a novel diagnostic and prognostic biomarker in acute ischemic stroke[J]. Aging Dis, 2016, 7(5): 614–622.
[4]"" FAN J, LI X, YU X, et al. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990-2030[J]. Neurology, 2023, 101(2): e137–e150.
[5]"" GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol, 2021, 20(10): 795–820.
[6]"" SHI K, TIAN D C, LI Z G, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058–1066.
[7]"" VAN DE VEERDONK F L, DE GRAAF D M, JOOSTEN L A, et al. Biology of IL-38 and its role in disease[J]. Immunol Rev, 2018, 281(1): 191–196.
[8]"" DINARELLO C A. Overview of the IL-1 family in innate inflammation and acquired immunity[J]. Immunol Rev, 2018, 281(1): 8–27.
[9]"" CLAUSEN B H, WIRENFELDT M, H?GEDAL S S, "et al. Characterization of the TNF and IL-1 systems in human brain and blood after ischemic stroke[J]. Acta Neuropathol Commun, 2020, 8(1): 81.
[10] LUHESHI N M, KOVáCS K J, LOPEZ-CASTEJON G, et al. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues[J]. J Neuroinflammation, 2011, 8: 186.
[11] ALLAN S M, TYRRELL P J, ROTHWELL N J. Interleukin-1 and neuronal injury[J]. Nat Rev Immunol, 2005, 5(8): 629–640.
[12] SJ?STR?M E O, CULOT M, LEICKT L, et al. Transport study of interleukin-1 inhibitors using a human in vitro model of the blood-brain barrier[J]. Brain Behav Immun Health, 2021, 16: 100307.
[13] KIM D H, LEE W W. IL-1 receptor dynamics in immune cells: Orchestrating immune precision and balance[J]. Immune Netw, 2024, 24(3): e21.
[14] SOBOWALE O A, PARRY-JONES A R, SMITH C J, "et al. Interleukin-1 in stroke: From bench to bedside[J]. Stroke, 2016, 47(8): 2160–2167.
[15] MURATA Y, SUGIMOTO K, YANG C, et al. Activated microglia-derived macrophage-like cells exacerbate brain edema after ischemic stroke correlate with astrocytic expression of aquaporin-4 and interleukin-1 alpha release[J]. Neurochem Int, 2020, 140: 104848.
[16] SALMERON K, AIHARA T, REDONDO-CASTRO E, et al. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: Implications for brain angiogenesis after acute injury[J]. J Neurochem, 2016, 136(3): 573–580.
[17] SALMERON K E, MANISKAS M E, EDWARDS D N, et al. Interleukin-1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke[J]. J Neuroinflammation, 2019, 16(1): 222.
[18] MURRAY K N, GIRARD S, HOLMES W M, et al. Systemic inflammation impairs tissue reperfusion through endothelin-dependent mechanisms in cerebral ischemia[J]. Stroke, 2014, 45(11): 3412–3419.
[19] CATAN? M G, POPEN?IU I A, V?LEANU M, et al. IL-1 beta-A biomarker for ischemic stroke prognosis and atherosclerotic lesions of the internal carotid artery[J]. Medicina (Kaunas), 2023, 59(10): 1790.
[20] ZAREMBA J, LOSY J. Interleukin-18 in acute ischaemic stroke patients[J]. Neurol Sci, 2003, 24(3): 117–124.
[21] KAPLANSKI G. Interleukin-18: Biological properties and role in disease pathogenesis[J]. Immunol Rev, 2018, 281(1): 138–153.
[22] MARTIROSIAN R A, WIEDNER C D, SANCHEZ J, "et al. Association of incident stroke risk with an IL-18- centered inflammatory network biomarker composite[J]. Stroke, 2024, 55(6): 1601–1608.
[23] HAO Y, DING J, HONG R, et al. Increased interleukin-18 level contributes to the development and severity of ischemic stroke[J]. Aging (Albany NY), 2019, 11(18): 7457–7472.
[24] CHEN Z, HU Q, HUO Y, et al. Serum interleukin-33 is a novel predictive biomarker of hemorrhage transformation and outcome in acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2021, 30(2): 105506.
[25] SCHMITZ J, OWYANG A, OLDHAM E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J]. Immunity, 2005, 23(5): 479–490.
[26] COYLE A J, LLOYD C, TIAN J, et al. Crucial role of the interleukin-1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses[J]. J Exp Med, 1999, 190(7): 895–902.
[27] SMITHGALL M D, COMEAU M R, YOON B R, et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, INKT and NK cells[J]. Int Immunol, 2008, 20(8): 1019–1030.
[28] ENGELBERTSEN D, ANDERSSON L, LJUNGCRANTZ I, et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke[J]. Arterioscler Thromb Vasc Biol, 2013, 33(3): 637–644.
[29] ZHANG S R, PIEPKE M, CHU H X, et al. IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke[J]. JCI Insight, 2018, 3(18): e121560.
[30] CHEN W, LIN A, YU Y, et al. Serum soluble ST2 as a novel inflammatory marker in acute ischemic stroke[J]. Clin Lab, 2018, 64(9): 1349–1356.
[31] WOLCOTT Z, BATRA A, BEVERS M B, et al. Soluble ST2 predicts outcome and hemorrhagic transformation after acute stroke[J]. Ann Clin Transl Neurol, 2017, 4(8): 553–563.
[32] MATYS P, MIRO?CZUK A, STAROSZ A, et al. Expanding role of interleukin-1 family cytokines in acute ischemic stroke[J]. Int J Mol Sci, 2024, 25(19): 10515
[33] EL-AWAISI J, MITCHELL J L, RANASINGHE A, ""et al. Interleukin-36 is vasculoprotective in both sexes despite sex-specific changes in the coronary microcirculation response to IR injury[J]. Front Cardiovasc Med, 2023, 10: 1227499.
[34] GRESNIGT M S, VAN DE VEERDONK F L. Biology of IL-36 cytokines and their role in disease[J]. Semin Immunol, 2013, 25(6): 458–465.
[35] KOVACH M A, SINGER B H, NEWSTEAD M W, et al. IL-36γ is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components[J]. J Leukoc Biol, 2016, 100(2): 413–421.
[36] QUEEN D, EDIRIWEERA C, LIU L. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development[J]. Front Cell Dev Biol, 2019, 7: 317.
[37] EL-AWAISI J, KAVANAGH D P, RINK M R, et al. Targeting IL-36 improves age-related coronary microcirculatory dysfunction and attenuates myocardial ischemia/reperfusion injury in mice[J]. JCI Insight, 2022, 7(5): e155236.
[38] SU Z, TAO X. Current understanding of IL-37 in human health and disease[J]. Front Immunol, 2021, 12: 696605.
[39] WANG L, QUAN Y, YUE Y, et al. Interleukin-37: A crucial cytokine with multiple roles in disease and potentially clinical therapy[J]. Oncol Lett, 2018, 15(4): 4711–4719.
[40] ZHANG S R, NOLD M F, TANG S C, et al. IL-37 increases in patients after ischemic stroke and protects from inflammatory brain injury, motor impairment and lung infection in mice[J]. Sci Rep, 2019, 9(1): 6922.
[41] ZHANG F, ZHU T, LI H, et al. Plasma interleukin-37 is elevated in acute ischemic stroke patients and probably associated with 3-month functional prognosis[J]. Clin Interv Aging, 2020, 15: 1285–1294.
[42] ZHANG Y, XU C, WANG H, et al. Serum interleukin- 37 increases in patients after ischemic stroke and is associated with stroke recurrence[J]. Oxid Med Cell Longev, 2021, 2021: 5546991.
[43] DIAZ-BARREIRO A, HUARD A, PALMER G. Multifaceted roles of IL-38 in inflammation and cancer[J]. Cytokine, 2022, 151: 155808.
[44] LIN H, HO A S, HALEY-VICENTE D, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member[J]. J Biol Chem, 2001, 276(23): 20597–20602.
[45] LI Z, DING Y, PENG Y, et al. Effects of IL-38 on macrophages and myocardial ischemic injury[J]. Front Immunol, 2022, 13: 894002.
[46] STEIGER S. Targeting IL-1 receptor signaling in AKI[J]. J Am Soc Nephrol, 2023, 34(10): 1601–1603.
[47] MORA J, SCHLEMMER A, WITTIG I, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses[J]. J Mol Cell Biol, 2016, 8(5): 426–438.
[48] XIE L, HUANG Z, LI H, et al. IL-38: A new player in inflammatory autoimmune disorders[J]. Biomolecules, 2019, 9(8): 345.
[49] ZARE RAFIE M, ESMAEILZADEH A, GHOREISHI A, et al. IL-38 as an early predictor of the ischemic stroke prognosis[J]. Cytokine, 2021, 146: 155626.
(修回日期:2025–03–08)
基金項(xiàng)目:昆明醫(yī)科大學(xué)2024年碩士研究生創(chuàng)新基金項(xiàng)目(2024S101)
通信作者:萬(wàn)曉紅,電子信箱:13888586162@163.com