基金項(xiàng)目:國(guó)家自然科學(xué)基金(81804142,82474570);中國(guó)博士后科學(xué)基金面上項(xiàng)目(2023M731027)
Abstract:Liverdiseases cannot beeasilydetected in theearlystage,andalthough invasivediagnostic methods,suchas liver biopsy,arerelativelyaccuateteytendtoavealowdegreofacceptane,ichgreatlyliitstheimprovementindagnosisand treatmenttechiquesforliverdiseases.ThereforeitisofgreatimportancetosearchfornewiomarkersandtherapeuticagetsAsan emerging biomarkerforliquidbiopsy,tNA-derivedsmallRNA(tsNA)isbnomallexpressedinvarious liverdiseasesincluding viralhepatitisfattlveease,lveriuryndlraentvelodprogessflissby regulatingthebiologicalfunctionssuchasgeneexpresion,epigeneticregulation,andproteintranslation.Thisarticlereviewsthe origin,clasification,andbiologicalfunctionoftsRNA,aswellastheresearchadvancesintRNAasbiomarkersandpotential therapeutic targets forliverdiseases,soas to provideideas fortheearlydiagnosisand treatmentof liverdiseases.
KeyWords:MicroRNAs;LiverDiseases;Biomarkers
Research funding:National Natural ScienceFoundationof China(81804142,82474570);ChinaPostdoctoralScienceFoundation General Program(2023M731027)
世界衛(wèi)生組織報(bào)告顯示,肝病相關(guān)死亡率存在顯著地域差異:亞太地區(qū)肝病致死占比達(dá) 4.6% ,顯著高于美洲 (2.7% 和歐洲地區(qū)( 2.1% )[1]。我國(guó)作為肝病負(fù)擔(dān)最重的國(guó)家之一,疾病譜系呈現(xiàn)動(dòng)態(tài)演變特征:1992年前病毒性肝炎占據(jù)主導(dǎo)地位,隨著乙型肝炎疫苗普及和抗病毒治療方案優(yōu)化,代謝相關(guān)(非酒精性)脂肪性肝病(metabolic dysfunction-associated fatty liver disease,MAFLD)現(xiàn)已成為慢性肝病首要病因[2]。值得注意的是,MAFLD向終末期肝病及肝細(xì)胞癌(hepatocellularcarcinoma,HCC)的轉(zhuǎn)化率亦呈逐年上升趨勢(shì)[3-4]。盡管當(dāng)前診療體系整合了無(wú)創(chuàng)影像、肝穿刺活檢、靶向藥物及免疫治療等多模態(tài)手段,肝病短期預(yù)后獲得一定改善,但長(zhǎng)期預(yù)后仍不理想[5],因此,進(jìn)一步探索肝病診治新方法勢(shì)在必行。近年來(lái),液體活檢技術(shù)因其無(wú)創(chuàng)、動(dòng)態(tài)監(jiān)測(cè)等優(yōu)勢(shì),在肝病領(lǐng)域展現(xiàn)出重要應(yīng)用價(jià)值[6]。其中,轉(zhuǎn)運(yùn)RNA衍生小RNA(transferRNA-derived smallRNA,tsRNA)作為非編碼RNA家族成員之一,在血管生成素(angiogenin,ANG)、Y盒結(jié)合蛋白1、G蛋白信號(hào)調(diào)節(jié)因子4等關(guān)鍵分子調(diào)控下,通過(guò)表觀遺傳修飾、轉(zhuǎn)錄后調(diào)控及翻譯調(diào)控等多種作用機(jī)制,參與脂肪性肝病、慢加急性肝衰竭(acute-on-chronicliverfailure,ACLF)及HCC等疾病的病理進(jìn)程,具有重要的應(yīng)用前景[7]。本文系統(tǒng)解析tsRNA的生成、分類、生物學(xué)功能及其在肝病診療中的應(yīng)用進(jìn)展,旨在為精準(zhǔn)醫(yī)學(xué)時(shí)代的肝病管理提供新視角。
1tsRNA的來(lái)源與分類
tsRNA由轉(zhuǎn)運(yùn)RNA(transferRNA,tRNA)衍生而成, 依據(jù)切割位點(diǎn)的差異,可分為tRNA衍生片段(tRNAderivedRNAfragment,tRF)和tRNA半分子(tRNA-derived stressed-inducedRNA,tiRNA)兩種主要類型(表1)。
1.1tRF根據(jù)tRNA切割位點(diǎn)的不同,tRF可進(jìn)一步分為tRF-1、tRF-2、tRF-3、tRF-5和i-tRF五個(gè)亞類,其長(zhǎng)度為 14~30nt[8] 。其中,tRF-1又稱 3′U. -tRF,來(lái)源于前體tRNA的 3′ 端,經(jīng)核糖核酸酶Z剪切生成,具有特征性多聚尿嘧啶(polyuridine)序列[9]。tRF-3亦稱 3′tRF ,由成熟tRNAT-環(huán)處經(jīng)核酸內(nèi)切酶切割產(chǎn)生,其成熟tRNA 3′ 端包含特異性CCA 結(jié)構(gòu)[10]。tRF-5亦稱 5′tRF ,來(lái)源于成熟tRNA的 5′ 末端,是經(jīng)Dicer酶切割tRNAD-環(huán)或D-環(huán)與反密碼子環(huán)間區(qū)域產(chǎn)生的片段;而i-tRF和tRF-2的生成機(jī)制仍有待闡明[11]。
1.2tiRNAtiRNA在缺氧、紫外線輻射、氧化應(yīng)激等病理?xiàng)l件下,由成熟tRNA反密碼子環(huán)經(jīng)ANG特異性切割生成,長(zhǎng)度為 31~40nt ,主要包括 3′tiRNA 與 5′tiRNA 兩種類型[12]。其中, 3′tiRNA 以成熟tRNA 3′ 末端為起點(diǎn),延至反密碼子環(huán)切割位點(diǎn); 5′tiRNA 則自成熟tRNA 5′ 末端延伸至反密碼子環(huán)區(qū)域[8]。值得注意的是,當(dāng)產(chǎn)生的轉(zhuǎn)錄本長(zhǎng)度顯著超過(guò)典型tiRNA時(shí),該類分子可被分類為應(yīng)激誘導(dǎo)tRNA-3及應(yīng)激誘導(dǎo)tRNA-5[13]。
2 tsRNA的生物學(xué)功能
tsRNA通過(guò)調(diào)節(jié)基因表達(dá)、參與表觀遺傳調(diào)控及調(diào)控蛋白質(zhì)翻譯等途徑發(fā)揮生物學(xué)作用,進(jìn)而參與多種疾病的發(fā)生發(fā)展。鑒于當(dāng)前研究領(lǐng)域存在命名體系混亂的問(wèn)題(主要表現(xiàn)為使用實(shí)驗(yàn)室內(nèi)部命名規(guī)則標(biāo)注特定tsRNA分子),本研究通過(guò)系統(tǒng)性梳理現(xiàn)有科研成果,構(gòu)建標(biāo)準(zhǔn)化分類框架。對(duì)于未達(dá)成學(xué)術(shù)共識(shí)的命名問(wèn)題,統(tǒng)一保留“tsRNA\"這一通用表述。
2.1調(diào)節(jié)基因表達(dá)tsRNA通過(guò)促進(jìn)基因甲基化、介導(dǎo)轉(zhuǎn)錄后基因沉默及調(diào)節(jié)mRNA穩(wěn)定性3種機(jī)制調(diào)節(jié)基因表達(dá)。其作用機(jī)制表現(xiàn)為:與PIWI樣蛋白1(PIWI-likeprotein1,PIWIL1)等PIWI家族蛋白結(jié)合形成復(fù)合物,聯(lián)合DNA甲基轉(zhuǎn)移酶誘導(dǎo)H3K9甲基化,實(shí)現(xiàn)轉(zhuǎn)錄抑制效應(yīng),典型例子為td-piR(Glu)通過(guò)該機(jī)制顯著抑制CD1A轉(zhuǎn)錄[14-15](圖1);與Argonaute(AGO)蛋白結(jié)合發(fā)揮轉(zhuǎn)錄后沉默功能,如胃癌中tRF-3017A通過(guò)下調(diào)神經(jīng)EGFL樣2的表達(dá)水平調(diào)控腫瘤轉(zhuǎn)移進(jìn)程[16],tRF-33靶向STAT3mRNA的3'非翻譯區(qū)抑制STAT3通路活性[17],提示tsRNA可能與微RNA(miRNA,miR)類似,通過(guò)與AGO家族蛋白結(jié)合并靶向具有互補(bǔ)序列的mRNA,發(fā)揮其轉(zhuǎn)錄后沉默功能(圖2);通過(guò)競(jìng)爭(zhēng)性結(jié)合RNA結(jié)合蛋白促進(jìn)致癌轉(zhuǎn)錄物降解(圖3),如 Glu/Asp/Gly/Tyr 來(lái)源的tsRNA通過(guò)與Y盒結(jié)合蛋白1結(jié)合降低致癌轉(zhuǎn)錄物穩(wěn)定性[18],tRF3E通過(guò)競(jìng)爭(zhēng)性結(jié)合核仁素導(dǎo)致 p53mRNA 翻譯增加,從而抑制腫瘤的發(fā)生[19]
2.2調(diào)控表觀遺傳tsRNA通過(guò)代際傳遞表觀遺傳信息及調(diào)控RNA修飾,介導(dǎo)表觀遺傳調(diào)控。研究發(fā)現(xiàn),父代高脂飲食模型中,精子tRF通過(guò)干擾F1代胚胎及胰島組織代謝通路相關(guān)基因表達(dá),導(dǎo)致代謝紊亂的遺傳[20];母體高脂飲食可通過(guò)重塑子代精子tsRNA表達(dá)譜,誘發(fā)肥胖及代謝綜合征等相關(guān)表型的代際傳遞[21]。研究提示,精子tsRNA具有表觀遺傳信息載體的生物學(xué)功能。值得關(guān)注的是,DNMT2(DNA甲基轉(zhuǎn)移酶2)的功能缺失可通過(guò)干擾RNA修飾事件,有效阻斷tsRNA介導(dǎo)的代謝性疾病代際傳遞,這一發(fā)現(xiàn)為高脂飲食誘導(dǎo)的代謝病防治提供了新靶點(diǎn)[22-23]
2.3調(diào)控蛋白質(zhì)翻譯總體上,tsRNA通過(guò)AGO依賴與非依賴兩種機(jī)制調(diào)控蛋白質(zhì)翻譯:在AGO依賴途徑中,tsRNA優(yōu)先結(jié)合AGO蛋白,通過(guò)其 7-mer 基序靶向mRNA中的保守位點(diǎn)進(jìn)行反義匹配,抑制mRNA翻譯活性,進(jìn)而抑制蛋白質(zhì)翻譯功能[24];在非AGO途徑中, 5′ -tiRNA-Gln的5TOG基序可與核糖體競(jìng)爭(zhēng)性結(jié)合真核翻譯起始因子4F(eukaryoticinitiationfactor4F,eIF4F),通過(guò)RG4結(jié)構(gòu)體的形成削弱翻譯起始復(fù)合物與mRNA的結(jié)合效率[25(圖4)。跨物種研究顯示,哺乳動(dòng)物細(xì)胞中,特定tsRNA通過(guò)結(jié)合小核糖體亞基發(fā)揮翻譯抑制作用[26-28];而在布氏錐蟲(chóng)應(yīng)激恢復(fù)期, tRNAThr3′half 通過(guò)促進(jìn)mRNA核糖體加載加速蛋白質(zhì)合成[28]。機(jī)制研究進(jìn)一步揭示,
LeuCAG3'tsRNA通過(guò)堿基互補(bǔ)識(shí)別核糖體蛋白S28(ribosomalproteinS28,RPS28)mRNA的二級(jí)結(jié)構(gòu),調(diào)控核糖體生物合成效率,從而促進(jìn)蛋白質(zhì)翻譯[29](圖5)。以上證據(jù)表明,tsRNA可通過(guò)不同方式調(diào)控蛋白質(zhì)翻譯,并產(chǎn)生不同的生物效應(yīng)。
2.4調(diào)節(jié)細(xì)胞凋亡tsRNA能夠特異性地與細(xì)胞色素C(cytochromeC,CytC)結(jié)合,這一過(guò)程對(duì)凋亡通路的調(diào)節(jié)至關(guān)重要。在細(xì)胞凋亡的早期階段,CytC從線粒體釋放到細(xì)胞質(zhì),與Apaf-1(凋亡蛋白激活因子1)結(jié)合,激活Caspase-9(胱天蛋白酶-9),啟動(dòng)凋亡級(jí)聯(lián)反應(yīng)。然而,tsRNA與CytC的結(jié)合能夠有效阻止CytC與Apaf-1的結(jié)合,從而抑制Caspase-9的激活,阻斷凋亡小體的形成,抑制細(xì)胞凋亡的進(jìn)程(圖6)[30]。在生理狀態(tài)下,tsRNA作為內(nèi)源性凋亡信號(hào)抑制因子,通過(guò)直接或間接調(diào)控凋亡相關(guān)蛋白,參與維持細(xì)胞凋亡的平衡。然而,在應(yīng)激條件下,tsRNA的水平顯著上調(diào),在保護(hù)細(xì)胞免受凋亡的同時(shí),可能誘導(dǎo)凋亡調(diào)控的逃逸機(jī)制,使細(xì)胞對(duì)凋亡信號(hào)產(chǎn)生抵抗[31]。這意味著tsRNA在細(xì)胞凋亡中可能扮演著雙重角色一既作為生存因子保護(hù)細(xì)胞免于凋亡,又作為促增殖因子,可能誘導(dǎo)惡性細(xì)胞增殖。
2.5調(diào)控細(xì)胞周期tsRNA可直接或間接地調(diào)控細(xì)胞周期。tRF-1001作為腫瘤細(xì)胞生長(zhǎng)的關(guān)鍵因子,其功能抑制可有效干預(yù)細(xì)胞周期,將細(xì)胞阻滯于G2期,同時(shí)抑制DNA生物合成,從而直接抑制腫瘤細(xì)胞增殖[32]。此外,在非小細(xì)胞肺癌中,tRF-Leu-CAG的過(guò)表達(dá)可顯著增強(qiáng)AURKA(極光激酶A)的活性,間接促進(jìn)非小細(xì)胞肺癌G0/G1期的細(xì)胞周期進(jìn)程[33]
3tsRNA與肝臟疾病
隨著高通量測(cè)序技術(shù)的發(fā)展,tsRNA的臨床應(yīng)用價(jià)值逐漸被揭示[34]。研究表明,部分tsRNA在病毒性肝炎、脂肪性肝病、肝癌等肝臟疾病中呈現(xiàn)異常表達(dá),這些表達(dá)失調(diào)的tsRNA可能作為肝病診斷和預(yù)后判斷的新型生物標(biāo)志物,同時(shí)也是肝臟疾病潛在的治療靶點(diǎn)。
LeuCAG3'tsRNAPIWIL4三 三 TI5' m TT3' 5 3 促進(jìn)核糖體生物發(fā)生RPS28mRNA LeuCAG3'tsRNA展開(kāi)RPS28mRNA二級(jí)結(jié)構(gòu)核糖體
3.1tsRNA與脂肪性肝病
脂肪性肝病包括酒精性肝?。╝lcoholic liver disease,ALD)和MAFLD。脂肪性肝病已成為全球范圍內(nèi)嚴(yán)重的健康問(wèn)題,尤其是MAFLD的發(fā)病率逐年上升,且發(fā)病年齡趨于年輕化,兒童脂肪肝的患病率也顯著增加[35-36]然而,目前尚無(wú)針對(duì)性的有效治療藥物。因此,探索新的生物標(biāo)志物及治療靶點(diǎn)具有重要的臨床意義。
3.1.1tsRNA與ALDALD的發(fā)病機(jī)制復(fù)雜,其核心在于酒精通過(guò)多重信號(hào)通路誘導(dǎo)肝細(xì)胞過(guò)度氧化應(yīng)激、炎癥反應(yīng)及肝脂質(zhì)代謝紊亂等病理過(guò)程。其中,C3(補(bǔ)體成分3)/CYP2E1(細(xì)胞色素P4502E1)/Gly-tRF(甘氨酸轉(zhuǎn)運(yùn)RNA片段)/SIRT1(沉默信息調(diào)節(jié)因子1)信號(hào)通路在ALD的發(fā)病及進(jìn)展中起關(guān)鍵作用[37]。酒精過(guò)量導(dǎo)致的氧化應(yīng)激可激活補(bǔ)體系統(tǒng),特別是補(bǔ)體C3,其激活產(chǎn)物C3a和Asp可促進(jìn)細(xì)胞色素P450酶CYP2E1的表達(dá)。這一過(guò)程間接刺激了Gly-tRF的表達(dá),而Gly-tRF的增加可下調(diào)SIRT1的表達(dá),導(dǎo)致脂肪生成增強(qiáng),同時(shí)抑制脂肪酸β氧化,最終引發(fā)肝脂肪變性[38]。因此,針對(duì)C3激活步驟的補(bǔ)體抑制劑及Gly-tRF抑制劑可能通過(guò)阻斷這一關(guān)鍵信號(hào)通路,緩解酒精引起的肝損傷,成為ALD的潛在治療靶點(diǎn)。
3.1.2tsRNA與MAFLDMAFLD的病理本質(zhì)在于脂質(zhì)代謝異常導(dǎo)致脂肪在肝細(xì)胞內(nèi)蓄積。部分tsRNA由肝細(xì)胞表達(dá)和分泌,在脂質(zhì)代謝的調(diào)節(jié)過(guò)程中發(fā)揮重要作用,從而影響MAFLD的發(fā)生和進(jìn)展[39]。臨床研究發(fā)現(xiàn),tRF-Val-CAC-005、tRF-Ala-CGC-006和tiRNA-His-GTG-001在MAFLD患者血漿中的表達(dá)水平顯著高于健康者,提示tsRNA可能作為MAFLD早期診斷的生物標(biāo)志物。此外,在MAFLD小鼠模型中,上述tsRNA的血漿水平同樣升高,并展現(xiàn)出預(yù)測(cè)肝纖維化的潛力[40]。tsRNA的這些特征為MAFLD的早期預(yù)警和嚴(yán)重程度評(píng)估提供了新視角。盡管tsRNA在MAFLD中的診斷價(jià)值和應(yīng)用前景已初步顯現(xiàn),但其在評(píng)估MAFLD進(jìn)展和預(yù)后方面的具體作用及其調(diào)控機(jī)制仍需更廣泛的研究和驗(yàn)證。
自噬機(jī)制在維持細(xì)胞內(nèi)蛋白質(zhì)平衡和能量穩(wěn)態(tài)中發(fā)揮核心作用,尤其在肝臟這一代謝中樞中的作用尤為突出。盡管目前tsRNA調(diào)控自噬的具體機(jī)制尚未完全闡明,但已有研究表明,tsRNA可通過(guò)調(diào)控自噬過(guò)程,影響肝臟代謝穩(wěn)態(tài)、抗氧化應(yīng)激及炎癥性損傷。例如,tRF-3001b通過(guò)靶向并抑制自噬相關(guān)基因Prkaa1的表達(dá),加劇MAFLD的發(fā)展;而沉默tRF-3001b可增強(qiáng)自噬活性,減少肝脂質(zhì)沉積,從而延緩MAFLD的進(jìn)展[4I]。另有研究發(fā)現(xiàn),藍(lán)莓單體TEC可通過(guò)上調(diào)tRF-47-58ZZJQJYSWRYVMMV5BO(tRF-47)的表達(dá)激活自噬,抑制細(xì)胞死亡和炎癥介質(zhì)的釋放,從而發(fā)揮治療非酒精性脂肪性肝炎(non-alcoholicsteatohepatitis,NASH)的作用,表明TEC可能是一種具有潛力的NASH治療藥物[42]。綜上所述,通過(guò)調(diào)控tsRNA的表達(dá)來(lái)調(diào)節(jié)自噬可能是治療MAFLD的新靶點(diǎn),但其具體機(jī)制仍需進(jìn)一步深入研究。
3.2tsRNA與肝癌肝癌是多種慢性肝病進(jìn)展的終末階段,在全球范圍內(nèi)具有高發(fā)病率和高死亡率,目前成功治愈進(jìn)展期肝癌患者仍面臨巨大挑戰(zhàn)[43]。因此,探索肝癌的早期診斷方法、預(yù)后評(píng)估手段以及有效的治療策略具有重要意義。近期研究聚焦于tsRNA在肝癌診斷、預(yù)后分析和治療策略中的潛在應(yīng)用價(jià)值44]。
研究表明,tsRNA在HCC患者與正常對(duì)照之間的表達(dá)存在顯著差異,提示其作為肝癌診斷新型生物標(biāo)志物的潛力。具體而言,HCC患者血漿外泌體中tsRNA水平顯著升高,尤其是tRNA-val tac-3、tRNA-GlyTCC-5、tRNA-ValAAC-5和tRNA-GluCTC-5的表達(dá)水平顯著高于健康對(duì)照組[45]。此外,tRF-40-EFOK8YR951K36D26、tRF-34-QNR8VP94FQFY1Q、tRF-32-79mp9NH57SJ 和 tRF-31-87R8WP9N1EWJO在HCC患者血漿外泌體中也呈現(xiàn)表達(dá)上調(diào)[46]。值得注意的是,tRF-Gln-TTG-006能夠以高靈敏度 80.4% 和高特異度( 79.4% 區(qū)分HCC患者與健康受試者,即使在早期(I期)也表現(xiàn)出 79.0% 的靈敏度和 74.8% 的特異度[47],顯示了其在肝癌早期診斷中的巨大潛力。
tRF-39-8HM2OSRNLKSEKH9在HCC細(xì)胞、血清和組織中高度表達(dá),可能通過(guò)與下游mRNA靶向相互作用發(fā)揮致癌作用。其表達(dá)水平不僅與腫瘤大小呈正相關(guān),過(guò)表達(dá)還可加速癌細(xì)胞的遷移。因此,tRF-39-8HM2OSRN-LKSEKH9的表達(dá)與臨床病理特征之間的關(guān)聯(lián)性提示其在HCC預(yù)后評(píng)估中具有重要價(jià)值[48]。相比之下,ts-N22是一種在HCC中具有保護(hù)作用的tsRNA,通過(guò)調(diào)控腫瘤抑制因子hsa-miR-33a的表達(dá)改善HCC的不良預(yù)后。表達(dá)ts-N22的患者生存率顯著提高,此外,ts-N22還可通過(guò)調(diào)節(jié) miR-33a-5p 干擾HCC細(xì)胞對(duì)順鉑的耐藥性,從而改善肝癌的治療效果[44]。上述研究表明,tsRNA在HCC的預(yù)后評(píng)估中展現(xiàn)出重要的應(yīng)用價(jià)值,為HCC的臨床管理提供了新的視角和策略。
Gly-tRF通過(guò)負(fù)調(diào)節(jié)NDFIP2(Nedd4家族相互作用蛋白2)和激活A(yù)KT信號(hào)通路來(lái)調(diào)節(jié)HCC細(xì)胞的遷移及LCSC(肝癌干細(xì)胞)樣特性,從而促進(jìn)肝癌的惡化和轉(zhuǎn)移,而NDFIP2的過(guò)表達(dá)削弱了Gly-tRF對(duì)LCSC樣細(xì)胞球形成和HCC細(xì)胞遷移的促進(jìn)作用,這可能成為HCC的潛在治療靶點(diǎn)[49]。另一研究發(fā)現(xiàn)抑制 LeuCAG3′tsRNA 的表達(dá)使特異性小核糖體蛋白R(shí)PS28表達(dá)降低,進(jìn)而破壞18SrRNA成熟并最終誘導(dǎo)癌細(xì)胞凋亡,在HCC進(jìn)程中發(fā)揮重要作用[50]。研究亦證實(shí) 5′ -tiRNA-Gln通過(guò)結(jié)合eIF4A-I導(dǎo)致翻譯的部分抑制,使相關(guān)蛋白包括ARAF、MEK1/2和STAT3受抑制,與HCC進(jìn)展相關(guān)的信號(hào)通路受損,從而起到阻止HCC進(jìn)展的作用[25]。tsRNA在HCC的治療方面具有廣闊的應(yīng)用前景,為HCC的治療提供了創(chuàng)新思路和策略。
3.3tsRNA與其他肝病ACLF是慢性肝病急劇惡化的一種嚴(yán)重臨床表現(xiàn),其特點(diǎn)為多器官功能衰竭及極高的短期死亡風(fēng)險(xiǎn)。HBV感染是慢性肝病最常見(jiàn)的病因,而HBV再激活是ACLF最常見(jiàn)的誘發(fā)因素[51]。在診斷方面,tsRNA-20與tsRNA-46的診斷效能初步顯現(xiàn),可能成為HBV-ACLF早期診斷的潛在生物標(biāo)志物,為疾病預(yù)警提供了新的可能性[52]。在治療策略上,tRF-Gln-CTG-026(tRF-1)不僅可加速受損肝細(xì)胞的修復(fù),改善肝損傷,還能夠在細(xì)胞再生層面發(fā)揮作用,刺激損傷后的細(xì)胞增殖,加快肝組織再生,遏制病情的進(jìn)展,為ACLF的治療開(kāi)辟了新的路徑[53]。
盡管病毒性肝炎的發(fā)病率有所下降,但HBV或HCV的持續(xù)感染仍是全球肝硬化和HCC發(fā)病的重要原因[1]。研究發(fā)現(xiàn),在HBV和HCV感染的肝組織中, 5′tRHVal 和5′tRH Gly的表達(dá)顯著升高,然而在相應(yīng)的癌組織中5′tRH 的豐度反而降低,提示 5′tRH 在病毒性肝炎中的作用值得進(jìn)一步研究[54]。肝纖維化作為各類肝臟疾病演進(jìn)的共同病理階段,其與tsRNA之間的關(guān)聯(lián)性目前仍是研究領(lǐng)域中的空白。鑒于tsRNA在肝病診療中的潛在作用,積極填補(bǔ)這一空白不僅將深化對(duì)肝纖維化機(jī)制的理解,也可能為肝病的早期診斷與治療策略提供新的線索。tsRNA在肝臟疾病中的表達(dá)及臨床意義詳見(jiàn)表2。
4小結(jié)與展望
tsRNA是一類新型的非編碼小RNA,廣泛存在于人體內(nèi),具有參與表觀遺傳調(diào)控、基因表達(dá)調(diào)節(jié)、蛋白質(zhì)翻譯調(diào)控等多種生物學(xué)功能。其在作為非侵入性生物標(biāo)志物方面展現(xiàn)出巨大潛力,可為肝臟疾病的早期診斷和預(yù)后判斷提供新型生物標(biāo)志物。同時(shí),調(diào)控tsRNA的表達(dá)有望成為治療肝臟疾病的新策略。然而,tsRNA作為肝臟疾病的診斷標(biāo)志物和治療靶點(diǎn)應(yīng)用于臨床仍面臨諸多挑戰(zhàn),需要進(jìn)一步的基礎(chǔ)研究和臨床實(shí)踐驗(yàn)證。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:李銀麗負(fù)責(zé)論文資料收集與總結(jié),撰寫(xiě)論文;徐炎、管志偉負(fù)責(zé)論文審閱與修訂;孟璐、渠怡彤參與論文資料收集與整理;邱建利負(fù)責(zé)擬定寫(xiě)作思路,指導(dǎo)撰寫(xiě)文章并最后定稿。
參考文獻(xiàn):
[1]SARINSK,KUMARM,ESLAMM,etal.LiverdiseasesintheAsiaPacific Region:ALancet Gastroenterologyamp; Hepatology Commission[J].LancetGastroenterolHepatol,2020,5(2):167-228.DOl:10. 1016/S2468-1253(19)30342-5.
[2]LIU ZQ,LIN CQ,MAO XH,et al.Changingprevalence ofchronic hepatitisBvirus infection in China between 1973and2021:Asystematicliteraturereviewandmeta-analysisof3740studiesand231 millionpeople[J].Gut,2023,72(12):2354-2363.DOl:10.1136/gutjnl2023-330691.
[3]ZHOUJH,ZHOUF,WANGWX,etal.Epidemiological featuresof NAFLD from1999 to 2018in China[J].Hepatology,2020,71(5): 1851-1864.DOl:10.1002/hep.31150.
[4]YANG B,ZHANG R.Progress on the treatment of metabolic associated fatty liver disease[J/CD].Chin JLiver Dis(Electronic Edition), 2024,16(4):25-30.DOl:10.3969/j.issn.1674-7380.2024.04.00. 楊彬,張瑞.代謝相關(guān)脂肪性肝病治療進(jìn)展[J/CD].中國(guó)肝臟病雜志 (電子版),2024,16(4):25-30.DOl:10.3969/j.issn.1674-7380.2024. 04.00.
[5]ZHANGF,JU JM,DIAO HT,et al.Innovative pharmacotherapy for hepaticmetabolic andchronic inflammatorydiseases in China[J]. BrJPharmacol,2024.DOl:10.1111/bph.16342.[Online aheadof print]
[6]TSONEVA DK,IVANOV MN,VINCIGUERRA M. Liquid liver biopsy fordisease diagnosisand prognosis[J].JClin Transl Hepatol,2023, 11(7):1520-1541.DOl:10.14218/jcth.2023.00040.
[7]DUJ,HUANGTY,ZHENGZ,etal.Biological functionandclinical applicationprospectof tsRNAs indigestivesystembiologyand pathology[J].CellCommunSignal,2023,21(1):302.DOl:10.1186/ s12964-023-01341-8.
[8]XIE YY,YAO LP,YU XC,etal.Action mechanismsand research methods of tRNA-derived small RNAs[J].Signal Transduct Target Ther,2020,5(1):109.DOI:10.1038/s41392-020-00217-4.
[9]KATSARAKIK,ARTEMAKIPI,PAPAGEORGIOUSG,etal.Identification of a novel,internal tRNA-derived RNA fragment asanew prognosticand screening biomarker in chronic lymphocytic leukemia,usingan innovativequantitativereal-time PCRassay[J].Leuk Res, 2019,87:106234.DOl:10.1016/j.leukres.2019.106234.
[IU」PENG KF,SANIUS HJ,NU∠AKI I. IranSTer KNA-aerIVea smaI HNAS in the pathogenesis of parasitic protozoa[J].Genes(Basel),2022, 13(2):286.DOl:10.3390/genes13020286.
[11]YU XC, XIE YY,ZHANG SS, et al. tRNA-derived fragments:Mechanismsunderlying their regulationof geneexpressionand potential applicationsas therapeutic targetsincancersandvirusinfections [J].Theranostics,2021,11(1):461-469.DOl:10.7150/thno.51963.
[12]YANG N,LI RJ,LIU RA,et al. The emerging function and promise of tRNA-derivedsmall RNAs in cancer[J].JCancer,2024,15(6):1642- 1656.DOl:10.7150/jca.89219.
[13]LIAO JY,GUO YH,ZHENG LL,et al. Both endo-siRNAs and tRNAderived small RNAsare involved inthedifferentiation of primitiveeukaryote Giardia Lamblia[J].Proc Natl Acad SciUSA,2014,111(39): 14159-14164. DOl:10.1073/pnas.1414394111.
[14] BALATTI V, NIGITA G,VENEZIANO D,et al. tsRNA signatures in cancer[J].Proc Natl Acad Sci USA,2017,114(30):8071-8076. DOI:10.1073/pnas.1706908114.
[15]ZHANG X,HEX,LIUC,et al.IL-4 inhibits the biogenesis of an epigenetically suppressive PIWl-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cels[J].J Immunol,2016,196(4): 1591-1603. DOl: 10.4049/jimmunol.1500805.
[16]TONG LH,ZHANG WX,QU BC,et al. The tRNA-derived fragment3017A promotes metastasis by inhibiting NELL2 in human gastric cancer[J].Front Oncol,2021,10:570916.DOl: 10.3389/fonc.2020. 570916.
[17]ZHANG SS,GUYQ,GEJX,et al.tRF-33-P4R8YP9LON4VDP inhibits gastric cancer progression via modulating STAT3 signaling pathway in an AGO2-dependent manner[J]. Oncogene,2024,43(28): 2160- 2171. DOl: 10.1038/s41388-024-03062-9.
[18]GOODARZI H,LIU XH,NGUYEN HCB,et al. Endogenous tRNA-derived fragments suppress breast cancer progresson via YBX1 displacement[J].Cel,2015,161(4):790-802. DOl:10.1016/j.cell.2015. 02.053.
[19]FALCONI M,GIANGROSSI M,ZABALETA ME,et al.A novel 3′ tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin[J].FASEB J,2019,33(12):13228-13240. DOI:10.1096/fj.201900382rr.
[20]CHEN Q,YAN MH,CAO ZH,et al.Sperm tsRNAs contribute to intergenerational inheritance of anacquiredmetabolic disorder[J].Science,2016,351(6271):397-400.DOl:10.1126/science.aad7977.
[21]SARKER G,SUN WF,ROSENKRANZ D, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs[J]. Proc Natl Acad Sci USA,2019,116(21): 10547-10556. DOl: 10.1073/pnas.1820810116.
[22]ZHANG YF,ZHANG XD,SHI JC,etal.Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs[J].Nat CellBiol,2018,20(5):535- 540.DOl: 10.1038/s41556-018-0087-2.
[23]YU T,XIE YM,TANG C,et al.Dnmt2-1 spermblock maternal transmission of a paramutant phenotype[J].Biol Reprod,2021,105(3): 603-612. DOl: 10.1093/biolre/ioab086.
[24]SHIJC,ZHANG YF, ZHOU T,et al.tsRNAs:The Swiss army knife for translational regulation[J]. Trends Biochem Sci, 2019,44(3):185- 189. DOl: 10.1016/j.tibs.2018.09.007.
[25]WU CD,LIU DK,ZHANG LF,et al.5'-tiRNA-GIn inhibits hepatocellularcarcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I[J].Front Med,2023, 17(3): 476-492. DOl: 10.1007/s11684-022-0966-6.
[26]GEBETSBERGER J,WYSS L,MLECZKO AM,et al.A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress[J].RNA Biol,2017,14(10):1364-1373.DOI: 10.1080/15476286.2016.1257470.
[27]MLECZKO AM,CELICHOWSKI P,BAKOWSKA-ZYWICKA K.Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyi-transter HINA syntnetasesLJ」. Biocnim BIopnys Acta Gene RegulMech,2018:S1874-9399(17)30380-2.DOl: 10.1016/j.bbagrm. 2018.06.001.
[28]FRICKER R, BROGLI R, LUIDALEPP H, et al. A tRNA half modulates translation as stress response in Trypanosoma brucei[J].Nat Commun,2019, 10(1): 118. DOl: 10.1038/s41467-018-07949-6.
[29]KIM HK,XU JP,CHU K,et al.A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice[J].Cell Rep,2019,29(12):3816-3824. DOl: 10.1016/ j.celrep.2019.11.062.
[30]SAIKIA M, JOBAVA R, PARISIEN M, et al. Angiogenin-cleaved tNA halves interact with cytochrome c,protecting cells from apoptosis during osmotic stress[J].Mol Cell Biol,2014,34(13):2450-2463. DOI: 10.1128/MCB.00136-14.
[31]KEAM SP, SOBALA A, TEN HAVE S, et al. tRNA-derived RNA fragmentsassociate with human multisynthetase complex(MSC)and modulateribosomal proteintranslation[J].JProteomeRes,2017, 16(2):413-420.DOl:10.1021/acs.jproteome.6b00267.
[32]DI FAZIO A,GULLEROVAM.An old friend with a new face:tRNAderived small RNAs with big regulatory potential in cancer biology [J].Br JCancer,2023,128(9):1625-1635.DOl:10.1038/s41416-023- 02191-4.
[33]BRAICU C,ZIMTA AA,HARANGUS A,et al. The function of noncoding RNAs in lung cancer tumorigenesis[J].Cancers(Basel), 2019,11(5):605.DOl: 10.3390/cancers11050605.
[34]SHI JC,ZHANG YF,TAN DM,et al. PANDORA-seq eXpands the repertoireofregulatorysmallRNAsbyovercomingRNAmodifications [J].Nat Cell Biol,2021,23(4): 424-436.DOl:10.1038/s41556-021- 00652-7.
[35]RUZMAN L, MIKOLASEVIC I, BARABA DEKANIC K, et al. Advances in diagnosis of chronic liver diseases in pediatric patients[J].World JPediatr,2018,14(6):541-547.DOl:10.1007/s12519-018-0197-8.
[36] SINGH S,OSNA NA,KHARBANDA KK. Treatment options for alcoholic and non-alcoholic fatty liver disease:A review[J].World J Gastroenterol,2017,23(36):6549-6570.DOl:10.3748/wjg.v23.i36.6549.
[37]ZHANG PY,WANG WY,MAO M,etal.Similaritiesand differences: Acomparative review of themolecular mechanismsand effectors of NAFLDand AFLD[J].Front Physiol,2021,12:710285.DOI:10.3389/ fphys.2021.710285.
[38]ZHONG FD,HU ZG,JIANG KQ,et al.Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFsand promotes alcohol-induced liver injury and steatosis[J].Cell Res, 2019,29(7):548-561.DOl:10.1038/s41422-019-0175-2.
[39]HUANG P,TU B, LIAO HJ, et al. Elevation of plasma tRNA fragments asapromisingbiomarkerfor liver fibrosisinnonalcoholic fattyliver disease[J]. Sci Rep,2021,11(1): 5886.DOl:10.1038/s41598-021- 85421-0.
[40]KIMY,LEE DH,PARK SH,et al.The interplay of microRNAs and transcription factors inautophagyregulation innonalcoholic fatty liver disease[J].Exp Mol Med,2021,53(4):548-559.DOl:10.1038/ s12276-021-00611-0.
[41]ZHU JJ,CHENG ML,ZHAO XK.A tRNA-derived fragment(tRF3001b)aggravates thedevelopment of nonalcoholic fatty liver disease by inhibiting autophagy[J].Life Sci,2020,257:118125.DOl: 10.1016/j.Ifs.2020.118125.
[42] ZHU JJ,WEN Y, ZHANG QL,et al. The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway[J].J Transl Med,2022,20(1):128.DOl: 10.1186/s12967-022-03343-5.
[43]ANWANWAND,SINGH SK,SINGH S,etal.Challenges in liver cancerand possible treatmentapproaches[J].Biochim Biophys Acta Rev Cancer,2020,1873(1):188314.DOl:10.1016/j.bbcan.2019. 188314.
[44]ZUO Y,CHEN SQ,YAN LL,et al.Development of a tRNA-derived small RNA diagnostic and prognostic signature in liver cancer[J]. Genes Dis,2021,9(2):393-400. DOl: 10.1016/j.gendis.2021.01.006.
[45]ZHUL,LIJ,GONG YL,et al. Exosomal tRNA-derived small RNA as apromising biomarker for cancer diagnosis[J].Mol Cancer,2019, 18(1):74.DOI:10.1186/s12943-019-1000-8.
[46]WANG Y,WENG QY,GE JX,et al.tRNA-derived small RNAs: Mechanismsand potential roles in cancers[J].Genes Dis,2022,9 (6):1431-1442.DOl: 10.1016/j.gendis.2021.12.009.
[47]ZHAN SB,YANG P,ZHOU SK,etal. Serum mitochondrial tsRNA servesas a novel biomarker for hepatocarcinoma diagnosis[J]. Front Med,2022,16(2):216-226.DOl:10.1007/s11684-022-0920-7.
[48]XU TX,YUAN J,SONG F,et al. Exploring the functional role of tRF39-8HM2OSRNLNKSEKH9 in hepatocellular carcinoma[J]. Heliyon, 2024,10(5):e27153.DOl:10.1016/j.heliyon.2024.e27153.
[49]ZHOU YQ,HU JJ,LIU L,etal. Gly-tRF enhances LCSC-like propertiesand promotes HCC cellsmigration by targeting NDFIP2[J].CancerCellInt,2021,21(1):502.DOl:10.1186/s12935-021-02102-8.
[50]KIMHK,F(xiàn)UCHS G,WANG SC,et al.A transfer-RNA-derived small RNA regulates ribosome biogenesis[J].Nature,2017,552(7683): 57-62.DOl:10.1038/nature25005.
[51]LUO JJ,LI JQ,LIP,et al.Acute-on-chronic liver failure:Far to go-a review[J].CritCare,2023,27(1):259.DOl:10.1186/s13054-023- 04540-4.
[52]XU WL,YU MX,WU YK,et al.Plasma-derived exosomal sncRNA as apromisingdiagnostic biomarker forearly detectionof HBV-related acute-on-chronic liver failure[J].Front Cell Infect Microbiol,2022, 12:923300.DOl:10.3389/fcimb.2022.923300.
[53]YING SY,LI PC,WANG JQ,et al.tRF-GIn-CTG-026 ameliorates liver injuryby alleviatingglobal proteinsynthesis[J].Signal Transduct TargetTher,2023,8(1):144.DOl:10.1038/s41392-023-01351-5.
[54]SELITSKYSR,BARAN-GALEJ,HONDAM,etal.Small tRNA-derived RNAsare increased and more abundant thanmicroRNAs in chronic hepatitisBand C[J].Sci Rep,2015,5:7675.DOl:10.1038/ srep07675.
收稿日期:2024-09-29:錄用日期:2024-11-07本文編輯:邢翔宇
引證本文:LIYL,XUY,GUANZW,etal.Biological function of tRNA-derived small RNA and its expression and clinical significance in liver diseases[J].JClin Hepatol,2o25,41 (6):1227-1234.
李銀麗,徐炎,管志偉,等.轉(zhuǎn)運(yùn)RNA衍生小RNA(tsRNA)的生物 學(xué)功能及在肝臟疾病中的表達(dá)和臨床意義[J].臨床肝膽病雜志, 2025,41(6):1227-1234.