關鍵詞:非酒精性脂肪性肝??;表觀基因組學;病理過程
基金項目:國家自然科學基金(81904154,82205086);河南省科技攻關計劃(242102310500);河南省“雙一流”創(chuàng)建學科中醫(yī)學科學研究專項(HSRP-DFCTCM-2023-1-10)
Abstract:Epigeneticmechanismsplayacrucialroleinthedevelopmentandprogresionof nonalcoholicfaty liverdisease (NAFLD),especiallamong lean individuals.Theresearchonrelated epigenetic mechanismshasprovidednewcluesand direction forrevealing theunderlyingcausesandtreatmentstrategiesofNAFLD.Thisarticleintroduces theroleofepigeneticsin thedevelopmentandprogresioofNAFLDamongleanindividualsinrecentyears,analyzesthelatestresearchadvances inthe epigeneticsofNAFLDinthispopulation,and brieflydescribesthebasicconceptsofepigenetics,includingDNAmethylation, histonemodifications,andnon-codingRNAregulation.Thisarticlealsodiscusseshowepigeneticalterationsimpactthe pathogenesis,disease progression,and treatment strategies of NAFLD in lean individuals.
KeyWords:Non-alcoholic FattyLiver Disease;Epigenomics;Pathologic Processes
Researchfunding:NationalNatural ScienceFoundationof China(81904154,82205086);ScienceandTechnology KeyProject of Henan Province(242102310500);Special ResearchProjectfor Traditional Chinese Medicine Sciencein Henan Province's “Double First Class” Creation Discipline(HSRP-DFCTCM-2023-1-10)
非酒精性脂肪性肝?。∟AFLD)包括非酒精性單純性肝脂肪變、非酒精性脂肪性肝炎(NASH)肝硬化和肝細胞癌(HCC)[I],是指排除酒精等明顯造成肝損傷的因素之外的一種多系統(tǒng)代謝性疾病[2]。截至2021年5月,全球NAFLD總體患病率估算為 32.4%[3] ,并且隨著時間的推移,其總體患病率不斷升高。目前NASH已成為全球最常見的慢性肝病之一,并迅速成為HCC患者中肝移植的首要適應證[4]。據(jù)報道,NAFLD患者中有 19.2% 是瘦人體質(zhì)[5]。相較于非瘦型NAFLD,瘦型NAFLD患者的糖尿病、高血壓、高甘油三酯血癥、中心性肥胖和代謝綜合征的患病率較低[6],具有更好的代謝特征,被認為是相對良性的亞型,但瘦型NAFLD會出現(xiàn)更嚴重的肝臟疾病進展和不良臨床結局[7]。瘦型NAFLD的發(fā)展具有復雜性和多因素性,其確切機制尚未完全清楚。近年來,越來越多的證據(jù)證明在瘦型NAFLD發(fā)生發(fā)展中表觀遺傳調(diào)控具有關鍵作用。
關于瘦型NAFLD,一般認為NAFLD患者身體質(zhì)量指數(shù)( BMI)lt;25kg/m2 即可診斷,但在亞洲人群中建議BMIlt;23kg/m2[8] 。研究顯示,與BMI正常者相比,BMIlt;18.5kg/m2 的體質(zhì)量不足者,其NAFLD的患病率更低;與非瘦型NAFLD相比,體質(zhì)量不足的NAFLD患者可能更年輕,收縮壓和舒張壓更低[9]。根據(jù)瘦型NAFLD流行病學、預后和自然病程,可將其分為兩種亞型[10]:1型以內(nèi)臟肥胖和胰島素抵抗為核心,其發(fā)病受環(huán)境和遺傳易感性及表觀遺傳因素影響更強[1];而2型特指單基因疾病所引發(fā)的肝脂肪變性[12],由單基因疾病驅動,無內(nèi)臟肥胖的瘦型NAFLD個體的鑒別診斷可能會被忽視。兩種亞型與非瘦型NAFLD的區(qū)別如表1所示。綜上,瘦型NAFLD疾病機制復雜,受到多種表觀遺傳機制的影響。因此,本文就瘦型NAFLD的表觀遺傳調(diào)控相關研究進展進行綜述。
1表觀遺傳學基礎
表觀遺傳學涉及表型變異性、代謝、疾病、遺傳甚至進化的研究,是指在基本DNA序列不變的情況下,由于環(huán)境因素,遺傳信息通過某些機制或途徑,發(fā)生的可遺傳給后代并能影響細胞表型的基因表達調(diào)控變化[13]。表觀遺傳學可以通過對組蛋白和核酸進行共價修飾,在不改變DNA序列的情況下調(diào)節(jié)基因序列,協(xié)同調(diào)節(jié)染色質(zhì)結構[14]。本文涉及的瘦型NAFLD表觀遺傳現(xiàn)象主要包括3種調(diào)節(jié)機制:DNA甲基化修飾、組蛋白修飾和非編碼RNA(ncRNA)。
1.1DNA甲基化修飾DNA甲基化是指將甲基轉移到胞嘧啶的C5位上,從而形成5-甲基胞嘧啶,通過募集參與基因抑制的蛋白質(zhì)或者抑制轉錄因子與DNA的結合來調(diào)節(jié)基因的表達[15]。其通過甲基化位點的組蛋白標記穩(wěn)定遺傳,且DNA序列不發(fā)生變化[16]。研究表明,DNA甲基化增加導致長鏈脂肪酸延伸酶2(elongationofverylongchainfattyacids-likeprotein2,Elovl2)表達水平下調(diào)。Elovl2是一種多不飽和脂肪酸合成的主要控制基因[7],其缺乏會導致肝臟炎癥的惡化,若Elovl2功能受損則會干擾脂質(zhì)合成,加重內(nèi)質(zhì)網(wǎng)應激和線粒體障礙[18]。Elovl2通過合成肝臟中的二十二碳六烯酸來控制脂肪從頭合成途徑,并且還能以不依賴于固醇調(diào)節(jié)元件結合蛋白1的方式,調(diào)節(jié)脂質(zhì)儲存以及脂肪量的增加[19]。綜上,DNA甲基化異常模式可能成為瘦型NAFLD診斷和預后的生物學標志及治療新靶點。
1.2組蛋白修飾組蛋白是指帶正電荷的蛋白質(zhì)與帶負電荷的DNA緊密結合并組裝成核小體復合物[20]。研究指出,macroH2A1是最大的H2A變體,以兩種選擇性剪接亞型存在:macroH2A1.1和macroH2A1.2,二者可調(diào)節(jié)細胞可塑性和增殖[2I]。在瘦型NAFLD患者血清中觀察到macroH2A1.1和macroH2A1.2無論單獨存在還是與H2B結合,其水平均明顯下降[22]。這表明組蛋白修飾參與了瘦型NAFLD的發(fā)展機制。
1.3ncRNAncRNA代表一類不編碼蛋白質(zhì)的RNA分子,被認為是積極參與多種生理和病理過程的重要表觀遺傳調(diào)節(jié)因子[23]。其中微小RNA(microRNA,miRNA)是小ncRNA1的一個亞群,在生物過程和表觀遺傳機制的調(diào)控中發(fā)揮重要作用,被證明是NAFLD炎癥的重要調(diào)節(jié)因子[24]。研究顯示,在瘦型NAFLD患者血清中miR-4488表達水平升高,提示miR-4488具有無創(chuàng)和早期檢測瘦型NAFLD的潛力[25]。綜上,miRNA作為小ncRNA的一個子集,已被證實是NAFLD炎癥的關鍵調(diào)節(jié)因子,凸顯了其在代謝性疾病中的重要性,通過靶向miRNA的相關機制,可能為瘦型NAFLD的有效診斷和治療提供新途徑。
2瘦型NAFLD的表觀遺傳學特征
2.1瘦型NAFLD與非瘦型NAFLD的表觀遺傳學差異研究表明,瘦型NAFLD與非瘦型NAFLD在甲基化模式方面不同,如在苓桂術甘湯干預后,非瘦型NAFLD患者蛋白磷酸酶1調(diào)節(jié)亞基3A和自噬相關3的DNAN6甲基腺嘌呤修飾水平明顯增高,而瘦型NAFLD患者中沒有明顯變化[26]。在HCC的相關研究中,瘦型與非瘦型NAFLD差異甲基化區(qū)域(differentiallymethylated region,DMR)不存在重疊,且甲基化差異巨大,非瘦型NASH-HCC中參與Wnt信號通路的基因在低甲基化DMR中富集,而瘦型NASH-HCC由包括脂質(zhì)代謝的其他信號通路驅動[27]。此外,在瘦型NAFLD中組蛋白修飾也表現(xiàn)出獨特的模式。如組蛋白水平可以區(qū)分脂肪變性的程度,瘦型NAFLD組蛋白變體macroH2A1.2的下調(diào)幾乎是macroH2A1.1的兩倍[22]。 」。macroH2A1.2在瘦型NAFLD患者中呈現(xiàn)出不同的分布特征,這種分布差異可能對染色質(zhì)結構和基因表達產(chǎn)生深遠影響。上述表觀遺傳學上的差異進一步揭示了瘦型NAFLD獨特的病理機制。
2.2瘦型NAFLD中特異性表觀遺傳標記的識別針對瘦型NAFLD的檢測極其困難且容易被忽視,特異性表觀遺傳標記的識別具有重要意義。有研究人員通過高通量測序技術發(fā)現(xiàn)了一些特異性DNA甲基化位點,這些位點在瘦型NAFLD患者中顯著不同于健康對照組。如PNPLA6和LDLRAP1在脂質(zhì)代謝中存在甲基化差異[27]。這些與脂質(zhì)代謝相關的基因在瘦型NAFLD患者中會影響疾病的進展,并可以為新興的治療方案提供靶點。組蛋白變體macroH2A1.1和macroH2A1.2的有關變化亦可以作為瘦型NAFLD患者的非侵入性標記位點[22]。另有研究表明,在ncRNA中, miR-367 不僅在肥胖小鼠中表達上調(diào),其過表達也會導致瘦型小鼠甘油三酯累積[28]。因此,評估循環(huán)miRNA譜有可能成為未來檢測肝病嚴重程度的無創(chuàng)方法,并且對miRNA領域的研究可能會促進開發(fā)瘦型NAFLD的新型診斷和治療方式。綜上,這些特異性表觀遺傳標記有助于理解瘦型NAFLD的發(fā)病機制,并為早期診斷和個性化治療提供新的思路。
3表觀遺傳學在瘦型NAFLD發(fā)病機制中的作用
3.1表觀遺傳學改變影響脂質(zhì)代謝和炎癥反應表觀遺傳學改變在瘦型NAFLD的發(fā)病機制中扮演了重要角色,特別是在脂質(zhì)代謝和炎癥反應方面。DNA甲基化、組蛋白修飾和ncRNA等機制均能夠顯著影響基因表達,從而調(diào)控脂質(zhì)代謝途徑(圖1)。
DNA甲基化的相關變化會導致脂質(zhì)代謝相關基因的表達異常,從而促進肝臟脂肪堆積。磷脂酰膽堿代謝與NAFLD有關,而肝臟中大約 30% 的磷脂酰膽堿通過磷脂酰乙醇胺N-甲基轉移酶(phosphatidylethanolaminen-methyltransferase,PEMT)途徑產(chǎn)生,即將甲基轉移到胞嘧啶上,并將磷脂酰乙醇胺催化為磷脂酰膽堿[29]。研究表明,相比非瘦型NAFLD,瘦型NAFLD中PEMTRS7946變異的風險提高3倍[30]。這可能會損害PEMT活性和瘦人NASH表型的發(fā)展。而肝臟X受體能夠增強脂肪生成,促進脂肪和肝組織中大多數(shù)產(chǎn)脂和成脂基因的表達[31]。這些修飾能夠改變?nèi)旧|(zhì)結構,使得基因更易于或更難以被轉錄。此外,組蛋白修飾也在調(diào)控脂質(zhì)代謝基因的表達中起到了關鍵作用,如沉默信息調(diào)節(jié)因子2相關酶1能夠影響脂質(zhì)和肝臟葡萄糖代謝[32]。而核受體亞家族 2F組成員 6(nuclear receptor subfamily 2 groupFmember6,NR2F6)是甘油三酯穩(wěn)態(tài)的重要調(diào)節(jié)因子和NAFLD發(fā)展的致病因素,NR2F6上調(diào)可以促進脂肪酸轉運蛋白CD36的表達,從而增強肝臟中脂肪酸的攝取和甘油三酯積累,與肝脂肪變性密切相關。并且NR2F6過表達可以增強乙?;M蛋白H3在CD36啟動子上NR2F6結合區(qū)域的富集,從而促進NR2F6轉錄[33]。ncRNA,特別是miRNA,可通過與mRNA結合并抑制其翻譯,進一步調(diào)控脂質(zhì)代謝基因的表達。如N6-甲基腺苷(N6-methyladenosine,m6A)是真核生物體內(nèi)最為豐富的內(nèi)部RNA修飾之一[34],這種甲基化修飾在脂質(zhì)代謝中發(fā)揮獨特作用,涉及肝細胞炎癥和血管重建[35],從而可以推測,通過靶向特定的 m6A 調(diào)節(jié)因子,可能為NAFLD提供潛在的治療方法。而通過抑制FTO(脂肪量與肥胖)相關蛋白的功能,可以增加 m6A 水平或者阻止油酸誘導的甘油三酯的產(chǎn)生[36-37]。
上述表觀遺傳學改變不僅會影響NAFLD的脂質(zhì)代謝,還能通過調(diào)控炎癥相關基因的表達,促進炎癥反應的發(fā)生和維持。然而,針對瘦型NAFLD疾病中這些表觀遺傳學改變的具體作用及發(fā)展機制還需要進一步探究。
3.2表觀遺傳學在瘦型NAFLD中胰島素抵抗中的作用胰島素抵抗是瘦型NAFLD1型發(fā)展的關鍵因素之一,表觀遺傳學改變在其中發(fā)揮了重要作用。在生理條件下,胰島素與受體結合會激活固醇調(diào)節(jié)元件結合蛋白1,可以促進肝臟從頭脂肪生成。因此胰島素抵抗對于減輕NAFLD的進展和改善患者健康狀況極其重要。表觀遺傳機制能夠通過調(diào)控胰島素信號通路相關基因的表達,從而影響胰島素敏感性。其中組蛋白去乙?;福ㄈ缃M蛋白去乙?;?和組蛋白去乙?;?)可以促進甘油三酯代謝并增強胰島素敏感性[38]。研究表明,利用支鏈酮酸脫氫酶激酶的小分子變構抑制劑BT2后,在瘦型小鼠中能夠觀察到胰島素敏感性快速改善,且BT2治療可減少脂肪變性和炎癥[39]。綜上所述,表觀遺傳學改變可以通過多種機制影響胰島素抵抗,從而在瘦型NAFLD的發(fā)病機制中發(fā)揮重要作用。
4表觀遺傳學在瘦型NAFLD疾病進展及預后治療中的作用
4.1表觀遺傳學改變與肝纖維化和肝硬化的關系表觀遺傳機制在肝纖維化的發(fā)生和發(fā)展中具有重要影響。研究表明,EZH2(組蛋白甲基轉移酶)通過調(diào)節(jié)炎癥因子和纖維化標志物的表達水平,加速肝纖維化的進程,提示
EZH2抑制劑可能成為治療NASH的一種創(chuàng)新療法[40]此外,ncRNA如miRNA和lncRNA(長鏈非編碼RNA)也被發(fā)現(xiàn)參與了NAFLD的肝纖維化過程,通過調(diào)控基因表達和信號通路,影響肝細胞的增殖和凋亡。例如, miR-4488 可以通過多種通路影響NAFLD的進展[25]。此外,Xin等[41]通過msRNA(miRNA-sized smallRNA)測序發(fā)現(xiàn)埃希氏-志賀氏菌屬在瘦型NAFLD的疾病進展中具有重要作用,msRNA23487能夠下調(diào)肝臟過氧化物酶體增殖物激活受體 ∝ 表達,并有助于肝臟中的脂質(zhì)積累。這些ncRNA通過調(diào)控與脂質(zhì)代謝和炎癥反應相關的基因表達來發(fā)揮作用。綜上,表觀遺傳學改變在瘦型NAFLD的肝纖維化和肝硬化進展中起著重要作用,影響疾病進展。4.2表觀遺傳學在瘦型NAFLD患者預后評估中的潛在應用特定的DNA甲基化模式和組蛋白修飾狀態(tài)可以作為瘦型NAFLD進展和預后的生物標志物。如PEMT基因的變異Val175Met在瘦型NASH患者中更常見,可能作為NASH易感性的預后生物標志物[42]。另外,隨著ncRNA在瘦型NAFLD中的調(diào)控作用逐漸被揭示,miRNA也被確定為無創(chuàng)診斷和疾病嚴重程度分級的可靠循環(huán)生物標志物[43]。這些表觀遺傳學標志物不僅可以幫助識別高風險患者,還可以用于監(jiān)測治療效果和疾病進展,從而為個體化治療提供依據(jù)。
4.3表觀遺傳學在瘦型NAFLD治療中的應用前景表觀遺傳調(diào)控機制是可逆的,并且具有動態(tài)調(diào)節(jié)的潛力,其改變可能作為未來臨床的治療策略。甾醇調(diào)節(jié)元件結合蛋白裂解激活蛋白(sterol regulatory element-binding proteincleavage-activatingprotein,SCAP)可以通過激活STING-NF-κB 信號通路,調(diào)節(jié)巨噬細胞炎癥反應,在瘦型NAFLD的發(fā)病機理中發(fā)揮重要作用。因此,巨噬細胞中SCAP的抑制策略,可能為瘦型NAFLD治療開辟新的途徑[44]。
另有研究顯示,肝纖維化和脂肪變性的嚴重程度與肌肉減少癥有關[45]。而瘦型NAFLD患者肌肉減少癥的患病率顯著高于非瘦型NAFLD患者[46]。研究顯示,miR-486在調(diào)節(jié)肌肉生長中發(fā)揮著重要作用,而規(guī)律的體育活動可以顯著提升miR-486的表達水平[47]。綜上,目前對于瘦型NAFLD的治療依然是維持體育鍛煉,其標準治療包括飲食改變和身體活動,從而減少內(nèi)臟肥胖。
5小結與展望
本文綜述了表觀遺傳學在瘦型NAFLD發(fā)展中的作用機制,通過分析瘦型NAFLD與非瘦型NAFLD在表觀遺傳學方面的差異,強調(diào)了表觀遺傳學改變在NAFLD發(fā)病、進展和治療中的重要性。同時,介紹了表觀遺傳學標志物在瘦型NAFLD無創(chuàng)檢測應用中展現(xiàn)出的顯著優(yōu)勢,但目前研究尚且不足,特別是有關組蛋白變異方面,值得進一步探索。目前,對于瘦型NAFLD的表觀遺傳學治療仍處于理論探索的早期階段,但已顯現(xiàn)出巨大潛力和優(yōu)勢,未來需要進一步研究表觀遺傳學在瘦型NAFLD中的具體作用機制及在臨床上的檢測,以便于開發(fā)針對表觀遺傳學改變的新型治療策略。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:徐俊姣負責起草和撰寫論文;劉素彤負責設計并討論文章框架;張琪振、管雅捷、崔蓓蕾、吳文靜負責關鍵內(nèi)容的修改;劉鳴昊負責指導撰寫文章并最后定稿。
參考文獻:
[1]LIUMH,LIU ST,ZHANGLH,etal.Mechanism of ferroptosis in theformation of nonalcoholic fatty liver disease/nonalcoholic steato-hepatitis[J]. JClin Hepatol,2022,38(5):1152-1155.DOl:10.3969/j.issn.1001-5256.2022.05.037.劉鳴昊,劉素彤,張麗慧,等.鐵死亡的發(fā)生機制及其在非酒精性脂肪性肝病/非酒精性脂肪性肝炎發(fā)生發(fā)展中的作用[J].臨床肝膽病雜志,2022,38(5):1152-1155.DOl:10.3969/j.issn.1001-5256.2022.05.037.
[2]RONGL,ZOUJY,RANW,etal.Advancements in the treatmentofnon-alcoholic fatty liver disease(NAFLD)[J].Front Endocrinol(Lausanne),2023,13:1087260.DOl:10.3389/fendo.2022.1087260.
[3]RIAZI K,AZHARI H,CHARETTE JH,etal. The prevalence and inci-dence of NAFLDworldwide:Asystematic reviewandmeta-analysis[J].LancetGastroenterolHepatol,2022,7(9):851-861.DOl:10.1016/
S2468-1253(22)00165-0.
[4]YOUNOSSI ZM, STEPANOVA M, ONG J, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States[J].Clin Gastroenterol Hepatol,2021,19 (3):580-589. DOl: 10.1016/j.cgh.2020.05.064.
[5]HE SH,DAl L,ZHENG J,et al.Therapeutic effect of low-carbohydrate dietand lifestyle intervention on patientswith lean nonalcoholic fatty liver disease[J].JClin Hepatol,2024,40(5): 946-951. DOl: 10.12449/ JCH240513. 何詩華,戴璐,鄭潔,等.低碳水化合物飲食和生活方式干預對瘦型非酒 精性脂肪性肝病患者的療效觀察[J].臨床肝膽病雜志,2024,40(5): 946-951. DOI:10.12449/JCH240513.
[6]GOLABI P,PAlK J,F(xiàn)UKUI N,et al.Patients with lean nonalcoholic fattyliver diseasearemetabolicallyabnormaland havea higherrisk for mortality[J].Clin Diabetes,2019,37(1):65-72.DOl:10.2337/ cd18-0026.
[7]NABI O,LAPIDUS N, BOURSIER J,et al. Lean individuals with NAFLD have more severe liver disease and poorer clinical outcomes(NASHCO Study)[J].Hepatology,2023,78(1): 272-283. DOl: 10.1097/ HEP.0000000000000329.
[8] SU YS, CHEN YW. AGA clinical practice update:diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review[J]. Chin J Gastroenterol Hepatol,2024,33(3):324- 331.DOl: 10.3969/j.issn.1006-5709.2024.03.018. 蘇殷實,陳源文.AGA臨床實踐指南更新:瘦型NAFLD的診斷和管理 (專家評議)[J].胃腸病學和肝病學雜志,2024,33(3):324-331.DOI: 10.3969/j.issn.1006-5709.2024.03.018.
[9]FAHIM SM, CHOWDHURY MAB,ALAM S.Non-alcoholic fatty liver disease(NAFLD)among underweight adults[J].Clin Nutr ESPEN, 2020,38:80-85.DOl:10.1016/j.clnesp.2020.06.002.
[10]VILARINHO S, AJMERA V,ZHENG M, et al. Emerging role of genomic analysis in clinical evaluation of lean individuals with NAFLD [J].Hepatology,2021,74(4): 2241-2250. DOl: 10.1002/hep.32047.
[11]XU RH, PAN JS,ZHOU WJ,et al. Recent advances in lean NAFLD [J].Biomed Pharmacother,2022,153: 113331. DOl: 10.1016/j.biopha. 2022.113331.
[12]CHAHAL D,SHARMA D,KESHAVARZI S,et al. Distinctive clinical andgenetic features of lean vs overweight fatty liver disease using theUK Biobank[J].Hepatol Int,2022,16(2):325-336.DOl:10.1007/ s12072-022-10304-z.
[13] ISAC T, ISAC S, RABABOC R,et al. Epigenetics in inflammatory liver diseases:A clinical perspective(Review)[J].Exp Ther Med, 2022,23(5):366.D0l:10.3892/etm.2022.11293.
[14]SHIYC,ZHANG HJ, HUANG SL,etal. Epigenetic regulation in cardiovascular disease:Mechanisms and advances in clinical trials [J].Signal Transduct Target Ther,2022,7(1):200.DOl:10.1038/ s41392-022-01055-2.
[15]MOORE LD,LET,F(xiàn)AN GP. DNA methylation and its basic function [J].Neuropsychopharmacology,2013,38(1): 23-38.DOl:10.1038/ npp.2012.112.
[16] YANG ZH, DANG YQ, JI G. Role of epigenetics in transformationof inflammation intocolorectal cancer[J].WorldJ Gastroenterol,2019, 25(23): 2863-2877. DOl:10.3748/wjg.v25.i23.2863.
[17]GONZALEZ-BENGTSSON A, ASADI A, GAO H,et al. Estrogen enhancesthe expression of the polyunsaturated fatty acid elongase Elovl2via ERα in breast cancer cells[J].PLoS One,2016,11(10): e0164241. DOl: 10.1371/journal.pone.0164241.
[18]LI X,WANG JQ,WANG LY,et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging[J]. Signal Transduct Target Ther,2022,7(1):162.DOl:10.1038/s41392- 022-00964-6.
[19]PAUTER AM,OLSSON P,ASADI A,et al.Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice[J].JLipidRes,2014,55(4):718- 728. DOI: 10.1194/jlr.M046151.
[20]LI X, LI XD.Integrative chemical biology approaches to deciphering the histone code:A problem-driven journey[J].Acc Chem Res,2021, 54(19): 3734-3747. DOl: 10.1021/acs.accounts.1c00463.
[21] GIALLONGO S,LO RE O, LOCHMANOVA G, et al. Phosphorylation withinintrinsicdisorderedregiondiscriminateshistonevariantmacroH2A1 splicing isoforms-macroH2A1.1 and macroH2A1.2[J].Biology(Basel),2021,10(7): 659. DOl: 10.3390/biology10070659.
[22]BUZOVA D, MAUGERI A, LIGUORI A, et al. Circulating histone signatureof human leanmetabolic-associated fattyliverdisease(MAFLD) [J].Clin Epigenetics,2020,12(1):126.DOl:10.1186/s13148-020- 00917-2.
[23]HOLOCH D,MOAZED D.RNA-mediated epigenetic regulation of gene expression[J]. Nat Rev Genet,2015,16(2):71-84. DOl:10.1038/ nrg3863.
[24] AMERIKANOU C,PAPADA E, GIOXARI A, et al. Mastiha has efficacy inimmune-mediated inflammatorydiseases throughamicroRNA-155 Th17 dependent action[J].Pharmacol Res,2021,171:105753. DOl: 10.1016/j.phrs.2021.105753.
[25]SHENN,TANGL,QIAN YF,et al.Serum miR-4488 asa potential biomarkerof lean nonalcoholic fatty liver disease[J].Ann Transl Med, 2023,11(4):173.DOl:10.21037/atm-22-6620.
[26]DAl L,XU JJ,LIU BC,et al.Lingguizhugan Decoction,a Chinese herbal formula,improves insulin resistance in overweight/obese subjectswith non-alcoholic fatty liver disease:A translational approach [J].Front Med,2022,16(5):745-759.DOl:10.1007/s11684-021- 0880-3.
[27]HYMEL E,F(xiàn)ISHER KW,F(xiàn)ARAZI PA.Differential methylation patterns inleanandobesenon-alcoholicsteatohepatitis-associated hepatocellular carcinoma[J].BMC Cancer,2022,22(1): 1276. DOl:10.1186/ s12885-022-10389-7.
[28]LIDD,LIUY,XUEL,et al. Up-regulation of microRNA-367 promotes liver steatosis through repressing TBL1 inobese mice[J].Eur Rev Med Pharmacol Sci,2017,21(7):1598-1603.
[29]LIJY,IG,LIJY,etal.Posphatidylethanolamine N-methyltrasferae: From functions to diseases[J].Aging Dis,2023,14(3):879-891.DOl: 10.14336/AD.2022.1025.
[30]BALE G,VISHNUBHOTLA RV,MITNALA S,et al.Whole-exome sequencing identifies a variant in phosphatidylethanolamine N-methyltransferase gene to beassociatedwith lean-nonalcoholic fattyliver disease[J].JClinExp Hepatol,2019,9(5):561-568.DOl:10. 1016/j.jceh.2019.02.001.
[31]SEO JB,MOON HM,KIM WS,et al.Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gammaexpression[J].Mol Cell Biol, 2004,24(8):3430-3444.DOI:10.1128/MCB.24.8.3430-3444.2004.
[32]SHAMARDL HAMA,IBRAHIM NA,MERZEBAN DH,et al. Resveratroland Dulaglutideameliorateadiposityand liverdysfunctionin ratswith diet-induced metabolic syndrome:Role of SiRT-1/adipokines/PPARγandIGF-1[J].Daru,2023,31(1):13-27.DOI:10.1007/ s40199-023-00458-y.
[33] ZHOU B,JIA LJ, ZHANG ZJ,et al. The nuclear orphan receptor NR2F6 promotes hepatic steatosis through upregulation of fatty acid transporter CD36[J].Adv Sci (Weinh),2020,7(21): 2002273.DOI: 10.1002/advs.202002273.
[34] CHEN MN,WONG CM.The emerging roles of N6-methyladenosine (m6A)deregulationin liver carcinogenesis[J].Mol Cancer,2020, 19(1): 44. DOl: 10.1186/s12943-020-01172-y.
[35]HOU J,ZHANG H,LIU J,et al.YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J].Mol Cancer,2019,18(1):163.DOl:10.1186/s12943-019-1082-3.
[36]HUY,F(xiàn)ENG Y,ZHANG LC,et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J].RNA Biol,2020,17(7):930-942. DOI:10.1080/ 15476286.2020.1736868.
[37]PENG SM,XIAO W,JU DP,et al. Identificationof entacapone as a chemical inhibitorofFTOmediatingmetabolicregulationthrough FOXO1[J].SciTranslMed,2019,11(488):eaau7116.DOl:10.1126/ scitranslmed.aau7116.
[38]XU F,GUO WR.The progress of epigenetics in the development and progression of non-alcoholic fatty liver disease[J].Liver Res, 2020,4(3): 118-123. DOl: 10.1016/j.livres.2020.08.003.
[39]BOLLINGER E,PELOQUINM,LIBERA J,et al.BDK inhibition acts asacatabolic switch to mimic fastingand improve metabolism in mice[J].Mol Metab,2022,66:101611.DOl:10.1016/j.molmet.2022. 101611.
[40]LEE S,WOO DC,KANG J,et al.The role of the histone methyltransferaseEZH2inliverinflammationandfibrosisinSTAMNASHmice [J].Biology(Basel),2020,9(5):93. DOl:10.3390/biology9050093.
[41]XIN FZ,ZHAO ZH,LIU XL,et al.Escherichia fergusonii promotes nonobesenonalcoholic fatty liver disease by interferingwith host hepatic lipid metabolism through its ownmsRNA 23487[J].Cell Mol Gastroenterol Hepatol,2022,13(3):827-841.DOl:10.1016/j.jcmgh. 2021.12.003.
[42]DONG H,WANG JJ, LI CM,et al.The phosphatidylethanolamine Nmethyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population[J].J Hepatol,2007,46(5):915-920.D0l:10.1016/j.jhep.2006.12.012.
[43]LIU CH,AMPUERO J,GIL-GOMEZA,et al.miRNAs in patientswith non-alcoholic fatty liver disease:A systematic review and meta-analysis[J].J Hepatol,2018,69(6):1335-1348.DOl:10.1016/j.jhep. 2018.08.008.
[44]HUANG XY,YAO YC,HOU XL,et al.Macrophage SCAP contributes to metaflammation and lean NAFLD by activating STING-NF-kB signalingpathway[J].Cell Mol Gastroenterol Hepatol,2022,14(1):1- 26.DOl: 10.1016/j.jcmgh.2022.03.006.
[45]PETTAS,CIMINNISI S,DI MARCOV,etal.Sarcopenia isassociatedwithsevere liver fibrosisinpatientswithnon-alcoholicfatty liver disease[J].AlimentPharmacolTher,2017,45(4):510-518.DOl:10. 1111/apt.13889.
[46]HIMOTOT,MIYATAKEK,MAEBAT,etal.Verification of thenutritionaland dietary factorsassociatedwithskeletal muscle indexin Japanesepatientswith nonalcoholic fatty liverdisease[J].CanJ Gastroenterol Hepatol,2020,2020:3576974.DOl:10.1155/2020/ 3576974.
[47]NAIR VD,GE YC,LI SD,et al. Sedentary and trained older men have distinct circulating exosomal microRNA profilesat baseline and in response to acute exercise[J].Front Physiol,2020,11:605. DOI: 10.3389/fphys.2020.00605.
收稿日期:2024-09-20:錄用日期:2024-10-11本文編輯:葛俊引證本文:XUJJ,LIUST,ZHANG QZ,etal.Role andclinicalapplicationprospectofepigeneticsinleannonalcoholicfattyliverdisease[J].JClin Hepatol,2025,41(6):1161-1166.徐俊姣,劉素彤,張琪振,等.表觀遺傳學在瘦型非酒精性脂肪性肝病中的作用及臨床應用前景[J].臨床肝膽病雜志,2025,41(6):1161-1166.