摘 要: 長鏈非編碼RNA(lncRNA)是一類長度超過200 bp且缺乏蛋白質(zhì)編碼能力的RNA,已有研究表明lncRNA在病毒復(fù)制過程中具有重要的生物學(xué)作用。本研究分析了豬流行性腹瀉病毒(PEDV)感染細(xì)胞的lncRNA表達(dá)變化及其對PEDV復(fù)制的影響。轉(zhuǎn)錄組測序PEDV感染 Vero-E6細(xì)胞24h的樣品中l(wèi)ncRNA,構(gòu)建lncRNA 18850過表達(dá)質(zhì)粒,Western blot、qPCR以及TCID50等方法分析lncRNA 18850過表達(dá)對PEDV復(fù)制的影響,轉(zhuǎn)錄組測序分析lncRNA 18850過表達(dá)的Vero-E6細(xì)胞差異基因表達(dá),生物信息學(xué)分析lncRNA 18850靶向基因及差異蛋白互作關(guān)系。結(jié)果顯示,PEDV感染Vero-E6細(xì)胞24和48 h lncRNA 18850的表達(dá)量均呈極顯著上升(Plt;0.01);lncRNA 18850的過表達(dá)可顯著促進(jìn)PEDV的復(fù)制(Plt;0.05);LIF、IL11、EPHA2、CCND1、DUSP5、CCN2基因與lncRNA 18850存在靶向關(guān)系。PEDV感染可上調(diào)Vero-E6細(xì)胞內(nèi)lncRNA 18850的表達(dá),lncRNA 18850可能通過靶向調(diào)控多個(gè)基因而促進(jìn)病毒的復(fù)制,本研究為深入探析PEDV的復(fù)制機(jī)制及潛在靶向治療策略提供了新的視角。
關(guān)鍵詞: 長鏈非編碼RNA;豬流行性腹瀉病毒;轉(zhuǎn)錄組測序;Apelin信號(hào)通路
中圖分類號(hào):
S852.659.6"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-1366-10
收稿日期:2024-04-17
基金項(xiàng)目:浙江省自然科學(xué)基金探索類項(xiàng)目(LY23C180003);浙江省自然科學(xué)基金基礎(chǔ)公益項(xiàng)目(TGN24C180001);金華市重點(diǎn)科技計(jì)劃項(xiàng)目(農(nóng)業(yè)類)(2023-2-022);浙江省領(lǐng)雁計(jì)劃項(xiàng)目(2023C02022);農(nóng)業(yè)農(nóng)村部禽流感等家禽重大疾病防控重點(diǎn)實(shí)驗(yàn)室開放課題項(xiàng)目(YDWS202210);國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(202310341032)
作者簡介:余昕雅(1997-),女,浙江杭州人,碩士生,主要從事豬傳染性腹瀉病毒研究,E-mail: 1131440070@qq.com
*通信作者:王曉杜,主要從事動(dòng)物病毒學(xué)研究,E-mail:xdwang@zafu.edu.cn;董婉玉,主要從冠狀病毒入侵及復(fù)制機(jī)理的研究,E-mail: wanyudong@zafu.edu.cn
Effect of lncRNA 18850 on Porcine Epidemic Diarrhea Virus Replication
YU" Xinya1, HE" Haijian2, WANG" Lei1, NI" Yuchen1, DU" Jing1, ZHOU" Yingshan1, DONG" Wanyu1*, WANG" Xiaodu1*
(1.Key Laboratory of Applied Biotechnology on Animal Science amp; Veterinary Medicine of
Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics amp; Advanced
Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary
Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big
Data Analytics, Belt and Road International Joint Laboratory for One Health and Food Safety,
College of Veterinary Medicine of Zhejiang Aamp;F University, Hangzhou 311300, China;
2.Agriculture College, Jinhua University of Vocational Technology, Jinhua 321017, China)
Abstract:" Long-stranded non-coding RNAs (lncRNAs) are a class of RNAs longer than 200 bp that lack protein-coding ability. lncRNAs have been shown to play important biological roles in viral replication. This study analyzed changes of lncRNAs in cells infected with porcine epidemic diarrhea virus (PEDV) and their effect on PEDV replication. Transcriptome sequencing was performed on Vero-E6 cells infected with PEDV at different time points. lncRNA 18850 was selected, and its overexpression plasmid was constructed. The effects of lncRNA 18850 overexpression on PEDV replication in Vero-E6 cells were analyzed by Western blot, qPCR and TCID50 methods. Transcriptome sequencing was also used to detect gene changes in Vero-E6 cells overexpressing lncRNA 18850, as well as lncRNA 18850 target genes and differential protein interactions. The results showed that the expression of multiple lncRNAs in PEDV-infected Vero-E6 cells changed significantly, especially the expression of lncRNA 18850, which showed an upward trend at both 24 and 48 hours after viral infection. Overexpression of lncRNA 18850 significantly promoted the replication of PEDV compared with the control group. The genes LIF, IL11, EPHA2, CCND1, DUSP5, and CCN2 in Vero-E6 cells have target relationships with lncRNA 18850. The findings indicate that PEDV infection upregulates the expression of lncRNA 18850 in Vero-E6 cells, and lncRNA 18850 may promote viral replication by regulating multiple target genes, providing new perspectives and insights for a deeper understanding of the replication mechanism of PEDV as well as for exploring the potential therapeutic strategies against it.
Keywords: long non-coding RNA; porcine epidemic diarrhea virus; RNA-seq; apelin signaling pathway
*Corresponding authors:" WANG Xiaodu, E-mail: xdwang@zafu.edu.cn; DONG Wanyu, E-mail: wanyudong@zafu.edu.cn
豬流行性腹瀉病毒(porcine epidemic diarrhea virus,PEDV)屬于冠狀病毒科、α冠狀病毒屬,主要通過糞口途徑傳播,近年來也被發(fā)現(xiàn)可以通過空氣傳播感染鼻黏膜。不同日齡豬對PEDV均易感,其臨床癥狀表現(xiàn)出明顯的年齡差異,七日齡以下的仔豬臨床癥狀尤為嚴(yán)重,出現(xiàn)嘔吐、水樣腹瀉、脫水等癥狀,死亡率可達(dá)100%[1]。PEDV在全球均有流行,據(jù)報(bào)道,我國29個(gè)省的腹瀉豬群樣品中近一半檢出PEDV陽性,可見該病在我國傳播之廣,危害之深[2]。
長鏈非編碼RNA(long non-coding RNA,lncRNA)是長度超過200 bp,不編碼蛋白質(zhì)的RNA,在全基因組中所占數(shù)量遠(yuǎn)超編碼蛋白質(zhì)的mRNA。lncRNA與mRNA都由RNA聚合酶II轉(zhuǎn)錄,具有相似的進(jìn)化保守性。雖然不編碼蛋白質(zhì),但近年來研究發(fā)現(xiàn),lncRNA可通過多種方式調(diào)控編碼基因的表達(dá),在細(xì)胞生命活動(dòng)、病毒感染、疾病發(fā)生發(fā)展進(jìn)程等生命活動(dòng)中調(diào)控各種信號(hào)通路中關(guān)鍵基因的表達(dá)[3]。
隨著研究的深入,lncRNA被發(fā)現(xiàn)在抗病毒的先天免疫中起到關(guān)鍵調(diào)控作用,其通過多種方式調(diào)控炎性細(xì)胞因子信號(hào)通路的基因表達(dá)。例如lncRNA NKILA通過形成NF-κB/IκB-NKILA穩(wěn)定復(fù)合物,抑制乙型肝炎病毒(HBV)感染導(dǎo)致的IκB磷酸化和NF-κB活化,進(jìn)一步調(diào)控炎癥反應(yīng)和細(xì)胞凋亡的發(fā)生[4];甲型流感病毒(IAV)感染上調(diào)宿主細(xì)胞lncRNA MxA,其通過與干擾素β(IFN-β)啟動(dòng)子片段形成RNA-DNA三聯(lián)體,使IFN-β的轉(zhuǎn)錄激活受阻,抑制視黃酸(維甲酸)誘導(dǎo)基因蛋白I(RIG-I)受體介導(dǎo)的抗病毒免疫反應(yīng)[5]。此外,有研究表明流感病毒蛋白還可以通過與宿主或自身基因組中的lncRNA結(jié)合,直接調(diào)控病毒復(fù)制,如流感病毒感染會(huì)導(dǎo)致宿主細(xì)胞lncRNA PAAN表達(dá)上調(diào),lncRNA PAAN與病毒的PA蛋白結(jié)合從而促進(jìn)病毒RNA依賴性RNA聚合酶(RdRp)的活性,促進(jìn)病毒復(fù)制[6];lncRNA IPAN與病毒蛋白PB1結(jié)合,抑制PB1降解從而調(diào)控病毒復(fù)制。因此,宿主lncRNA可以直接被病毒利用,拮抗宿主細(xì)胞抗病毒反應(yīng)[7]。
盡管關(guān)于lncRNA的研究逐漸深入,但PEDV感染過程中l(wèi)ncRNA調(diào)控的相關(guān)機(jī)制研究仍然較少。Qin等學(xué)者[8]分析了PEDV感染仔豬7 d后8 386個(gè)差異表達(dá)的lncRNA,感染死亡組與未感染組相比有2 797個(gè)lncRNA顯著變化,感染后死亡組和感染后未死亡組相比有397個(gè)lncRNA顯著變化。PEDV感染仔豬腸道上皮細(xì)胞中l(wèi)ncRNA 446顯著上調(diào),其與ALG-2相互作用蛋白X(Alix)結(jié)合,抑制了E3泛素化連接酶TRIM25介導(dǎo)的Alix泛素化降解,參與腸道上皮細(xì)胞的緊密連接調(diào)控,從而修復(fù)PEDV感染后的腸道屏障損傷[9]。為了進(jìn)一步挖掘PEDV感染過程中參與調(diào)節(jié)的lncRNA,本研究利用高通量轉(zhuǎn)錄組測序技術(shù)篩選出PEDV感染后差異表達(dá)的lncRNA 18850,研究其對PEDV復(fù)制的調(diào)控作用,并分析了lncRNA 18850調(diào)控宿主細(xì)胞內(nèi)基因的靶向關(guān)系,為進(jìn)一步研究PEDV感染宿主的機(jī)制奠定基礎(chǔ)。
1 材料與方法
1.1 細(xì)胞、病毒、抗體、質(zhì)粒
Vero-E6細(xì)胞購自上海細(xì)胞庫,用含10% FBS的DMEM(Gibco)于37 ℃、5% CO2條件下培養(yǎng)。PEDV毒株2017/YJH/F25由本實(shí)驗(yàn)室分離保存,接種細(xì)胞后用含5 μg·mL-1胰酶的DMEM維持。Mouse抗PEDV-N抗體由本實(shí)驗(yàn)室制備,β-actin、Flag抗體購自Abclonal。Goat-anti-Rabbit、Goat-anti-Mouse二抗購自JACKSON。pcDNA3.1質(zhì)粒由本實(shí)驗(yàn)室保存。
1.2 實(shí)時(shí)熒光定量PCR分析
用TRIzol(賽默飛)提取細(xì)胞總RNA,用試劑盒HiScript III All-in-one RT SuperMix Perfect(諾唯贊)進(jìn)行逆轉(zhuǎn)錄。引物使用NCBI設(shè)計(jì),所有引物均驗(yàn)證其熔解曲線R2為0.99,由浙江有康生物科技有限公司合成。實(shí)時(shí)熒光定量PCR程序?yàn)椋侯A(yù)變性95 ℃ 30 s;循環(huán)反應(yīng)95 ℃ 10 s、54 ℃ 30 s、72 ℃ 30 s,循環(huán)40次。以2-ΔΔCt計(jì)算靶基因表達(dá)水平,數(shù)據(jù)歸一化處理內(nèi)參為GAPDH,結(jié)果使用GraphPad Prism 8進(jìn)行分析。引物序列見表1。
1.3 lncRNA 18850過表達(dá)載體的構(gòu)建與轉(zhuǎn)染
用Snapgene4.1.9設(shè)計(jì)PCR引物,從Vero-E6細(xì)胞中擴(kuò)增lncRNA 18850全長,利用酶切酶連法將全長構(gòu)建到pcDNA3.1質(zhì)粒中。使用jetPRIME(ployplus)將pcDNA3.1- lncRNA 18850過表達(dá)及空載體質(zhì)粒轉(zhuǎn)染到Vero-E6細(xì)胞中。
1.4 TCID50測定
將Vero-E6細(xì)胞鋪于96孔細(xì)胞板中,待其生長至單層后,將病毒液以10-1~10-10的比例進(jìn)行梯度稀釋并依次接種至細(xì)胞中(100 μL·孔-1),一個(gè)稀釋比進(jìn)行8個(gè)生物學(xué)重復(fù)。于37℃、5% CO2條件下培養(yǎng),5 d后觀察并記錄細(xì)胞病變(CPE)情況。使用Reed-Muench方法計(jì)算TCID50。
1.5 Western blot檢測
用含蛋白酶抑制劑(Bimake)的RIPA裂解液裂解細(xì)胞,BCA試劑盒(碧云天)檢測上清蛋白濃度后加入4×loading進(jìn)行處理,95 ℃加熱變性10 min,立即使用或于-80 ℃保存。SDS-PAGE用于分離樣品,后轉(zhuǎn)移到硝化纖維素濾膜(MILLIPORE)上。使用5%脫脂奶粉(Sangon Biotech)封閉1 h,一抗孵育1 h,二抗孵育1 h,更換抗體時(shí)使用TBST清洗,加入底物在化學(xué)發(fā)光儀器進(jìn)行曝光。結(jié)果使用ImageJ進(jìn)行灰度分析。
1.6 轉(zhuǎn)錄組分析
PEDV感染Vero-E6細(xì)胞后lncRNA變化的轉(zhuǎn)錄組測序服務(wù)來自上海歐易生物醫(yī)學(xué)科技有限公司。Vero-E6細(xì)胞中l(wèi)ncRNA 18850過表達(dá)后基因變化的轉(zhuǎn)錄組測序服務(wù)來自于杭州聯(lián)川生物技術(shù)股份有限公司。皮爾森法(pearson)分析基因共表達(dá),篩選條件為lncRNA與mRNA表達(dá)量變化相關(guān)系數(shù)不低于0.8且存在顯著差異(Plt;0.05)。RIsearch-2.0進(jìn)行Trans分析,篩選條件為lncRNA和mRNA核酸直接互作堿基數(shù)不少于10個(gè),堿基結(jié)合自由能不大于-209.29 kJ·mol-1。
1.7 統(tǒng)計(jì)分析
所有數(shù)據(jù)用GraphPad Prism 8進(jìn)行統(tǒng)計(jì)分析,每組進(jìn)行三次生物學(xué)重復(fù),差異分析方法使用t檢驗(yàn)(雙尾),Plt;0.05為顯著性差異,Plt;0.01為極顯著差異。
2 結(jié) 果
2.1 PEDV感染顯著上調(diào)lncRNA 18850表達(dá)
將感染PEDV(0.01MOI)不同時(shí)間點(diǎn)的Vero-E6細(xì)胞進(jìn)行轉(zhuǎn)錄組測序,共篩選和分析了10 621個(gè)lncRNA,結(jié)果發(fā)現(xiàn)在病毒感染24 h時(shí)差異表達(dá)的lncRNA中有40個(gè)上調(diào),54個(gè)下調(diào);48 h時(shí)有34個(gè)上調(diào),43個(gè)下調(diào)(圖1 A、B)。其中表達(dá)差異顯著性前十的lncRNA為lncRNA 2 694.1、lncRNA 3 977.1、lncRNA 15720、lncRNA 18325、lncRNA 18785、lncRNA 18850、lncRNA 19918、lncRNA 22604、lncRNA 28431、lncRNA 31733(圖1 C)。以表達(dá)量(FPKM)大于0.1、試驗(yàn)組與對照組表達(dá)變化在2倍以上為條件進(jìn)行進(jìn)一步篩選,韋恩圖結(jié)果顯示lncRNA 18850在PEDV感染不同時(shí)間點(diǎn)時(shí)均滿足以上條件(圖1 D)。通過qPCR檢測PEDV感染后Vero-E6細(xì)胞中l(wèi)ncRNA 18850變化,結(jié)果顯示其表達(dá)上升,與轉(zhuǎn)錄組測序結(jié)果一致(圖1 E)。因此,PEDV感染Vero-E6細(xì)胞lncRNA 18850的表達(dá)水平極顯著上調(diào)(Plt;0.01)
2.2 過表達(dá)lncRNA 18850顯著促進(jìn)PEDV復(fù)制
為了進(jìn)一步探究lncRNA 18850對PEDV復(fù)制的影響,本研究構(gòu)建了pcDNA3.1-lncRNA 18850質(zhì)粒并轉(zhuǎn)染至Vero-E6細(xì)胞,qPCR結(jié)果顯示,lncRNA 18850在Vero-E6細(xì)胞中的表達(dá)量顯著性升高,且轉(zhuǎn)染后24 h仍有較高的表達(dá)水平(圖2 A)。在Vero-E6細(xì)胞中分別轉(zhuǎn)染pcDNA3.1空載和pcDNA3.1-lncRNA 18850質(zhì)粒,12 h后感染PEDV(0.01 MOI),病毒感染24 h后收取樣品。間接免疫熒光、Western blot、qPCR、TCID50結(jié)果顯示,與空載體對照組相比,lncRNA 18850過表達(dá)組的CPE顯著加劇,病毒滴度上升,細(xì)胞中PEDV N蛋白表達(dá)量及mRNA水平均上升(圖2 B~G)。這些結(jié)果表明lncRNA 18850過表達(dá)能促進(jìn)PEDV的復(fù)制。
2.3 lncRNA 18850調(diào)控多條信號(hào)通路及基因
2.3.1 lncRNA 18850過表達(dá)后的基因差異表達(dá)
為了進(jìn)一步探究lncRNA 18850調(diào)控病毒復(fù)制的機(jī)制,將lncRNA 18850過表達(dá)的Vero-E6細(xì)胞進(jìn)行轉(zhuǎn)錄組測序分析,差異表達(dá)聚類分析結(jié)果顯示,與對照組相比,lncRNA 18850過表達(dá)24 h后有72個(gè)基因上調(diào),7個(gè)基因下調(diào)(圖3 A、B)。差異基因火山圖結(jié)果表明TFPI2、ITGA7等基因表達(dá)差異顯著(圖3 C,標(biāo)注了顯著性差異表達(dá)前20的基因)。
2.3.2 qPCR驗(yàn)證差異表達(dá)的mRNA
根據(jù)基因的表達(dá)量(FPKM>0.1)及表達(dá)差異性篩選出7個(gè)差異顯著基因(TFPI2、NOTCH3、CXCL8、PTN、RRAD、CCN2、ITGA7),qPCR檢測結(jié)果表明,相比對照組,lncRNA 18850過表達(dá)組的NOTCH3并無顯著變化,而TFPI2、CXCL8、PTN、RRAD、CCN2、ITGA7表達(dá)均上調(diào)表達(dá)(圖3 D、E),其中CCN2變化差異極顯著(Plt;0.001)。
2.3.3 KEGG富集分析
KEGG富集分析顯示,差異表達(dá)的基因主要富集在環(huán)境信息處理和人類疾病分類中,值得關(guān)注的是富集基因數(shù)排名第五的通路為冠狀病毒疾病COVID-19相關(guān)通路(圖4 A)。進(jìn)一步分析P值最小的前20個(gè)KEGG通路,可以看出變化的基因主要集中在Apelin信號(hào)通路中(圖4 B)。
2.3.4 lncRNA和mRNA共表達(dá)分析與trans分析
從表達(dá)差異顯著的基因中篩選與lncRNA 18850存在共表達(dá)與直接調(diào)控的基因(圖4 C)。結(jié)果顯示共有108個(gè)差異表達(dá)的基因與lncRNA 18850存在共表達(dá)和直接調(diào)控關(guān)系。
2.3.5 差異基因蛋白互作網(wǎng)絡(luò)分析
使用STRING蛋白質(zhì)互作數(shù)據(jù)庫進(jìn)行差異基因蛋白互作網(wǎng)絡(luò)分析,可以發(fā)現(xiàn)與lncRNA 18850存在靶向關(guān)系的基因之間存在蛋白互作關(guān)系,根據(jù)功能選擇了LIF、IL11、EPHA2、CCND1、DUSP5、CCN2進(jìn)行進(jìn)一步討論(圖4 C)。
3 討 論
lncRNA作為不編碼蛋白的RNA分子,最初被認(rèn)為是基因組轉(zhuǎn)錄的“噪音”。越來越多研究表明,lncRNA作為信號(hào)、誘餌、引導(dǎo)或支架幾乎能參與基因表達(dá)調(diào)控的每一步,包括劑量補(bǔ)償、印跡、表觀遺傳調(diào)控、轉(zhuǎn)錄、mRNA剪接和翻譯等,也是病毒與宿主相互作用過程中的重要調(diào)節(jié)因子[10]。一方面,某些病毒可自身表達(dá)lncRNA,如卡波濟(jì)氏肉瘤病毒(KSHV)編碼的lncRNA PAN,可調(diào)節(jié)KSHV復(fù)制、病毒和宿主基因表達(dá)以及免疫反應(yīng)[11-12]。另一方面,病毒感染也可誘導(dǎo)宿主細(xì)胞內(nèi)的多種lncRNA表達(dá),如寨卡病毒(ZIKV)感染人類神經(jīng)前體細(xì)胞(hNPC)后149個(gè)lncRNA差異表達(dá),參與調(diào)控細(xì)胞周期、細(xì)胞凋亡、免疫反應(yīng)和基因表達(dá)相關(guān)的多條信號(hào)通路[13]。一項(xiàng)關(guān)于PEDV的研究發(fā)現(xiàn),lncRNA 446抑制PEDV感染細(xì)胞內(nèi)Alix的泛素化降解,調(diào)控上皮細(xì)胞緊密連接的完整性,并可能修復(fù)PEDV感染后腸屏障的損傷[8]??傊?,lncRNA越來越成為病毒與宿主相互作用機(jī)制研究的熱點(diǎn)。自2010年以來,PEDV變異毒株(PEDV GII)暴發(fā)給全球養(yǎng)殖業(yè)造成了巨大的經(jīng)濟(jì)損失,而PEDV的感染機(jī)制更亟待闡明。本研究利用轉(zhuǎn)錄組測序篩選出了PEDV感染的Vero-E6細(xì)胞中多個(gè)差異表達(dá)lncRNA,PEDV感染24 h時(shí)40個(gè)上調(diào),54個(gè)下調(diào);感染48 h時(shí)34個(gè)上調(diào),43個(gè)下調(diào)。lncRNA 18850是PEDV感染宿主細(xì)胞表達(dá)水平較高的lncRNA之一,lncRNA 18850過表達(dá)可以顯著增加Vero-E6細(xì)胞內(nèi)PEDV N蛋白表達(dá)量及其基因的表達(dá)水平,提高了病毒滴度,加劇PEDV誘導(dǎo)的CPE。lncRNA 18850過表達(dá)可調(diào)控多個(gè)基因表達(dá)(72個(gè)上調(diào)、7個(gè)下調(diào)),如CCN2、TFPI2、CXCL8、PTN、RRAD、ITGA7等。因此,lncRNA 18850調(diào)控宿主基因的表達(dá)參與了PEDV復(fù)制。
PEDV與COVID-19同屬于冠狀病毒科,lncRNA 18850過表達(dá)參與調(diào)控冠狀病毒疾病COVID-19相關(guān)通路、Apelin信號(hào)通路。Apelin是一種內(nèi)源性神經(jīng)肽,與G蛋白偶聯(lián)受體(APJ)結(jié)合,參與心臟、肺和其他外周器官的各種生理過程。Park等學(xué)者[14]研究發(fā)現(xiàn),Apelin直接與血管緊張素轉(zhuǎn)換酶2(ACE2)結(jié)合抑制SARS-CoV-2感染,同時(shí)激活A(yù)pelin/APJ信號(hào)可以恢復(fù)因病毒感染而受損的肺部。轉(zhuǎn)錄組trans分析表明CCN2、LIF、IL11、EPHA2、CCND1和DUSP5等可能是lncRNA 18850調(diào)控PEDV復(fù)制的潛在候選靶點(diǎn)。CCN2又稱為結(jié)締組織生長因子(CTGF),參與Apelin信號(hào)通路而調(diào)節(jié)結(jié)締組織纖維化[15]。CCN2也可通過增強(qiáng)促炎因子的產(chǎn)生和免疫細(xì)胞的遷移來促進(jìn)炎癥反應(yīng)[16]。有研究表明,豬繁殖與呼吸障礙綜合征病毒(PRRSV)的NSP1通過阻斷豬巨噬細(xì)胞中的ERK-AP-1軸抑制CCN1和CCN2的產(chǎn)生,進(jìn)而發(fā)揮抗炎作用[17]。CCN2和INHBA可增強(qiáng)TGFβ誘導(dǎo)的Smad3磷酸化水平[18],后者已被證實(shí)可與SARS-CoV-2 N蛋白結(jié)合,通過Smad3依賴性G1細(xì)胞周期阻滯機(jī)制誘導(dǎo)急性腎損傷(AKI),有望成為治療COVID-19相關(guān)AKI的新靶點(diǎn)[19]。lncRNA 18850過表達(dá)可上調(diào)CCN2和INHBA的表達(dá),lncRNA 18850是否通過Smad3信號(hào)通路參與PEDV復(fù)制還有待進(jìn)一步的驗(yàn)證。其他多個(gè)候選靶點(diǎn)參與調(diào)控細(xì)胞抗病毒免疫反應(yīng)相關(guān)通路,CCND1被認(rèn)為是細(xì)胞周期調(diào)控的關(guān)鍵因子,下調(diào)CCND1會(huì)導(dǎo)致細(xì)胞周期停滯在G1期并誘導(dǎo)細(xì)胞凋亡,并受到NF-κB信號(hào)通路調(diào)控[20];LIF和IL-11都是白細(xì)胞介素6(IL-6)細(xì)胞因子家族中的成員,可被激活并調(diào)控JAK1/STAT3信號(hào)通路[21-22],而DUSP5則對IL-1β誘導(dǎo)的NF-κB信號(hào)通路激活起到負(fù)調(diào)節(jié)作用[23];EPHA2也被證明可以調(diào)控STAT3和MAPK通路,可增強(qiáng)炎性細(xì)胞因子的釋放,調(diào)控細(xì)胞凋亡[24-26]。NF-κB、JAK1/STAT3等信號(hào)通路在PEDV感染過程中都發(fā)揮重要作用,其受到PEDV感染調(diào)控,同時(shí)也可以調(diào)控PEDV的復(fù)制[27-28]。NF-κB等信號(hào)通路的激活常與PEDV和豬傳染性胃腸炎病毒TGEV等冠狀病毒感染引起細(xì)胞凋亡有關(guān)[29-30]。細(xì)胞凋亡是機(jī)體抗病毒免疫的手段之一,細(xì)胞利用凋亡抑制病毒的復(fù)制、繁殖和擴(kuò)散傳播,而病毒可以反向利用細(xì)胞凋亡促進(jìn)自身復(fù)制。例如宿主細(xì)胞凋亡信號(hào)引發(fā)的caspase級聯(lián)反應(yīng)特異性催化裂解SARS-CoV-2的核殼蛋白,產(chǎn)生具有拮抗干擾素作用的片段,進(jìn)而抑制干擾素效應(yīng)因子功能,達(dá)到促進(jìn)病毒復(fù)制的作用[31]。該機(jī)制同樣存在于SARS-CoV-1和MERS-CoV感染過程中,表明冠狀病毒具有逃逸宿主先天免疫反應(yīng)的應(yīng)對機(jī)制。
4 結(jié) 論
PEDV感染可上調(diào)Vero-E6細(xì)胞lncRNA 18850的表達(dá),lncRNA 18850過表達(dá)能促進(jìn)PEDV復(fù)制,CCN2、LIF、IL11、EPHA2、CCND1和DUSP5等可能是lncRNA 18850潛在靶點(diǎn),可參與細(xì)胞凋亡和免疫反應(yīng)等PEDV感染的生物學(xué)過程,但其具體機(jī)制還有待進(jìn)一步深入研究。
參考文獻(xiàn)(References):
[1] ZHANG H, ZOU C C, PENG O Y, et al. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission[J]. Mol Biol Evol, 2023, 40(3):msad052.
[2] 張 志, 董雅琴, 劉 爽, 等. 我國部分省份豬流行性腹瀉的流行病學(xué)監(jiān)測[J]. 中國動(dòng)物檢疫, 2014, 31(10):47-51.
ZHANG Z, DONG Y Q, LIU S, et al. Survey and surveillance of porcine epidemic diarrhea in some provinces in China[J]. China Animal Health Inspection, 2014, 31(10):47-51. (in Chinese)
[3] CESANA M, CACCHIARELLI D, LEGNINI I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2):358-369.
[4] HUSSEN B M, AZIMI T, HIDAYAT H J, et al. NF-KappaB interacting lncRNA:review of its roles in neoplastic and non-neoplastic conditions[J]. Biomed Pharmacother, 2021, 139:111604.
[5] LI X D, GUO G J, LU M, et al. Long noncoding RNA lnc-Mxa inhibits beta interferon transcription by forming RNA-DNA triplexes at its promoter[J]. J Virol, 2019, 93(21):e00786-19.
[6] WANG J, WANG Y J, ZHOU R, et al. Host long noncoding RNA lncRNA-PAAN regulates the replication of influenza a virus[J]. Viruses, 2018, 10(6):330.
[7] WANG J, CEN S. Roles of lncRNAs in influenza virus infection[J]. Emerg Microbes Infect, 2020, 9(1):1407-1414.
[8] QIN W J, QI X Y, XIE Y X, et al. LncRNA446 regulates tight junctions by inhibiting the ubiquitinated degradation of Alix after porcine epidemic diarrhea virus infection[J]. J Virol, 2023, 97(3):e0188422.
[9] YIN Y F, YAN P X, LU J L, et al. Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation[J]. Cell Stem Cell, 2015, 16(5):504-516.
[10] ALI T, GROTE P. Beyond the RNA-dependent function of LncRNA genes[J]. eLife, 2020, 9:e60583.
[11] GUITO J, LUKAC D M. KSHV Rta promoter specification and viral reactivation[J]. Front Microbiol, 2012, 3:30.
[12] CHEN L L, ZHOU Y, LI H J. LncRNA, miRNA and lncRNA-miRNA interaction in viral infection[J]. Virus Res, 2018, 257:25-32.
[13] HU B X, HUO Y X, YANG L P, et al. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells[J]. Virol J, 2017, 14(1):217.
[14] PARK J, PARK M Y, KIM Y, et al. Apelin as a new therapeutic target for COVID-19 treatment[J]. QJM, 2023, 116(3):197-204.
[15] ZAYKOV V, CHAQOUR B. The CCN2/CTGF interactome:an approach to understanding the versatility of CCN2/CTGF molecular activities[J]. J Cell Commun Signal, 2021, 15(4):567-580.
[16] KUBOTA S, TAKIGAWA M. Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions[J]. Clin Sci (Lond), 2015, 128(3):181-196.
[17] PARK I B, CHUN T. Porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein (NSP)1 transcriptionally inhibits CCN1 and CCN2 expression by blocking ERK-AP-1 axis in pig macrophages in vitro[J]. Res Vet Sci, 2020, 132:462-465.
[18] ABDEL WAHAB N, WESTON B S, MASON R M. Modulation of the TGFβ/Smad signaling pathway in mesangial cells by CTGF/CCN2[J]. Exp Cell Res, 2005, 307(2):305-314.
[19] WANG W B, CHEN J Z, HU D W, et al. SARS-CoV-2 N protein induces acute kidney injury via Smad3-dependent g1 cell cycle arrest mechanism[J]. Adv Sci (Weinh), 2022, 9(3):2103248.
[20] HE D, WANG D, LU P, et al. Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations[J]. Oncogene, 2021, 40(2):355-368.
[21] NICOLA N A, BABON J J. Leukemia inhibitory factor (LIF)[J]. Cytokine Growth Factor Rev, 2015, 26(5):533-544.
[22] XIONG W J, CHEN Y H, ZHANG C T, et al. Pharmacologic inhibition of IL11/STAT3 signaling increases MHC-I expression and T cell infiltration[J]. J Transl Med, 2023, 21(1):416.
[23] WU Z P, XU L H, HE Y Z, et al. DUSP5 suppresses interleukin-1β-induced chondrocyte inflammation and ameliorates osteoarthritis in rats[J]. Aging (Albany NY), 2020, 12(24):26029-26046.
[24] 黃國平, 袁 青, 葉迎春, 等. 屋塵螨提取物激活氣道上皮細(xì)胞EphA2-STAT3/p38 MAPK信號(hào)通路介導(dǎo)氣道炎癥[J]. 細(xì)胞與分子免疫學(xué)雜志, 2021, 37(1):31-38.
HUANG G P, YUAN Q, YE Y C, et al. House dust mite extract activates EphA2-STAT3/p38 MAPK signaling pathway in airway epithelial cells to mediate airway inflammation[J]. Chinese Journal of Cellular and Molecular Immunology, 2021, 37(1):31-38. (in Chinese)
[25] MA X W, ZHANG Y Z, GOU D Y, et al. Metabolic reprogramming of microglia enhances proinflammatory cytokine release through EphA2/p38 MAPK pathway in alzheimer’s disease[J]. J Alzheimers Dis, 2022, 88(2):771-785.
[26] YANG R C, DUAN C H, ZHANG S, et al. Prolactin regulates ovine ovarian granulosa cell apoptosis by affecting the expression of MAPK12 gene[J]. Int J Mol Sci, 2023, 24(12):10269.
[27] XUE M, ZHAO J, YING L, et al. IL-22 suppresses the infection of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway[J]. Antiviral Res, 2017, 142:68-75.
[28] ZHENG H Q, XU L, LIU Y Z, et al. MicroRNA-221-5p inhibits porcine epidemic diarrhea virus replication by targeting genomic viral RNA and activating the NF-κB pathway[J]. Int J Mol Sci, 2018, 19(11):3381.
[29] DING L, XU X G, HUANG Y, et al. Transmissible gastroenteritis virus infection induces apoptosis through FasL- and mitochondria-mediated pathways[J]. Vet Microbiol, 2012, 158(1-2):12-22.
[30] 陳 昭. 豬流行性腹瀉病毒誘導(dǎo)IPEC-J2細(xì)胞凋亡發(fā)生的分子機(jī)制[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué), 2023.
CHEN Z. Molecular mechanisms underlying porcine epidemic diarrhea virus-induced apoptosis in IPEC-J2 cells[D]. Harbin:Northeast Agricultural University, 2023. (in Chinese)
[31] CHU H, HOU Y X, YANG D, et al. Coronaviruses exploit a host cysteine-aspartic protease for replication[J]. Nature, 2022, 609(7928):785-792.
(編輯 白永平)