摘 要: 旨在探討基礎(chǔ)日糧中添加酵母β-葡聚糖(G70)對(duì)新城疫疫苗免疫雞腸道免疫功能的影響。試驗(yàn)選取16只1日齡健康烏骨雞隨機(jī)分為2個(gè)組,對(duì)照組(Vaccine)和G70組(G70+Vaccine),G70組在飼喂基礎(chǔ)日糧的基礎(chǔ)上添加1 g·kg-1的G70,分別于14、28日齡進(jìn)行新城疫疫苗首次免疫和加強(qiáng)免疫。35日齡時(shí),采集雞的空腸組織,測(cè)定空腸黏膜IgA+細(xì)胞數(shù)量,空腸CD4+CD8+雙陽(yáng)性T細(xì)胞占比與空腸免疫相關(guān)基因mRNA表達(dá)水平,隨后進(jìn)行轉(zhuǎn)錄組學(xué)測(cè)序,并對(duì)差異表達(dá)基因進(jìn)行GO功能和KEGG通路富集分析。結(jié)果表明,與對(duì)照組相比,飼料添加G70顯著提高空腸黏膜內(nèi)IgA+細(xì)胞的數(shù)量(Plt;0.05),空腸CD4+CD8+雙陽(yáng)性T細(xì)胞占比顯著上升(Plt;0.05),GATA-3、MHC-I、MHC-II、CCR7和IFN-γ mRNA表達(dá)水平顯著上調(diào)(Plt;0.05);轉(zhuǎn)錄組學(xué)研究表明,添加G70后空腸組織差異表達(dá)基因有559個(gè),其中54個(gè)基因上調(diào)和505個(gè)基因下調(diào),基因本體(GO)富集分析揭示差異表達(dá)基因多數(shù)被注釋到胺代謝和分解、蛋白質(zhì)合成、刺激生長(zhǎng)因子(TGF-β)和調(diào)節(jié)酶活性等相關(guān)的GO條目上;KEGG信號(hào)通路分析顯示差異表達(dá)基因主要富集在與核糖體、MAPK、細(xì)胞黏附和局部黏附等與細(xì)胞合成和代謝相關(guān)的信號(hào)通路。上述結(jié)果提示,飼糧中添加酵母β-葡聚糖(G70)可增加新城疫免疫雞空腸中IgA+細(xì)胞的數(shù)量,提高空腸CD4+CD8+雙陽(yáng)性T細(xì)胞占比,上調(diào)空腸中免疫相關(guān)基因的表達(dá),其機(jī)制可能是通過調(diào)節(jié)IL-17RD、TGF-β和TMEM158等免疫相關(guān)基因的表達(dá),影響IL-17受體、TGF-β和MAPK信號(hào)通路提高雞的腸道免疫功能。
關(guān)鍵詞: 酵母β-葡聚糖;新城疫疫苗;腸道免疫;轉(zhuǎn)錄組學(xué)
中圖分類號(hào):
S831.7"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-1441-12
收稿日期:2024-06-25
基金項(xiàng)目:重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(xiàng)資助項(xiàng)目(cstc2019jsccx-lyjsBX0003;cstc2021jscx-lyjsAX0008)
作者簡(jiǎn)介:李常營(yíng)(1983-),男,山東滕州人,講師,博士,主要從事動(dòng)物營(yíng)養(yǎng)與疾病防控研究,E-mail: licy1983@163.com,Tel:023-46751588
*通信作者:曹立亭,主要從事新中獸藥創(chuàng)制研究,E-mail:caoliting@swu.edu.cn
Effect of Dietary Yeast β-glucan Supplementation on Intestinal Immune Function in Chickens
Immunized against Newcastle Disease Vaccine based on Transcriptomic
LI" Changying1, LI" Jun2,3, LInbsp; Xifeng3, BI" Shicheng3,4, CAO" Liting3,4*
(1.College of Animal Science and Technology, Southwest University, Chongqing 402460," China;
2.Cuiping Animal Epidemic Prevention and Quarantine Center of Yibin, Yibin 644000," China;
3.College of Veterinary Medicine, Southwest University, Chongqing 402460," China;
4.Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing
402460," China)
Abstract:" The aim of this study is to investigate the effect of adding yeast β-glucan (G70) to the diet on intestinal immune function in chickens immunized Newcastle disease (ND) vaccine. Sixteen 1-day-old healthy black-bone chickens were randomly divided into 2 groups, the Vaccine group and the G70+Vaccine group, and in the G70+Vaccine group, yeast β-glucan was added at 1 g·kg-1 in the basal diet. At 14 and 28 days of age, ND vaccine was administered for the 1st immunization and booster immunization. At 35 days of age, jejunum tissue was collected to determine the number of IgA+cells, the proportions of CD4+CD8+double-positive T cells, and the mRNA expression levels of immune-related genes in jejunum, then transcriptome sequencing was performed, and the differentially expressed genes were analyzed by GO function and KEGG pathway. The results showed that, compared with the Vaccine group, dietary G70 significantly increased the number of IgA+cells (Plt;0.05) and the proportions of CD4+CD8+double-positive T cells in the jejunum (Plt;0.05), and the mRNA expression levels of GATA-3, MHC-I, MHC-II, CCR7 and IFN-γ were significantly up-regulated (Plt;0.05). RNA-seq showed that there were 559 differentially expressed genes in G70+Vaccine group, of which 54 were up-regulated and 505 were down-regulated, the GO analysis revealed that most of the differentially expressed genes were annotated to the GO entries related to amine metabolism and catabolism, protein synthesis, stimulation of TGF-β, and regulation of enzyme activities. KEGG signaling pathway analysis revealed that the differentially expressed genes were mainly enriched in signaling pathways related to cell synthesis and metabolism, such as ribosomes, MAPK, cell adhesion and local adhesion. In summary, the addition of yeast β-glucan (G70) to the diet increased the number of IgA+cells, promoted the proportions of CD4+CD8+double-positive T cells, and up-regulated the expression of immune-related genes in jejunum. The possible mechanism of improving chicken′s intestinal immune function might be affecting the IL-17 receptor, TGF-β and MAPK signaling pathways by regulating the expression of immune-related genes such as IL-17RD, TGF-β and TMEM158.
Keywords: yeast β-glucan; Newcastle disease vaccine; intestinal immune function; transcriptomics
*Corresponding author: CAO Liting,E-mail:caoliting@swu.edu.cn
新城疫(Newcastle disease, ND)是由新城疫病毒引起的一種高度接觸性禽類烈性傳染病,主要感染雞和火雞等禽類[1]。ND在全球廣泛流行,傳播速度快,常引起雛雞感染,病死率高,耐過的病雞生產(chǎn)性能下降,因免疫抑制而易導(dǎo)致免疫失敗,加之新城疫病毒(NDV)基因型眾多且雞、火雞、鵪鶉等家禽及野生禽均能引起感染,導(dǎo)致臨床實(shí)際免疫效果不佳,對(duì)世界養(yǎng)禽業(yè)危害巨大[2-4]。臨床上常用疫苗佐劑來提高ND疫苗的免疫接種效果,然而疫苗佐劑存在例如組織損傷、應(yīng)激反應(yīng)和毒性殘留等不良作用,新型疫苗佐劑也因價(jià)格昂貴限制了其推廣應(yīng)用。眾所周知,理想的疫苗不僅需要誘導(dǎo)有效的體液免疫,也需要刺激細(xì)胞免疫和腸道黏膜免疫[5]。因此,探究有效的方法來提高疫苗的免疫效果具有重要意義。本團(tuán)隊(duì)前期研究表明,飼料中添加0.1%的酵母β-葡聚糖(G70)可顯著增強(qiáng)雞免疫新城疫疫苗后機(jī)體體液免疫及細(xì)胞免疫反應(yīng)[6]。空腸腸道是機(jī)體營(yíng)養(yǎng)物質(zhì)消化和吸收的關(guān)鍵場(chǎng)所,同樣也是機(jī)體免疫的重要組成部分,其緊密連接的黏膜上皮結(jié)構(gòu)為機(jī)體提供物理屏障,并通過分泌免疫型抗體發(fā)揮其免疫屏障功能,均能有效阻止細(xì)菌及內(nèi)毒素等有害物質(zhì)穿過腸黏膜進(jìn)入血液循環(huán)[7]。因此,本研究擬通過測(cè)定空腸IgA+細(xì)胞數(shù)量和CD4+CD8+雙陽(yáng)性T細(xì)胞占比以及腸道免疫相關(guān)基因的mRNA表達(dá)水平來研究酵母β-葡聚糖(G70)對(duì)雞腸道免疫的影響,并運(yùn)用RNA-seq技術(shù)探究G70對(duì)雞空腸基因表達(dá)的影響,闡明其潛在的信號(hào)傳導(dǎo)途徑,以期為G70作為免疫增強(qiáng)劑應(yīng)用于養(yǎng)禽業(yè)生產(chǎn)提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)材料
試驗(yàn)用1日齡健康商品烏骨雞購(gòu)自貴州羽順禽業(yè)有限公司。酵母β-葡聚糖(G70,含量:99%,QB-T4572),購(gòu)自湖北宜昌安琪酵母股份有限公司;雞新城疫活疫苗(La Sota株),購(gòu)自青島易邦生物工程有限公司;TRIzol(9109),購(gòu)自北京寶日醫(yī)生物技術(shù)有限公司;SYBRPremix Ex TaqTMII(RR036A),購(gòu)自北京寶日醫(yī)生物技術(shù)有限公司。
1.2 試驗(yàn)設(shè)計(jì)與飼養(yǎng)管理
試驗(yàn)雛雞采用籠養(yǎng)飼養(yǎng)在西南大學(xué)動(dòng)物醫(yī)學(xué)院SPF動(dòng)物房,飼養(yǎng)期間可自由采食和飲水。正式試驗(yàn)于適應(yīng)性飼養(yǎng)5 d后開始。將16只健康5日齡商品烏骨雞隨機(jī)分為2組:G70組(G70+Vaccine)和對(duì)照組(Vaccine),每組8只,對(duì)照組飼喂基礎(chǔ)日糧,G70組在飼喂基礎(chǔ)日糧的基礎(chǔ)上添加1 g·kg-1的酵母β-葡聚糖(G70)[6]。于14日齡和28日齡分別進(jìn)行首次免疫和加強(qiáng)免疫,免疫方式為點(diǎn)眼滴鼻,劑量為4單位ND抗原?;A(chǔ)日糧的成分與營(yíng)養(yǎng)水平見表1。本研究經(jīng)過西南大學(xué)實(shí)驗(yàn)動(dòng)物倫理審查委員會(huì)審查批準(zhǔn)(倫理證明編號(hào):IAC-2021-1020)。
1.3 樣品采集
飼養(yǎng)至35日齡,試驗(yàn)各組雞只用二氧化碳?xì)怏w窒息處死,采集空腸樣本(以十二指腸懸韌帶為空腸取樣的起始點(diǎn)采集長(zhǎng)約8 cm腸段,分為2份),一份用4%多聚甲醛固定,另一份迅速置于液氮速凍后-80 ℃保存?zhèn)溆谩?/p>
1.4 空腸IgA+細(xì)胞檢測(cè)
采用石蠟包埋法制作空腸組織切片,每個(gè)樣品制作4個(gè)厚度為5 μm的不連續(xù)切片,免疫組織化學(xué)法檢測(cè)空腸IgA+細(xì)胞,使用Image J軟件測(cè)量IgA+細(xì)胞面積。每張切片選取6個(gè)視野進(jìn)行統(tǒng)計(jì)分析。
1.5 酵母β-葡聚糖(G70)對(duì)雞腸道CD4+CD8+雙陽(yáng)性T細(xì)胞占比的影響
參考文獻(xiàn)[8]報(bào)道的試驗(yàn)方法,制備雞空腸淋巴細(xì)胞懸液,并調(diào)整細(xì)胞濃度為5×105 cell·mL-1。吸取1 mL細(xì)胞懸液,2 500 r·min-1離心5 min,棄上清;再加入1 mL PBS重懸洗滌細(xì)胞,2 500 r·min-1離心10 min后,棄上清;依次加入小鼠抗雞CD3-APC、CD4-FITC和CD8-PE,冰上孵育20 min,然后用PBS洗滌2次,上機(jī)檢測(cè),之后使用FlowJo軟件進(jìn)行統(tǒng)計(jì)分析。
1.6 RT-qPCR檢測(cè)空腸中免疫相關(guān)基因表達(dá)水平
使用TRIzol法提取空腸總RNA,根據(jù)反轉(zhuǎn)錄試劑盒將總RNA反轉(zhuǎn)為cDNA,以雞的β-actin為內(nèi)參基因,免疫相關(guān)基因的引物序列見表2,熒光定量結(jié)果采用2-ΔΔCT法計(jì)算基因在空腸組織中的表達(dá)量。
1.7 轉(zhuǎn)錄組學(xué)測(cè)序與分析
1.7.1 測(cè)序
使用TRIzol法提取樣品總RNA,隨后進(jìn)行RNA質(zhì)量檢測(cè),采用NanoDrop分光光度計(jì)(美國(guó)IMPLEN公司,CA,美國(guó))檢測(cè)RNA純度,Agilent 2100 bioanalyzer(美國(guó)安捷倫技術(shù)公司,CA,美國(guó))檢測(cè)RNA完整度。樣品檢測(cè)合格后,每組樣品各取1.5 μg的RNA用于測(cè)序。通過Oligo(dT)磁珠富集樣本mRNA,以片段化的mRNA為模版,隨機(jī)寡核苷酸為引物,在逆轉(zhuǎn)錄酶體系中合成cDNA第一條鏈,以dNTPs為原料合成第二鏈cDNA。為篩選250~300 bp的cDNA,純化后的雙鏈cDNA經(jīng)過末端修復(fù),加A尾并連接測(cè)序接頭,采用PCR擴(kuò)增技術(shù)構(gòu)建cDNA文庫(kù)。文庫(kù)質(zhì)檢合格后,通過Illumina NovaSeq 6000(Illumina, 美國(guó))上機(jī)測(cè)序。將測(cè)序所得原始數(shù)據(jù)(Raw reads)進(jìn)行過濾,去除帶有測(cè)序接頭的Reads,不確定堿基含量比例大于10%的Reads,以及低質(zhì)量堿基(Q≤20)含量大于50%的Reads,得到Clean reads,最后,通過HISAT2軟件與參考基因組比對(duì)分析。
1.7.2 差異表達(dá)基因分析
本試驗(yàn)將Padj≤0.05且log2FoldChange≥1作為篩選差異表達(dá)基因(differential expressed genes, DEGs)的標(biāo)準(zhǔn)。
1.7.3 差異表達(dá)基因富集分析
用GOseq R包對(duì)DEGs進(jìn)行富集分析,使用KOBAS (v2.0)軟件檢測(cè)差異表達(dá)基因在統(tǒng)計(jì)學(xué)上富集的KEGG通路。
1.7.4 RT-qPCR驗(yàn)證
為驗(yàn)證轉(zhuǎn)錄組測(cè)序結(jié)果,選擇了8個(gè)差異表達(dá)基因進(jìn)行驗(yàn)證,使用Primer premier 5軟件設(shè)計(jì)引物送至上海生工生物工程技術(shù)服務(wù)有限公司合成,引物信息見表2。以β-actin作為內(nèi)參基因,熒光定量結(jié)果采用2-ΔΔCT法計(jì)算基因在組織中的表達(dá)量。
1.8 數(shù)據(jù)分析
使用Excel 2016整理試驗(yàn)數(shù)據(jù),GO seq R包和KOBAS (v2.0)軟件用于分析差異表達(dá)基因GO和富集KEGG通路,Padj≤0.05且log2FoldChange≥1作為篩選差異表達(dá)基因的標(biāo)準(zhǔn),用log2FoldChange驗(yàn)證差異基因的表達(dá)趨勢(shì);運(yùn)用GraphPad Prism 8進(jìn)一步分析并繪制柱狀圖。
2 結(jié) 果
2.1 酵母β-葡聚糖(G70)對(duì)雞空腸IgA+細(xì)胞數(shù)量的影響
如圖1可知,與對(duì)照組相比,飼料添加G70顯著提高空腸黏膜內(nèi)IgA+細(xì)胞的數(shù)量(Plt;0.05)。
2.2 酵母β-葡聚糖(G70)對(duì)雞空腸CD4+CD8+雙陽(yáng)性T細(xì)胞占比的影響
圖2A、2B分別顯示了淋巴細(xì)胞、CD3+T細(xì)胞的設(shè)門,圖2C、2D顯示了G70組、對(duì)照組CD4+T細(xì)胞和CD8+T細(xì)胞的比例。由圖2E可知,加強(qiáng)免疫后7 d,與免疫對(duì)照組相比,G70組空腸CD4+CD8+雙陽(yáng)性T細(xì)胞占比顯著上升(Plt;0.05)。
2.3 酵母β-葡聚糖(G70)對(duì)雞空腸相關(guān)基因mRNA表達(dá)的影響
空腸相關(guān)細(xì)胞因子mRNA相對(duì)表達(dá)量變化如圖3所示,與Vaccine組相比,G70組空腸組織中GATA-3、MHC-I、MHC-II、CCR7和IFN-γ表達(dá)水平顯著上調(diào)(Plt;0.05),而IL-6、TGF-β、NF-κB、TLR3、TLR4、TLR5、CCR9、J-CHAIN、pIgR、CD40和CD80的mRNA表達(dá)水平變化差異不顯著。
2.4 差異表達(dá)基因篩選
如圖4所示,本研究共篩選出559個(gè)DEGs(Differentially Expressed Genes,差異表達(dá)基因),與疫苗對(duì)照組相比,G70組54個(gè)DEGs顯著上調(diào)和505個(gè)DEGs顯著下調(diào)。圖5為差異表達(dá)基因的聚類分析結(jié)果,表明G70組的整體基因表達(dá)譜與對(duì)照組相比差異較大,部分上調(diào)和下調(diào)的差異基因詳見表3。
2.5 差異表達(dá)基因GO富集分析
差異表達(dá)基因GO(Gene Ontology,GO)富集柱狀圖能夠直觀的反映出差異表達(dá)基因在生物過程(Biological process, BP)、細(xì)胞組分(Cellular component, CC)和分子功能(Molecular function, MF)的富集分布情況。在G70組與對(duì)照組之間下調(diào)差異基因生成的GO富集柱狀圖中,共有20個(gè)GO條目顯著富集,詳見圖6B。生物過程顯著富集的GO term為翻譯(Translation)、肽生物合成過程(Peptide biosynthetic process)、脂質(zhì)轉(zhuǎn)運(yùn)(Lipid transport)、胺生物合成過程(Amide biosynthetic process)等;與細(xì)胞組分相關(guān)的GO條目包括核糖體(Ribosome)、細(xì)胞質(zhì)部分(Cytoplasmic part)、核糖核蛋白復(fù)合物(Ribonucleoprotein complex)、非膜結(jié)構(gòu)細(xì)胞器(Non-membrane-bounded organelle)等;核糖體結(jié)構(gòu)成分(Structural constituent of ribosome)、結(jié)構(gòu)分子活性(Structural molecule activity)和酶的調(diào)節(jié)活性(Enzyme regulator activity)等與分子功能有關(guān)。上調(diào)的差異表達(dá)基因主要富集在跨膜受體蛋白絲氨酸/蘇氨酸激酶信號(hào)傳導(dǎo)途徑(Transmembrane receptor protein serine/threonine kinase signaling pathway)、TGF-β受體信號(hào)傳導(dǎo)途徑(Transforming growth factor beta receptor signaling pathway)、生長(zhǎng)因子反應(yīng)(Response to growth factor)等,詳見圖6A。
2.6 差異表達(dá)基因KEGG代謝通路分析
G70組和對(duì)照組之間的差異基因共被注釋到20條通路,差異基因主要富集在以下4條通路,包括核糖體(Ribosome)、絲裂原活化蛋白激酶(MAPK)、細(xì)胞黏附分子(Cell adhesion molecules)和局部黏附(Focal adhesion),分別包含11、9、7和7個(gè)差異表達(dá)基因,詳見圖7和表4。
2.7 RT-qPCR驗(yàn)證差異表達(dá)基因
試驗(yàn)結(jié)果如圖8所示,所有差異基因的表達(dá)趨勢(shì)與轉(zhuǎn)錄組數(shù)據(jù)相一致。
3 討 論
腸道是機(jī)體最大的免疫器官,腸道黏膜免疫系統(tǒng)在保護(hù)機(jī)體免受感染方面發(fā)揮著重要作用[9]。IgA+細(xì)胞在黏膜表面大量分泌IgA,保護(hù)宿主免受病原體的侵害,并限制共生體進(jìn)入上皮下[10]。位于腸道相關(guān)淋巴組織的T和B淋巴細(xì)胞,經(jīng)誘導(dǎo)分化為CD4+和CD8+T細(xì)胞參與腸道免疫。CD4+和CD8+T細(xì)胞兩個(gè)亞群是直接反映機(jī)體免疫能力的T細(xì)胞亞群[11]。CD4+T細(xì)胞主要產(chǎn)生細(xì)胞因子并促進(jìn)B細(xì)胞成熟,而CD8+T細(xì)胞與殺傷靶細(xì)胞有關(guān)[12]。在本研究中,G70組檢測(cè)到腸道淋巴細(xì)胞CD4+CD8+雙陽(yáng)性T細(xì)胞的占比顯著增加,表明酵母β-葡聚糖(G70)可以促進(jìn)腸道淋巴細(xì)胞增殖分化為CD4+和CD8+T細(xì)胞。這與本團(tuán)隊(duì)前期的研究結(jié)果基本一致[6]。
細(xì)胞因子含量以及動(dòng)態(tài)變化直接反映腸道免疫甚至機(jī)體的免疫功能狀態(tài)。IFN-γ是機(jī)體免疫反應(yīng)的主要調(diào)節(jié)細(xì)胞因子,是激活免疫細(xì)胞的關(guān)鍵信號(hào)分子。另外,IFN-γ能夠激活巨噬細(xì)胞以增強(qiáng)多種細(xì)胞表面MHC-I和MHC-II的表達(dá),并促進(jìn)中和抗體分泌以阻斷病毒復(fù)制[13]。在本研究中,IFN-γ、MHC-I(Plt;0.05)和MHC-II的mRNA的表達(dá)水平升高。這與Gardner和Ruffell[14]的研究結(jié)果相符。GATA-3在調(diào)節(jié)Th1和Th2細(xì)胞分化中起關(guān)鍵作用[15]。本研究發(fā)現(xiàn),在加強(qiáng)免疫后1周,GATA-3的mRNA水平顯著表達(dá),表明G70在誘導(dǎo)CD4+T細(xì)胞分化的基礎(chǔ)上,能夠激活Th1和Th2型免疫應(yīng)答反應(yīng)。前期同樣有報(bào)道酵母葡聚糖能夠共同刺激GATA-3基因的相對(duì)表達(dá),與本文的結(jié)果一致[8]。CCR7和CCR9是派爾集合淋巴結(jié)(Peyer patch)中腸道淋巴細(xì)胞歸巢到次級(jí)淋巴組織過程中的重要趨化因子,其表達(dá)上調(diào)通常與腸道黏膜中T細(xì)胞和IgA+細(xì)胞的增加有關(guān)[16-17]。本研究中空腸黏膜IgA+細(xì)胞數(shù)量顯著增加,其原因可能是空腸中CCR7的mRNA表達(dá)顯著上調(diào)。這與課題組的前期研究結(jié)果相一致[5]。
轉(zhuǎn)錄組學(xué)研究中,KEGG通路富集分析表明,差異表達(dá)基因主要被歸入兩條路徑,包括“核糖體”和“MAPK”信號(hào)傳導(dǎo)路徑。β-葡聚糖的模式識(shí)別受體富集在免疫細(xì)胞表面,β-葡聚糖識(shí)別后,酪氨酸激酶和NF-κB受體受到刺激,誘導(dǎo)促炎性細(xì)胞因子的分泌和激活免疫反應(yīng)[18-22]。MAPK是絲氨酸-蘇氨酸蛋白激酶家族重要成員,在雞的炎癥發(fā)應(yīng)和細(xì)胞因子產(chǎn)生中起著重要作用。Byun等[23]證明,酵母β-葡聚糖提高了IFN-γ和IL-2的產(chǎn)生,并引發(fā)腹腔巨噬細(xì)胞中MAPK p38的磷酸化水平明顯提高。Wang等[24]報(bào)道,酵母β-葡聚糖通過抑制p38" MAPK的激活而減弱THP-1型細(xì)胞的炎癥反應(yīng)。在本研究中,在MAPK信號(hào)通路中發(fā)現(xiàn)了9個(gè)DEGs,包括JUND、novel.677、ECSIT、NFKB2、TGFA、ENSGALG00000050166、ENSGALG00000031518、GADD45G和PGF,提示酵母β-葡聚糖可能通過MAPK信號(hào)通路調(diào)節(jié)雞的腸道免疫反應(yīng)。IL-17是輔助性T細(xì)胞17(Th17)的標(biāo)志性細(xì)胞因子,在自身免疫、炎癥和抑制腫瘤發(fā)展以及宿主防御細(xì)菌和真菌感染方面起著重要作用[25-26]。此外,IL-17還能夠促進(jìn)抗菌肽產(chǎn)生和誘導(dǎo)中性粒細(xì)胞產(chǎn)生,進(jìn)而增強(qiáng)黏膜表面的物理屏障防御[27]。本研究中IL-17RD基因的表達(dá)量上調(diào),提示了G70的免疫增強(qiáng)作用可能與IL-17受體信號(hào)通路有關(guān)。
TMEM家族是一類跨膜蛋白,能夠編碼鈣離子激活氯通道,具有促進(jìn)細(xì)胞增殖的作用,在免疫相關(guān)疾病中發(fā)揮著重要作用[28]。TMEM家族蛋白廣泛參與基本生物學(xué)功能,包括物質(zhì)運(yùn)輸、信號(hào)傳導(dǎo)以及作為膜的基本成分[29]。此外,其家族中的蛋白成員參與調(diào)控的生物學(xué)過程包括自噬、平滑肌收縮、蛋白質(zhì)糖基化和炎癥反應(yīng)等。TMEM158一直被認(rèn)為是腫瘤抑制因子的關(guān)鍵基因。有研究報(bào)道TMEM158缺失可以調(diào)節(jié)癌細(xì)胞中的細(xì)胞周期和TGF-β表達(dá)來抑制細(xì)胞增殖、侵襲和黏附[30]。此外,F(xiàn)u等[31]研究發(fā)現(xiàn),TMEM158在癌細(xì)胞中表達(dá)上調(diào),并通過激活TGF-β1和PI3K/AKT信號(hào)通路促進(jìn)癌細(xì)胞增殖、遷移和侵襲。在本研究中,TMEM158基因表達(dá)量下調(diào),同時(shí)KEGG富集分析結(jié)果顯示,有4個(gè)差異顯著基因富集在TGF-β信號(hào)通路,這提示了G70的免疫增強(qiáng)作用可能與TGF-β信號(hào)通路有關(guān)。
4 結(jié) 論
飼料中添加酵母β-葡聚糖(G70)增加了新城疫免疫雛雞空腸中IgA+細(xì)胞的數(shù)量,提高了腸道CD4+CD8+雙陽(yáng)性T細(xì)胞比率,并上調(diào)了空腸免疫相關(guān)基因的表達(dá)。此外,G70可能通過調(diào)節(jié)IL-17RD、TGF-β和TMEM158等免疫相關(guān)基因的表達(dá)發(fā)揮其免疫增強(qiáng)作用,其機(jī)制可能是通過影響IL-17受體、TGF-β和MAPK信號(hào)通路。
參考文獻(xiàn)(References):
[1] CATTOLI G,SUSTA L,TERREGINO C,et al.Newcastle disease:a review of field recognition and current methods of laboratory detection[J].J Vet Diagn Invest,2011,23(4):637-656.
[2] 王林浩,康一嵐,劉兆霞,等.雞新城疫的診斷及疫苗免疫情況[J].特種經(jīng)濟(jì)動(dòng)植物,2024,27(11):72-74.
WANG L H,KANG Y L,LIU Z X,et al.Diagnosis and vaccine immunization of Newcastle disease in chickens[J].Special Economic Animals and Plants,2024,27(11):72-74.(in Chinese)
[3] 張高峰,魏家陽(yáng),馮賀龍,等.生物礦化對(duì)新城疫病毒LaSota株生物學(xué)特性及免疫原性的影響[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(12):5663-5671.
ZHANG G F,WEI J Y,F(xiàn)ENG H L,et al.Effects of biomineralization on the biological characteristics and immunogenicity of the LaSota strain of Newcastle disease virus[J].Acta Veterinaria et Zootechnica Sinica,2024,55(12):5663-5671.(in Chinese)
[4] BELLO M B,YUSOFF K,IDERIS A,et al.Diagnostic and vaccination approaches for newcastle disease virus in poultry:the current and emerging perspectives[J].Biomed Res Int,2018,2018:7278459.
[5] BI S,ZHANG J,QU Y,et al.Yeast cell wall product enhanced intestinal IgA response and changed cecum microflora species after oral vaccination in chickens[J].Poult Sci,2020,99(12):6576-6585.
[6] CAO L T,LI J,ZHANG J R,et al.Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens[J].Poult Sci,2023,102(2):102414.
[7] RAJPUT I R,LI L Y,XIN X,et al.Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens[J].Poult Sci,2013,92(4):956-965.
[8] BI S,ZHANG J,ZHANG L,et al.Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine[J].Poult Sci,2022,101(4):101712.
[9] 王燕飛,劉 璇,張若男,等.復(fù)合益生菌對(duì)肉雞腸道免疫、抗氧化與細(xì)胞凋亡的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2023,35(5):2916-2928.
WANG Y F,LIU X,ZHANG R N,et al.Effects of compound probiotics on intestinal immunity,antioxidation and apoptosis of broilers[J].Chinese Journal of Animal Nutrition,2023,35(5):2916-2928.(in Chinese)
[10] ISHO B,F(xiàn)LORESCU A,WANG A A,et al.Fantastic IgA plasma cells and where to find them[J].Immunol Rev,2021,303(1):119-137.
[11] 李 丹,蘇冀彥,蘇 璐,等.喂食蛹蟲草的小鼠血清對(duì)小鼠脾淋巴細(xì)胞增殖及活化的影響[J].食用菌學(xué)報(bào),2019,26(2):72-82.
LI D,SU J Y,SU L,et al.Effect of serum from mice fed with Cordyceps militaris on proliferation and activation of mouse spleen lymphocytes[J].Acta Edulis Fungi,2019,26(2):72-82.(in Chinese)
[12] ZHANG J J,JI Y H,WANG Z X,et al.Effective improvements to the live-attenuated Newcastle disease virus vaccine by polyethylenimine-based biomimetic silicification[J].Vaccine,2022,40(6):886-896.
[13] SAWANT P M,VERMA P C,SUBUDHI P K,et al.Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes[J].Vet Immunol Immunopathol,2011,144(1-2):36-44.
[14] GARDNER A,RUFFELL B.Dendritic cells and cancer immunity[J].Trends Immunol,2016,37(12):855-865.
[15] ZHOU M X,OUYANG W J.The function role of GATA-3 in Th1 and Th2 differentiation[J].Immunol Res,2003,28(1):25-37.
[16] HUANG L L,WANG J L,WANG Y H,et al.Upregulation of CD4+CD8+memory cells in the piglet intestine following oral administration of Bacillus subtilis spores combined with PEDV whole inactivated virus[J].Vet Microbiol,2019,235:1-9.
[17] COMERFORD I,HARATA-LEE Y,BUNTING M D,et al.A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system[J].Cytokine Growth Factor Rev,2013,24(3):269-283.
[18] WANI S M,GANI A,MIR S A,et al.β-glucan:a dual regulator of apoptosis and cell proliferation[J].Int J Biol Macromol,2021,182:1229-1237.
[19] GOODRIDGE H S,WOLF A J,UNDERHILL D M.β-glucan recognition by the innate immune system[J].Immunol Rev,2009,230(1):38-50.
[20] KANKKUNEN P,TEIRIL "L,RINTAHAKA J,et al.(1,3)-β-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages[J].J Immunol,2010,184(11):6335-6342.
[21] MASUDA Y,TOGO T,MIZUNO S,et al.Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway[J].J Leukoc Biol,2012,91(4):547-556.
[22] XU J,LIU D B,YIN Q,et al.Tetrandrine suppresses β-glucan-induced macrophage activation via inhibiting NF-κB,ERK and STAT3 signaling pathways[J].Mol Med Rep,2016,13(6):5177-5184.
[23] BYUN E B,PARK S H,JANG B S,et al.Gamma-irradiated β-glucan induces immunomodulation and anticancer activity through MAPK and NF-κB pathways[J].J Sci Food Agric,2016,96(2):695-702.
[24] WANG S,ZHOU H,F(xiàn)ENG T,et al.β-glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway[J].Nutr Metab Cardiovasc Dis,2014,24(3):248-255.
[25] RUIZ DE MORALES J M G,PUIG L,DAUD N E,et al.Critical role of interleukin (IL)-17 in inflammatory and immune disorders:an updated review of the evidence focusing in controversies[J].Autoimmun Rev,2020,19(1):102429.
[26] 葛曉龍,曹 裕,王婷婷.腸道內(nèi)Th17細(xì)胞的特征及其在炎癥性腸病中的作用[J].免疫學(xué)雜志,2014,30(12):1113-1117.
GE X L,CAO Y,WANG T T.The features of Th17 in the intestine and its function in inflammatory bowel disease[J].Immunological Journal,2014,30(12):1113-1117.(in Chinese)
[27] ABUSLEME L,MOUTSOPOULOS N M.IL-17:overview and role in oral immunity and microbiome[J].Oral Dis,2017,23(7):854-865.
[28] 郭思呈,李鐵松,李慶偉.TMEM16A:一種鈣離子激活的氯離子通道[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2017,33(12):1187-1194.
GUO S C,LI T S,LI Q W.TMEM16A:a type of calcium-activated chloride channel[J].Chinese Journal of Biochemistry and Molecular Biology,2017,33(12):1187-1194.(in Chinese)
[29] 魏 晶,陳紀(jì)飛,王 冰,等.TMEM家族成員免疫功能的研究進(jìn)展[J].中國(guó)免疫學(xué)雜志,2016,32(1):127-130.
WEI J,CHEN J F,WANG B,et al.Research progress on immune function of TMEM family members[J].Chinese Journal of Immunology,2016,32(1):127-130.(in Chinese)
[30] TONG J C,LI H R,HU Y,et al.TMEM158 regulates the canonical and non-canonical pathways of TGF-β to mediate EMT in triple-negative breast cancer[J].J Cancer,2022,13(8):2694-2704.
[31] FU Y,YAO N,DING D,et al.TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway[J].J Cell Physiol,2020,235(3):2761-2775.
(編輯 范子娟)