【摘要】 目的 評估非接觸式生命體征監(jiān)測在慢性阻塞性肺疾?。–OPD)患者中的臨床應(yīng)用價值,分析多維度生命體征參數(shù)與病情嚴重程度的相關(guān)性,探討其在COPD監(jiān)測中的應(yīng)用價值。方法 選擇2021年3月至2023年10月在中山大學(xué)附屬第三醫(yī)院天河院區(qū)診治的55例COPD患者,所有患者均接受新型非接觸式生命體征監(jiān)測系統(tǒng)部署,并完成標準化肺功能評估。收集其臨床基線數(shù)據(jù),并采集夜晚生理信號,核心監(jiān)測指標包括心率變異性(HRV)、呼吸特征睡眠結(jié)構(gòu)。根據(jù)患者肺功能評估情況分為輕、中、重、極重度,將輕度者分為非嚴重組,中、重、極重度者分為嚴重組,比較組間差異,構(gòu)建風險模型,并利用受試者操作特征(ROC)曲線分析的各參數(shù)在COPD病情評估中的效能。結(jié)果 輕、中、重、極重度者的性別、年齡、體質(zhì)量指數(shù)(BMI)、第1秒用力呼氣容積(FEV1)、用力肺活量(FVC)、FEV1/FVC比較差異有統(tǒng)計學(xué)意義(均P lt; 0.05)。組間心臟總能量、心臟總能量基準值、交感神經(jīng)張力指數(shù)、交感神經(jīng)張力基準值、迷走神經(jīng)張力指數(shù)以及迷走神經(jīng)張力基準值比較差異亦有統(tǒng)計學(xué)意義(均P lt; 0.05),且這些指標隨病情加重呈上升趨勢;自主神經(jīng)平衡和自主神經(jīng)平衡基準值在組間比較差異未見統(tǒng)計學(xué)意義(均P gt; 0.05)。HRV對COPD患者嚴重程度的影響較為明顯;迷走神經(jīng)張力指數(shù)、心臟總能量基準值、淺睡眠時間以及長期基準呼吸參數(shù)對病情嚴重程度的診斷具有較高效能,其ROC曲線下面積(AUC)分別為0.892、0.886、0.800和
0.733。結(jié)論 非接觸式連續(xù)生命體征監(jiān)測在COPD病程管理中具有可行性,HRV、淺睡眠時間和長期基準呼吸頻率等指標在COPD患者的病情監(jiān)測與評估中具有重要的臨床應(yīng)用價值。
【關(guān)鍵詞】 慢性阻塞性肺疾??;非接觸式監(jiān)測;心率變異性;自主神經(jīng)功能;病情評估模型
Research on the application of non-contact continuous vital signs monitoring in the assessment of patients with chronic obstructive pulmonary disease
LIU Shuang1,2, LONG Zhicong1,2, ZHOU Yuqi1,2 , LUO Yinghua2, YANG Hailing2
( 1. Department of Respiratory and Critical Care Medicine, Zhaoqing Hospital of the Third Affiliated Hospital of Sun Yat-sen University, Zhaoqing 526070, China; 2. Department of Respiratory and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China)
Corresponding author: ZHOU Yuqi, E-mail: zzyyqqcj7605@163.com
【Abstract】 Objective To evaluate the clinical application value of non-contact vital signs monitoring in patients with chronic obstructive pulmonary disease (COPD), analyze the correlation between multi-dimensional vital signs parameters and disease severity, and explore their application value in COPD monitoring. Methods A total of 55 COPD patients treated at the Tianhe Campus of the Third Affiliated Hospital of Sun Yat-sen University from March 2021 to October 2023 were enrolled. All patients underwent deployment of a novel non-contact vital signs monitoring system and completed standardized pulmonary function assessments. Clinical baseline data were collected, and nocturnal physiological signals were recorded, with core monitoring indicators including heart rate variability (HRV), respiratory characteristics, and sleep structure. Based on pulmonary function assessments, patients were categorized into mild, moderate, severe, and very severe groups. The mild cases were classified as the non-severe group, while the moderate, severe, and very severe cases were combined into the severe group. Intergroup differences were compared, a risk model was constructed, and the efficacy of each parameter in assessing COPD severity was analyzed using receiver operating characteristic (ROC) curves. Results Significant differences were observed among the mild, moderate, severe, and very severe cases in terms of gender, age, body mass index (BMI), forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio (all P lt; 0.05). Significant differences were also found between the two groups in total cardiac energy, total cardiac energy baseline value, sympathetic nerve tension index, sympathetic nerve tension baseline value, vagal nerve tension index, and vagal nerve tension baseline value ( all P lt; 0.05), with these indicators showing an increasing trend as disease severity worsened. No significant differences were observed in autonomic nerve balance and autonomic nerve balance baseline value between the groups (all P gt; 0.05). HRV had a notable impact on COPD severity. The vagal nerve tension index, total cardiac energy baseline value, light sleep duration, and long-term baseline respiratory parameters demonstrated high efficacy in diagnosing disease severity, with areas under the ROC curve (AUC) values of 0.892, 0.886, 0.800, and 0.733, respectively. Conclusions Non-contact continuous vital signs monitoring is feasible in the management of COPD. Indicators such as HRV, light sleep duration, and long-term baseline respiratory rate hold significant clinical value in the monitoring and assessment of COPD patients.
【Key words】 Chronic obstructive pulmonary disease (COPD); Non-contact monitoring; Heart rate variability (HRV);
Autonomic nervous function;Disease severity assessment model
慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是一種以持續(xù)氣流受限為特征的慢性呼吸系統(tǒng)疾?。?],其全球疾病負擔日益加重,預(yù)計在未來40年內(nèi)將成為全球主要死因之一[2]。急性缺氧是COPD患者病情惡化的關(guān)鍵病理機
制[3-4],不僅與肺功能加速衰退密切相關(guān)[5-6],還增加了患者再入院風險,其中90 d內(nèi)再入院率明顯高于30 d內(nèi)[4]。盡管早期識別COPD急性加重期(acute exacerbation of COPD, AECOPD)對改善患者預(yù)后至關(guān)重要,但傳統(tǒng)對患者出院后的生命體征監(jiān)測手段在動態(tài)評估和預(yù)警效能方面仍存在顯著局限[7]。
當前臨床實踐中,COPD的臨床評估主要依賴于肺功能測試和急性加重頻率等客觀指標。然而,肺功能檢測易受環(huán)境因素(如大氣污染、溫濕度突變)的干擾[8],且難以全面反映疾病的異質(zhì)性特征。成年人第1秒用力呼氣量(forced expiratory volume in first second, FEV1)與用力肺活量(forced vital capacity, FVC)比值會隨著年齡的增加而下降,不同性別之間的肺功能存在差異[9-11]。2023年COPD全球倡議(global initiative for chronic obstructive lung disease,GOLD)指南明確指出,COPD致病機制已從單一吸煙因素擴展至多維度環(huán)境交互作用,包括病原微生物感染、過敏原暴露及氣候應(yīng)激等[12],這些外界不利因素可能通過誘發(fā)自主神經(jīng)功能紊亂和夜間低通氣,導(dǎo)致患者病情從穩(wěn)定期迅速轉(zhuǎn)變?yōu)榧毙约又仄冢?3]。值得注意的是,約78%的COPD患者存在夜間血氧飽和度降低和睡眠結(jié)構(gòu)紊亂[14],此類隱匿性病理改變已成為病情惡化的獨立危險因素[15]。
近年來,智能傳感技術(shù)的快速發(fā)展為COPD的監(jiān)測與管理提供了新的可能性。智能傳感設(shè)備能夠持續(xù)、無創(chuàng)地監(jiān)測患者的日常生理活動,包括心率、呼吸頻率及睡眠質(zhì)量等指標,已被廣泛應(yīng)用于呼吸系統(tǒng)疾病的研究中[16-17]。Hawthorne團隊針對35例急性加重期后病情穩(wěn)定的COPD患者開展前瞻性研究,通過連續(xù)6周動態(tài)監(jiān)測發(fā)現(xiàn):在清醒時段,患者每15秒采集的心率(heart rate,HR)、呼吸頻率(respiratory rate, RR)及體力活動(physical activity,PA)數(shù)據(jù)與每日慢性肺疾病急性加重評估工具(Exacerbations of Chronic Pulmonary Disease Tool,EXACT)癥狀評分存在動態(tài)關(guān)聯(lián);根據(jù)EXACT評分將AECOPD分為3級——輕度(癥狀自我管理)、中度(需口服糖皮質(zhì)激素/抗生素治療)及重度(需住院干預(yù));多水平線性回歸模型揭示,HR與EXACT評分呈正相關(guān)(β = 0.32,P = 0.008),PA與EXACT評分呈負相關(guān)(β = -0.28,P = 0.013),而RR與癥狀嚴重程度無關(guān)(P gt; 0.05)[18]。有研究者通過可穿戴智能手環(huán)收集夜間瞬時心率(instantaneous heart rate,IHR)、心率變異性(heart rate variability,HRV)、體溫和經(jīng)皮動脈血氧飽和度(percutaneous arterial oxygen saturation,SpO2)數(shù)據(jù),并利用這些數(shù)據(jù)進行疾病監(jiān)測和時空分布可視化,為COPD的區(qū)域性管理提供了支持[8]。Harrington等[19]通過在床架背面安裝力傳感器,成功實現(xiàn)了對患者體質(zhì)量及心肺生理信號的被動監(jiān)測,并通過與商業(yè)設(shè)備的對比驗證了心肺生理信號在夜間睡眠研究中的準確性,為慢性心肺疾病的居家管理提供了技術(shù)支持。此外,Naranjo-Hernández等[20]開發(fā)了一種基于非接觸式電容感應(yīng)的智能背心,用于家庭環(huán)境中COPD患者的呼吸頻率監(jiān)測,并結(jié)合醫(yī)療物聯(lián)網(wǎng)(internet of medical things,IoMT)技術(shù)構(gòu)建了遠程監(jiān)測平臺,驗證了其可行性和有效性。
研究表明,監(jiān)測COPD患者的自主神經(jīng)系統(tǒng)功能變化有助于識別病情變化,HRV降低是不良預(yù)后的預(yù)測因素[21]。非接觸式監(jiān)測技術(shù)(如微波雷達)在老年人群中的應(yīng)用研究表明,夜間HRV和RR監(jiān)測具有作為COPD輔助診斷指標的潛在價值[22-23]。然而現(xiàn)有監(jiān)測體系仍面臨關(guān)鍵挑戰(zhàn):其一,市售可穿戴設(shè)備多局限于單一參數(shù)(如心率或血氧)監(jiān)測,缺乏對自主神經(jīng)-呼吸-睡眠節(jié)律協(xié)同變化的綜合分析;其二,環(huán)境干擾因素(如體位改變、電磁噪聲)導(dǎo)致數(shù)據(jù)可靠性下降;其三,夜間生理參數(shù)與肺功能衰退速率(FEV1年下降量)的定量關(guān)聯(lián)尚未明確。
針對上述問題,本研究創(chuàng)新性地構(gòu)建基于多模態(tài)傳感的非接觸式夜間監(jiān)測系統(tǒng),通過連續(xù)采集HRV、呼吸及睡眠結(jié)構(gòu)等多維度參數(shù),旨在建立COPD患者夜間生理模式與疾病嚴重程度的量化關(guān)系,為個體化預(yù)警和精準干預(yù)提供新范式。
1 對象與方法
1.1 研究對象
本研究采用前瞻性觀察性設(shè)計,于2021年3月至2023年10月在中山大學(xué)附屬第三醫(yī)院呼吸與危重癥醫(yī)學(xué)科開展。研究對象均經(jīng)GOLD 2023年標準確診為COPD(吸入支氣管擴張劑后FEV1與FVC比值小于0.7),共納入初篩隊列75例。所有參與者均接受新型非接觸式生命體征監(jiān)測系統(tǒng)(WSM-LN-01型,中科新知,廣州)部署,并完成標準化肺功能評估[德國耶格Master Screen系統(tǒng),符合美國胸科學(xué)會(American Thoracic Society,ATS)和歐洲呼吸學(xué)會(European Respiratory Society,
ERS)標準]。經(jīng)嚴格質(zhì)量控制后,最終55例完成不少于150 d的有效監(jiān)測[日均有效時間(8.2±
1.3) h],排除原因包括設(shè)備依從性不足(n = 11)、
合并哮喘/阻塞性睡眠呼吸暫停低通氣綜合征(obstructive sleep apnea hypopnea syndrome,OSAHS)等呼吸系統(tǒng)共?。╪ = 6)以及關(guān)鍵數(shù)據(jù)缺失(n =
3)?;谇捌陬A(yù)試驗中HRV參數(shù)與第1秒用力呼氣量占用力肺活量百分率(percentage of forced expiratory volume in first second to forced vital capacity,F(xiàn)EV1%)實測值占預(yù)計值的百分比(%pred)的相關(guān)性(r = 0.42),設(shè)定α = 0.05、β = 0.20,經(jīng)PASS 15.0計算需至少48例樣本,最終納入55例,滿足統(tǒng)計學(xué)要求。本研究經(jīng)中山大學(xué)附屬第三醫(yī)院醫(yī)學(xué)倫理委員會批準(批件號:中大附三醫(yī)倫〔2021〕02-019-01)。所有入組參與者使用設(shè)備前均簽署知情同意書,如患者不能簽署,則由授權(quán)家屬代表簽署。
1.2 病例選擇及分組標準
1.2.1 納入與排除標準
納入標準:①符合GOLD 2023診斷標準;②典型呼吸道癥狀(每年咳嗽或咳痰超過3個月,mMRC≥1);③年齡40~80歲,具備設(shè)備操作能力。排除標準:①藥物濫用或嚴重器質(zhì)性疾?。ㄐ母文I衰竭、癲癇、腦器質(zhì)病變)者;②繼發(fā)性睡眠障礙[器質(zhì)性失眠、多導(dǎo)睡眠監(jiān)測(polysomnography,PSG)確診OSAHS、漢密爾頓抑郁量表(Hamilton Depression Scale,HAMD)得分gt; 17分]者;③監(jiān)測依從性不足(有效時間lt;總監(jiān)測期70%)者;④數(shù)據(jù)質(zhì)量缺陷(單次記錄體動gt; 400次或離床時間gt;2 h)者。
1.2.2 分層變量
根據(jù)基線FEV1%pred進行GOLD分級:1級(輕度,基線FEV1%pred≥80%)、2級(中度,基線FEV1%pred為50%~79%)、3級(重度,基線FEV1%pred為30%~49%)、4級(極重度,F(xiàn)EV1%pred lt;
30%);為構(gòu)建ROC曲線分析模型,本研究將GOLD分級中的輕度(1級)定義為非嚴重組,中、重、極重度(2~4級)合并為嚴重組,該分類方式參考GOLD 2023指南中關(guān)于臨床干預(yù)閾值的推薦[12]。
1.3 數(shù)據(jù)采集體系
1.3.1 多維度參數(shù)獲取
1)臨床基線數(shù)據(jù):通過電子病歷系統(tǒng)提取人口學(xué)特征[年齡、體質(zhì)量指數(shù)(body mass index, BMI)]、肺功能參數(shù)(FEV1%pred、FVC%pred、FEV1/FVC)、急性加重史(過去1年住院/急診次數(shù))。
2)夜間生理信號:采用毫米波生物雷達系統(tǒng)(WSM-LN-01)連續(xù)采集非接觸式生命體征監(jiān)測系統(tǒng)于22:00—07:00的連續(xù)性數(shù)據(jù),技術(shù)參數(shù)包括采樣頻率設(shè)為1 kHz(壓力傳感模式),監(jiān)測距離設(shè)為30 cm(枕頭下置),信號處理設(shè)為小波降噪+自適應(yīng)濾波,傳輸方式為藍牙5.0加密傳輸至云端數(shù)據(jù)庫。
1.3.2 核心監(jiān)測指標
核心監(jiān)測具體指標及算法依據(jù)見表1[24-25]。
1.3.3 數(shù)據(jù)處理排除標準
數(shù)據(jù)處理排除標準有以下4點:①單個樣本缺失值的數(shù)量相對較大(丟失的數(shù)據(jù)量≥70%);②體動數(shù)超過400的數(shù)據(jù);③睡眠時間 lt; 5 h或 gt; 9 h的數(shù)據(jù);④離床時間 gt; 2 h的數(shù)據(jù)。
1.3.4 統(tǒng)計學(xué)方法
使用SPSS 20.0分析數(shù)據(jù)。對患者的不同亞組臨床資料數(shù)據(jù)和心臟相關(guān)參數(shù)采用Shapiro-Wilk法進行正態(tài)性檢驗,符合正態(tài)分布和方差齊性的計量資料用表示,組間比較采用單因素方差分析,多重比較采用Tukey HSD檢驗;偏態(tài)分布的計量資料用M(P25,P75)表示,組間比較使用Kruskal-Wallis H檢驗,采用Dunn多重比較,并進行Bonferroni校正。采用Spearman秩相關(guān)分析明確心臟、呼吸和睡眠相關(guān)參數(shù)對不同肺功能分級的影響并構(gòu)建相應(yīng)風險模型;采用受試者操作特征(receiver operating characteristic,ROC)曲線分析各參數(shù)對肺功能嚴重程度的最佳截斷值、曲線下面積(area under curve,AUC)、靈敏度及特異度。以雙側(cè)P lt; 0.05為差異有相關(guān)統(tǒng)計學(xué)意義。
2 結(jié) 果
2.1 一般資料特征
研究共納入55例COPD患者,年齡為(69.3±
7.0)歲,BMI為(22.4±3.0)kg/m2,男性占90.9%。
2.2 COPD不同亞組臨床資料分析
性別、年齡、BMI、FEV1%pred、FVC%pred、(FEV1/FVC)與病情嚴重程度有關(guān)(P lt; 0.05)。具體而言,隨著COPD患者病情嚴重程度的加重,其BMI、FEV1、FVC、FEV1/FVC指標均呈現(xiàn)下降趨勢,而年齡則在重度至極重度的范圍內(nèi)有所升高。見表2。
2.3 COPD不同亞組心率變異性分析
心臟總能量、心臟總能量基準值、交感神經(jīng)張力指數(shù)、交感神經(jīng)張力基準值、迷走神經(jīng)張力指數(shù)以及迷走神經(jīng)張力基準值在不同組間比較差異有統(tǒng)計學(xué)意義(P lt; 0.05),且隨著COPD患者病情嚴重程度的逐步加重,上述各指標均呈現(xiàn)逐漸升高趨勢;自主神經(jīng)平衡和自主神經(jīng)平衡基準值在組間比較差異無統(tǒng)計學(xué)意義(P gt; 0.05),見表3。
2.4 COPD患者基本資料、心率變異性、睡眠結(jié)構(gòu)、呼吸特征與病情嚴重程度的相關(guān)性熱圖分析
COPD患者的病情嚴重程度與多項指標存在相關(guān)性,在這些指標中,F(xiàn)EV1的相關(guān)性最強,其Pearson相關(guān)性分析系數(shù)達到0.95,呈負相關(guān)。綜合來看,相較于呼吸與睡眠相關(guān)參數(shù),心臟相關(guān)參數(shù)對COPD患者嚴重程度的影響效果較為明顯,迷走神經(jīng)張力指數(shù)、迷走神經(jīng)張力基準值與COPD患者嚴重程度相關(guān)系數(shù)分別為0.59和0.57,見圖1。
2.5 COPD患者臨床基本資料、心率變異性、睡眠結(jié)構(gòu)及呼吸特征與病情嚴重程度的ROC曲線
本研究采用二分類模型評估指標效能,以GOLD 1級(輕度)為對照組(非嚴重組),GOLD 2~4級(中、重、極重度)為病例組(嚴重組),在探究各項指標對COPD患者病情嚴重評估結(jié)果中,BMI顯示出較高的診斷效能,其對應(yīng)的AUC值為0.832,見圖2A。迷走神經(jīng)張力指數(shù)、心臟總能量基準值同樣具有較高的診斷效能,兩者的AUC值分別為0.892和0.886,見圖2B。淺睡眠時間也顯示出較高的診斷效能,其AUC值為0.800,見圖2C。長期基準呼吸亦表現(xiàn)出較高的診斷效能,其AUC值為0.733,見圖2D。
3 討 論
本研究系統(tǒng)探討了非接觸式生命體征監(jiān)測技術(shù)在COPD患者中的應(yīng)用價值,證實了持續(xù)夜間睡眠監(jiān)測在COPD病程管理中的可行性和具有潛在臨床意義。研究結(jié)果顯示,性別、年齡、BMI、FEV1、FVC以及FEV1與FVC比值與COPD病情嚴重程度有關(guān),這一發(fā)現(xiàn)與GOLD 2023指南中強調(diào)的多維度評估理念相契合[23]。同時,也提示未來研究需進一步平衡性別分布以提高結(jié)果的普適性。在對COPD患者的HRV、睡眠結(jié)構(gòu)、呼吸特征和基本資料參數(shù)與嚴重的綜合分析中,本研究結(jié)果顯示HRV對COPD患者嚴重程度的影響尤為明顯。
研究表明,COPD患者的心律失常發(fā)生率隨氣流受限的嚴重程度增加而升高,年齡和較低的FEV1%可能是心律失常的危險因素[26-27]。COPD患者的心律失常發(fā)生率高,可能與缺氧、高碳酸血癥、肺動脈高壓等因素有關(guān)[28]。HRV作為評估自主神經(jīng)系統(tǒng)對心率控制影響的一種手段,反映了交感神經(jīng)和副交感神經(jīng)(迷走神經(jīng))影響的平衡,任何交感神經(jīng)刺激的增加和(或)副交感神經(jīng)(迷走神經(jīng))刺激的減少均會降低HRV,可能與心血管疾病風險增加相關(guān)[28-29]。本研究中,HRV對COPD患者嚴重程度的影響較大。這一發(fā)現(xiàn)與既往研究結(jié)果一致,表明HRV可作為反映自主神經(jīng)功能的重要指標[29],在COPD病情評估中具有重要價值。研究中自主神經(jīng)平衡及其基準值不同組間比較未見統(tǒng)計學(xué)意義,這一現(xiàn)象提示盡管患者臨床病情存在進展,但交感-迷走神經(jīng)系統(tǒng)的動態(tài)調(diào)節(jié)機制可能通過代償性適應(yīng)維持了相對穩(wěn)定的功能比值,這或許揭示了COPD病程中自主神經(jīng)功能重塑的重要特征[28]。
臨床實踐中,在評估COPD患者的呼吸狀況時,動脈血氧飽和度指數(shù)顯示出一定的不足。具體而言,該類指標未能充分考慮低氧血癥的嚴重程度及其持續(xù)時間[30]。值得注意的是,COPD患者在快速眼動睡眠期間更傾向于出現(xiàn)低氧血癥,即使在沒有明顯呼吸阻塞事件的情況下也是如
此[30-31]。此外,臨床特征包括BMI、頸圍和腰圍,能夠預(yù)測個體患OSAHS的風險[32-33]。而且在COPD患者群體中,OSAHS的風險隨著BMI的增加而增加[32]。本研究在探究各項指標對COPD患者病情嚴重程度評估結(jié)果顯示,BMI、淺睡眠時間、長期基準呼吸顯示出較高的靈敏度和特異度,AUC值分別為0.832、0.800、0.733,這一結(jié)果表明,這些指標在COPD患者的病情監(jiān)測與評估中具有重要的臨床應(yīng)用價值。
國內(nèi)外研究已逐漸關(guān)注移動醫(yī)療設(shè)備在COPD患者長期健康管理中的創(chuàng)新應(yīng)用。一方面,通過物聯(lián)網(wǎng)慢性病大數(shù)據(jù)中心的APP,醫(yī)護人員能夠?qū)崟r監(jiān)控患者的肺功能篩查和用藥情況,并及時轉(zhuǎn)診中重度患者[34]。另一方面,朱俞彤等[35]的研究表明,基于IoT的肺康復(fù)護理相比常規(guī)護理,在改善患者肺功能、呼吸困難評分和生活質(zhì)量方面更具優(yōu)勢,凸顯了遠程管理對患者康復(fù)的積極作用。此外,本研究開發(fā)的非接觸式監(jiān)測系統(tǒng)與VelardoC等的平板監(jiān)護方案相比,具有更高的患者依從性和更優(yōu)的成本效益[36]。綜上所述,移動醫(yī)療設(shè)備在COPD患者的健康管理中展現(xiàn)出顯著的積極作用,為患者的長期康復(fù)提供了有力支持。
本研究存在一定的局限性,研究中男性占比遠高于女性,入組人數(shù)較少,且COPD多發(fā)生于老年群體,在重度及極重度分組中未納入女性患者,這可能影響研究結(jié)果的普適性。COPD在男性中發(fā)病率較高是多種因素共同作用的結(jié)果,其中吸煙和職業(yè)暴露是最主要的原因[33]。然而,研究未充分考慮混雜因素的影響,如各組間短效β-受體激動劑的使用情況和家庭氧療的實施。短效β-受體激動劑的使用頻率和劑量可能因病情嚴重程度而異,并影響HRV等生理參數(shù)。此外,家庭氧療的實施情況(如氧流量和使用時間)可能對患者的血氧飽和度、睡眠質(zhì)量和自主神經(jīng)功能產(chǎn)生顯著影響。未來研究將詳細記錄這些信息,并將其納入統(tǒng)計分析,以更準確地評估各因素對COPD病情的影響。此外,本次研究只開展了不同病情程度的COPD患者的夜間生命體征監(jiān)測,未與正常人對照組監(jiān)測數(shù)據(jù)形成對比[36]。接下來本課題組會繼續(xù)增加COPD患者入組樣本量、優(yōu)化性別比例及增加正常人群作為對照,增加血氧指標及整合環(huán)境因素[如細顆粒物(particulate matter,PM2.5)、溫濕度]的動態(tài)監(jiān)測數(shù)據(jù),評估大氣環(huán)境數(shù)據(jù)變化和患者病情變化相關(guān)性[37]。此外,COPD患者夜間低氧血癥較為常見,且與患者的生存期有很大的關(guān)系。早期診斷COPD夜間低氧血癥,及早給予治療,可以延緩疾病的進展[38]。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻
[1] ERHABOR G E, ADENIYI B, ARAWOMO A O, et al. Acute exacerbation of COPD: clinical perspectives and literature review[J]. West Afr J Med, 2021, Vol. 38(11): 1129-1142.
[2] FARMER M J S, CALLAHAN C D, HUGHES A M, et al. Applying noninvasive ventilation in treatment of acute exacerbation of COPD using evidence-based interprofessional clinical practice[J]. Chest, 2024, 165(6): 1469-1480. DOI: 10.1016/j.chest.2024.02.040.
[3] RODRíGUEZ GONZáLEZ-MORO J M, IZQUIERDO ALONSO J L. Oral antibiotic treatment of exacerbation of COPD. beyond COVID-19[J]. Rev Esp Quimioter, 2021, 34(5): 429-440. DOI: 10.37201/req/125.2021.
[4] ALQAHTANI J S, ALDABAYAN Y S, ALDHAHIR A M, et al. Predictors of 30- and 90-day COPD exacerbation readmission: a prospective cohort study[J]. Int J Chron Obstructi Pulmon Dis, 2021, 16: 2769-2781. DOI: 10.2147/ COPD.S328030.
[5] YOON S M, JIN K N, LEE H J, et al. Acute exacerbation and longitudinal lung function change of preserved ratio impaired spirometry[J]." Int J Chron Obstruct Pulmon Dis, 2024, 19: 519-529. DOI: 10.2147/COPD.S445369.
[6] CHEN J, YANG Z, YUAN Q, et al. Prediction models for pulmonary function during acute exacerbation of chronic obstructive pulmonary disease [J]. Physiol Meas, 2021, 41(12):
125010. DOI: 10.1088/1361-6579/abc792.
[7] HAWTHORNE G, RICHARDSON M, GREENING N J, et al. A proof of concept for continuous, non-invasive, free-living vital signs monitoring to predict readmission following an acute exacerbation of COPD: a prospective cohort study[J]. Respir Res, 2022, 23(1): 102. DOI: 10.1186/s12931-022-02018-5.
[8] AGUSTí A, CELLI B R, CRINER G J, et al. Global initiative for chronic obstructive lung disease 2023 report: gold executive summary[J]. Eur Respir J, 2023, 61(4): 2300239. DOI: 10.1183/13993003.00239-2023.
[9] LOBZHANIDZE K, SULAQVELIDZE M, TABUKASHVILI R. Factors associated with decline of fev1 in chronic obstructive pulmonary disease[J]. Georgian Med News, 2021(311): 89-91.
[10] COLLABORATORS G 2 D A I. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J].
Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[11] TAN L, LATSHANG T D, AESCHBACHER S S, et al. Effect of nocturnal oxygen therapy on nocturnal hypoxemia and sleep apnea among patients with chronic obstructive pulmonary disease traveling to 2048 meters: a randomized clinical trial[J]. JAMA Netw Open, 2020, 3(6): e207940. DOI: 10.1001/jamanetworkopen.2020.7940.
[12] AGUSTí A, CELLI B R, CRINER G J, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary[J]. Eur Respir J, 2023, 61(4): 2300239. DOI: 10.1183/13993003.00239-2023.
[13] RODRíGUEZ GONZáLEZ-MORO J M, IZQUIERDO ALONSO J L. Oral antibiotic treatment of exacerbation of COPD. beyond COVID-19[J]. Rev Esp Quimioter, 2021, 34(5): 429-440. DOI: 10.37201/req/125.2021.
[14] SAYERS I, JOHN C, CHEN J, et al. Genetics of chronic respiratory disease[J]. Nat Rev Genet, 2024, 25(8): 534-547.
DOI: 10.1038/s41576-024-00695-0.
[15] BUDHIRAJA R, ROTH T, HUDGEL D W, et al. Prevalence and polysomnographic correlates of insomnia comorbid with medical disorders[J]. Sleep, 2011, 34(7): 859-867. DOI: 10.5665/SLEEP.1114.
[16] BALLAL T, HENEGHAN C, ZAFFARONI A, et al. A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor[J]. Physiol Meas, 2014, 35(12): 2513-2527. DOI: 10.1088/0967-
3334/35/12/2513.
[17] GUARDUCCI S, JAYOUSI S, CAPUTO S, et al. Key fundamentals and examples of sensors for human health: wearable, non-continuous, and non-contact monitoring devices [J].
Sensors, 2025, 25(2): 556. DOI: 10.3390/s25020556.
[18] HAWTHORNE G, RICHARDSON M, GREENING N J, et al. A proof of concept for continuous, non-invasive, free-living vital signs monitoring to predict readmission following an acute exacerbation of COPD: a prospective cohort study[J]. Respir Res, 2022, 23(1): 102. DOI: 10.1186/s12931-022-02018-5.
[19] HARRINGTON N, BUI Q M, WEI Z, et al. Passive longitudinal weight and cardiopulmonary monitoring in the home bed[J]. Sci Rep, 2021, 11(1): 24376. DOI: 10.1038/s41598-021-03105-1.
[20] NARANJO-HERNáNDEZ D, TALAMINOS-BARROSO A, REINA-TOSINA J, et al. Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing[J]. Sensors, 2018, 18(7): 2144. DOI: 10.3390/s18072144.
[21] P A J, MOHIDEEN B, ASHRAF A R, et al. Heart rate variability and peripheral oxygen saturation levels in chronic obstructive pulmonary disease[J]. Cureus, 2025, 17(1): e77401. DOI: 10.7759/cureus.77401.
[22] MATSUI T, YOSHIDA Y, KAGAWA M, et al. Development of a practicable non-contact bedside autonomic activation monitoring system using microwave radars and its clinical application in elderly people[J]. J Clin Monit Comput, 2013, 27(3): 351-356. DOI: 10.1007/s10877-013-9448-3.
[23] BALLAL T, HENEGHAN C, ZAFFARONI A, et al. A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor[J]. Physiol Meas, 2014, 35(12): 2513-2527. DOI: 10.1088/0967-3334/35/12/2513.
[24] SANTOS-DE-ARAúJO A D, BASSI-DIBAI D, CAMARGO P F, et al. Inter- and intrarater reliability of short-term measurement of heart rate variability on rest in chronic obstructive pulmonary disease (COPD)[J]. Heart Lung, 2023, 62: 64-71. DOI: 10.1016/j.hrtlng.2023.06.004.
[25] MAYà G, GAIG C, IRANZO à, et al. REM sleep latency changes after version 2.1 of the AASM manual for scoring sleep[J]. Sleep Med, 2022, 90: 142-144. DOI: 10.1016/j.
sleep.2022.01.019.
[26] HU W, ZHAO Z, WU B, et al. Obstructive sleep apnea increases the prevalence of hypertension in patients with chronic obstructive disease[J]. COPD, 2020, 17(5): 523-532. DOI: 10.1080/15412555.2020.1815688.
[27] FISK M, MCENIERY C M, GALE N, et al. Surrogate markers of cardiovascular risk and chronic obstructive pulmonary disease: a large case-controlled study[J]. Hypertension, 2018, 71(3): 499-506. DOI: 10.1161/HYPERTENSIONAHA.117.10151.
[28] PARK S C, SAIPHOKLANG N, JUNG D, et al. Use of a wearable biosensor to study heart rate variability in chronic obstructive pulmonary disease and its relationship to disease severity[J]. Sensors, 2022, 22(6): 2264. DOI: 10.3390/s22062264.
[29] TURCU A M, ILIE A C, \U0218TEF?NIU R, et al. The impact of heart rate variability monitoring on preventing severe cardiovascular events[J]. Diagnostics, 2023, 13(14): 2382. DOI: 10.3390/diagnostics13142382.
[30] BAE E, KWAK N, CHOI S M, et al. Mortality prediction in chronic obstructive pulmonary disease and obstructive sleep apnea[J]. Sleep Med, 2021, 87: 143-150. DOI: 10.1016/j.
sleep.2021.09.011.
[31] MCNICHOLAS W T, HANSSON D, SCHIZA S, et al. Sleep in chronic respiratory disease: COPD and hypoventilation
disorders[J]. Eur Respir Rev, 2019, 28(153): 190064. DOI: 10.1183/16000617.0064-2019.
[32] LE B K, HOANG M. Prevalence of obstructive sleep apnea in patients with chronic obstructive pulmonary disease in
Vietnam[J]. Sleep Breath, 2024, 28(4): 1589-1595. DOI: 10.
1007/s11325-024-03035-y.
[33] FRIEDMAN M, HAMILTON C, SAMUELSON C G, et al. Diagnostic value of the Friedman tongue position and Mallampati classification for obstructive sleep apnea: a meta-analysis[J]. Otolaryngol Head Neck Surg, 2013, 148(4): 540-547. DOI: 10.1177/0194599812473413.
[34] 陳小平, 翁朝航, 池海燕, 等. 物聯(lián)網(wǎng)醫(yī)學(xué)技術(shù)在肺功能篩查中的應(yīng)用研究[J]. 中國衛(wèi)生信息管理雜志, 2020, 17(4): 528-532, 543. DOI: 10.3969/j.issn.1672-5166.2020.04.025.
CHEN X P, WENG (C /Z)H, CHI H Y, et al. Research on the application of Internet of Things medical technology in lung function test[J]. Chin J Health Inform Manag, 2020, 17(4): 528-532, 543. DOI: 10.3969/j.issn.1672-5166.2020.04.025.
[35] 朱俞彤, 劉祚燕. 物聯(lián)網(wǎng)云平臺的肺康復(fù)護理對老年慢性阻塞性肺疾病穩(wěn)定期患者肺功能的影響[J]. 中國醫(yī)藥導(dǎo)報, 2021, 18(1): 184-188.
ZHU Y T, LIU Z Y. Influence of lung rehabilitation nursing based on cloud platform of inter-net of things on lung function of elderly patients with chronic obstructive pulmonary disease in stable phase[J]. China Med Her, 2021, 18(1): 184-188.
[36] VELARDO C, SHAH S A, GIBSON O, et al. Digital health system for personalised COPD long-term management[J]. BMC Med Inform Decis Mak, 2017, 17(1): 19. DOI: 10.1186/s12911-017-0414-8.
[37] FERRERA M C, LABAKI W W, HAN M K. Advances in chronic obstructive pulmonary disease[J]. Annu Rev Med, 2021, 72: 119-134. DOI: 10.1146/annurev-med-080919-112707.
[38] SAYERS I, JOHN C, CHEN J, et al. Genetics of chronic respiratory disease[J]. Nat Rev Genet, 2024, 25(8): 534-547. DOI: 10.1038/s41576-024-00695-0.
(責任編輯:林燕薇)