摘要:基于高通量測序技術(shù)對湘江長沙段表層水及底泥樣品中魚類DNA片段測序,可補充湘江長沙段魚類資源調(diào)查數(shù)據(jù),并驗證eDNA技術(shù)用于魚類資源調(diào)查的可行性。2021年8月14日沿湘江長沙段流向采集表層水與底泥樣品各18份,采用E.Z.N.A.?土壤DNA提取試劑盒,以線粒體基因的12S rRNA為靶點,采用魚類特異性引物Tele 02進(jìn)行PCR擴增,與MitoFish和NCBI核酸數(shù)據(jù)庫比對并經(jīng)人工核實。結(jié)果顯示,調(diào)查共獲得淡水魚8目13科32屬39種;鯉形目(Cypriniformes)最多,共計27種,OTU相對豐度占比最高為48.56%;其次是鲇形目(Siluriformes)占22.87%,胡瓜魚目(Osmeriformes)占17.65%,鰕鯱目(Gobiiformes)占8.48%,鳉形目(Cyprinodontiformes)占1.48%,鱸形目(Perciformes)占0.83%,鱘形目(Acipenseriformes)占0.08%,攀鱸目(Anabantiformes)占0.05%;屬分類水平下,草魚屬(Ctenopharyngodon)、銀魚屬(Salanx)、擬鲿屬(Pseudobagrus)、?屬(Hemiculter)、鯉屬(Cyprinus)和吻鰕鯱屬(Rhinogobius)為優(yōu)勢屬。表層水與底泥中的Alpha多樣性指數(shù)分布較為均勻,且中下游魚類多樣性水平稍高于上游,可能與水源地保護(hù)措施改善了水生態(tài)質(zhì)量及禁漁政策有關(guān)。研究表明,eDNA技術(shù)可作為魚類生物多樣性監(jiān)測和大數(shù)據(jù)統(tǒng)計的重要手段,與傳統(tǒng)調(diào)查方法結(jié)合,可用于快速監(jiān)測流域魚類資源變化情況。
關(guān)鍵詞:環(huán)境DNA;魚類多樣性;豐水期;湘江長沙段
中圖分類號:X176nbsp; " " " 文獻(xiàn)標(biāo)志碼:A" " " " 文章編號:1674-3075(2025)02-0134-10
魚類多樣性對維持水生態(tài)系統(tǒng)的穩(wěn)定具有重要意義,而魚類的組成和多樣性是表征其資源多樣性的重要指標(biāo)(Cahill et al,2018;Yang amp; Zhang,2020;余楊等,2021)。目前采用傳統(tǒng)魚類調(diào)查工具(如底拖網(wǎng)、刺網(wǎng)、地籠等)進(jìn)行監(jiān)測和調(diào)查時存在獲取生物信息困難、耗時耗力、調(diào)查結(jié)果不佳等問題(Yamamoto et al,2016);除此之外,還會對生物群落造成一定干擾和破壞(孫頡等,2020)。水聲學(xué)技術(shù)在淺水湖泊中的功效較低,可能無法準(zhǔn)確識別出物種(王崇瑞等,2019)。
興起于2003年的環(huán)境DNA(eDNA),是目前調(diào)查生物資源的新工具(Hebert et al,2003),可有效改善傳統(tǒng)調(diào)查方法的不足,具有檢出率高、成本低、對水生態(tài)系統(tǒng)干擾性小等優(yōu)勢(沈梅等,2022)。Ficetola等(2008)首次通過eDNA技術(shù)檢測到淡水中的美國牛蛙(Rana catesbeiana);Takahara等(2012)運用eDNA技術(shù)對日本淡水湖中鯉(Cyprinus carpio)的生物量進(jìn)行了分析;此外,該技術(shù)還不受物種個體發(fā)育情況、性別、形態(tài)的影響,在水生生物多樣性評估中具有較大的潛力(姜維等,2016;沈梅等,2022)。近年來,eDNA技術(shù)已被廣泛用于大規(guī)模的物種調(diào)查(Hering et al,2018),如河流(Phillip et al,2017;徐念等,2020)、湖泊(Yang amp; Zhang,2020)中低密度物種(瀕危、珍稀、入侵物種)的識別檢測、生物量估測和生物多樣性評估。Civade等(2016)使用DNA宏條形碼技術(shù)開展大規(guī)模魚類多樣性評估,發(fā)現(xiàn)與單一傳統(tǒng)調(diào)查相比,DNA宏條形碼技術(shù)能檢測出更多的物種種類。
湘江長沙段(27°57'~28°30' N,112°43'~113°01' E)起始于湘潭縣昭山,止于望城縣喬口,全長共74 km,位于湘江中下游,是河流-水庫型飲用水水源地保護(hù)區(qū)和重要的魚類洄游通道,對下游洞庭湖的魚類資源多樣性保護(hù)具有重要意義,但酷魚濫捕和航電樞紐大壩的增設(shè)對湘江魚類多樣性造成了極大的威脅(Zeng et al,2022)。為有效地保護(hù)魚類的物種多樣性,恢復(fù)生態(tài)平衡,2016年起對湘江長沙段及其支流部分實施禁漁。已有學(xué)者對湘江桂北段、衡陽段,長株潭段及汨羅江等區(qū)域開展過魚類資源調(diào)查,但采用的是傳統(tǒng)捕撈方式(師瑞丹等,2015;高萬超等,2019;劉艷佳等,2019)。本次研究基于高通量測序技術(shù)對湘江長沙段表層水及底泥樣品中魚類DNA片段測序,分析該江段魚類的生物多樣性,補充湘江長沙段魚類資源調(diào)查數(shù)據(jù),并驗證eDNA技術(shù)的可行性,探索魚類資源調(diào)查的新方法。
1" "材料與方法
1.1" "樣點設(shè)置和樣品采集
2021年8月在湘江長沙段從上游到下游每隔6~10 km選取1個采樣點,共選取6個樣品采集點,每個點取3個平行,采集該點位的表層水(18份)與底泥(18份)樣品;同時,結(jié)合地理環(huán)境和城鎮(zhèn)化水平將其分為上游、中游、下游,上游樣點包括鵝洲(U1)、靳江河河口附近(U2),中游為銀盆嶺大橋附近(M1)、長沙港運碼頭對面(M2),下游為溈水河口上游(D1)、靖港古鎮(zhèn)(D2)(圖1)。據(jù)長沙市生態(tài)環(huán)境局公布的資料顯示,M1、D1、D2處于長沙市湘江飲用水水源地一級保護(hù)區(qū)域,U1、U2處于二級保護(hù)區(qū)范圍,且U1有居民點,2021年8月采集的這5個采樣點水質(zhì)均達(dá)到了《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB 3838—2002)Ⅲ類標(biāo)準(zhǔn)限值。
采集的18份5 L表層水樣(水面下約50 cm)放置于聚乙烯采樣袋中,采樣袋使用前均用75%乙醇消毒,采樣編號標(biāo)注“W”;18份底泥樣品(從泥面往下20 cm)約100 g放置于50 mL無菌離心管中,采樣編號標(biāo)注“S”。
1.2" "樣品預(yù)處理及總DNA提取
過濾實驗器材均進(jìn)行無菌處理,并使用滅菌雙蒸水做陰性對照。用直徑47 mm、孔徑0.45 μm的硝酸纖維素濾膜過濾采集的水樣,并將濾膜置于5.0 mL的無菌離心管中,用干冰快速冷凍,再運至長沙理工大學(xué)環(huán)境監(jiān)測實驗室-20 ℃冰箱中保存。水樣和底泥樣品均使用E.Z.N.A.? Soil DNA Kit DNA抽提試劑盒(Omega Bio-Tek,美國),參照說明書進(jìn)行總DNA提取,待提取完基因組DNA后,利用1%瓊脂糖凝膠電泳進(jìn)行檢測。
1.3" "PCR擴增與高通量測序
以線粒體基因12S rRNA為靶點,使用魚類特異性引物Tele02(Tele02-F:5′-ACACCGCCCGTCACTCT-3′,Tele02-R:5′-CTTCCGGTACACTTACCATG-3′)(Valentini et al,2016)進(jìn)行PCR擴增,擴增產(chǎn)物片段長度在168 bp左右。
PCR擴增采用TransStart FastPfu DNA polymerase,總體積20 μL反應(yīng)體系為:4 μL 5×FastPfu buffer,2 μL 2.5 mmol/L dNTPs,0.8 μL forward primer(5 μmol/L),0.8 μL reverse primer(5 μmol/L),0.4 μL FastPfu polymerase,10 ng Template DNA,后補ddH2O至20 μL。PCR反應(yīng)程序為:95 ℃預(yù)變性5 min,95 ℃變性30 s,55 ℃退火30 s,72 ℃延伸45 s,共27個循環(huán),最后72 ℃終延伸10 min,于10 ℃保存。每個樣本重復(fù)擴增3次,將同一樣本的PCR產(chǎn)物混合后用2%瓊脂糖凝膠電泳檢測,用AxyPrepDNA凝膠回收試劑盒(AXYGEN,U.S.)切膠回收PCR產(chǎn)物,Tris_HCl洗脫;2%瓊脂糖電泳檢測。參照電泳初步定量結(jié)果,將PCR產(chǎn)物用QuantiFluor?-ST藍(lán)色熒光定量系統(tǒng)(Promega公司)進(jìn)行檢測定量,按照每個樣本的測序量要求,進(jìn)行相應(yīng)比例混合。為防止外源DNA的污染,提取和擴增等操作均采用新的試劑并在超凈工作臺中進(jìn)行。本研究12個樣品(6個水樣和6個底泥樣品)均獲得了可檢測的PCR產(chǎn)物,將PCR產(chǎn)物膠回收后送至上海凌恩生物科技有限公司通過Illumina PE250測序平臺進(jìn)行高通量測序。
1.4" "數(shù)據(jù)處理
基于分類學(xué)信息,在各分類水平上進(jìn)行群落結(jié)構(gòu)統(tǒng)計分析。為得到每個OTU(operational taxonomic unit)對應(yīng)的物種分類信息,參照MitoFish(http://mitofish.aori.u-tokyo.ac.jp/)和NCBI核酸數(shù)據(jù)庫(ftp://ftp.ncbi.nlm.nih.gov/blast/db/);采用uclust算法對97%相似水平的OTU代表序列進(jìn)行分析,并去除非魚類數(shù)據(jù);參照萬種魚基因組計劃Fish 10 K(http://fish10k.genomics.cn/species/)、Fishbase數(shù)據(jù)庫(https://www.fishbase.in/search.php)以及相關(guān)魚類文獻(xiàn)(張春光和趙亞輝,2016;廖伏初等,2020;伍遠(yuǎn)安等,2021),分別在綱、目、科、屬、種的分類水平統(tǒng)計各樣本的群落組成?;谖锓N序列豐度數(shù)據(jù)進(jìn)行Alpha多樣性分析,研究魚類群落的豐富度和多樣性,包括Chao1指數(shù)、ACE指數(shù)、Shannon指數(shù)、Simpson和Evenness指數(shù)、Coverage指數(shù),分別反映群落豐富度、多樣性、均勻度及覆蓋度;通過主成分分析(principal component analysis,PCA)反映樣本間的差異和距離。
2" "結(jié)果與分析
2.1" "魚類組成
對獲得的6 090個原始OTU進(jìn)行比對,得到注釋物種淡水魚39種,為8目13科32屬,表層水檢出8目13科32屬39種,底泥檢出8目13科31屬38種(表1)。其中,目分類水平對比中,鯉形目(Cypriniformes)最多,共計27種,OTU相對豐度最高為48.56%,其次是鲇形目(Siluriformes)占22.87%、胡瓜魚目(Osmeriformes)占17.65%、鰕鯱目(Gobiiformes)占8.48%、鳉形目(Cyprinodontiformes)占1.48%、鱸形目(Perciformes)占0.83%、鱘形目(Acipenseriformes)占0.08%、攀鱸目(Anabantiformes)占0.05%。
屬分類水平下,草魚屬(Ctenopharyngodon)、銀魚屬(Salanx)、擬鲿屬(Pseudobagrus)、?屬(Hemiculter)、鯉屬(Cyprinus)和吻鰕鯱屬(Rhinogobius)為優(yōu)勢種屬(圖2)。
表層水及底泥中各點位魚類種分類水平熱圖中,黃顙魚(P. fulvidraco)、鯉(C. arpio)、前頜銀魚(S. prognathus)、?(H. leucisculus)、草魚(C. idellus)、鰱(Hypophthalmichehys molitrix)、麥穗魚(Pseudorasbora parva)等在各點位的物種序列豐度較高(圖3)。
2.2" "魚類的生物多樣性
表2顯示各個樣本Coverage值為0.993~0.999,均超過了99%,說明本次測序結(jié)果基本覆蓋到了全部OTU數(shù)據(jù),能反映該區(qū)域樣本的真實情況。表層水與底泥中的各項魚類多樣性指數(shù)分布較為均勻。Chao1指數(shù)為861.0~1 169.1,ACE指數(shù)為859.4~1 163.6,二者均統(tǒng)計豐富度,分布趨勢基本一致;Shannon指數(shù)為3.30~4.26,Simpson指數(shù)為0.04~0.10,二者分布趨勢也基本相似。其中Chao1指數(shù)和Shannon指數(shù)從上游到下游呈上升趨勢(圖4),且表層水和沉積物之間存在顯著正相關(guān)性(Plt;0.05)。從主成分分析結(jié)果(圖5)可看出,大部分樣本的物種組成較為相似,M1-S、D1-W、D2-W樣本與其他采樣點相比,物種組成存在較大差異。
3" "討論
3.1" "湘江長沙段魚類組成變化
湘江是長江的重要支流,魚類資源豐富,也是我國重要的魚類基因資源庫。據(jù)記載,湘江分布魚類共179種,隸屬13目28科96屬,其中鯉形目種數(shù)最多,占湘江魚類總數(shù)的65.4%(伍遠(yuǎn)安等,2021);師瑞丹等(2015)在湘江上游桂北段采集魚類共81種,其中鯉形目占62.96%;高萬超等(2019)在衡陽段和長株潭段共調(diào)查到魚類91種,其中衡陽段80種,長株潭段11種;以鯉、鯽(Carassius auratus)、黃顙魚、鯰(Silurus asotus)等定居魚類為主,四大家魚比例較少;劉艷佳等(2019)在湘江下游汨羅江段調(diào)查發(fā)現(xiàn)8科42種,以?、鯉、鰱為主。
本次研究檢出的物種序列豐度較高的種類(黃顙魚、鯉等)與上述傳統(tǒng)調(diào)查方法結(jié)果基本相似,獲得注釋的39種魚類中,大部分種類在傳統(tǒng)調(diào)查方法中均有出現(xiàn),但種類數(shù)量較歷史統(tǒng)計結(jié)果(179種)下降明顯(伍遠(yuǎn)安等,2021),與高萬超等(2019年)對長株潭段的調(diào)查結(jié)果(11種)相比有所上升,與下游汨羅段(42種)基本一致(劉艷佳等,2019)。鯉形目仍為優(yōu)勢物種,OTU相對豐度占比為48.56%,與伍遠(yuǎn)安等(2021)調(diào)查的湘江魚類鯉形目占比65.4%為優(yōu)勢物種結(jié)論類似;鯉、黃顙魚等定居魚類,草魚、鰱等江湖洄游魚類為優(yōu)勢種,與上下游優(yōu)勢種排序有稍許差別。
除此之外,有物種注釋為外來引入種食蚊鳉(Gambusia affinis)(劉飛,2014)、大口黑鱸(Micropterus salmoides)及雜交鱘(Acipenser gueldenstaedtii × A. baerii)等(表1)。推測可能是放生或水產(chǎn)養(yǎng)殖魚類逃逸所致。外來物種和人工養(yǎng)殖雜交魚在進(jìn)入自然水體后,將占據(jù)原有天然相似種屬魚類的生態(tài)位,給土著魚類帶來嚴(yán)重的威脅,并破壞原有的生態(tài)平衡(嚴(yán)太明等,2021)。
3.2" "湘江長沙段的魚類多樣性水平
各評價指數(shù)對物種群落豐富度及多樣性的評價側(cè)重點不同,Chao1指數(shù)側(cè)重體現(xiàn)物種的豐富度,Shannon指數(shù)與Simpson指數(shù)側(cè)重反映物種多樣性。王夢等(2022)采用Chao1等指數(shù)調(diào)查發(fā)現(xiàn),長江重慶段的魚類豐富度較為穩(wěn)定,未呈遞增趨勢。本次研究中,Chao1指數(shù)總體變化趨勢平緩,相鄰點差異不大,沿流向魚類Chao1指數(shù)略有上升(圖4),即表層水和底泥上游Chao1指數(shù)略低于中、下游,表明中下游魚類豐富度稍高于上游。相比其他點位,D2-W,D2-S的Chao1指數(shù)均較高,即該區(qū)域的魚類群落豐富度水平最高。各點位的Shannon多樣性和Simpson指數(shù)差別較小,因而不同采樣點魚類群落的多樣性水平相差不大,但仍表明中下游魚類多樣性水平稍高于上游。與長江重慶段相比(王夢等,2022),本文Chao1指數(shù)略低,Shannon指數(shù)和Simpson指數(shù)與其相差不大,即湘江長沙段魚類豐富度略低于長江上游珍稀特有魚類國家級自然保護(hù)區(qū)重慶段,多樣性水平相當(dāng)。
總體來看,湘江長沙段魚類多樣性水平評價指數(shù)均顯示該江段中下游魚類多樣性水平高于上游。U1-W和U1-S的魚類豐富度和多樣性最低,可能與U1、U2承接株洲上游來水和U1是鵝洲居民點的影響有關(guān)。如前所述,U1、U2位于飲用水源地二級保護(hù)區(qū)域,M1、D1、D2位于一級保護(hù)區(qū)域,可能水源地保護(hù)措施促使水質(zhì)不斷改善,水生態(tài)質(zhì)量得以不斷提升,禁漁養(yǎng)護(hù)魚效果更為明顯。
此外,M1-S、D1-W、D2-W與其他點位的物種組成存在較大差異(圖5),M1點位底泥采樣處的河岸經(jīng)混凝土護(hù)岸加固,而其他采樣處河岸未經(jīng)過處理,魚類生境存在典型差異,因而在注釋物種組成上表現(xiàn)出一定的差異性;D1位于下游溈水河河口,水環(huán)境復(fù)雜,支流水質(zhì)情況及魚類物種組成與湘江不同,因此其物種組成會受到支流魚類涌入的影響;D2在望城區(qū)長沙樞紐的下游,作為著名的旅游景區(qū),在疫情期間基本處于關(guān)閉狀態(tài),表明長期的休養(yǎng)生息有助于魚類資源的恢復(fù)。
3.3" "eDNA檢測準(zhǔn)確度的影響因素
eDNA技術(shù)作為監(jiān)測魚類多樣性的新方法,相比傳統(tǒng)調(diào)查方法,可以實現(xiàn)便捷高效和高精度的工作,已成功應(yīng)用于監(jiān)測國內(nèi)一些湖泊河流的魚類群落多樣性及群落分布,如長江重慶段(王夢等,2022)、長江武漢段(楊海樂等,2021)、象山港(凌建忠等,2021)、太湖(高旭,2020)等。本次研究檢測到優(yōu)勢魚類種類數(shù)量與文獻(xiàn)相差不大,但與伍遠(yuǎn)安等(2021)調(diào)查結(jié)論相比,在魚類具體比例上仍然稍有差別,可能與eDNA在環(huán)境中的脫落、運輸和降解等影響因素密切相關(guān)。
湖泊河流的水文條件會影響可檢出eDNA的濃度(Song et al,2017),如魚類釋放的DNA經(jīng)河流稀釋后,在點源下游900 m內(nèi)eDNA濃度降低了73%(Nukazawa et al,2018)。Pont等(2018)認(rèn)為eDNA在水體中表現(xiàn)為細(xì)顆粒狀的有機物,水文條件影響其濃度水平。湘江長沙段屬于季節(jié)性河流,7—8月為豐水期,雨水的稀釋可能導(dǎo)致eDNA濃度較枯水期稍低,且由于湘江是季節(jié)性河流,水位變化也會影響魚類DNA在生境中的留存。本次湘江長沙段eDNA的檢出狀況僅代表豐水期,進(jìn)一步增加檢測頻次可獲得更全面的魚類多樣性信息。
eDNA會從水環(huán)境向底泥轉(zhuǎn)移(Leff et al,1992),相比于表層水,底泥中DNA可提供更豐富、更持久的遺傳物質(zhì),且水體與底泥中DNA濃度呈正相關(guān)(Turner et al,2015);此外,魚類在不同環(huán)境中釋放DNA速率與降解速率不同(Klymus et al,2015),水溫、pH、光照(紫外線)等可能是影響eDNA檢測準(zhǔn)確性(Jo et al,2019)的主要環(huán)境因素。Takahara等(2012)經(jīng)實地調(diào)查發(fā)現(xiàn)eDNA濃度與水溫呈顯著正相關(guān);Robson等(2016)發(fā)現(xiàn)在23、29和35 °C下,溫度越高,可檢出的DNA時效越短;紫外線輻射極強的熱帶地區(qū),高活性微生物也可能會加速DNA的降解(Lance et al,2017)。表層水在太陽的照射下,溫度可能高于深層水和底泥,紫外線強度較底泥高,因此DNA降解速率可能較底泥更快,導(dǎo)致表層水和底泥中某些優(yōu)勢物種的相對豐度隨采樣時間稍有變化。底泥中DNA信息不僅來自現(xiàn)存物種情況,也可能來源于過去未降解的片段,具體可能與DNA降解特性(Kirtane et al,2021)、季節(jié)溫度變化及底泥中環(huán)境條件有關(guān)(Jo et al,2019)。因此,如能結(jié)合同位素分析(張歡等,2013),底泥DNA信息可以用來補充魚類生物信息的時空分布特征(Sakata et al,2020)。
此外,魚類個體的生活習(xí)性也是影響檢出的原因之一,Kim等(2016)研究發(fā)現(xiàn),長吻似鮈(Pseudogobio esocinus)白天的遷移相比夜間更頻繁,類似的還有烏鱧(Channa argus)和斑鱧(C. maculata)等喜晝伏夜出型。Suzuki等(2022)也發(fā)現(xiàn)夜間收集的樣本中可以檢測到更多的魚類物種。因此,增加夜晚eDNA采樣可避免晝伏夜出魚類的漏檢。
參考文獻(xiàn)
高萬超, 胡可, 顧慶福, 等, 2019. 湘江干流衡陽段與長株潭江段魚類資源調(diào)查與保護(hù)對策[J]. 低碳世界, 9(7):14-16.
高旭, 2020. 太湖魚類環(huán)境DNA宏條形碼快速監(jiān)測技術(shù)應(yīng)用研究[D]. 南京:南京大學(xué).
姜維, 趙虎, 鄧捷, 等, 2016. 環(huán)境DNA分析技術(shù):一種水生生物調(diào)查新方法[J]. 水生態(tài)學(xué)雜志," 37(5):1-7.
JIANG W, ZHAO H, DENG J, et al, 2016. Detection of aquatic species using environmental DNA[J]. Journal of Hydroecology, 37(5):1-7.
廖伏初, 李鴻, 楊鑫, 等, 2020. 湖南魚類原色圖譜[M]. 北京:科學(xué)出版社.
凌建忠, 姜亞洲, 孫鵬, 等, 2021. 環(huán)境DNA技術(shù)在象山港水域魚類多樣性調(diào)查中的應(yīng)用與評估[J]. 中國水產(chǎn)科學(xué), 28(2):205-214.
LING J Z, JIANG Y Z, SUN P, et al, 2021. Application and evaluation of environmental DNA technology in fish diversity research in Xiangshan Bay[J]. Journal of Fishery Sciences of China, 28(2):205-214.
劉飛, 2014. 長江流域的外來魚類及其危害[J]. 大自然, 35(2):38-40.
劉艷佳, 高雷, 鄭永華, 等, 2019. 湘江汨羅江段魚類資源季節(jié)變化及洄游特征研究[J]. 淡水漁業(yè), 49(2):51-58.
LIU Y J, GAO L, ZHENG Y H, et al, 2019. Seasonal changes and migration characteristics of fish resources in the Miluo reaches of Xiang River[J]. Freshwater Fisheries, 49(2):51-58.
沈梅, 肖能文, 盧林, 等, 2022. 環(huán)境DNA技術(shù)及在魚類監(jiān)測中的應(yīng)用[J]. 水生態(tài)學(xué)雜志, 43(2):133-141.
SHEN M, XIAO N W, LU L, et al, 2022. Review of environmental DNA detection methods and their application to fish monitoring[J]. Journal of Hydroecology, 43(2):133-141.
師瑞丹, 吳志強, 黃亮亮, 等, 2015. 湘江上游區(qū)桂北江段魚類物種多樣性研究[J]. 廣西師范大學(xué)學(xué)報(自然科學(xué)版), 33(4):127-136.
SHI R D, WANG Z Q, HUANG L L, et al, 2015.Fish species diversity of the upper Xiangjiang River in north Guangxi Province[J]. Journal of Guangxi Normal University (Natural Science Edition), 33(4):127-136.
孫頡, 彭俊豪, 譚振耀, 等, 2020. 底拖網(wǎng)作業(yè)對珠江口香港海域底層魚類的影響[J]. 廣東海洋大學(xué)學(xué)報, 40(1):64-68.
SUN J, PENG J H, TAN Z Y, et al, 2020.Impact of trawling on demersal fishery resources of the Pearl River estuary near Hong Kong Waters[J]. Journal of Guandong Ocean University, 40(1): 64-68.
王崇瑞, 索紋紋, 蔣國民, 等, 2019. 東洞庭湖長江江豚及其與魚類資源相關(guān)性[J]. 中國環(huán)境科學(xué), 39(10):4424-4434.
WANG C R, SUO W W, JIANG G M, et al, 2019.Spatial distribution of the Yangtze finless porpoise and relationship to fish density in East Dongting Lake, China[J]. China Environmental Science, 39(10):4424-4434.
王夢, 楊鑫, 王維, 等, 2022. 基于eDNA技術(shù)的長江上游珍稀特有魚類國家級自然保護(hù)區(qū)重慶段魚類多樣性研究[J]. 水生生物學(xué)報, 46(1):2-16.
WANG M, YANG X, WANG W, et al, 2022. Fish diversity in Chongqing Section of the national nature reserve for rare and endemic fish in the upper Yangtze River based on eDNA technology[J]. Acta Hydrobiologica Sinica, 46(1):2-16.
伍遠(yuǎn)安, 李鴻, 廖伏初, 等, 2021. 湖南魚類志[M]. 北京:科學(xué)出版社.
徐念, 熊美華, 邵科, 等, 2020. 長江中下游環(huán)境DNA宏條形碼生物多樣性檢測技術(shù)初步研究[J]. 環(huán)境科學(xué)研究, 33(5):1187-1196.
XU N, XIONG M H, SHAO K, et al, 2020. Preliminary Study on Environmental DNA Metabarcoding for Detecting Biodiversity in the Middle and Lower Reaches of the Yangtze River[J]. Research of Environmental Sciences, 33(5):1187-1196.
嚴(yán)太明, 何佳洋, 羅杰, 等, 2021. 基于魚類多樣性及完整性指數(shù)評價南河中上游流域健康狀況[J]. 淡水漁業(yè), 51(5):3-12.
YAN T M, HE J Y, LUO J, et al, 2021. Assessment of ecosystem health on the upper and middle reaches of Nanhe River with the fish-based biotic integrity index[J]. Freshwater Fisheries, 51(5):3-12.
楊海樂, 吳金明, 張輝, 等, 2021. 大型河流中魚類組成的 eDNA 監(jiān)測效率: 以長江武漢江段為例[J]. 中國水產(chǎn)科學(xué), 28(6):796-807.
YANG H L, WU J M, ZHANG H, et al, 2021. Environmental DNA metabarcoding utilization efficiency in monitoring large river fish species composition: a case study in the Wuhan transect of the Yangtze River[J]. Journal of Fishery Sciences of China, 28(6):796-807.
余楊, 魯婧, 謝彪, 等, 2021. 南昌市13個湖泊的魚類群落結(jié)構(gòu)及其物種多樣性特征[J]. 水生態(tài)學(xué)雜志, 42(5):110-118.
YU Y, LU J, XIE B, et al, 2021. Fish Community Structure and Species Biodiversity in 13 Lakes of Nanchang City[J]. Journal of Hydroecology, 42(5):110-118.
張春光, 趙亞輝, 2016. 中國內(nèi)陸淡水魚類物種魚分布[M]. 北京:科學(xué)出版社.
張歡, 吳功果, 張歡, 等, 2013. 東洞庭湖魚類穩(wěn)定同位素的季節(jié)變化[J]. 水生生物學(xué)報, 37(4):796-798.
ZHANG H, WU G G, ZHANG H, et al, 2013. Seasonal Variations of Stable Isotopes in Fish Fauna from East Lake Dongting[J]. Acta Hydrobiologica Sinica, 37(4):796-798.
CAHILL A E, PEARMAN J K, BORJA A, et al, 2018. A comparative analysis of metabarcoding and morphology-based identification of benthic communities across different regional seas[J]. Ecology and Evolution, 8(17):8908-8920.
CIVADE R, DEJEAN T, VALENTINI A, et al, 2016. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System[J]. PLoS One, 11(6):e0157366.
FICETOLA G F, MIAUD C, POMPANON F, et al, 2008. Species detection using environmental DNA from water samples[J]. Biology Letters, 4(4):423-425.
HEBERT P D N, CYWINSKA A, BALL S L, et al, 2003. Biological identifications through DNA bar codes[J]. Proceeding of the Royal Society B: Biology Science, 270:313-321.
HERING D, BORJA A, JONES J I, et al, 2018. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive[J]. Water Research, 138:192-205.
JO T, MURAKAMI H, YAMAMOTO S, et al, 2019. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution[J]. Ecology and Evolution, 9(3):1135-1146.
KIM J H, YOON J D, BAEK S H, et al, 2016. An Efficiency Analysis of a Nature-Like Fishway for Freshwater Fish Ascending a Large Korean River[J]. Water, 8(1):3.
KIRTANE A, WIECZOREK D, NOJI T, et al, 2021. Quantification of Environmental DNA (eDNA) shedding and decay rates for three commercially harvested fish species and comparison between eDNA detection and trawl catches[J]. Environmental DNA, 3(6):1142-1155.
KLYMUS K E, RICHTER C A, CHAPMAN D C, et al, 2015. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix[J]. Biological Conservation, 183:77-84.
LANCE R, KLYMUS K, RICHTER C, et al, 2017. Experimental observations on the decay of environmental DNA from bighead and silver carps[J]. Management of Biological Invasions, 8(3):343-359.
LEFF L G, VAUN MCARTHUR J, SHIMKETS L J, 1992. Information spiraling: movement of bacteria and their genes in streams[J]. Microbial Ecology, 24(1):11-24.
NUKAZAWA K, HAMASUNA Y, SUZUKI Y, 2018. Simulating the advection and degradation of the environmental DNA of common carp along a River[J]. Environmental Science Technology, 52(18): 10562-10570.
PHILLIP I D, GORDON H C, VERONIQUE C, et al, 2017. Application of environmental DNA analysis to inform invasive fish eradication operations[J]. Science of Nature, 104(3/4):1-7.
PONT D, ROCLE M, VALENTINI A, et al, 2018. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation[J]. Scientific Reports, 8(1):10361.
ROBSON L A, NOBLE T H, SAUNDERS R J, et al, 2016. Fine-tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems[J]. Molecular Ecology Resources, 16(4):922-932.
SAKATA M K, WATANABE T, MAKI N, et al, 2020. Determining an effective sampling method for eDNA metabarcoding: a case study for fish biodiversity monitoring in a small, natural river[J]. Limnology, 22(2):221-235.
SONG J W, SMALL M J, CASMAN E A, 2017. Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system[J]. Science of the Total Environment, 605/606:713-720.
SUZUKI J, NAKANO D, KOBAYASHI S, 2022. Characteristics of diurnal and seasonal changes in fish detection patterns using environmental DNA metabarcoding in a mountain stream[J]. Limnologica, 93(1):125955.
TAKAHARA T, MINAMOTO T, YAMANAKA H, et al, 2012. Estimation of Fish Biomass Using Environmental DNA [J]. PLoS One, 7(4):e35868.
TURNER C R, UY K L, EVERHART R C, 2015. Fish environmental DNA is more concentrated in aquatic sediments than surface water[J]. Biological Conservation, 183:93-102.
VALENTINI A, TABERLET P, MIAUD C, et al, 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Molecular Ecology, 25(4):929-942.
YAMAMOTO S, MINAMI K, FUKAYA K, et al, 2016. Environmental DNA as a 'Snapshot' of Fish Distribution: A Case Study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan[J]. PLoS One, 11(3):e0149786.
YANG J, ZHANG X, 2020. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems[J]. Environment International, 134:105230.
ZENG C, WEN Y, LIU X, et al, 2022. Impact of anthropogenic activities on changes of ichthyofauna in the middle and lower Xiang River[J]. Aquaculture and Fisheries, 7(6):693-702.
(責(zé)任編輯" "熊美華)
Fish Diversity in Changsha Section of Xiangjiang River During the High Water Period Based on eDNA Technology
ZHAO Wenyu1,2, LIU Mengyue3, LIN Benping3, GUO Shan3,LIU Zhen3
(1. School of Civil and Environmental Engineering, Changsha University of Science and Technology, Changsha" "410004, P.R. China;
2. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Ocean Engineering,Changsha University of Science and Technology, Changsha" "410004, P.R. China;
3. School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha" "410004, P.R. China)
Abstract:The Changsha section of Xiangjiang River is in the middle and lower reaches of the river. It is a drinking water source protection area of the river-reservoir type and an important channel for fish migration and for conserving fish diversity in Dongting Lake. In this study, we investigated the species distribution and biodiversity of fish community in the Changsha section of Xiangjiang River based on high-throughput sequencing of fish DNA fragments in surface water and sediment samples. Our aim was to supplement baseline data on fish resources in the Changsha section and verify the feasibility of eDNA technology for fish resource investigation. In August 2021, 18 surface water and sediment samples were collected at 6 sampling sites at intervals of 6-10 km from upstream to downstream along the Changsha section of Xiangjiang River. Then, E.Z.N.A.? Soil DNA extraction Kit (Omega Bio-Tek, USA) was used to extract DNA in water and sediment samples, 12S rRNA of mitochondrial gene was used as target, and Tele 02 (a fish-specific primer) was used for PCR amplification. The amplified sequences were then compared with MitoFish and NCBI nucleotide databases, followed by manual verification. A total of 39 freshwater fish species were identified, belonging to 32 genera, 13 families and 8 orders, with 39 species from 32 genera,13 families and 8 orders detected in surface water samples, and 38 species from 31 genera,13 families and 8 orders detected in sediment samples. Cypriniformes (27 species) was the most dominant group, with a relative OTU abundance of 48.56%, followed by Siluriformes (22.87%), Osmeriformes (17.65%), Gobiiformes (8.48%), Cyprinodontiformes (1.48%) and Perciformes (0.83%), Acipenseriformes (0.08%) and Anabantiformes (0.05%). At the genus level, Ctenopharyngodon, Salanx, Pseudobagrus, Hemiculter, Cyprinus and Rhinogobius were the most dominant. The Chao1, Shannon, Simpson and Coverage indices of the fish community in surface water and sediments were evenly distributed, and there was a significant positive correlation between surface water and sediment (Plt;0.05). Principal component analysis shows that most samples had similar species composition except samples from M1-S, D1-W and D2-W, which presented significant differences in species composition in both water and sediment at these three sites. In addition, fish diversity in the upper reaches was lower than that in the middle and lower reaches, which could be related to the fishing ban policy and the improvement of water ecological quality by water source protection measures. In conclusion, environmental DNA technology proved to be an effective means for scientific monitoring of fish biodiversity using big data statistics, and will facilitate rapid monitoring of fish resource changes when combined with traditional survey methods.
Key words: environmental DNA; fish diversity; high water period; Changsha section of Xiangjiang River
基金項目:洞庭湖水環(huán)境治理與生態(tài)修復(fù)湖南省重點實驗室開放基金(2018DT02);湖南省教育廳重點項目(20A032);長沙理工大學(xué)研究生科研創(chuàng)新項目(CX2020SS79)。
作者簡介:趙文玉,1974年生,女,博士,副教授,研究方向為水環(huán)境生態(tài)保護(hù)。E-mall:wenyuzh@csust.edu.cn