摘要: 基于在分子層面探究蛋白質(zhì)折疊、 組裝和相分離等行為的動力學(xué)細(xì)節(jié)特征是目前該領(lǐng)域研究的重點(diǎn)和難點(diǎn), 而粗?;P鸵殉蔀閼?yīng)對該問題的關(guān)鍵策略. 綜述蛋白質(zhì)粗?;P偷陌l(fā)展歷程, 介紹兩種常用的粗粒化模型, 并闡述其建模方法、 勢能函數(shù)以及在實(shí)際生物體系中的應(yīng)用. 通過展示這些模型在復(fù)雜蛋白質(zhì)體系模擬中的應(yīng)用優(yōu)勢, 揭示粗?;P驮陲@著減少計(jì)算資源消耗方面的獨(dú)特價值, 及其在推進(jìn)大規(guī)模蛋白質(zhì)動力學(xué)過程研究中的潛力與重要意義.
關(guān)鍵詞:" 蛋白質(zhì); 粗?;?; 多尺度; 分子動力學(xué)模擬
中圖分類號: O641.3" 文獻(xiàn)標(biāo)志碼: A" 文章編號: 1671-5489(2025)01-0182-09
Coarse-Grained Models for Two Types of Proteins
SHI Shaokang1, ZHAO Li2, Lü Zhongyuan1
(1. College of Chemistry," Jilin University," Changchun 130012," China;
2. School of Life Sciences," Jilin University," Changchun 130012," China)
Abstract:"nbsp;" Exploring the dynamic detail characteristics of protein folding," assembly," and phase separation at the molecular level is currently the focus and difficulty of research in this field, and" coarse-grained model have become a key strategy to address these issues. We review the development history of coarse-grained model of protein, introduce two commonly used coarse-grained" models, and explain their modeling methods," potential energy functions," and applications in practical biological systems. By demonstrating the application advantages of these models in simulating complex protein systems," we review" the unique value of coarse-grained model in significantly reducing computational resource consumption, as well as their" potential and significance in advancing the study of large-scale protein dynamic processes.
Keywords: protein;" coarse-grained;" multiscale;" molecular dynamics simulation
蛋白質(zhì)在生命活動中發(fā)揮重要作用, 廣泛參與催化、 識別、 免疫、 運(yùn)輸、 信號轉(zhuǎn)導(dǎo)和能量儲存等多種生物過程. 蛋白質(zhì)由20種氨基酸按特定序列組合而成, 通常情況下通過折疊形成獨(dú)特的三維結(jié)構(gòu), 從而實(shí)現(xiàn)其多樣的生物功能. 目前, 研究人員主要利用X射線衍射、 冷凍電鏡和核磁共振等實(shí)驗(yàn)方法解析蛋白質(zhì)的三維結(jié)構(gòu). 隨著計(jì)算機(jī)技術(shù)的迅猛發(fā)展, 人們已實(shí)現(xiàn)對氨基酸序列與其空間結(jié)構(gòu)間關(guān)系的精準(zhǔn)預(yù)測. 其中, AlphaFold[1]軟件可高精度預(yù)測包括蛋白質(zhì)數(shù)據(jù)庫(protein data bank, PDB)在內(nèi)的超過2億種蛋白質(zhì)結(jié)構(gòu), 極大推動了結(jié)構(gòu)生物學(xué)的發(fā)展. 該重大突破不僅顛覆了傳統(tǒng)的蛋白質(zhì)結(jié)構(gòu)研究方法, 其開發(fā)團(tuán)隊(duì)還與Baker共同分享了2024年諾貝爾化學(xué)獎.
然而, 蛋白質(zhì)的生物學(xué)功能除依賴于三維結(jié)構(gòu)外, 還受其動力學(xué)行為及分子間相互作用的影響, 且通過實(shí)驗(yàn)方法捕捉蛋白質(zhì)在溶液中的動力學(xué)細(xì)節(jié)特征仍是一項(xiàng)巨大挑戰(zhàn). 近年來, 人們發(fā)現(xiàn)一類在溶液中缺乏固定三維結(jié)構(gòu)的蛋白質(zhì), 即固有無序蛋白(intrinsically disordered proteins, IDP). 由于無法結(jié)晶, 因此這類蛋白質(zhì)難以通過傳統(tǒng)的X射線衍射等方法解析結(jié)構(gòu). 此外, 當(dāng)固有無序蛋白通過液-液相分離(liquid-liquid phase separation, LLPS), 在細(xì)胞或溶液環(huán)境中形成蛋白質(zhì)凝聚體時[2], 其復(fù)雜的相互作用同樣難以通過傳統(tǒng)技術(shù)全面表征. 因此, 單靠實(shí)驗(yàn)方法無法深入揭示蛋白質(zhì)凝聚體動力學(xué)行為及其結(jié)構(gòu)與生物學(xué)功能之間的聯(lián)系.
分子動力學(xué)(molecular dynamics, MD)模擬逐漸成為研究蛋白質(zhì)動力學(xué)的重要工具. 其優(yōu)勢在于MD能在原子分辨率上捕捉蛋白質(zhì)的動態(tài)變化, 為揭示蛋白質(zhì)的折疊機(jī)制及動力學(xué)特性提供了理論支持[3]. 近年來, 隨著計(jì)算能力的快速提升, MD模擬在研究大分子動態(tài)行為時表現(xiàn)出獨(dú)特優(yōu)勢[4]. 此外, 隨著模擬算法和技術(shù)的進(jìn)步, 研究人員能對更長的時間尺度進(jìn)行模擬, 從而捕捉蛋白質(zhì)折疊過程中的關(guān)鍵動態(tài)事件[5]. 這些突破使MD模擬成為探索蛋白質(zhì)折疊與功能機(jī)制的核心工具, 為生物大分子的研究提供了全新視角和方法[6].
近年來, 蛋白質(zhì)復(fù)合體、 膜蛋白以及蛋白質(zhì)凝聚體等更復(fù)雜的體系逐漸成為研究重點(diǎn). 這些體系通常由數(shù)十甚至上百個蛋白質(zhì)分子和磷脂等成分組成. 傳統(tǒng)的全原子分子動力學(xué)(all-atom molecular dynamics, AA-MD)模擬雖然在分辨率上具有優(yōu)勢, 但在處理大體系或?qū)崿F(xiàn)長時間尺度的動力學(xué)模擬時存在局限性. 因此, 研究人員開發(fā)了一系列粗粒化(coarse-grained, CG)模型, 通過適當(dāng)簡化體系的細(xì)節(jié)提升計(jì)算效率, 從而能模擬研究更大尺度、 更復(fù)雜的分子聚集體體系. 相比全原子模型, 粗粒化模型能覆蓋數(shù)十至數(shù)百納米的空間尺度以及毫秒級的時間尺度, 使得粗?;肿觿恿W(xué)(coarse-grained molecular dynamics, CG-MD)成為研究納米和介觀尺度分子現(xiàn)象以及解決傳統(tǒng)建模方法難以處理問題的關(guān)鍵工具[7-8]. 本文討論兩種具有代表性的蛋白質(zhì)粗粒化模擬模型: Martini模型和基于疏水標(biāo)度(hydrophobic scale, HPS)的模型, 總結(jié)兩種模型在不同研究領(lǐng)域中的典型應(yīng)用, 并討論其各自的優(yōu)勢和局限性, 為更高效研究復(fù)雜蛋白質(zhì)體系提供新的視角和思路.
1 粗?;P?/p>
粗?;P蜆?gòu)建目標(biāo)是保留目標(biāo)體系的關(guān)鍵特征, 同時顯著減少需顯式處理的自由度. 在粗?;P椭校?通常將多個原子映射為一個粗?;W? 根據(jù)模型分辨率的不同, 粗?;P涂蓮某至;墑e(如用一個粒子代表整個蛋白質(zhì))到近原子級別(保留大多數(shù)化學(xué)特征)[8-9]. 在近原子級別的粗?;P椭校?通常將空間上相近的3~6個比氫原子更重的原子映射為一個粗?;W樱?從而在簡化的同時保留分子內(nèi)的基本結(jié)構(gòu)信息. 針對蛋白質(zhì), 大多數(shù)粗粒化模型將蛋白質(zhì)的單個氨基酸殘基分成兩部處理: 用1~3個粒子表示氨基酸的骨架, 用1~5個粒子表示其側(cè)基. Levitt等[10]因開發(fā)了蛋白質(zhì)粗?;P停?獲得了2013年的諾貝爾化學(xué)獎. 該模型將每個氨基酸的骨架部分和對應(yīng)的側(cè)基簡化為兩個粗?;W?, 分別定位于氨基酸骨架的α-碳(Cα)位置和側(cè)基的構(gòu)象中心. 通過從擴(kuò)展構(gòu)象出發(fā), 結(jié)合局部能量最小化和模擬熱擾動, 成功獲得了具有部分天然特征的蛋白質(zhì)結(jié)構(gòu), 為分子模擬研究提供了重要工具.
最常用粗粒化分子動力學(xué)力場的勢函數(shù)(U)主要由兩部分組成: 第一部分(U成鍵)描述鍵合粒子的相互作用, 包括成鍵、 鍵角和二面角相互作用; 第二部分(U未成鍵)描述非鍵相互作用, 包括短程相互作用和靜電相互作用, 一般使用Lennard-Jones(LJ)勢和庫侖勢表示:
U= U成鍵+U未成鍵,(1)
U成鍵=12∑鍵kr(r-r0)2+12∑角kθ(θ-θ0)2+12∑二面角kφ[1+cos(nφ-δ)],(2)
U未成鍵= ULJ+Uelec,(3)
ULJ=∑i,j4ijσijrij12-σijrij6,(4)
Uelec=∑i,jqiqi4πε0rij.(5)
勢函數(shù)中一般包含較多參數(shù), 確定這些參數(shù)數(shù)值的過程稱為參數(shù)化. 參數(shù)化通常采用兩種策略: 1) 自上而下的方法, 即通過重現(xiàn)實(shí)驗(yàn)測得的熱力學(xué)或力學(xué)性質(zhì)對模型進(jìn)行參數(shù)化. 這種方法旨在捕捉模擬體系的整體表現(xiàn). 2) 自下而上的方法, 即以再現(xiàn)分辨率更高的模型(如全原子模型)的結(jié)構(gòu)特性為主要目標(biāo). 這種方法注重再現(xiàn)分子間的結(jié)構(gòu)細(xì)節(jié)和局部相互作用特性[11]. 此外, 許多粗?;P徒Y(jié)合了自上而下和自下而上的參數(shù)化策略. 如成鍵相互作用的參數(shù)通?;谖⒂^結(jié)構(gòu)特性確定, 非鍵相互作用通過實(shí)驗(yàn)數(shù)據(jù)進(jìn)行優(yōu)化. 這種混合方法可較好地平衡準(zhǔn)確性和通用性. 由于自下而上的方法能捕捉到精細(xì)的相互作用細(xì)節(jié), 通常更準(zhǔn)確. 而自上而下及混合方法在定義復(fù)雜體系(如包含蛋白質(zhì)的多組分體系)的參數(shù)時更具通用性, 因而被廣泛應(yīng)用. 近年來, 基于人工智能(artificial intelligence, AI)方法在構(gòu)建蛋白質(zhì)粗?;P椭械淖饔萌找嫱怀?, 即使在溫度或pH值變化等復(fù)雜條件下, AI方法也可利用結(jié)構(gòu)和熱力學(xué)數(shù)據(jù)得到粗粒化力場的參數(shù)[12].
下面介紹Martini蛋白質(zhì)粗?;P秃突谑杷畼?biāo)度(HPS)的蛋白質(zhì)粗?;P停▓D1).
1.1 Martini粗?;P?/p>
Martini粗粒化模型的核心假設(shè)是將小分子片段簡化為粗?;W?, 這些粒子在疏水性、 相互作用模式及尺寸等方面遵循特定規(guī)律. 通過特定的組合方式, 這些粒子可組裝成各種分子[13]. Martini粗?;P妥畛鯇槟M脂質(zhì)體系設(shè)計(jì)[14], 之后經(jīng)不斷優(yōu)化, 已擴(kuò)展應(yīng)用至更廣泛的生物分子體系, 包括碳水化合物[15]、 固醇[16]、 核酸[17]和蛋白質(zhì)[18-19]等, 并且進(jìn)一步拓展應(yīng)用到材料科學(xué)領(lǐng)域[20]. Martini粗?;鲋饕獞?yīng)用在GROMACS[21]軟件中, 但也支持其他分子動力學(xué)模擬軟件, 如NAMD[22],LAMMPS[23]和OpenMM[24]等軟件. Martini粗?;P陀幸粋€活躍的開發(fā)者社區(qū), 提供多種輔助工具, 使研究人員的工作效率顯著提升. 這些工具包括構(gòu)建拓?fù)湮募?5]、 生成初始配置[26]及粗?;P团c全原子模型之間的轉(zhuǎn)換等[27], 進(jìn)一步豐富了Martini粗?;P驮诳茖W(xué)研究中的應(yīng)用潛力.
Martini蛋白質(zhì)粗粒化模型于2008年首次推出[18], 并在2013年進(jìn)行了優(yōu)化升級[19]. 在該模型中, 蛋白質(zhì)主鏈的粗?;W佑梦挥诎被峁羌苜|(zhì)心的單個粒子表示, 氨基酸的側(cè)基根據(jù)其化學(xué)性質(zhì)由1~5個粒子表示(圖1(A)). 為穩(wěn)定蛋白質(zhì)的二級結(jié)構(gòu), Martini粗粒化模型通過調(diào)整主鏈的二級結(jié)構(gòu)鍵參數(shù)實(shí)現(xiàn)約束; 為維持三級結(jié)構(gòu), 需引入基于結(jié)構(gòu)漲落的控制方法, 如彈性網(wǎng)絡(luò)模型(elastic network model, ENM)和G模型[28]. 彈性網(wǎng)絡(luò)模型通過在主鏈粒子之間施加彈簧勢, 并限制在一定截距范圍內(nèi)的相互作用, 維持蛋白質(zhì)三級結(jié)構(gòu)的穩(wěn)定性. 由于依賴大量彈簧勢, ENM在模擬中可能會抑制蛋白質(zhì)應(yīng)有的構(gòu)象變化. G模型通過使用Lennard-Jones勢替代彈簧勢, 并基于接觸圖(contact map)選擇相互作用粒子對, 從而克服了ENM采用大量彈簧勢的限制, 可對未折疊狀態(tài)的蛋白質(zhì)構(gòu)象采樣[29]. Martini模型構(gòu)建可通過專用的Martinize2程序完成, 該程序支持從初始全原子結(jié)構(gòu)生成粗?;P图跋鄳?yīng)的拓?fù)湮募?5]. 該流程簡化了粗粒化建模操作, 使研究人員能高效構(gòu)建適用于復(fù)雜蛋白質(zhì)體系的模擬模型.
Martini是一個完全開源的粗粒化模型, 其官方網(wǎng)站(http://cgmartini.nl)匯集了論壇、 工具、 力場文件以及與該模型相關(guān)的最新研究報(bào)道. 此外, Martini數(shù)據(jù)庫(https://mad.ibcp.fr/)為用戶提供了豐富的拓?fù)湮募蛥?shù)資源." Martini力場計(jì)劃的GitHub頁面(https://github.com/Martini-Force-Field-Initiative)致力于構(gòu)建一個詳細(xì)的Martini拓?fù)浯鎯欤?進(jìn)一步促進(jìn)了該模型的共享和應(yīng)用.
1.2 基于HPS的蛋白質(zhì)粗?;P?/p>
通常Martini粗粒化模型采用“四對一”的粗?;成洳呗?, 即將4個C,N,O等原子映射為一個粗粒化粒子. 這種方法雖有效簡化了模擬體系, 但在研究大量固有無序蛋白參與的LLPS過程中受體系尺度限制. 基于HPS的粗?;P涂奢^好解決該問題: HPS模型開發(fā)的宗旨是在考慮蛋白質(zhì)序列的同時, 實(shí)現(xiàn)對更大體系和更長時間的高效模擬. HPS蛋白質(zhì)粗粒化模型將每個氨基酸殘基表示為一個粗?;W樱?忽略了氨基酸內(nèi)部的結(jié)構(gòu)細(xì)節(jié)(圖1(B)). 該映射方案大幅度簡化了粗?;M的復(fù)雜度, 同時保留了蛋白質(zhì)序列相關(guān)信息, 這對捕獲序列特異性相互作用和行為至關(guān)重要.
HPS蛋白質(zhì)粗?;P偷睦碚摶A(chǔ)源于Kapcha等[30]提出的殘基級別疏水標(biāo)度模型. 該模型根據(jù)全原子力場中原子電荷分布評估原子的疏水性, 并通過累加得到氨基酸殘基的整體疏水標(biāo)度值. 在此基礎(chǔ)上, Dignon等[31]進(jìn)一步開發(fā)了HPS粗?;?, 引入基于疏水標(biāo)度的短程相互作用參數(shù)λKRij, 并采用Debye-Hückel勢描述靜電相互作用:
U未成鍵= UAH+Uelec,(6)
UAH=∑i,j ULJ+AH(1-λKRij), r≤216σ,
λKRijULJ, rgt;216σ,(7)
Uelec=∑i,jqiqj4πεrije-r/D,(8)
其中λKRij是氨基酸i和j疏水標(biāo)度的算術(shù)平均值, AH用于擬合相互作用能量. 這種方法不僅能有效再現(xiàn)IDP在溶液中的行為, 還為研究序列特異性驅(qū)動的相分離現(xiàn)象提供了重要工具支持. 為進(jìn)一步提升HPS力場對固有無序蛋白的描述能力, 在HPS-Urry力場中引入兩個自由參數(shù)μ和Δ微調(diào)疏水參數(shù)[32]:
λUrryij=μλKRij-Δ.
(9)
HPS和HPS-Urry是最早用于描述IDP形成凝聚體的蛋白質(zhì)粗?;P?, 人們在這兩個粗?;P偷幕A(chǔ)上進(jìn)行了多項(xiàng)改進(jìn).
Dannenhoffer-Lafage等[33]利用機(jī)器學(xué)習(xí)算法對HPS粗粒化力場的疏水標(biāo)度進(jìn)行了優(yōu)化, 開發(fā)了FB-HPS粗?;?, 從而能更準(zhǔn)確描述疏水相互作用. 在此基礎(chǔ)上, Das等[34]提出了HPS+陽離子-π粗粒化力場, 通過顯式考慮陽離子氨基酸(如Arg和Lys)與芳香族殘基之間的陽離子-π相互作用, 進(jìn)一步提升了對某些蛋白質(zhì)相互作用的精細(xì)刻畫能力. Tesei等[35]通過Bayes參數(shù)學(xué)習(xí)方法優(yōu)化了疏水標(biāo)度, 開發(fā)了M1-3蛋白質(zhì)粗粒化模型, 該方法有效消除了早期疏水參數(shù)分布中的偏差, 為IDP的粗?;肿觿恿W(xué)模擬提供了更準(zhǔn)確且可靠的力場參數(shù), 該優(yōu)化方法對疏水參數(shù)的初始值無依賴性. 因此, 即使在缺乏具體IDP特性信息的情況下, M1力場仍能給出可靠的模擬結(jié)果, 因而M1粗?;龀蔀檠芯縄DP動力學(xué)行為的重要工具. Cao等[36]在此基礎(chǔ)上進(jìn)一步優(yōu)化, 將訓(xùn)練集中加入具有多個結(jié)構(gòu)域的蛋白, 同時在模擬過程中引入了彈性網(wǎng)絡(luò)模型(ENM). 通過這一改進(jìn), 他們給出了新的基于HPS模型的氨基酸疏水參數(shù), 發(fā)展了CAVADOS3蛋白質(zhì)粗?;P? 該模型顯著提高了對復(fù)雜蛋白質(zhì)體系的描述能力, 為研究大量IDP的聚集行為提供了更高效且精確的工具.
在上述HPS系列蛋白質(zhì)粗?;P椭校?氨基酸殘基之間的短程相互作用通常由Ashbaugh-Hatch勢(式(7))描述. Joseph等[37]通過以150 mmol/L NaCl濃度下的平均力勢(potential-of-mean-force, PMF)為目標(biāo)函數(shù)對勢函數(shù)進(jìn)行參數(shù)化, 結(jié)合生物信息學(xué)數(shù)據(jù)開發(fā)了Mpipi力場. 在Mpipi力場中, 采用Wang-Frenkel勢作為相互作用函數(shù), 用以更準(zhǔn)確描述氨基酸殘基間的相互作用:
UWF=εijαij
σijr2μij-1
Rijr2μij-12νij
,(10)
其中εij用于擬合相互作用能量, αij用于擬合PMF曲線, μij和νij為參數(shù), Rij為截止距離. 該模型強(qiáng)調(diào)π-π相互作用和陽離子-π相互作用的貢獻(xiàn), 對于富含芳香族殘基和正電荷氨基酸的IDP提供了很好的粗?;鲋С? Garaizar等[38]利用該模型研究了單組分蛋白質(zhì)凝聚體中多相結(jié)構(gòu)的形成過程, 深入解析了這些蛋白質(zhì)凝聚體的復(fù)雜相行為及其內(nèi)部結(jié)構(gòu)排列. 通過模擬, 該模型揭示了蛋白質(zhì)凝聚體在細(xì)胞形成過程中潛在的生物學(xué)功能和作用機(jī)制, 為理解IDP驅(qū)動的LLPS提供了重要理論依據(jù).
2 粗?;P偷膽?yīng)用
2.1 Martini蛋白質(zhì)粗?;P偷膽?yīng)用
Martini蛋白質(zhì)粗粒化模型主要用于研究蛋白質(zhì)和生物膜之間的相互作用. 這類研究對蛋白質(zhì)構(gòu)象變化的需求較低, 避免了Martini粗粒化模型的短板. Martini粗?;P鸵褟V泛用于探索蛋白質(zhì)-脂質(zhì)的特異性相互作用, 特別是蛋白質(zhì)插入復(fù)雜生物膜結(jié)構(gòu)時周圍脂質(zhì)環(huán)境的“指紋”特征[39].
2.1.1 膜蛋白的研究
借助Martini力場, 人們深入研究了多種膜蛋白的功能機(jī)制, 包括G蛋白偶聯(lián)受體(G protein-coupled receptors, GPCR)[40]、 多孔蛋白和跨膜通道[41]以及外周膜蛋白[42]等. Valério等[43]研究了抗菌肽和病毒融合肽誘導(dǎo)的機(jī)制及其對膜生物物理特性的影響. Li等[44]使用Martini模型探索了蛋白質(zhì)插入酶的脂質(zhì)擾動特性, 證實(shí)了Martini模型在評估脂質(zhì)擾動特性方面的強(qiáng)大能力. 此外, Martini模型還被用來研究阿爾茨海默癥相關(guān)淀粉樣蛋白在膜環(huán)境中的寡聚化過程以及特定脂質(zhì)的相互作用和分布[45].
2.1.2 多尺度模擬研究進(jìn)展
Martini力場能支持更大的空間尺度和更長時間的模擬, 為多尺度模擬提供了新的可能性. Zhang等[46]使用Martini模型模擬研究了一個大型的900 000多組分蛋白酶體-納米孔. Mosalaganti等[47]對一個120 000 000的人類核孔復(fù)合物進(jìn)行了超過1 μs的模擬. 此外, Martini粗粒化模型還被用于模擬SARS-CoV和SARS-CoV-2的包膜結(jié)構(gòu)[48].
2.1.3 在IDP與生物大分子凝聚體研究中的應(yīng)用
Martini粗?;P驮贗DP研究中的應(yīng)用有一定的局限性. Larsen等[49]發(fā)現(xiàn)其對IDP的整體尺寸存在低估, 但通過增強(qiáng)蛋白質(zhì)-水相互作用強(qiáng)度, 模型給出的構(gòu)象集合與實(shí)驗(yàn)數(shù)據(jù)一致. 基于此優(yōu)化, Martini模型已成功用于研究人類生長激素受體無序區(qū)域的動力學(xué)[50]、 RNA結(jié)合蛋白hnRNPA1的結(jié)構(gòu)域和固有無序區(qū)域(intrinsically disordered region, IDR)之間的相互作用[51]以及IDP與脂質(zhì)雙層的相互作用[52].
Tsanai等[53]利用Martini粗?;P兔枋隽司圪嚢彼?聚谷氨酸體系的鹽依賴性凝聚現(xiàn)象, 并觀察到RNA分子分配到凝聚體中. Liu 等[54]對脂質(zhì)囊泡中的聚賴氨酸/聚天冬氨酸和聚賴氨酸/聚谷氨酰胺體系進(jìn)行了模擬, 發(fā)現(xiàn)凝聚體形成會影響囊泡的形狀. 這些研究展示了Martini粗粒化模型在揭示驅(qū)動生物分子凝聚體形成的物理機(jī)制方面的潛力.
2.1.4 模擬復(fù)雜多組分體系
Martini的應(yīng)用潛力在描述復(fù)雜多組分體系時得到了充分展示, 且目前已成功應(yīng)用于構(gòu)建完整細(xì)胞的粗?;P椭? 如使用Martini粗粒化模型構(gòu)建了最小細(xì)胞JCVI-syn3A模型, 其中包含超過60 000種可溶性蛋白和2 200種膜蛋白[55]. 然而, 現(xiàn)有分子動力學(xué)模擬軟件受計(jì)算能力的限制, 尚無法實(shí)現(xiàn)全細(xì)胞尺度的粗?;M. 盡管仍面臨挑戰(zhàn), 但該例子仍展示了全細(xì)胞級別動力學(xué)模擬的未來發(fā)展方向, 為生物分子行為的多尺度解析提供了重要依據(jù).
2.2 HPS蛋白質(zhì)粗?;P偷膽?yīng)用
HPS蛋白質(zhì)粗粒化模型可預(yù)測IDP發(fā)生LLPS的臨界溫度, 以及濃相和稀相中的蛋白質(zhì)濃度, 且其結(jié)果與Flory-Huggins理論中關(guān)于高分子的相分離理論描述一致. 人們結(jié)合大量實(shí)驗(yàn)數(shù)據(jù)與分子動力學(xué)模擬結(jié)果對模型進(jìn)行了優(yōu)化[32-37]. 目前, HPS模型可定量預(yù)測蛋白質(zhì)的飽和濃度, 并解釋了溫度和鹽濃度對IDP相分離體系的影響, 已廣泛應(yīng)用于蛋白質(zhì)的LLPS相關(guān)研究中.
2.2.1 蛋白質(zhì)液-液相分離機(jī)制的研究
液-液相分離是活細(xì)胞中生物大分子凝聚體形成的重要基礎(chǔ), 因此揭示其背后的驅(qū)動力對理解生物功能及失調(diào)機(jī)制至關(guān)重要. Murthy等[56]結(jié)合NMR、 Raman光譜和動力學(xué)模擬, 研究了FUS蛋白中IDR部分的聚集, 發(fā)現(xiàn)氨基酸之間的異質(zhì)相互作用是FUS蛋白液-液相分離的基礎(chǔ). 研究表明, FUS蛋白在凝聚體中保留了構(gòu)象異質(zhì)性[56]. Krainer等[57]通過研究多種IDP在不同鹽濃度下的相分離行為, 發(fā)現(xiàn)低鹽濃度下形成凝聚體的蛋白質(zhì)在中等鹽濃度下會重新溶解, 并可在高鹽濃度(gt;1.5 mol/L NaCl)下重新進(jìn)入相分離狀態(tài). 模擬結(jié)果表明, 這種轉(zhuǎn)變由疏水和非靜電相互作用(如Ala-Ala,Pro-Pro,Tyr-Tyr,Ser-Ser,Arg-Tyr,Arg-Arg之間的相互作用, Arg在高鹽濃度下變得疏水并轉(zhuǎn)變?yōu)棣?π相互作用)驅(qū)動, 即這些相互作用是液-液相分離過程中的主要驅(qū)動力. 此外, HPS粗?;P瓦€被用于探索IDP凝聚體的動力學(xué)行為, 為理解生物凝聚體的形成和功能提供了重要線索.
2.2.2 基于HPS的模型拓展
在HPS蛋白質(zhì)粗粒化模型的基礎(chǔ)上, 人們進(jìn)一步開發(fā)了包括核酸的粗?;P?, 使其能描述蛋白質(zhì)和RNA以及蛋白質(zhì)和DNA的相互作用. Tejedor等[58]研究了幾種RNA結(jié)合蛋白(如FUS,hnRNPA1和TDP-43)單獨(dú)或與RNA共存時的相行為, 發(fā)現(xiàn)RNA會引發(fā)雙重效應(yīng): 當(dāng)RNA的回轉(zhuǎn)半徑(Rg)和蛋白質(zhì)相近時, RNA在低濃度下增強(qiáng)蛋白質(zhì)的相分離, 在高濃度下抑制其相分離能力. 此外, 短鏈RNA在高濃度下顯著降低凝聚體的黏度, 長鏈RNA會增加凝聚體黏度. Lebold等[59]模擬研究了DNA和組蛋白H1的多陽離子C端形成的凝聚體, 發(fā)現(xiàn)蛋白質(zhì)中帶電殘基的分布會調(diào)節(jié)相分離行為. 研究表明, 這些序列特性與某些天然蛋白質(zhì)(如精子細(xì)胞中的魚精蛋白)可使DNA通過平行堆積形成非常緊湊的結(jié)構(gòu)密切相關(guān)[59]. 這些研究不僅擴(kuò)展了HPS模型在蛋白質(zhì)-核酸體系中的應(yīng)用范圍, 還揭示了RNA和DNA在調(diào)控生物分子凝聚體形成中的關(guān)鍵作用, 推動了液-液相分離領(lǐng)域的深入發(fā)展.
3 討 論
粗?;P妥鳛橐环N重要策略, 通過簡化蛋白質(zhì)體系的復(fù)雜性, 顯著降低計(jì)算資源的需求, 使人們能深入探索復(fù)雜蛋白質(zhì)體系的聚集結(jié)構(gòu)與動力學(xué)特性. 本文主要介紹了兩種常用的蛋白質(zhì)粗?;P停?Martini模型和基于疏水標(biāo)度的HPS模型, 展示了它們的建模方法、 勢能函數(shù)以及在實(shí)際體系中的應(yīng)用.
粗?;P屯ㄟ^將多個原子映射為一個粗粒化粒子, 最大限度地保留了目標(biāo)體系的關(guān)鍵特征, 同時大幅度減少體系自由度. 這種粗?;椒ㄔ诘鞍踪|(zhì)-脂質(zhì)相互作用以及IDP相分離等研究領(lǐng)域展現(xiàn)了巨大的應(yīng)用潛力. Martini模型因其廣泛的參數(shù)化數(shù)據(jù)庫和跨平臺的適用性, 已成為研究蛋白質(zhì)和生物膜相互作用的主流工具. HPS模型以其高效的粗?;桨?、 簡單的勢能函數(shù)形式以及對蛋白質(zhì)序列信息的保留, 成為研究IDP相分離行為的有效工具, 為深入理解生物大分子凝聚體的形成機(jī)制提供了幫助.
盡管粗?;P驮诘鞍踪|(zhì)體系模擬研究中已取得了顯著進(jìn)展, 但仍存在一定的局限性: Martini模型在描述蛋白質(zhì)的構(gòu)象變化和折疊動力學(xué)方面表現(xiàn)不足, 限制了其在特定場景下的應(yīng)用; HPS模型對特定蛋白質(zhì)行為的預(yù)測精度, 尤其是在捕捉復(fù)雜序列效應(yīng)和特殊相互作用時尚需進(jìn)一步優(yōu)化; 有必要通過引入更多高質(zhì)量的實(shí)驗(yàn)數(shù)據(jù)和先進(jìn)算法, 進(jìn)一步提升粗?;P偷奈锢砘瘜W(xué)描述準(zhǔn)確性, 同時結(jié)合機(jī)器學(xué)習(xí)算法, 對粗?;龅膮?shù)化過程進(jìn)行自動化優(yōu)化, 有效增強(qiáng)模型的預(yù)測能力和適用范圍. 此外, 還需開發(fā)更具普適性的粗?;P?, 以適應(yīng)對復(fù)雜多組分生物體系(如細(xì)胞膜、 大型蛋白質(zhì)復(fù)合物以及核酸-蛋白質(zhì)相互作用等體系)的研究需求. 這些方面的進(jìn)展將為粗?;P驮谏飳W(xué)領(lǐng)域的應(yīng)用提供更好的理論依據(jù).
隨著計(jì)算能力的不斷提高以及算法的持續(xù)完善, 粗?;P驮谖磥淼纳锓肿友芯恐杏型l(fā)揮更關(guān)鍵的作用, 為揭示生命過程的分子機(jī)制提供更強(qiáng)有力的支持.
參考文獻(xiàn)
[1] JUMPER J," EVANS R," PRITZEL A," et al. Highly Accurate Protein Structure Prediction with Alphafold [J]. Nature," 2021," 596:" 583-589.
[2] BANANI S F," LEE H O," HYMAN A A," et al. Biomolecular Condensates:" Organizers of Cellular Biochemistry [J]. Nature Reviews Molecular Cell Biology," 2017," 18(5):" 285-298.
[3] DILL K A," MACCALLUM J L. The Protein-Folding Problem," 50 Years on [J]. Science," 2012," 338:" 1042-1046.
[4] BENSON N C," DAGGETT V. A Comparison of Multiscale Methods for the Analysis of Molecular Dynamics Simulations [J]. The Journal of Physical Chemistry B," 2012," 116:" 8722-8731.
[5] SAHOO A," XU H C," MATYSIAK S. Pathways of Amyloid-Beta Absorption and Aggregation in a Membranous Environment [J]. Physical Chemistry Chemical Physics," 2019," 21:" 8559-8568.
[6] WHITFORD P C," ONUCHIC J N. What Protein Folding Teaches Us about Biological Function and Molecular Machines [J]. Current Opinion in Structural Biology," 2015," 30:" 57-62.
[7] INGLFSSON H I," LOPEZ C A," UUSITALO J J," et al. The Power of Coarse Graining in Biomolecular Simulations [J]. WIREs Computational Molecular Science," 2014," 4(3):" 225-248.
[8] MARRINK S J," CORRADI V," SOUZA P C T," et al. Computational Modeling of Realistic Cell Membranes [J]. Chemical Reviews," 2019," 119(9):" 6184-6226.
[9] PAK A J," VOTH G A. Advances in Coarse-Grained Modeling of Macromolecular Complexes [J]. Current Opinion in Structural Biology," 2018," 52:" 119-126.
[10] LEVITT M," WARSHEL A. Computer Simulation of Protein Folding [J]. Nature," 1975," 253:" 694-698.
[11] JIN J," PAK A J," DURUMERIC A E P," et al. Bottom-Up Coarse-Graining:" Principles and Perspectives [J]. Journal of Chemical Theory and Computation," 2022," 18(10):" 5759-5791.
[12] MAJEWSKI M," PéREZ A," TH?LKE P," et al. Machine Learning Coarse-Grained Potentials of Protein Thermodynamics [J]. Nature Communications," 2023," 14(1):" 5739-1-5739-13.
[13] MARRINK S J," MONTICELLI L," MELO M N," et al. Two Decades of Martini:" Better Beads," Broader Scope [J]. WIREs Computational Molecular Science," 2023," 13(1):" e1620-1-e1620-42.
[14] MARRINK S J," DE VRIES A H," MARK A E. Coarse Grained Model for Semiquantitative Lipid Simulations [J]. The Journal of Physical Chemistry B," 2004," 108(2):" 750-760.
[15] GRüNEWALD F," PUNT M H," JEFFERYS E E," et al. Martini 3 Coarse-Grained Force Field for Carbohydrates [J]. Journal of Chemical Theory and Computation," 2022," 18(12):" 7555-7569.
[16] BORGES-ARA
U′JO L," BORGES-ARA
U′JO A C," OZTURK T N," et al. Martini 3 Coarse-Grained Force Field for Cholesterol [J]. Journal of Chemical Theory and Computation," 2023," 19(20):" 7387-7404.
[17] UUSITALO J J," INGLFSSON H I," MARRINK S J," et al. Martini Coarse-Grained Force Field:" Extension to RNA [J]. Biophysical Journal," 2017," 113(2):" 246-256.
[18] MONTICELLI L," KANDASAMY S K," PERIOLE X," et al. The Martini Coarse-Grained Force Field:" Extension to Proteins [J]. Journal of Chemical Theory and Computation," 2008," 4(5):" 819-834.
[19] DE JONG D H," SINGH G," BENNETT W F D," et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field [J]. Journal of Chemical Theory and Computation," 2013," 9(1):" 687-697.
[20] ALESSANDRI R," GRüNEWALD F," MARRINK S J. The Martini Model in Materials Science [J]. Advanced Materials," 2021," 33(24):" 2008635-1-2008635-20.
[21] ABRAHAM M J," MURTOLA T," SCHULZ R," et al. GROMACS:" High Performance Molecular Simulations through Multi-level Parallelism from Laptops to Supercomputers [J]. SoftwareX," 2015," 1/2:" 19-25.
[22] PHILLIPS J C," HARDY D J," MAIA J D C," et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD [J]. The Journal of Chemical Physics," 2020," 153(4):" 044130-1-044130-33.
[23] JEWETT A I," STELTER D," LAMBERT J," et al. Moltemplate:" A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics [J]. Journal of Molecular Biology," 2021," 433(11):" 166841-1-166841-9.
[24] MACCALLUM J L," HU S N," LENZ S," et al. An Implementation of the Martini Coarse-Grained Force Field in OpenMM [J]. Biophysical Journal," 2023," 122(14):" 2864-2870.
[25] KROON P C," GRUNEWALD F," BARNOUD J," et al. Martinize2 and Vermouth:" Unified Framework for Topology Generation [J]. eLife," 2024," 12:" RP90627-1-RP90627-39.
[26] HSU P C," BRUININKS B M H," JEFFERIES D," et al. Charmm-GUI Martini Maker for Modeling and Simulation of Complex Bacterial Membranes with Lipopolysaccharides [J]. Journal of Computational Chemistry," 2017," 38(27):" 2354-2363.
[27] VICKERY O N," STANSFELD P J. CG2AT2:" An Enhanced Fragment-Based Approach for Serial Multi-scale Molecular Dynamics Simulations [J]. Journal of Chemical Theory and Computation," 2021," 17(10):" 6472-6482.
[28] POMA A B," CIEPLAK M," THEODORAKIS P E. Combining the Martini and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins [J]. Journal of Chemical Theory and Computation," 2017," 13(3):" 1366-1374.
[29] WOEK K," GMEZ-SICILIA ," CIEPLAK M. Determination of Contact Maps in Proteins:" A Combination of Structural and Chemical Approaches [J]. The Journal of Chemical Physics," 2015," 143(24):" 243105-1-243105-14.
[30] KAPCHA L H," ROSSKY P J. A Simple Atomic-Level Hydrophobicity Scale Reveals Protein Interfacial Structure [J]. Journal of Molecular Biology," 2014," 426(2):" 484-498.
[31] DIGNON G L," ZHENG W W," KIM Y C," et al. Sequence Determinants of Protein Phase Behavior from a Coarse-Grained Model [J]. PLOS Computational Biology," 2018," 14(1):" e1005941-1-e1005941-23.
[32] REGY R M," THOMPSON J," KIM Y C," et al. Improved Coarse-Grained Model for Studying Sequence Dependent Phase Separation of Disordered Proteins [J]. Protein Science," 2021," 30(7):" 1371-1379.
[33] DANNENHOFFER-LAFAGE T," BEST R B. A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins [J]. The Journal of Physical Chemistry B," 2021," 125(16):" 4046-4056.
[34] DAS S," LIN Y H," VERNON R M," et al. Comparative Roles of Charge," π," and Hydrophobic Interactions in Sequence-Dependent Phase Separation of Intrinsically Disordered Proteins [J]. Proceedings of the National Academy of Sciences," 2020," 117(46):" 28795-28805.
[35] TESEI G," SCHULZE T K," CREHUET R," et al. Accurate Model of Liquid-Liquid Phase Behavior of Intrinsically Disordered Proteins from Optimization of Single-Chain Properties [J]. Proceedings of the National Academy of Sciences," 2021," 118(44):" e2111696118-1-e2111696118-10.
[36] CAO F," VON BüLOW S," TESEI G," et al. A Coarse-Grained Model for Disordered and Multi-domain Proteins [J]. Protein Science," 2024," 33(11):" e5172-1-e5172-14.
[37] JOSEPH J A," REINHARDT A," AGUIRRE A," et al. Physics-Driven Coarse-Grained Model for Biomolecular Phase Separation with Near-Quantitative Accuracy [J]. Nature Computational Science," 2021," 1(11):" 732-743.
[38] GARAIZAR A," ESPINOSA J R," JOSEPH J A," et al. Aging Can Transform Single-Component Protein Condensates into Multiphase Architectures [J]. Proceedings of the National Academy of Sciences," 2022," 119(26):" e2119800119-1-e2119800119-11.
[39] CORRADI V," MENDEZ-VILLUENDAS E," INGLFSSON H I," et al. Lipid-Protein Interactions Are Unique Fingerprints for Membrane Proteins [J]. ACS Central Science," 2018," 4(6):" 709-717.
[40] KJLBYE L R," SRENSEN L," YAN J," et al. Lipid Modulation of a Class B Gpcr:" Elucidating the Modulatory Role of Pi(4,5)P2 Lipids [J]. Journal of Chemical Information and Modeling," 2022," 62(24):" 6788-6802.
[41] BORGES-ARA
U′JO L," SOUZA P C T," FERNANDES F," et al. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field [J]. Journal of Chemical Theory and Computation," 2022," 18(1):" 353-373.
[42] THALLMAIR V," SCHULTZ L," ZHAO W C," et al. Two Cooperative Binding Sites Sensitize Pi(4,5)P2 Recognition by the Tubby Domain [J]. Science Advances," 2022," 8(36):" eabp9471-1-eabp9471-12.
[43] VALéRIO M," MENDON?A D A," MORAIS J," et al. Parainfluenza Fusion Peptide Promotes Membrane Fusion by Assembling into Oligomeric Porelike Structures [J]. ACS Chemical Biology," 2022," 17(7):" 1831-1843.
[44] LI D Z," ROCHA-ROA C," SCHILLING M A," et al. Lipid Scrambling Is a General Feature of Protein Insertases [J]. Proceedings of the National Academy of Sciences," 2024," 121(17):" e2319476121-1-e2319476121-11.
[45] CHENG S Y," CAO Y Y," ROUZBEHANI M," et al. Coarse-Grained Md Simulations Reveal Beta-Amyloid Fibrils of Various Sizes Bind to Interfacial Liquid-Ordered and Liquid-Disordered Regions in Phase Separated Lipid Rafts with Diverse Membrane-Bound Conformational States [J]. Biophysical Chemistry," 2020," 260:" 106355-1-106355-18.
[46] ZHANG S L," HUANG G," VERSLOOT R C A," et al. Bottom-Up Fabrication of a Proteasome-Nanopore That Unravels and Processes Single Proteins [J]. Nature Chemistry," 2021," 13(12):" 1192-1199.
[47] MOSALAGANTI S," OBARSKA-KOSINSKA A," SIGGEL M," et al. AI-Based Structure Prediction Empowers Integrative Structural Analysis of Human Nuclear Pores [J]. Science," 2022," 376:" eabm9506-1-eabm9506-14.
[48] WANG B B," ZHONG C Q," TIELEMAN D P. Supramolecular Organization of Sars-Cov and Sars-Cov-2 Virions Revealed by Coarse-Grained Models of Intact Virus Envelopes [J]. Journal of Chemical Information and Modeling," 2022," 62(1):" 176-186.
[49] LARSEN A H," WANG Y," BOTTARO S," et al. Combining Molecular Dynamics Simulations with Small-Angle X-Ray and Neutron Scattering Data to Study Multi-domain Proteins in Solution [J]. PLOS Computational Biology," 2020," 16(4):" e1007870-1-e1007870-29.
[50] KASSEM N," ARAYA-SECCHI R," BUGGE K," et al. Order and Disorder: An Integrative Structure of the Full-Length Human Growth Hormone Receptor [J]. Science Advances," 2021," 7(27):" eabh3805-1-eabh3805-19.
[51] MARTIN E W," THOMASEN F E," MILKOVIC N M," et al. Interplay of Folded Domains and the Disordered Low-Complexity Domain in Mediating Hnrnpa1 Phase Separation [J]. Nucleic Acids Research," 2021," 49(5):" 2931-2945.
[52] THOMASEN F E," SKAALUM T," KUMAR A," et al. Rescaling Protein-Protein Interactions Improves Martini 3 for Flexible Proteins in Solution [J]. Nature Communications," 2024," 15:" 6645-1-6645-17.
[53] TSANAI M," FREDERIX P W J M," SCHROER C F E," et al. Coacervate Formation Studied by Explicit Solvent Coarse-Grain Molecular Dynamics with the Martini Model [J]. Chemical Science," 2021," 12(24):" 8521-8530.
[54] LIU Y," WANG X Y," WAN Z L," et al. Capturing Coacervate Formation and Protein Partition by Molecular Dynamics Simulation [J]. Chemical Science," 2023," 14(5):" 1168-1175.
[55] STEVENS J A," GRüNEWALD F," VAN TILBURG P A M," et al. Molecular Dynamics Simulation of an Entire Cell [J]. Frontiers in Chemistry," 2023," 11:" 1106495-1-1106495-9.
[56] MURTHY A C," DIGNON G L," KAN Y," et al. Molecular Interactions Underlying Liquid-Liquid Phase Separation of the Fus Low-Complexity Domain [J]. Nature Structural and Molecular Biology," 2019," 26(7):" 637-648.
[57] KRAINER G," WELSH T J," JOSEPH J A," et al. Reentrant Liquid Condensate Phase of Proteins Is Stabilized by Hydrophobic and Non-ionic Interactions [J]. Nature Communications," 2021," 12(1):" 1085-1-1085-14.
[58] TEJEDOR A R," GARAIZAR A," RAMíREZ J," et al. RNA Modulation of Transport Properties and Stability in Phase-Separated Condensates [J]. Biophysical Journal," 2021," 120(23):" 5169-5186.
[59] LEBOLD K M," BEST R B. Tuning Formation of Protein-DNA Coacervates by Sequence and Environment [J]. The Journal of Physical Chemistry B," 2022," 126:" 2407-2419.
(責(zé)任編輯: 單 凝)