摘" " 要:【目的】探究風(fēng)送式塔型噴霧機(jī)在矮砧寬行密植蘋(píng)果園中的施藥效果,優(yōu)化施藥參數(shù),為現(xiàn)代矮砧蘋(píng)果園農(nóng)藥施用“減量增效”提供理論參考?!痉椒ā恳?年生煙富3蘋(píng)果為試驗(yàn)材料,采用水敏紙霧滴測(cè)試卡測(cè)定3WF-1000風(fēng)送式塔型噴霧機(jī)霧滴粒徑、霧滴密度與覆蓋率,并利用示蹤劑誘惑紅測(cè)定噴霧機(jī)的藥液沉積量及地面沉積量?!窘Y(jié)果】在5年生現(xiàn)代矮砧寬行密植蘋(píng)果園中,噴霧機(jī)在不同牽引速度下的霧滴特性差異顯著,與牽引速度為1.16 m·s-1(4.18 km·h-1)時(shí)相比,牽引速度為1.77 m·s-1(6.37 km·h-1)時(shí)的霧滴覆蓋率和霧滴粒徑由62.19%和142.67 μm下降到57.03%和131.67 μm,而霧滴密度由141.72點(diǎn)·cm-2增加到179.86點(diǎn)·cm-2;牽引速度為1.77 m·s-1時(shí)的葉面平均沉積量、地面沉積量和農(nóng)藥利用率分別為0.24 μg·cm-2、0.55 μg·cm-2和47.1%,均高于1.16 m·s-1時(shí)(分別為0.22 μg·cm-2、0.43 μg·cm-2和43.7%)?!窘Y(jié)論】3WF-1000型風(fēng)送式噴霧機(jī)兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)的霧滴特性均能滿足矮砧寬行密植蘋(píng)果園病蟲(chóng)害的防治要求,噴霧機(jī)在牽引速度1.77 m·s-1時(shí)農(nóng)藥利用率更高,但易導(dǎo)致土壤流失率增高。
關(guān)鍵詞:果園;風(fēng)送式噴霧機(jī);霧滴密度;霧滴覆蓋率;霧滴粒徑;利用率;流失率
中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)09-1821-08
Evaluation of spraying efficacy of the air-assisted orchard sprayer in modern dwarfing-rootstock apple orchard
ZHU Lizheng1, WANG Tao2, WANG Dan2, YU Xianmei2, ZHAI Hao2*
(1Feixian Fruit Tea Service in Shandong Province, Feixian 273400, Shandong, China; 2Shandong Institute of Pomology, Tai’an 271000, Shandong, China)
Abstract: 【Objective】 Combining good application technology with advanced application machinery, optimizing parameters such as droplet size, spray volume and traction speed can give full play to the performance of application instruments, improve the utilization rate of pesticides, and achieve precise prevention and control. However, the normative evaluation of the application efficacy of modern machinery, and the reference of the measure adjustment and the equipment improvement are lacking. This research aimed to investigate the spraying effect of air-assisted sprayer, optimize application parameters by comparing and analyzing the changes of droplet characteristics, droplet deposition distribution and ground loss rate of 3WF-1000 air-assisted tower sprayer in the apple orchard with wide planting rows and dwarfing rootstocks, so as to provide theoretical reference for pesticide application “reducing quantity and increasing efficiency” in modern dwarfing-rootstock apple orchards. 【Methods】 Five-year-old Yanfu 3 apple cultivar with spindle-shaped canopy was used as experimental material. The spacing between plants and rows were (1.25-1.50) m × 4.5 m, respectively. The volume median diameter (VMD), droplet density and droplet coverage of the 3WF-1000 air-assisted tower sprayer were tested by water-sensitive paper, and the foliar deposition and ground deposition were tested by tracer agent allura red. A row with the length of 50 m was selected as the test plot and three discontinuous apple trees were randomly selected as sampling points. In order to investigate the droplet characteristics, the canopy was vertically divided into upper (2.0 m), middle (1.5 m) and lower (1.0 m) layers, and five points were selected as distribution sample points in the east, south, west, north and middle of each canopy. A paper clip was used to fix each water-sensitive paper with the detection face down. To investigate the ground loss rate, a dish was placed in each of four directions (east, south, west and north), 30 cm away from the trunk. 20 g of allura red was fully dissolved in 100 L of water and added to the sprayer at the traction speeds of 1.16 m·s-1 (4.18 km·h-1) or 1.77 m·s-1 (6.37 km·h-1). The water-sensitive paper was put into a plastic bag and brought back to the laboratory. After scanning, the droplet size, droplet density and coverage were measured by Image J software. In order to test the foliar deposition, three leaves were collected at each sampling point. After measuring the leaf area, each leaf was washed with 5 mL distilled water for 10 min, the absorption of the washing solution at 501 nm was determined, and the concentration of allura red was calculated according to the standard curve. The dried dishes were added with 10 mL distilled water, and shaken at 100 r·min-1 for 5 min. The absorption of the washing solution at 501 nm was measured and the concentration of allura red was calculated. 【Results】 The droplet characteristics of the sprayer at different traction speeds were significantly different in the five-year-old modern dwarfing-rootstock and wide-row apple orchard. Compared with the traction speed of 1.16 m·s-1 (4.18 km·h-1), the droplet coverage and VMD at 1.77 m·s-1 (6.37 km·h-1) decreased from 62.19% and 142.67 μm to 57.03% and 131.67 μm, and the droplet density (141.72 points·cm-2) increased to 179.86 points·cm-2. The average foliar deposition, ground deposition and utilization rate at the speed of 1.77 m·s-1 were 0.24 μg·cm-2, 0.55 μg·cm-2 and 47.1%, respectively, and were both higher than those of 1.16 m·s-1 (0.22 μg·cm-2, 0.43 μg·cm-2, and 43.7%, respectively). The droplet parameters of the sprayer in the east, south, west, north and middle of the tree were also different at two traction speeds. When the traction speed was 1.77 m·s-1, the droplet coverage in the east, west, south and north was lower than that at the traction speed of 1.16 m·s-1, but it was opposite in the middle canopy, which was significantly higher than that at the traction speed of 1.16 m·s-1 (p<0.05). The droplet particle size at the traction speed of 1.77 m·s-1 was lower than that at 1.16 m·s-1 in all 5 directions, and the south direction had a significant difference (p<0.05). The droplet density in the east, west, north and middle of the tree at the traction speed of 1.77 m·s-1 was higher than that at 1.16 m·s-1, while the droplet density in the south was slightly lower. The distribution of foliar deposition at the two traction speeds of the sprayer was in such a descending order: the upper canopy gt; the middle canopy ≥ the lower canopy of the tree, and the deposition amount in the outer of the tree was higher than that in the inner at the height of the middle and low canopy. At the traction speed of 1.77 m·s-1, the deposition amount in the inner and outer canopy of the middle and lower canopy (deposition ratio of inner to outer was 0.73 and 0.65) was higher than that at the traction speed of 1.16 m·s-1 (deposition ratio of inner to outer was 0.72 and 0.64). However, there was no significant difference in the amount of liquid deposited in the upper, middle and lower canopy of the tree (p<0.05). 【Conclusion】 The droplet characteristics of the 3WF-1000 air-assisted sprayer at two traction speeds (1.16 m·s-1 and 1.77 m·s-1) could meet the requirements of disease and pest control in modern dwarfing-rootstock apple orchards. The better pesticide utilization rate was observed with the sprayer at the traction speed of 1.77 m·s-1, but the soil loss rate would increase as well.
Key words: Orchard; Air-assisted sprayer; Droplet density; Droplet coverage; Volume median diameter (VMD); Utilization rate; Ground loss index
農(nóng)藥在控制農(nóng)作物病蟲(chóng)草危害,保證農(nóng)產(chǎn)品產(chǎn)量與質(zhì)量等方面具有不可替代的作用。據(jù)統(tǒng)計(jì),2018年中國(guó)農(nóng)藥使用量在30萬(wàn)t左右[1](折百量),但農(nóng)藥利用率僅為36.6%[2],農(nóng)藥流失浪費(fèi)嚴(yán)重,對(duì)土壤、河流和地下水系造成嚴(yán)重污染[3],限制了農(nóng)業(yè)的綠色可持續(xù)發(fā)展。果樹(shù)作為多年生木本植物,生長(zhǎng)周期長(zhǎng),病蟲(chóng)害種類繁雜及發(fā)生規(guī)律各異,且中國(guó)傳統(tǒng)一家一戶分散經(jīng)營(yíng)的果園種植模式無(wú)法實(shí)現(xiàn)病蟲(chóng)害的統(tǒng)防統(tǒng)治,落后的施藥器械“跑、冒、滴、漏”現(xiàn)象嚴(yán)重,致使果園用藥次數(shù)多,農(nóng)藥使用量大。為提升農(nóng)產(chǎn)品附加值,促進(jìn)農(nóng)業(yè)綠色發(fā)展,農(nóng)業(yè)部于2016年提出“農(nóng)藥化肥雙減”和“農(nóng)藥零增長(zhǎng)”[4]的概念和目標(biāo)。其中,應(yīng)用高效施藥器械、提高農(nóng)藥利用率是果園農(nóng)藥減施的重要組成部分。
蘋(píng)果現(xiàn)代矮砧集約栽培模式是中國(guó)蘋(píng)果生產(chǎn)發(fā)展的主流方向,該模式“寬行、高干、集約、高效”的栽培特點(diǎn),更適合應(yīng)用大中型果園機(jī)械。隨著現(xiàn)代矮砧集約栽培模式在中國(guó)蘋(píng)果優(yōu)勢(shì)產(chǎn)區(qū)的迅速發(fā)展[5],風(fēng)送式噴霧機(jī)由于具有工作強(qiáng)度低、安全性好、利用率高、防效高等優(yōu)點(diǎn),在矮砧集約栽培果園中廣泛應(yīng)用。但是,風(fēng)送式噴霧機(jī)在果園的應(yīng)用效果受諸多因素的影響,不同的農(nóng)藥劑型和助劑影響藥液在靶標(biāo)植物葉片上的附著[6-7];藥械噴頭對(duì)藥液的流量、噴霧角度、霧滴大小等指標(biāo)亦有較大影響[8-11];植株冠層結(jié)構(gòu)、葉片表面特性和環(huán)境條件對(duì)果園農(nóng)藥利用率的影響也較大[12-14]。針對(duì)果園的立地條件和果樹(shù)樹(shù)體結(jié)構(gòu),專家學(xué)者對(duì)機(jī)械的各項(xiàng)指標(biāo)進(jìn)行調(diào)整,相繼研發(fā)出果園自動(dòng)對(duì)靶靜電噴霧機(jī)[15]、自走履帶式風(fēng)送果園變量噴霧機(jī)[16]、自動(dòng)仿形變量噴霧機(jī)[17]、自走式精準(zhǔn)變量噴桿噴霧機(jī)[18]和植保無(wú)人機(jī)[19]等精準(zhǔn)施藥機(jī)械。將良好的施藥技術(shù)與先進(jìn)的施藥機(jī)械相結(jié)合,調(diào)整優(yōu)化霧滴粒徑、噴霧量和牽引速度等各項(xiàng)參數(shù),才能充分發(fā)揮施藥器械性能,提高農(nóng)藥利用率,實(shí)現(xiàn)精準(zhǔn)防控。但由于目前缺少對(duì)現(xiàn)代化施藥機(jī)械施藥效果的規(guī)范性評(píng)價(jià),施藥措施的調(diào)整與藥械的改進(jìn)缺少充足的參考。
筆者在本研究中通過(guò)對(duì)比分析不同牽引速度下3WF-1000風(fēng)送式塔型噴霧機(jī)在5年生矮砧寬行密植蘋(píng)果園中霧滴特性、霧滴沉積分布和地面流失率的變化,綜合評(píng)價(jià)3WF-1000風(fēng)送式塔型噴霧機(jī)在矮砧寬行密植蘋(píng)果園中的施藥效果,摸索并優(yōu)化施藥參數(shù),以期為矮砧寬行密植蘋(píng)果園中農(nóng)藥施用“減量增效”提供理論依據(jù)和數(shù)據(jù)支持。
1 材料和方法
1.1 材料
供試果園:山東省威海市大水泊鎮(zhèn)矮砧寬行密植蘋(píng)果園(37°11' N,122°15' E)。以5年生煙富3蘋(píng)果為試驗(yàn)材料,紡錘形樹(shù)冠,株行距(1.25~1.50 m)×4.50 m,南北走向,果園自然生草。
設(shè)備及試劑耗材:3WF-1000風(fēng)送式塔型噴霧機(jī)(威海新元果業(yè)技術(shù)服務(wù)有限公司,容積1000 L,工作壓力0.5~3.0 MPa,長(zhǎng)×寬×高為3.20 m×1.40 m×2.26 m,設(shè)備額定轉(zhuǎn)速540 r·min-1,流量135 L·min-1)。U-3900型紫外分光光度計(jì)(日立,日本);CI-202便攜式激光葉面積儀(CID公司,美國(guó));培養(yǎng)皿(直徑7 cm);食品染色劑誘惑紅(上海染料研究所),蒸餾水,水敏紙霧滴測(cè)試卡(中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所生產(chǎn))。
1.2 方法
1.2.1 誘惑紅標(biāo)準(zhǔn)溶液配制及標(biāo)準(zhǔn)吸收曲線的測(cè)定 稱取誘惑紅0.01 g,將其溶解并轉(zhuǎn)移至10 mL容量瓶中定容,配成質(zhì)量濃度為1000 μg·mL-1的母液。分別用移液槍移取母液50、150、250、350、450、550、650 μL至7個(gè)10 mL容量瓶中定容,配制成5、15、25、35、45、55、65 μg·mL-1系列質(zhì)量濃度的誘惑紅溶液。用U-3900型紫外分光光度計(jì)測(cè)定上述標(biāo)準(zhǔn)溶液在501 nm波長(zhǎng)下的吸光度,并繪制標(biāo)準(zhǔn)曲線。
1.2.2 霧滴特性、霧滴沉積分布和地面流失的測(cè)定 選擇長(zhǎng)50 m的一行果樹(shù)作為試驗(yàn)小區(qū),噴霧開(kāi)始前,隨機(jī)選取3株不連續(xù)蘋(píng)果樹(shù)進(jìn)行采樣點(diǎn)布置。為研究蘋(píng)果樹(shù)冠層的霧滴特性,在垂直方向?qū)?shù)冠層分為上、中、下3層(2.0 m、1.5 m和1.0 m),在冠層的東、南、西、北、中選五點(diǎn)作為布樣點(diǎn)(圖1)。用回形針?lè)謩e固定一張檢測(cè)面朝下的水敏紙霧滴測(cè)試卡。為研究霧滴的地面流失率,在距離樹(shù)干30 cm處的4個(gè)方位(東、南、西、北)各放置一個(gè)培養(yǎng)皿(圖2-A)。霧滴特性以各方位布樣點(diǎn)的平均值表示。
將20 g誘惑紅充分溶解于100 L水中,加入3WF-1000風(fēng)送式塔型噴霧機(jī),在牽引速度為1.16 m·s-1(4.18 km·h-1)和1.77 m·s-1(6.37 km·h-1)時(shí)對(duì)果樹(shù)進(jìn)行噴施,測(cè)量剩余溶液體積以確定用水量。將晾干的水敏紙放入塑封袋中,帶回實(shí)驗(yàn)室,用掃描儀掃描后,用Image J軟件測(cè)定分析覆蓋率、霧滴粒徑和霧滴密度;為研究蘋(píng)果樹(shù)冠層的藥液沉積量,在每個(gè)采樣點(diǎn)各采集3片葉(圖2-B),在實(shí)驗(yàn)室中測(cè)定葉面積后,每片葉用5 mL蒸餾水振蕩洗滌10 min,測(cè)定洗滌液在501 nm下的吸光值,根據(jù)標(biāo)準(zhǔn)曲線計(jì)算誘惑紅濃度;將風(fēng)干后的培養(yǎng)皿帶回實(shí)驗(yàn)室,每個(gè)皿加入10 mL蒸餾水,100 r·min-1震蕩5 min,測(cè)定洗滌液在501 nm下的吸光值并計(jì)算誘惑紅濃度。
1.2.3 數(shù)據(jù)計(jì)算與分析 按以下公式計(jì)算藥液沉積量、利用率、地面沉積量和地面流失率[20-21]。用掃描儀掃描水敏紙,并用分析軟件Image J測(cè)定分析霧滴密度、覆蓋率和霧滴粒徑。采用DPS 16.05統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行方差分析和顯著性檢驗(yàn)(Ducan’s新復(fù)極差法)。試驗(yàn)結(jié)果表示為平均值(mean)±標(biāo)準(zhǔn)差(SD)。
葉面沉積量/(μg·cm-2)=
[洗滌液的誘惑紅質(zhì)量濃度(μg·mL-1)×體積(mL)葉面積(cm2)×2];
(1)
利用率/%=[單株蘋(píng)果的實(shí)際沉積量(μg·cm-2)單株蘋(píng)果的理論沉積量(μg·cm-2)]×100;
(2)
地面沉積/(μg·cm-2)=
[洗滌液的誘惑紅質(zhì)量濃度(μg·mL-1)×體積(mL)培養(yǎng)皿底面積(cm2)];
(3)
地面流失率/%=
[地面沉積量(μg·cm-2)×小區(qū)面積(m2)×10小區(qū)內(nèi)誘惑紅投放量(mg)]×100。
(4)
2 結(jié)果與分析
2.1 誘惑紅標(biāo)準(zhǔn)吸收曲線的測(cè)定
對(duì)誘惑紅水溶液進(jìn)行吸光度檢測(cè),發(fā)現(xiàn)吸光度與誘惑紅水溶液的質(zhì)量濃度在0~65 μg·mL-1范圍內(nèi)呈線性相關(guān)。一元線性回歸方程為y = 0.050 2x-0.060 6,R2=0.995 4。
2.2 不同牽引速度用水量的比較
牽引速度1.16 m·s-1的單位用水量(284.63 L·666.7 m-2)約為速度1.77 m·s-1(148.25 L·666.7 m-2)的1.5倍(表1)。
2.3 不同牽引速度的霧滴特性比較
由表2可知,在試驗(yàn)果園中,3WF-1000型風(fēng)送式塔型噴霧機(jī)兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)在不同采樣點(diǎn)的霧滴覆蓋率分布范圍為53.56%~67.37%,霧滴粒徑為116.67~154.33 μm,霧滴密度為111.50~245.36點(diǎn)·cm-2。噴霧機(jī)的霧滴覆蓋率、霧滴粒徑和霧滴密度因牽引速度不同而存在顯著差異,其中,噴霧機(jī)牽引速度為1.16 m·s-1時(shí)平均霧滴覆蓋率和霧滴粒徑分別為62.19%和142.67 μm,均顯著高于牽引速度為1.77 m·s-1時(shí)(57.03%和131.67 μm);而霧滴密度則相反,牽引速度為1.16 m·s-1時(shí)是141.72點(diǎn)·cm-2,顯著低于牽引速度1.77 m·s-1時(shí)(179.86點(diǎn)·cm-2)(p<0.05)。
牽引速度不同,噴霧機(jī)在樹(shù)體東、南、西、北和中方位的霧滴參數(shù)也不同。噴霧機(jī)牽引速度為1.77 m·s-1時(shí)霧滴覆蓋率在東、西、南和北4個(gè)方位均低于牽引速度為1.16 m·s-1時(shí),而在樹(shù)體中部方位則相反,顯著高于牽引速度為1.16 m·s-1時(shí)(p<0.05);霧滴粒徑在5個(gè)方位均低于牽引速度為1.16 m·s-1時(shí),其中,南方位的霧滴粒徑差異顯著(p<0.05);霧滴密度在樹(shù)體東、西、北、中4個(gè)方位均高于牽引速度為1.16 m·s-1時(shí),而南方位霧滴密度略低于牽引速度1.16 m·s-1。
2.4 不同牽引速度的霧滴沉積分布和地面流失比較
3WF-1000型風(fēng)送式塔型噴霧機(jī)噴施霧滴在葉面的沉積結(jié)果顯示(表3),噴霧機(jī)在兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)的葉面沉積量、地面沉積量、農(nóng)藥利用率和地面流失率的分布范圍分別為0.16~0.30 μg·cm-2、0.43~0.55 μg·cm-2、43.7%~47.1%和19.4%~36.0%;噴霧機(jī)牽引速度為1.77 m·s-1時(shí)葉面平均沉積量、地面沉積量、農(nóng)藥利用率和地面流失率分別為0.24 μg·cm-2、0.55 μg·cm-2、47.1%和36.0%,均高于牽引速度為1.16 m·s-1時(shí)(分別為0.22 μg·cm-2、0.43 μg·cm-2、43.7%和19.4%)。
噴霧機(jī)的兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)在樹(shù)體不同冠層內(nèi)膛和外膛的霧滴沉積量均為上部冠層>中部冠層≥下部冠層,且在樹(shù)體中、下部冠層的外膛藥液沉積量均高于內(nèi)膛。噴霧機(jī)在牽引速度為1.77 m·s-1時(shí)除了在樹(shù)體上部冠層內(nèi)膛藥液沉積量略低外,在中、下冠層內(nèi)膛和外膛的藥液沉積量(內(nèi)/外膛的沉積比為0.73和0.65)均高于牽引速度為1.16 m·s-1時(shí)(內(nèi)/外膛的沉積比為0.72和0.64),但噴霧機(jī)兩個(gè)牽引速度在樹(shù)體上、中、下冠層內(nèi)膛和外膛的藥液沉積量差異不顯著(p<0.05)。
3 討 論
先進(jìn)的施藥器械輔以精準(zhǔn)的施藥技術(shù),能有效降低農(nóng)藥的使用量,大幅度提高農(nóng)藥利用率。目前,中國(guó)現(xiàn)代矮砧寬行密植果園中,大中型風(fēng)送式噴霧機(jī)已開(kāi)始普及,但由于風(fēng)送式噴霧機(jī)的研發(fā)和田間應(yīng)用脫節(jié),在應(yīng)用中未能發(fā)揮風(fēng)送式噴霧機(jī)的最佳性能,導(dǎo)致農(nóng)藥的使用效率低下,因此,綜合評(píng)價(jià)施藥器械在田間的施藥效果并優(yōu)化噴施過(guò)程中的各項(xiàng)技術(shù)參數(shù)顯得尤為重要[22]。衡量藥械施藥效果的必備檢測(cè)指標(biāo)包含霧滴覆蓋率、霧滴粒徑、霧滴密度、藥液利用率和流失率[18],其中霧滴粒徑和霧滴密度受施藥機(jī)械的直接影響,最終影響藥液的沉積量[22]。
摩澤[23]提出,對(duì)蟲(chóng)害的防治僅需5%的霧滴覆蓋率,而對(duì)植物病害的防治則需要40%的霧滴覆蓋率,通常覆蓋率達(dá)到33%左右即可同時(shí)有效防治病害與蟲(chóng)害。生物最佳粒徑理論證明,防治飛行害蟲(chóng)適合使用10~50 μm的細(xì)小霧滴,防治葉面爬行類害蟲(chóng)幼蟲(chóng)和植物病害則適合30~150 μm的霧滴[24-26]。丁素明等[27]報(bào)道,由于單個(gè)霧滴所產(chǎn)生的影響遠(yuǎn)大于其本身的粒徑范圍,霧滴密度達(dá)到20點(diǎn)·cm-2以上即可對(duì)病蟲(chóng)害有較好的防治效果。在本研究中,3WF-1000風(fēng)送式塔型噴霧機(jī)兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)的霧滴覆蓋率為53.56%~67.37%,霧滴粒徑為116.67~154.33 μm,霧滴密度為111.50~245.36點(diǎn)·cm-2,均能滿足病蟲(chóng)害防治的基本要求。
在本研究中,與牽引速度為1.16 m·s-1時(shí)相比,3WF-1000風(fēng)送式塔型噴霧機(jī)牽引速度為1.77 m·s-1時(shí)的霧滴覆蓋率和霧滴粒徑均由牽引速度為1.16 m·s-1時(shí)的62.19%和142.67 μm下降到57.03%和131.67 μm,而霧滴密度由141.72點(diǎn)·cm-2增加到179.86點(diǎn)·cm-2。這與袁會(huì)珠等[24]報(bào)道的在不同牽引速度下的噴霧機(jī)霧滴粒徑和霧滴密度變化成反比相一致。噴霧機(jī)在樹(shù)體東、南、西、北和中方位的霧滴參數(shù)因牽引速度的不同而不同,這可能與樹(shù)體枝葉的疏密程度、噴霧機(jī)的行走方向及果樹(shù)栽植行向有關(guān)。
農(nóng)藥利用率為農(nóng)藥噴施后沉積在靶標(biāo)作物上的藥量占總施藥量的百分比[22],是衡量藥械噴施效率的重要指標(biāo)。在本研究中,3WF-1000風(fēng)送式塔型噴霧機(jī)的兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)的農(nóng)藥利用率(43.7%和47.1%)均高于中國(guó)植保機(jī)械農(nóng)藥利用率的平均水平(36.6%)[2];噴霧機(jī)牽引速度為1.16 m·s-1的地面流失率(19.4%)低于Vercruysse等[28]所研究的蘋(píng)果園地面流失率(29%),而牽引速度為1.77 m·s-1時(shí)的地面流失率(36.0%)較高,推測(cè)可能是快速行駛時(shí)輸送的風(fēng)量和霧滴數(shù)量降低、霧滴葉面沉積量下降造成的[29]。噴霧機(jī)兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)在樹(shù)體中、下部冠層的內(nèi)/外膛的沉積比均小于1,反映出樹(shù)冠中下部?jī)?nèi)膛沉積量小于外膛,霧滴穿透效果較差。而蘋(píng)果樹(shù)作為多年生作物,輪紋病、腐爛病等枝干病害嚴(yán)重,內(nèi)膛沉積量小不利于防治干部病蟲(chóng)害,可通過(guò)增加噴霧機(jī)壓強(qiáng)或使用霧化效果更好的噴頭以減小霧滴粒徑,提高霧滴的穿透性。
4 結(jié) 論
3WF-1000型風(fēng)送式塔型噴霧機(jī)兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)的霧滴特性均能滿足矮砧寬行密植蘋(píng)果園病蟲(chóng)害的防治要求。噴霧機(jī)的兩個(gè)牽引速度(1.16 m·s-1和1.77 m·s-1)在樹(shù)體不同冠層內(nèi)膛和外膛霧滴沉積量均為上部冠層>中部冠層≥下部冠層,且在樹(shù)體中、下部冠層的外膛藥液沉積量均高于內(nèi)膛,其中,噴霧機(jī)在牽引速度1.77 m·s-1時(shí)農(nóng)藥利用率更高,但易導(dǎo)致土壤流失率增高。
參考文獻(xiàn) References:
[1] 劉園園. 我國(guó)農(nóng)村面源污染防治法律制度研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
LIU Yuanyuan. Study on the legal system of prevention and control of non-point source pollution in rural China[D]. Yangling:Northwest A amp; F University,2019.
[2] 蘇小記,王雅麗,魏靜,黃崇春,劉艾英,李淑,梁自靜,袁會(huì)珠. 9種植保機(jī)械防治小麥穗蚜的農(nóng)藥沉積率與效果比較[J]. 西北農(nóng)業(yè)學(xué)報(bào),2018,27(1):149-154.
SU Xiaoji,WANG Yali,WEI Jing,HUANG Chongchun,LIU Aiying,LI Shu,LIANG Zijing,YUAN Huizhu. Pesticide deposition percentage and control effect of nine kinds of crop protection machineries against wheat aphid[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018,27(1):149-154.
[3] 李麗,李恒,何雄奎,ANDREAS H. 紅外靶標(biāo)自動(dòng)探測(cè)器的研制及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):159-163.
LI Li,LI Heng,HE Xiongkui,ANDREAS H. Development and experiment of automatic detection device for infrared target[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(12):159-163.
[4] 董濤. 基于表面增強(qiáng)拉曼光譜的土壤農(nóng)殘快速檢測(cè)方法研究[D]. 杭州:浙江大學(xué),2019.
DONG Tao. Study on rapid detection of soil pesticide residues based on surface enhanced raman spectroscopy[D]. Hangzhou:Zhejiang University,2019.
[5] 韓明玉. 蘋(píng)果矮砧集約栽培技術(shù)模式芻議[J]. 中國(guó)果樹(shù),2015(3):76-79.
HAN Mingyu. A preliminary discussion on the intensive cultivation technology model of apple dwarf rootstock[J]. China Fruits,2015(3):76-79.
[6] 徐廣春,顧中言,徐德進(jìn),許小龍,董玉軒. 常用農(nóng)藥在水稻葉片上的潤(rùn)濕能力分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2012,45(9):1731-1740.
XU Guangchun,GU Zhongyan,XU Dejin,XU Xiaolong,DONG Yuxuan. Wettability analysis of pesticides on rice leaf[J]. Scientia Agricultura Sinica,2012,45(9):1731-1740.
[7] 馮建國(guó),張小軍,于遲,陳維韜,蔡夢(mèng)玲,吳學(xué)民. 我國(guó)農(nóng)藥劑型加工的應(yīng)用研究概況[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,18(2):220-226.
FENG Jianguo,ZHANG Xiaojun,YU Chi,CHEN Weitao,CAI Mengling,WU Xuemin. General situation of applied studies on pesticide formulations processing in China[J]. Journal of China Agricultural University,2013,18(2):220-226.
[8] 徐德進(jìn),徐廣春,許小龍,顧中言. 施液量、霧滴大小、葉片傾角及助劑對(duì)農(nóng)藥在稻葉上沉積的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2015,28(5):2056-2062.
XU Dejin,XU Guangchun,XU Xiaolong,GU Zhongyan. Effect of application volume,droplet size,rice leaf incline angle and spray adjuvant on pesticide deposition[J]. Southwest China Journal of Agricultural Sciences,2015,28(5):2056-2062.
[9] NUYTTENS D,WINDEY S,BRAEKMAN P,DE MOOR A,SONCK B. Optimisation of a vertical spray boom for greenhouse spraying applications[J]. Communications in Agricultural and Applied Biological Sciences,2003,68(4 Pt B):905-912.
[10] SáNCHEZ-HERMOSILLA J,RINCóN V J,PáEZ F,F(xiàn)ERNáNDEZ M. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops[J]. Crop Protection,2012,31(1):119-124.
[11] 朱金文,吳慧明,朱國(guó)念. 霧滴大小與施藥液量對(duì)草甘膦在空心蓮子草葉片沉積的影響[J]. 農(nóng)藥學(xué)學(xué)報(bào),2004,6(1):63-66.
ZHU Jinwen,WU Huiming,ZHU Guonian. Influence of droplet size and spray volume on deposition of glyphosate on Alligator weed leaves[J]. Chinese Journal of Pesticide Science,2004,6(1):63-66.
[12] 顧中言. 植物的親水疏水特性與農(nóng)藥藥液行為的分析[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2009,25(2):276-281.
GU Zhongyan. Analysis of the relationship between hydrophilic or hydrophobic property of plant and action of pesticides solution on plants leaves[J]. Jiangsu Journal of Agricultural Sciences,2009,25(2):276-281.
[13] 袁會(huì)珠,齊淑華,楊代斌. 藥液在作物葉片的流失點(diǎn)和最大穩(wěn)定持留量研究[J]. 農(nóng)藥學(xué)學(xué)報(bào),2000,2(4):66-71.
YUAN Huizhu,QI Shuhua,YANG Daibin. Study on the point of Run-off and the maximum retention of spray liquid on crop leaves[J]. Chinese Journal of Pesticide Science,2000,2(4):66-71.
[14] 洪曉燕,張?zhí)鞐? 影響農(nóng)藥利用率的相關(guān)因素分析及改進(jìn)措施[J]. 中國(guó)森林病蟲(chóng),2010,29(5):41-43.
HONG Xiaoyan,ZHANG Tiandong. Analysis of relevant factors influencing pesticide utilization and improvement measures[J]. Forest Pest and Disease,2010,29(5):41-43.
[15] 何雄奎,嚴(yán)苛榮,儲(chǔ)金宇,汪健,曾愛(ài)軍,劉亞佳. 果園自動(dòng)對(duì)靶靜電噴霧機(jī)設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(6):78-80.
HE Xiongkui,YAN Kerong,CHU Jinyu,WANG Jian,ZENG Aijun,LIU Yajia. Design and testing of the automatic target detecting,electrostatic,air assisted,orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering,2003,19(6):78-80.
[16] 胡桂琴. 果園風(fēng)送噴霧機(jī)噴頭霧化與沉積性能試驗(yàn)研究[D]. 南京:南京林業(yè)大學(xué),2013.
HU Guiqin. Experimental study on automization and deposition characteristicof orchard air-assisted sprayer nozzle[D]. Nanjing:Nanjing Forestry University,2013.
[17] 李龍龍,何雄奎,宋堅(jiān)利,王瀟楠,賈曉銘,劉朝輝. 基于變量噴霧的果園自動(dòng)仿形噴霧機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):70-76.
LI Longlong,HE Xiongkui,SONG Jianli,WANG Xiaonan,JIA Xiaoming,LIU Chaohui. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(1):70-76.
[18] 張文君. 農(nóng)藥?kù)F滴霧化與在玉米植株上的沉積特性研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2014.
ZHANG Wenjun. The study of pesticide droplets atomization and deposit characteristics in corn leaves[D]. Beijing:China Agricultural University,2014.
[19] 亓文哲,王菲菲,孟臻,張典利,王紅艷,喬康,姬曉雪. 我國(guó)植保無(wú)人機(jī)應(yīng)用現(xiàn)狀[J]. 農(nóng)藥,2018,57(4):247-254.
QI Wenzhe,WANG Feifei,MENG Zhen,ZHANG Dianli,WANG Hongyan,QIAO Kang,JI Xiaoxue. Application status of unmanned aerial vehicle for plant protection in China[J]. Agrochemicals,2018,57(4):247-254.
[20] 袁會(huì)珠,王忠群,孫瑞紅,李世訪,董嶄,孫麗鵬. 噴灑部件及噴霧助劑對(duì)擔(dān)架式噴霧機(jī)在桃園噴霧中的霧滴沉積分布的影響[J]. 植物保護(hù),2010,36(1):106-109.
YUAN Huizhu,WANG Zhongqun,SUN Ruihong,LI Shifang,DONG Zhan,SUN Lipeng. Influences of nozzle type and spray adjuvant on the distribution of spray droplets with stretcher mounted sprayer in peach orchards[J]. Plant Protection,2010,36(1):106-109.
[21] 陳丹,任廣偉,王秀芳,王新偉,馮超. 4種噴霧器在茶樹(shù)上噴霧效果比較[J]. 植物保護(hù),2011,37(5):110-114.
CHEN Dan,REN Guangwei,WANG Xiufang,WANG Xinwei,F(xiàn)ENG Chao. Spray performance of four sprayers in the tea garden[J]. Plant Protection,2011,37(5):110-114.
[22] 程玲,薛光山,劉永杰,張安盛. 蔬菜病蟲(chóng)害防治中農(nóng)藥減量增效的影響因素及改進(jìn)措施[J]. 農(nóng)學(xué)學(xué)報(bào),2018,8(2):11-14.
CHENG Ling,XUE Guangshan,LIU Yongjie,ZHANG Ansheng. Influencing factors and improving measures of pesticide decrement and synergism in vegetable pest control[J]. Journal of Agriculture,2018,8(2):11-14.
[23] 屠豫欽. 農(nóng)藥使用技術(shù)標(biāo)準(zhǔn)化[M]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2001:163-169.
TU Yuqin. Standardization of pesticide use technology[M]. Beijing:Standards Press of China,2001:163-169.
[24] 袁會(huì)珠,王國(guó)賓. 霧滴大小和覆蓋密度與農(nóng)藥防治效果的關(guān)系[J]. 植物保護(hù),2015,41(6):9-16.
YUAN Huizhu,WANG Guobin. Effects of droplet size and deposition density on field efficacy of pesticides[J]. Plant Protection,2015,41(6):9-16.
[25] 胡桂琴,許林云,周宏平,崔業(yè)民. 影響空心圓錐霧噴頭霧滴粒徑的多因素分析[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,38(2):133-136.
HU Guiqin,XU Linyun,ZHOU Hongping,CUI Yemin. Analysis of multi-factor influence on droplet size distribution of hollow cone nozzle[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2014,38(2):133-136.
[26] UK S. Tracing insecticide spray droplets by sizes on natural surfaces. The state of the art and its value[J]. Pesticide Science,1977,8(5):501-509.
[27] 丁素明,傅錫敏,薛新宇,周良富,呂曉蘭. 低矮果園自走式風(fēng)送噴霧機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):18-25.
DING Suming,F(xiàn)U Ximin,XUE Xinyu,ZHOU Liangfu,Lü Xiaolan. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(15):18-25.
[28] VERCRUYSSE F,STEURBAUT W,DRIEGHE S,DEJONCKHEERE W. Off target ground deposits from spraying a semi-dwarf orchard[J]. Crop Protection,1999,18(9):565-570.
[29] 張海鋒,許林云,徐業(yè)勇,蔣雪松,張慧春,賈志成,張昊天,徐銘銘. GY8果園噴霧機(jī)噴霧特性研究[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,39(1):135-141.
ZHANG Haifeng,XU Linyun,XU Yeyong,JIANG Xuesong,ZHANG Huichun,JIA Zhicheng,ZHANG Haotian,XU Mingming. Research on spray characteristics of GY8 orchard sprayer[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2015,39(1):135-141.
基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-27);山東省重點(diǎn)研發(fā)計(jì)劃(2017CXGC0214)
作者簡(jiǎn)介:朱力爭(zhēng),男,高級(jí)農(nóng)藝師,主要從事果茶新品種引進(jìn)、新技術(shù)推廣、果茶技術(shù)培訓(xùn)和指導(dǎo)等相關(guān)工作。E-mail:zhuli72zheng@163.com
*通信作者Author for correspondence. E-mail:zhaihao688@163.com