[摘要]"右美托咪定是一種高選擇性的α-腎上腺素能受體激動藥物,通過誘導藍斑組織興奮性區(qū)塊的突觸前和突觸后α2受體作為鎮(zhèn)靜和催眠劑,從而誘導類似于自然睡眠的無意識狀態(tài)。由于α受體廣泛存在于人體許多器官中,因此,右美托咪定幾乎在體內重要器官中均發(fā)揮保護作用。本文探討右美托咪定對高血壓患者腸屏障的保護作用。
[關鍵詞]"右美托咪定;高血壓;腸屏障
[中圖分類號]"R543.5""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.33.031
高血壓患病率隨著年齡的增長而增加。35~64歲人群中高血壓發(fā)病率增長最快[1]。對高血壓患者而言,由于高血壓引起的氧化應激反應使腸系膜小血管重塑,從而導致腸屏障功能受損[2]。近年來,右美托咪定(dexmedetomidine,DEX)在一系列臨床和基礎研究中被證實對多種器官有保護作用,通過抑制交感神經過度激活、減少氧化應激反應、調節(jié)腸道菌群和調節(jié)免疫功能等,可保護細胞免受損害[3]。相關研究已證明圍手術期使用DEX可減輕高血壓患者的腸道損傷[4]。
1""高血壓與腸屏障功能損害的關系
研究發(fā)現(xiàn)高血壓患者腸屏障受損、功能障礙較高[5]。高血壓病主要表現(xiàn)為小血管的功能、結構和機械性改變,引起外周血管阻力增加[2]。原發(fā)性高血壓病血管結構改變通常表現(xiàn)為血管重塑,血管緊張素Ⅱ(angiotensinⅡ,AngⅡ)主要參與發(fā)病微血管的重塑,其主要機制包括交感神經系統(tǒng)活性的激活和活性氧(reactive"oxygen"species,ROS)的產生[6]。血管重塑引起腸道血流灌注減少,由于緊密連接蛋白表達降低,腸道通透性增加,從而導致與高血壓有關的腸屏障損害[7-8]。研究顯示高血壓患者存在腸道微生物群失調;與正常血壓組比較,高血壓組患者微生物豐富度和多樣性顯著降低,短鏈脂肪酸產生減少,克雷伯菌和鏈球菌屬等機會性病原體過度生長[9-10]。這種改變可削弱腸屏障,甚至可通過降低短鏈脂肪酸的含量(增強腸屏障的完整性,抑制腸道炎癥)直接損傷腸道上皮[11-12]。
1.1""交感神經過度活躍
在高血壓的發(fā)病過程中,交感神經系統(tǒng)發(fā)揮重要作用[13]。腸道是神經分布最豐富的外周器官,其中交感神經數(shù)量占主要地位[14]。過度的腎素-血管緊張素-醛固酮系統(tǒng)激活是交感神經異常的一個重要機制,AngⅡ可引發(fā)交感神經過度激活[15]。研究發(fā)現(xiàn)在AngⅡ小鼠腸內的閉合蛋白、閉鎖小帶蛋白1和密封蛋白-4表達下降[16]。Santisteban等[8]研究證實,在下丘腦室旁核中檢測到促進高血壓的信號,并通過中樞神經通路傳遞增加交感神經活性和去甲腎上腺素的釋放,導致腸道緊密連接蛋白量減少,引起腸道通透性改變,菌群失調。當交感神經過度激活時引起血管重構,導致高血壓相關的腸屏障損傷。
1.2""氧化應激
與正常血壓人群相比,高血壓患者血清丙二醛(malondialdehyde,MDA)水平明顯高于非高血壓患者,提示高血壓患者體內氧化應激水平較高[17]。在血管壁內皮細胞和平滑肌細胞生成ROS。病理條件下ROS的產生超出抗氧化保護機制的正常水平,導致氧化應激狀態(tài)。高血壓的特點是產生過量的ROS,而高血壓中檢測到血管ROS的主要來源是還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced"nicotinamide"adenine"dinucleotide"phosphate,NADPH)氧化酶的過度活躍。NADPH氧化酶在內皮細胞和平滑肌細胞內生成ROS,進一步參與內皮激活(黏附分子的表達和隨后的單核細胞/巨噬細胞浸潤)和平滑肌細胞增殖,促進血管結構的改變[2]。Suzuki等[18]在自發(fā)性高血壓大鼠(spontaneously"hypertensive"rats,SHR)模型中觀察到腸系膜小血管黃嘌呤氧化酶活性增加。黃素氧化酶活性增加誘導腸道ROS增加,導致腸系膜血管結構改變。Jaworska等[7]和Santisteban等[8]發(fā)現(xiàn)SHR腸道動脈內血管壁增厚、管腔狹窄等病理改變,并出現(xiàn)腸系膜血流減少。腸黏膜血管結構改變、血流灌注減少可引起腸黏膜缺血缺氧,進而損害腸屏障功能[19]。因此,高血壓患者體內氧化應激水平過高可導致腸系膜血管結構發(fā)生改變,腸黏膜灌注減少,腸黏膜缺血缺氧,腸道上皮細胞表達緊密連接蛋白減少,最終導致腸屏障功能受損。
1.3""腸道菌群
小腸菌群執(zhí)行多種功能,與宿主相互作用,已超出支持食物消化過程中的生理功能。微生物群系的形成對腸道防御功能的成熟起著重要作用。研究顯示微生物群、免疫系統(tǒng)和腸屏障之間存在復雜的聯(lián)系,其必須協(xié)同工作,保持腸道穩(wěn)定和平衡,共同為腸道提供保護[20]。在心血管疾病中,高血壓是改變腸道環(huán)境穩(wěn)定的最常見危險因素。Yang等[21]對SHR和慢性AngⅡ輸注的SHR模型糞便微生物群的變化進行比較,結果發(fā)現(xiàn)高血壓動物體內微生物豐富度、多樣性、均勻度降低及厚壁菌門/擬桿菌門比例升高,導致腸道菌群失調。Qi等[22]研究顯示腸道菌群不平衡是生物屏障受損的表現(xiàn)之一,D-乳酸是腸道菌群的代謝產物,當腸黏膜屏障功能受損時,D-乳酸進入外周血[23-24]。因此,可通過測定血清D-乳酸水平評估小腸屏障功能,實驗發(fā)現(xiàn)SHR的血清D-乳酸含量較高,說明SHR腸道通透性較高。腸道微生物因而可直接維持和改變腸屏障功能[25]。共生菌可調節(jié)宿主T細胞的分化和功能,從而觸發(fā)T細胞參與維持腸道黏膜穩(wěn)態(tài)[26]。短鏈脂肪酸通過降低腸腔pH值和抑制病原菌維持腸屏障穩(wěn)態(tài)[27]。
1.4""免疫激活
導致高血壓免疫激活的因素包括飲食和損傷相關分子模式的產生。損傷相關分子模式如細胞外腺苷三磷酸和熱休克蛋白70,在血壓升高發(fā)作期間釋放有助于免疫細胞活化和炎癥發(fā)展。非常規(guī)先天性樣γδT細胞通過參與抗原呈遞和調節(jié)細胞因子介導的反應,有助于啟動和維持免疫反應。免疫記憶在暴露于高血壓損傷后通過效應記憶T細胞的形成而維持,可能有助于維持高血壓患者的免疫反應。當暴露于高血壓損傷時,這些記憶細胞迅速激活,并導致血壓升高和終末器官損傷[28]。研究發(fā)現(xiàn)高血壓與具有效應表型的T細胞在血管周圍脂肪組織和外膜中的積累有關。T細胞衍生的IL-17A作用于平滑肌細胞和外源成纖維細胞,增加一氧化氮合酶磷酸化、ROS產生、膠原合成和趨化因子產生,導致生物可利用的一氧化氮減少和血管舒張受損,增加血管硬度,增加免疫細胞募集,傳播炎癥反應。這些影響導致血管功能障礙[29]。綜上,免疫反應造成的血管功能障礙與之前所描述的氧化應激、菌群失調造成的腸屏障損傷殊途同歸,它們相互影響,最終對腸屏障產生影響,但單一的高血壓患者免疫反應與患者腸屏障損傷的具體機制或分子通路目前尚無明確的研究結果,可為日后的研究提供新方向。
2""DEX對腸屏障損傷的保護機制
DEX是目前臨床上使用的高選擇性α2腎上腺素能受體(adrenergic"receptor,AR)激動劑[30];該受體的α2":α1親和率為1620":"1[31]。腸道微血管中有很多AR,腸道成為繼創(chuàng)傷、燒傷、失血、病原體感染等嚴重作用于人體后首先出現(xiàn)缺血灶之一,也成為最易造成缺血性損傷組織之一[32]。
DEX通過抑制交感神經系統(tǒng)過度激活、減輕應激反應、腸道菌群調節(jié)、免疫調節(jié)作用4個機制保護細胞免受損傷,在腸道微循環(huán)的灌注、保護腸屏障和恢復胃腸蠕動等方面均有積極作用[3]。
2.1""抑制交感神經系統(tǒng)過度激活
腸道血管屏障(gut-vascular"barrier,GVB)的特征是血管內皮細胞及其復雜的連接復合物,如黏附連接和緊密連接,其控制細菌向門靜脈循環(huán)和肝臟的傳播[33];在相關血管研究中,DEX可減輕內皮損傷并改善腸道微循環(huán)功能障礙[34]。Dai等[35]對DEX與內皮細胞關系的研究發(fā)現(xiàn),DEX可改善AngⅡ誘導的血管平滑肌細胞(vascular"smooth"muscle"cells,VSMC)表型轉換,并使肺組織高遷移率族蛋白B1/"Toll樣受體4/核因子κB信號通路失活,從而緩解AngⅡ誘導的內皮細胞功能障礙。結合上述對AngⅡ的描述,AngⅡ導致交感神經過度激活,造成腸屏障障礙。因此,筆者考慮DEX可抑制交感神經系統(tǒng)過度激活,保護GVB。
2.2""抑制氧化應激
DEX的抗缺血作用可能與突觸前α腎上腺素受體結合抑制缺血誘導的過度去甲腎上腺素分泌有關。DEX可通過阻止去甲腎上腺素對突觸前α腎上腺素受體的作用阻止游離ROS的潛在破壞作用[30]。此外,磷酸肌醇3-激酶(Phosphatidylinositol-"3-kinase,PI3K)/蛋白激酶B(protein"kinase"B,AKT)途徑與ROS的產生有關,激活PI3K/AKT通路后,不僅可抑制ROS的產生,還可抑制細胞凋亡[36]。DEX利用PI3K/AKT途徑促進AKT的磷酸化,活化的P-AKT通過改變ROS生成和炎癥反應對腸道缺血再灌注損傷發(fā)揮保護作用[37]。另一研究顯示DEX通過激活α2-AR"抑制炎癥、內質網應激依賴性細胞凋亡和氧化應激,從而阻止腸上皮細胞中的蛋白二硫鍵異構酶A3(是預防和治療腸道缺血再灌注損傷的治療性蛋白質)下降,最終實現(xiàn)腸道保護作用[38]。綜上,DEX可通過抑制氧化應激反應保護高血壓患者腸道免受相關損傷。
2.3""腸道菌群調節(jié)作用
有研究評估DEX對SHR的注意缺陷多動癥(attention"deficit"hyperactivity"disorder,ADHD)樣行為的影響,SHR是一種廣泛使用的ADHD動物模型。DEX治療可改善SHR中的多動癥和空間工作記憶缺陷,并使θ腦電圖節(jié)律正?;EX的處理可改變腸道菌群組成,并促進與SHR抗炎作用相關的有益腸道細菌屬的富集。DEX給藥后,腸道病理評分和通透性及在腸道和大腦中觀察到的炎癥水平顯著改善。DEX是一種很有潛力的ADHD治療方法,通過重塑腸道微生物群的組成并減少腸道和大腦中的炎癥發(fā)揮作用[39]。另有研究發(fā)現(xiàn),DEX可改變急性應激狀態(tài)下小鼠腸道菌群的組成,穩(wěn)定腸道菌群的生態(tài),因此DEX可通過維持腸道菌群穩(wěn)態(tài)減輕小鼠急性應激下學習和記憶受損情況,從而改善急性應激狀態(tài)下引起的焦慮樣行為和認知障礙[40]。
2.4""免疫調節(jié)作用
α2-AR是AR家族成員,廣泛存在于免疫組織中,介導炎癥免疫系統(tǒng)的生物學行為[41]。富含脂肪或鈉的飲食可通過誘導腸屏障功能障礙和觸發(fā)T細胞和樹突狀細胞中的鹽敏感受體促進炎癥[28]。樹突狀細胞是體內的抗原呈遞細胞之一,其可有效捕獲、處理和呈遞抗原,并誘導特異性細胞毒性T淋巴細胞的產生。樹突狀細胞表達α1、α2-AR。作為α2-AR激動劑,DEX可通過抑制樹突狀細胞的抗原加工/呈遞和遷移抑制免疫反應[42]。Wang等[43]研究顯示DEX可增加輔助性T細胞1(helper"T"cell"1,Th1)/輔助性T細胞2(helper"T"cell"2,Th2)的比例;DEX可減弱Th2極化,維持Th1/Th2相對穩(wěn)定的平衡,減少手術刺激和炎癥反應。因此,DEX可維持患者的免疫平衡,保護患者的細胞免疫功能[44]。DEX對記憶T細胞、自然殺傷T細胞和δγT細胞的影響目前尚未明確,在高血壓患者腸屏障相關分子水平的研究較少,可能是未來研究的方向。
3""展望
目前高血壓與腸屏障損傷僅局限于基礎研究階段,未來仍有較大的探索潛力,這對深入了解腸屏障功能障礙及其他相關疾病的發(fā)展至關重要。
DEX對心、腦、腎等重要器官具有明顯的保護作用,國內外對其相關機制的研究較多,但尚未形成統(tǒng)一定論。DEX在保護腸屏障領域的研究意義重大,深入探索DEX保護機制之間的相互關系,將為其臨床應用提供更可靠的依據(jù)。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] 趙冬."中國成人高血壓流行病學現(xiàn)狀[J]."中國心血管雜志,"2020,"25(6):"513–515.
[2] MASI"S,"ULIANA"M,"VIRDIS"A."Angiotensin"Ⅱ"and"vascular"damage"in"hypertension:"Role"of"oxidative"stress"and"sympathetic"activation[J]."Vascul"Pharmacol,"2019,"115:"13–17.
[3] BAO"N,"TANG"B."Organ-protective"effects"and"the"underlying"mechanism"of"dexmedetomidine[J]."Mediators"Inflamm,"2020,"2020:"6136105.
[4] XIA"Z"N,"ZONG"Y,"ZHANG"Z"T,"et"al."Dexmedetomidine"protects"against"multi-organ"dysfunction"induced"by"heatstroke"via"sustaining"the"intestinal"integrity[J]."Shock,"2017,"48(2):"260–269.
[5] 林達."高血壓病與腸道屏障功能損傷的相關性[D]."廣州:"廣東藥科大學,"2020.
[6] LEE"R"M,"DICKHOUT"J"G,"SANDOW"S"L."Vascular"structural"and"functional"changes:"Their"association"with"causality"in"hypertension:"Models,"remodeling"and"relevance[J]."Hypertens"Res,"2017,"40(4):"311–323.
[7] JAWORSKA"K,"HUC"T,"SAMBOROWSKA"E,"et"al."Hypertension"in"rats"is"associated"with"an"increased"permeability"of"the"colon"to"TMA,"a"gut"bacteria"metabolite[J]."PLoS"One,"2017,"12(12):"e0189310.
[8] SANTISTEBAN"M"M,"QI"Y,"ZUBCEVIC"J,"et"al."Hypertension-linked"pathophysiological"alterations"in"the"gut[J]."Circ"Res,"2017,"120(2):"312–323.
[9] YAN"Q,"GU"Y,"LI"X,"et"al."Alterations"of"the"gut"microbiome"in"hypertension[J]."Front"Cell"Infect"Microbiol,"2017,"7:"381–389.
[10] LI"J,"ZHAO"F,"WANG"Y,"et"al."Gut"microbiota"dysbiosis"contributes"to"the"development"of"hypertension[J]."Microbiome,"2017,"5(1):"14–32.
[11] P?TGENS"S"A,"BROSSEL"H,"SBOARINA"M,"et"al."Klebsiella"oxytoca"expands"in"cancer"cachexia"and"acts"as"a"gut"pathobiont"contributing"to"intestinal"dysfunction[J]."Sci"Rep,"2018,"8(1):"12321–12332.
[12] GEIRNAERT"A,"CALATAYUD"M,"GROOTAERT"C,"et"al."Butyrate-producing"bacteria"supplemented"in"vitro"to"Crohn’s"disease"patient"microbiota"increased"butyrate"production"and"enhanced"intestinal"epithelial"barrier"integrity[J]."Sci"Rep,"2017,"7(1):"11450–11463.
[13] SHENG"Y,"ZHU"L."The"crosstalk"between"autonomic"nervous"system"and"blood"vessels[J]."Int"J"Physiol"Pathophysiol"Pharmacol,"2018,"10(1):"17–28.
[14] CERVI"A"L,"LUKEWICH"M"K,"LOMAX"A"E."Neural"regulation"of"gastrointestinal"inflammation:"Role"of"the"sympathetic"nervous"system[J]."Auton"Neurosci,"2014,"182:"83–88.
[15] 問慧娟,"賈靜,"趙宇菲,"等.nbsp;交感神經系統(tǒng)亢進在高血壓疾病發(fā)生發(fā)展中的作用[J]."醫(yī)學研究與教育,"2019,"36(6):"21–27,"80.
[16] KIM"S,"GOEL"R,"KUMAR"A,"et"al."Imbalance"of"gut"microbiome"and"intestinal"epithelial"barrier"dysfunction"in"patients"with"high"blood"pressure[J]."Clin"Sci"(Lond),"2018,"132(6):"701–718.
[17] VERMA"M"K,"JAISWAL"A,"SHARMA"P,"et"al."Oxidative"stress"and"biomarker"of"TNF-α,"MDA"and"FRAP"in"hypertension[J]."J"Med"Life"2019,"12(3):"253–259.
[18] SUZUKI"H,"DELANO"F"A,"PARKS"D"A,"et"al."Xanthine"oxidase"activity"associated"with"arterial"blood"pressure"in"spontaneously"hypertensive"rats[J]."Proc"Natl"Acad"Sci"U"S"A,"1998,"95(8):"4754–4759.
[19] GRANGER"D"N,"HOLM"L,"KVIETYS"P."The"gastrointestinal"circulation:"Physiology"and"pathophysiology[J]."Compr"Physiol,"2015,"5(3):"1541–1583.
[20] TAKⅡSHI"T,"FENERO"C"I"M,"C?MARA"N"O"S."Intestinal"barrier"and"gut"microbiota:"Shaping"our"immune"responses"throughout"life[J]."Tissue"Barriers,"2017,"5(4):"e1373208.
[21] YANG"T,"SANTISTEBAN"M"M,"RODRIGUEZ"V,"et"al."Gut"dysbiosis"is"linked"to"hypertension[]."Hypertension,"2015,"65(6):"1331–1340.
[22] QI"Y"Z,"JIANG"Y"H,"JIANG"L"Y,"et"al."An"insight"into"intestinal"microbiota"of"spontaneously"hypertensive"rats"after"valsartan"administration[J]."Dose"Response,"2021,"19(2):"15593258211011342.
[23] YILMAZ"B,"SCHIBLI"S,"MACPHERSON"A"J,"et"al."D-lactic"acidosis:"Successful"suppression"of"D-lactate-"producing"lactobacillus"by"probiotics[J]."Pediatrics,"2018,"142(3):"e20180337.
[24] CAMARA-LEMARROY"C"R,"ESCOBEDO-Zú?IGA"N,"GUZMáN-DE"LA"GARZA"F"J,"et"al."D-Lactate"and"intestinal"fatty"acid-binding"protein"are"elevated"in"serum"in"patients"with"acute"ischemic"stroke[J]."Acta"Neurol"Belg,"2021,"121(1):"87–93.
[25] JAKOBSSON"H"E,"RODRíGUEZ-PI?EIRO"A"M,"SCHüTTE"A,"et"al."The"composition"of"the"gut"microbiota"shapes"the"colon"mucus"barrier[J]."EMBO"Rep,"2015,"16(2):"164–177.
[26] LADINSKY"M"S,"ARAUJO"L"P,"ZHANG"X,"et"al."Endocytosis"of"commensal"antigens"by"intestinal"epithelial"cells"regulates"mucosal"T"cell"homeostasis[J]."Science,"2019,"363(6431):"eaat4042.
[27] TANG"W"H"W,"HAZEN"S"L."The"Gut"microbiome"and"its"role"in"cardiovascular"diseases[J]."Circulation,"2017,"135(11):"1008–1010.
[28] SHOKOPLES"B"G,"PARADIS"P,"SCHIFFRIN"E"L."Immunological"insights"into"hypertension:"Unraveling"triggers"and"potential"therapeutic"avenues[J]."Hypertens"Res,"2024,"47(8):"2115–2125.
[29] MCMASTER"W"G,"KIRABO"A,"MADHUR"M"S,"et"al."Inflammation,"immunity,"and"hypertensive"end-organ"damage[J]."Circ"Res,"2015,"116(6):"1022–1033.
[30] LV"P,"CHEN"T,"LIU"P,"et"al."Dexmedetomidine"attenuates"orthotopic"liver"transplantation-induced"acute"gut"injury"via"α2-adrenergic"receptor-dependent"suppression"of"oxidative"stress[J]."Oxid"Med"Cell"Longev,"2019,"2019:"9426368.
[31] WEERINK"M"A"S,"STRUYS"Mnbsp;M"R"F,"HANNIVOORT"L"N,"et"al."Clinical"pharmacokinetics"and"pharmacodynamics"of"dexmedetomidine[J]."Clin"Pharmacokinet,"2017,"56(8):"893–913.
[32] 楊秀紅,"郭繼忠."腸淋巴液在腸道缺血再灌注后器官損傷中的作用[J]."重慶醫(yī)學,"2014,"43(32):"4384–4385,"4396".
[33] BERTOCCHI"A,"CARLONI"S,"RAVENDA"P"S,"et"al."Gut"vascular"barrier"impairment"leads"to"intestinal"bacteria"dissemination"and"colorectal"cancer"metastasis"to"liver[J]."Cancer"Cell,"2021,"39(5):"708–724.
[34] YEH"Y"C,"WU"C"Y,"CHENG"Y"J,"et"al."Effects"of"dexmedetomidine"on"intestinal"microcirculation"and"intestinal"epithelial"barrier"in"endotoxemic"rats[J]."Anesthesiology,"2016,"125(2):"355–367.
[35] DAI"M,"ZHU"X,"ZENG"S,"et"al."Dexmedetomidine"protects"cells"from"angiotensin"Ⅱ-induced"smooth"muscle"cell"phenotype"switch"and"endothelial"cell"dysfunction[J]."Cell"Cycle,"2023,"22(4):"450–463.
[36] LU"X"L,"ZHAO"C"H,"YAO"X"L,"et"al."Quercetin"attenuates"high"fructose"feeding-induced"atherosclerosis"by"suppressing"inflammation"and"apoptosis"via"ROS-"regulated"PI3K/AKT"signaling"pathway[J]."Biomed"Pharmacother,"2017,"85:"658–671.
[37] 李斌,"唐雋嬌,"何祥虎,"等."右美托咪定通過激活PI3K/Akt通路對大鼠腸缺血再灌注損傷的保護作用[J]."武漢大學學報(醫(yī)學版),"2020,"41(1):"15–19.
[38] ZHAN"Y,"CHEN"Z,"QIU"Y,"et"al."Dexmedetomidine"prevents"PDIA3"decrease"by"activating"α2-adrenergic"receptor"to"alleviate"intestinal"I/R"in"mice[J]."Shock,"2022,"58(6):"556–564.
[39] XU"X,"ZHUO"L,"ZHANG"L,"et"al."Dexmedetomidine"alleviates"host"ADHD-like"behaviors"by"reshaping"the"gut"microbiota"and"reducing"gut-brain"inflammation[J]."Psychiatry"Res,"2023,"323:"115172.
[40] FENG"H,"HU"X,"LIN"Y,"et"al."Dexmedetomidine"attenuates"acute"stress-impaired"learning"and"memory"in"mice"by"maintaining"the"homeostasis"of"intestinal"flora[J]."Eur"J"Med"Res,"2024,"29:"1–5.
[41] FERREIRA"J"A,"BISSELL"B"D."Misdirected"sympathy:"The"role"of"sympatholysis"in"sepsis"and"septic"shock[J]."J"Intensive"Care"Med,"2018,"33(2):"74–86.
[42] UESHIMA"H,"INADA"T,"SHINGU"K."Suppression"of"phagosome"proteolysis"and"matrigel"migration"with"the"α2-adrenergic"receptor"agonist"dexmedetomidine"in"murine"dendritic"cells[J]."Immunopharmacol"Immunotoxicol,"2013,"35(5):"558–566.
[43] WANG"Y,"MAO"X,"CHEN"H,"et"al."Dexmedetomidine"alleviates"LPS-induced"apoptosis"and"inflammation"in"macrophages"by"eliminating"damaged"mitochondria"via"PINK1"mediated"mitophagy[J]."Int"Immunopharmacol,"2019,"73:"471–481.
[44] WANG"Y,"XU"X,"LIU"H,"et"al."Effects"of"dexmedetomidine"on"patients"undergoing"radical"gastrectomy[J]."J"Surg"Res,"2015,"194(1):"147–153.
(收稿日期:2024–08–08)
(修回日期:2024–11–07)
(上接第138頁)
[32] IWAYA"H,"FUKUKURA"Y,"HASHIMOTO"S,"et"al."Prognostic"significance"of"extracellular"volume"fraction"with"equilibrium"contrast-enhanced"computed"tomography"for"pancreatic"neuroendocrine"neoplasms[J]."Pancreatology,"2021,"21(4):"779–786.
[33] 胡飛龍,"趙術強,"李鑫,"等."光譜CT定量動脈增強分數(shù)及細胞外容積多參數(shù)定量評估對結直腸癌診斷的價值[J]."分子影像學雜志,"2023,"46(5):"889–894.
[34] 邵瑞麗."基于CT的細胞外體積分數(shù)對結腸癌肝轉移、淋巴結轉移的預測研究[D]."長春:"吉林大學,"2020.
[35] 鄭文霞,"王莉莉,"陳杏彪,"等."光譜CT細胞外容積臨床-影像組學模型預測結直腸癌血管淋巴管及神經侵犯[J]."中國醫(yī)學計算機成像雜志,"2023,"29(5):"551–559.
[36] 孫琦,"孫丹琦,"卞雪蓮,"等."光譜CT細胞外體積分數(shù)術前診斷結直腸癌病理T分期及組織學分級的價值[J]."臨床放射學雜志,"2024,"43(5):"782–787.
[37] 張彥飛."基于CT的細胞外體積分數(shù)聯(lián)合NLR與結腸癌分級的相關性研究[D]."石河子:"石河子大學,"2023.
[38] 李慶陽."基于CT細胞外體積分數(shù)預測直腸腺癌病理分級的可行性研究[D]."呼和浩特:"內蒙古醫(yī)科大學,"2023.
(收稿日期:2024–07–22)
(修回日期:2024–11–08)