摘要: 蠟染作為國(guó)家級(jí)非物質(zhì)文化遺產(chǎn),因其獨(dú)特的藝術(shù)性和審美價(jià)值在產(chǎn)品設(shè)計(jì)領(lǐng)域受到廣泛關(guān)注和應(yīng)用。隨著科技的快速發(fā)展,設(shè)計(jì)生成方式不斷演變,數(shù)智技術(shù)在設(shè)計(jì)中的應(yīng)用愈發(fā)普及。然而,當(dāng)前關(guān)于蠟染產(chǎn)品數(shù)智設(shè)計(jì)的研究進(jìn)展和未來(lái)發(fā)展趨勢(shì)尚未有全面、系統(tǒng)的梳理。文章以文獻(xiàn)計(jì)量分析方法為知識(shí)基礎(chǔ),借助VOSviewer軟件對(duì)國(guó)內(nèi)外相關(guān)文獻(xiàn)進(jìn)行了系統(tǒng)回顧及深入分析。同時(shí),對(duì)蠟染產(chǎn)品數(shù)智設(shè)計(jì)進(jìn)行了內(nèi)涵解讀,主要從文化符號(hào)提取與語(yǔ)義表征、基于規(guī)則的設(shè)計(jì)生成與推理、蠟染紋理與布料染色特征模擬、蠟染圖案風(fēng)格遷移4個(gè)研究維度開展探討,并聚焦于其中關(guān)鍵技術(shù)的發(fā)展現(xiàn)狀與趨勢(shì)。通過(guò)研究旨在為蠟染產(chǎn)品數(shù)智設(shè)計(jì)領(lǐng)域建立關(guān)鍵技術(shù)體系,推動(dòng)傳統(tǒng)蠟染工藝的現(xiàn)代化轉(zhuǎn)型和創(chuàng)新發(fā)展。
關(guān)鍵詞: 蠟染;傳統(tǒng)手工藝;數(shù)智設(shè)計(jì);VOSviewer;文獻(xiàn)計(jì)量
中圖分類號(hào): TS101.1 文獻(xiàn)標(biāo)志碼: A
蠟染是具有深厚歷史與文化底蘊(yùn)的國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)手工藝,因其造型獨(dú)特、色彩雅致等特點(diǎn),從古至今都備受青睞。但是傳統(tǒng)蠟染工藝在制作過(guò)程中存在諸多限制,如制作周期長(zhǎng)、效率低、設(shè)計(jì)創(chuàng)新難度大等。隨著蠟染工藝進(jìn)一步拓展,逐漸走上數(shù)字化、產(chǎn)業(yè)化的發(fā)展道路,數(shù)智技術(shù)所發(fā)揮的作用逐漸凸顯。進(jìn)入新時(shí)代,大數(shù)據(jù)與人工智能等技術(shù)的迅猛發(fā)展為非遺產(chǎn)品的設(shè)計(jì)創(chuàng)新增添了新的發(fā)展動(dòng)力。在此背景下,產(chǎn)品設(shè)計(jì)師們開始積極探索如何借助數(shù)智設(shè)計(jì)技術(shù),提升蠟染產(chǎn)品的生產(chǎn)效率與質(zhì)量;在保持傳統(tǒng)蠟染韻味的同時(shí),使產(chǎn)品更具創(chuàng)新性和個(gè)性化,進(jìn)而實(shí)現(xiàn)傳統(tǒng)與現(xiàn)代的融合。
盡管數(shù)智技術(shù)為蠟染產(chǎn)品設(shè)計(jì)帶來(lái)了巨大的機(jī)會(huì)和可能,但學(xué)界錯(cuò)綜復(fù)雜的研究成果難以給業(yè)界提供有力的理論支撐。目前關(guān)于蠟染類的綜述性研究文章較少,大部分僅針對(duì)特定的蠟染類別展開,且主要從文化產(chǎn)業(yè)發(fā)展、歷史傳承與保護(hù)等角度展開相關(guān)研究,對(duì)蠟染產(chǎn)品設(shè)計(jì)中數(shù)智技術(shù)的研究熱點(diǎn)和發(fā)展趨勢(shì)缺乏全面、系統(tǒng)的梳理。本文以文獻(xiàn)計(jì)量分析方法為知識(shí)基礎(chǔ),對(duì)蠟染產(chǎn)品數(shù)智設(shè)計(jì)領(lǐng)域的國(guó)內(nèi)外相關(guān)文獻(xiàn)進(jìn)行梳理,主要從蠟染文化符號(hào)提取與語(yǔ)義表征、基于規(guī)則的設(shè)計(jì)生成與推理、蠟染紋理與布料染色特征模擬、蠟染圖案風(fēng)格遷移4個(gè)研究維度展開探討,并梳理其關(guān)鍵技術(shù)發(fā)展脈絡(luò)。本研究旨在為蠟染產(chǎn)品數(shù)智設(shè)計(jì)領(lǐng)域的持續(xù)創(chuàng)新和發(fā)展提供理論依據(jù)和技術(shù)支持,引發(fā)更多關(guān)于現(xiàn)代數(shù)智技術(shù)與非物質(zhì)文化遺產(chǎn)相結(jié)合的研究興趣,提供有益的啟示和借鑒,共同創(chuàng)新傳統(tǒng)文化的保護(hù)和傳承之道。
1 蠟染產(chǎn)品數(shù)智設(shè)計(jì)領(lǐng)域研究熱點(diǎn)與趨勢(shì)分析
蠟染是中國(guó)自古以來(lái)世代薪火相傳的傳統(tǒng)印染工藝,其基本原理是利用“遮蓋”或“摺迭”的方法,使織物不易上染,產(chǎn)生“空白”,從而形成花紋[1]。作為國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)手工藝,蠟染因其獨(dú)特的藝術(shù)性與審美性得到廣泛的研究與應(yīng)用,設(shè)計(jì)師將蠟染紋樣提取并獨(dú)立出來(lái)作為產(chǎn)品設(shè)計(jì)的元素。數(shù)智設(shè)計(jì)是數(shù)字時(shí)代下一種新的設(shè)計(jì)形式,它超越了單純的數(shù)字設(shè)計(jì)或者計(jì)算設(shè)計(jì)的概念,是融合了非人智慧和人的智慧的一種綜合創(chuàng)新能力,是多元的雙向思維[2]?!皵?shù)”(Digital technology),既指數(shù)字技術(shù),又包含了計(jì)算機(jī)強(qiáng)大的智能,如大數(shù)據(jù)的存儲(chǔ)和復(fù)雜、快速計(jì)算等?!爸恰保↖ntelligence)即人的智慧,包括了感知、思想、自我意識(shí)等人類所特有的思維,以及人類在改造世界過(guò)程中的方法、目的和策略。兩種智慧相互交融,非人智慧因人的智慧而產(chǎn)生,并反作用于人的智慧,拓展了人的思維邊界;人的智慧又因非人智慧得以開發(fā)拓展,賦予非人智慧更強(qiáng)的動(dòng)能。將數(shù)智設(shè)計(jì)技術(shù)應(yīng)用于蠟染產(chǎn)品設(shè)計(jì)不僅提高了設(shè)計(jì)的效率和準(zhǔn)確性,還拓寬了設(shè)計(jì)的創(chuàng)新邊界,可為蠟染產(chǎn)品的現(xiàn)代化和個(gè)性化發(fā)展提供有力支持。
1.1 文獻(xiàn)數(shù)據(jù)搜集方法
研究非物質(zhì)文化遺產(chǎn)、蠟染和數(shù)智設(shè)計(jì)間關(guān)系的論文在國(guó)內(nèi)外各類期刊、會(huì)議論文和書籍上廣泛發(fā)表。為科學(xué)有效地搜集蠟染產(chǎn)品數(shù)智設(shè)計(jì)領(lǐng)域的相關(guān)文獻(xiàn),本文選取中英文數(shù)據(jù)庫(kù)作為文獻(xiàn)計(jì)量分析的統(tǒng)計(jì)來(lái)源,檢索時(shí)間至2023年12月18日止。其中,中國(guó)知網(wǎng)(CNKI)數(shù)據(jù)庫(kù)文獻(xiàn)來(lái)源類別選擇“核心期刊”“CSSCI”“EI”“學(xué)位論文”,初步得到293篇中文文獻(xiàn);Web of Science(WOS)核心合集數(shù)據(jù)庫(kù)中選擇文獻(xiàn)類型為“Article”和“Review”,初步得到275篇英文文獻(xiàn)。為保證論文質(zhì)量,根據(jù)每篇論文的題目、摘要、關(guān)鍵詞及核心觀點(diǎn)進(jìn)行逐篇篩選,剔除序言、書評(píng)、新聞等非學(xué)術(shù)類信息和與蠟染產(chǎn)品數(shù)智設(shè)計(jì)無(wú)關(guān)的論文,從而減少無(wú)效因子數(shù)量,提高研究數(shù)據(jù)準(zhǔn)確性,聚焦研究重點(diǎn)。最終得到220篇中文有效文獻(xiàn)和208篇英文有效文獻(xiàn)。使用Tranfield[3]的系統(tǒng)審查方法進(jìn)行文獻(xiàn)梳理,檢索中英文關(guān)鍵詞,并以“OR”這一連詞將關(guān)鍵詞進(jìn)行合并檢索,如表1和表2所示。
1.2 關(guān)鍵詞演進(jìn)趨勢(shì)與共現(xiàn)聚類
利用VOSviewer做蠟染產(chǎn)品數(shù)智設(shè)計(jì)技術(shù)關(guān)鍵詞演進(jìn)圖可以有效探究該領(lǐng)域的演進(jìn)脈絡(luò)、熱點(diǎn)前沿及未來(lái)發(fā)展趨勢(shì),結(jié)果如圖1所示。從中文文獻(xiàn)的關(guān)鍵詞演進(jìn)趨勢(shì)來(lái)看,從2000—2010年,研究熱點(diǎn)主要是對(duì)蠟染文化語(yǔ)義內(nèi)涵的傳承與發(fā)展,在對(duì)蠟染紋樣圖案等深度挖掘的基礎(chǔ)上進(jìn)行衍生設(shè)計(jì)與創(chuàng)新設(shè)計(jì);從2010年開始,研究熱點(diǎn)逐漸向形狀文法、感性工學(xué)等領(lǐng)域轉(zhuǎn)移;2018年以后,隨著人工智能等技術(shù)的迅速崛起,蠟染產(chǎn)品數(shù)智設(shè)計(jì)的研究也關(guān)注到神經(jīng)風(fēng)格遷移、卷積神經(jīng)網(wǎng)絡(luò)等熱點(diǎn)領(lǐng)域。國(guó)外的研究起步較早,對(duì)比英文文獻(xiàn)的關(guān)鍵詞演進(jìn)趨勢(shì),也可以發(fā)現(xiàn)研究的熱點(diǎn)從較早時(shí)期的“Shape grammar(形狀文法)”“Pattern classification(紋樣分類)”逐漸轉(zhuǎn)變到最近幾年的“Generative adversarial network(生成對(duì)抗網(wǎng)絡(luò))”“Deep learning(深度學(xué)習(xí))”及“Style transfer(風(fēng)格遷移)”等。
關(guān)鍵詞是論文主體內(nèi)容與觀點(diǎn)的凝練,通過(guò)對(duì)高頻共現(xiàn)關(guān)鍵詞聚類進(jìn)行分析,可以提煉該領(lǐng)域內(nèi)的研究熱點(diǎn),聚類結(jié)果如圖2所示。根據(jù)聚類標(biāo)簽與蠟染數(shù)智設(shè)計(jì)領(lǐng)域內(nèi)的結(jié)構(gòu)特點(diǎn),將中文文獻(xiàn)劃分為4個(gè)主要聚類,分別為#1蠟染文化符號(hào)、#2蠟染形狀文法、#3蠟染紋理仿真、#4蠟染風(fēng)格遷移;將英文文獻(xiàn)劃分為5個(gè)主要聚類,分別為#1 Batik culture(蠟染文化)、#2 Batik shape grammar(蠟染形狀文法)、#3 Batik image(蠟染圖像)、#4 Batik patterns classification(蠟染圖樣識(shí)別)、#5 Batik style transfer(蠟染風(fēng)格遷移)。對(duì)比中英文關(guān)鍵詞的聚類標(biāo)簽來(lái)看,可以發(fā)現(xiàn)國(guó)內(nèi)外關(guān)于蠟染數(shù)智設(shè)計(jì)技術(shù)的研究有一些相同的關(guān)注點(diǎn),集中體現(xiàn)在:1) 蠟染文化符號(hào)提取;2) 蠟染圖案設(shè)計(jì)生成與推理;3) 蠟染紋理仿真;4) 蠟染圖像風(fēng)格遷移。
結(jié)合上述的關(guān)鍵詞演進(jìn)趨勢(shì)與共現(xiàn)聚類分析結(jié)果,本文從蠟染數(shù)智設(shè)計(jì)技術(shù)的文化符號(hào)提取與語(yǔ)義表征、基于規(guī)則的設(shè)計(jì)生成與推理、蠟染紋理與布料染色特征模擬、蠟染圖案風(fēng)格遷移4個(gè)維度對(duì)蠟染產(chǎn)品數(shù)智設(shè)計(jì)領(lǐng)域的關(guān)鍵技術(shù)進(jìn)行全面梳理,研究框架如圖3所示。希望能夠?yàn)樵O(shè)計(jì)研究人員、數(shù)智設(shè)計(jì)工具開發(fā)者及計(jì)算機(jī)學(xué)者勾勒出蠟染產(chǎn)品數(shù)智設(shè)計(jì)研究的方式和發(fā)展全貌,對(duì)數(shù)智技術(shù)賦能蠟染產(chǎn)品開發(fā)實(shí)踐有所幫助。
2 蠟染文化符號(hào)提取與語(yǔ)義表征
蠟染文化符號(hào)提取與表達(dá)是蠟染產(chǎn)品數(shù)智設(shè)計(jì)的開端。近年來(lái),該領(lǐng)域的研究主要聚焦于蠟染圖案識(shí)別與符號(hào)矢量化、語(yǔ)義挖掘、設(shè)計(jì)知識(shí)表征等關(guān)鍵技術(shù)。
2.1 圖像識(shí)別與符號(hào)矢量化
傳統(tǒng)蠟染符號(hào)的提取,其圖像主要來(lái)源于蠟染服飾、蠟染床上用品、蠟染原畫等。由于蠟染圖案具有多尺度變化、紋理背景復(fù)雜等特征,因此,圖案識(shí)別需要解決尺度變化影響紋理
外觀、復(fù)雜圖案分類、圖像識(shí)別與檢索等共性問(wèn)題。針對(duì)尺度變化影響紋理外觀問(wèn)題,Liu等[4-5]建立了基于優(yōu)勢(shì)紋理模式的尺度縮減方案,提出了一種新的GANet網(wǎng)絡(luò),在網(wǎng)絡(luò)訓(xùn)練過(guò)程中使用遺傳算法來(lái)改變隱藏層中的過(guò)濾器,并通過(guò)FVCNN特征編碼器進(jìn)行全局紋理表示。針對(duì)復(fù)雜圖案分類問(wèn)題,Liu[6]從形狀、紋飾類型和銘文三個(gè)特征進(jìn)行圖像識(shí)別和分類,研究分析了模型輪廓線與空間曲線的匹配方法。針對(duì)圖像識(shí)別與檢索問(wèn)題,鄒悅等[7]提出一種基于多任務(wù)學(xué)習(xí)的跨模態(tài)檢索方法,采用BERT預(yù)訓(xùn)練模型析出文本特征,通過(guò)網(wǎng)絡(luò)結(jié)構(gòu)的改進(jìn)對(duì)圖片特征進(jìn)行提取,并定義兩個(gè)損失函數(shù)實(shí)現(xiàn)多個(gè)預(yù)測(cè)任務(wù)的圖案檢索。
蠟染符號(hào)矢量化是將光柵圖像轉(zhuǎn)變?yōu)槭噶繄D,使用數(shù)學(xué)定義幾何圖元對(duì)光柵特征進(jìn)行表達(dá)的過(guò)程。然而,針對(duì)蠟染大規(guī)模矢量化提取、矢量圖元表達(dá)等任務(wù),需要更具針對(duì)性和批量化提取方法與技術(shù)。針對(duì)大規(guī)模矢量化方法研究,方婷玉等[8]分析和研究制定了數(shù)字化技術(shù)標(biāo)準(zhǔn)及矢量化呈現(xiàn)方式,通過(guò)Matlab實(shí)現(xiàn)批量自動(dòng)矢量化過(guò)程;針對(duì)矢量圖元表示方法,F(xiàn)avreau等[9-14]使用貝塞爾曲線及附著在曲線上的顏色和模糊信息表示圖像內(nèi)容,利用多尺度的Canny邊緣檢測(cè)從彩色圖中得到圖像輪廓,對(duì)具有深度信息的RGB-D圖像利用其深度信息輔助輪廓提取,再根據(jù)輪廓信息從彩色圖中提取顏色信息。
2.2 語(yǔ)義挖掘
蠟染文化內(nèi)涵相關(guān)的研究可以基于語(yǔ)義挖掘技術(shù)開展。蠟染語(yǔ)義挖掘是將蠟染文化特征按照一定的規(guī)則、模型進(jìn)行聚類、分析、提煉、標(biāo)注的過(guò)程,為語(yǔ)義形式化與量化表征、設(shè)計(jì)靈感激發(fā)、設(shè)計(jì)要素映射等提供基礎(chǔ)源數(shù)據(jù)。感性工學(xué)是一種將用戶對(duì)產(chǎn)品的感性因素量化為理性因素的理論方法[15],通過(guò)構(gòu)建感性意象空間與設(shè)計(jì)要素空間之間的關(guān)聯(lián)模型[16],實(shí)現(xiàn)感性語(yǔ)義到產(chǎn)品設(shè)計(jì)的可控性轉(zhuǎn)化[17],其關(guān)鍵技術(shù)包括感性意象聚類、情感計(jì)算[18]、認(rèn)知計(jì)算等。
針對(duì)視覺(jué)感性意象表達(dá),賈耀程等[19]、施實(shí)芳等[20]通過(guò)眼動(dòng)跟蹤、腦電分析等技術(shù)獲取用戶偏好數(shù)據(jù),建立了用戶數(shù)據(jù)與設(shè)計(jì)要素的回歸模型從而指導(dǎo)設(shè)計(jì);針對(duì)觸覺(jué)感知意象建模,Choi等[21]提出了一種系統(tǒng)的方法來(lái)研究表面粗糙度的觸覺(jué)感覺(jué),根據(jù)多個(gè)準(zhǔn)則函數(shù)估計(jì)出最優(yōu)的形容詞聚類數(shù),從而得到具有代表性的最終方案簇的平均偏好。針對(duì)感性意象與設(shè)計(jì)要素的關(guān)聯(lián)建模,主要方法包括復(fù)雜網(wǎng)絡(luò)[22]、層次結(jié)構(gòu)表示法[23]、KCQ-KE模型[24-25]、數(shù)量化I類理論[26-27]等。
2.3 設(shè)計(jì)知識(shí)表征
為了將大量復(fù)雜、無(wú)序的設(shè)計(jì)知識(shí)轉(zhuǎn)換成設(shè)計(jì)要素,需要建立設(shè)計(jì)知識(shí)的形式化與量化表達(dá)模型[28]。蠟染產(chǎn)品設(shè)計(jì)知識(shí)包含蠟染文化語(yǔ)義、蠟染圖像、蠟染紋樣符號(hào)及用戶知識(shí)等。近年來(lái),設(shè)計(jì)知識(shí)表征方法研究主要聚焦于基因表征、本體表征等。
在設(shè)計(jì)基因表征研究方面,羅仕鑒等[29-30]針對(duì)產(chǎn)品族設(shè)計(jì)首次提出基于本體的DNA表征方法,構(gòu)建了產(chǎn)品族本體知識(shí)表示模型和產(chǎn)品族設(shè)計(jì)DNA遺傳與變異模型;茍秉宸等[31-33]通過(guò)基因表征方法,提取了形態(tài)基因、色彩基因、紋樣基因和語(yǔ)義基因;針對(duì)文化基因可量化、可計(jì)算、可分析特點(diǎn),趙海英[34]構(gòu)建了文化基因語(yǔ)義標(biāo)簽體系和量化空間;劉宗明等[35]從精神文化、社會(huì)文化、物質(zhì)文化三個(gè)維度構(gòu)建了文化基因譜系圖。
在本體表征研究方面,領(lǐng)域本體的構(gòu)建是語(yǔ)義網(wǎng)和圖像檢索領(lǐng)域的研究熱點(diǎn),可以實(shí)現(xiàn)領(lǐng)域?qū)嶓w概念及相互關(guān)系、領(lǐng)域活動(dòng)及該領(lǐng)域所具有的特性和規(guī)律的形式化描述[36-37]。蠟染領(lǐng)域本體表征具有異構(gòu)性、模糊性特點(diǎn),Liu等[38]提出了一種通用模糊知識(shí)的本體表示方法,構(gòu)建了一種基于概念相似性計(jì)算和支持向量機(jī)的本體映射算法。針對(duì)用戶情感本體表征,Park等[39]提出一種情感數(shù)字化表達(dá)框架,幫助用戶選擇或設(shè)計(jì)適當(dāng)?shù)那楦斜倔w來(lái)支持情感分析,并增加用戶對(duì)情感、上下文和行為信息作用的理解。
3 基于規(guī)則的設(shè)計(jì)生成與推理
基于規(guī)則的設(shè)計(jì)生成與推理,是將設(shè)計(jì)目標(biāo)、構(gòu)成規(guī)律等編碼成規(guī)則或約束條件,建立設(shè)計(jì)過(guò)程驅(qū)動(dòng)數(shù)學(xué)模型,并通過(guò)算法來(lái)求解并優(yōu)化生成解決方案的過(guò)程。在蠟染文化符號(hào)提取與語(yǔ)義表征基礎(chǔ)上,如何通過(guò)基于規(guī)則的設(shè)計(jì)生成與推理,解決蠟染產(chǎn)品的規(guī)?;€(gè)性化高效設(shè)計(jì)是邁入蠟染數(shù)智設(shè)計(jì)的關(guān)鍵。當(dāng)前,在該領(lǐng)域研究熱點(diǎn)主要聚焦于形狀文法、分形幾何、基于進(jìn)化學(xué)習(xí)的生成設(shè)計(jì)等技術(shù)。
3.1 形狀文法
形狀文法是一種基于規(guī)則,以形狀為基本要素,用語(yǔ)法結(jié)構(gòu)分析并產(chǎn)生新的形狀設(shè)計(jì)推理方法。形狀文法在建筑[40-41]、藝術(shù)、設(shè)計(jì)等領(lǐng)域得到了廣泛應(yīng)用,并形成了空間形狀文法、分層形狀文法、參數(shù)化形狀文法[42]等一系列派生方法研究。在空間形狀文法研究方面,Muslimin等[43-44]從形狀語(yǔ)法和空間語(yǔ)法理論出發(fā),提出了一種利用形狀和圖計(jì)算同時(shí)合成功能關(guān)系和空間構(gòu)型的方法。在分層形狀文法研究方面,Ruiz-Montiel等[45-46]為了降低形狀生成的計(jì)算成本,引入了一種形狀語(yǔ)法的分層方案,并在建筑物建模、游戲等領(lǐng)域應(yīng)用。在參數(shù)化形狀文法研究方面,Hou等[47]對(duì)分形傳統(tǒng)基序采用形狀語(yǔ)法,構(gòu)建了傳統(tǒng)基序的層次結(jié)構(gòu),完成了傳統(tǒng)基序語(yǔ)義特征的參數(shù)化編碼,提供了傳統(tǒng)基序知識(shí)的語(yǔ)義數(shù)據(jù)表示方法。
在蠟染形狀文法應(yīng)用研究中,主要涉及二維圖形設(shè)計(jì)與三維造型設(shè)計(jì)兩類形狀文法。李敏等[48]采用Grasshopper參數(shù)化工具重構(gòu)紋樣,并將形狀文法推演規(guī)則轉(zhuǎn)譯為參數(shù)化語(yǔ)法表達(dá)的形狀文法推演規(guī)則,運(yùn)用系統(tǒng)的文法規(guī)則控制感性隨意的紋樣參數(shù)衍生流程,實(shí)現(xiàn)基于形狀文法導(dǎo)向的參數(shù)化紋樣設(shè)計(jì)方法。
3.2 分形幾何
分形幾何[49]作為一項(xiàng)探究迭代過(guò)程中自相似性形態(tài)生成的研究領(lǐng)域,已經(jīng)廣泛滲透到自然科學(xué)、藝術(shù)及設(shè)計(jì)等多個(gè)領(lǐng)域,并催生了如二維IFS構(gòu)造分形[50]、動(dòng)態(tài)分形幾何、多尺度分形幾何、參數(shù)化分形幾何[49]及分形藝術(shù)等諸多研究方向。二維IFS構(gòu)造分形的研究主要集中在現(xiàn)代數(shù)字藝術(shù)與設(shè)計(jì)領(lǐng)域,Yuan等[50]提出的IFS構(gòu)造分形應(yīng)用為傳統(tǒng)蠟染圖案創(chuàng)造提供了一種創(chuàng)新方法;針對(duì)多尺度分形幾何,Haidekker等[51]通過(guò)引進(jìn)多尺度分析策略,旨在更加深刻地解析分形結(jié)構(gòu)的層次復(fù)雜性,該方法在醫(yī)學(xué)圖像處理和材料科學(xué)研究等領(lǐng)域已展現(xiàn)出顯著的應(yīng)用價(jià)值;針對(duì)參數(shù)化分形幾何,Barnsley等[49]通過(guò)迭代函數(shù)系統(tǒng)提出了一種靈活的分形生成新途徑;在動(dòng)態(tài)分形領(lǐng)域,由Mandelbrot等[52]引領(lǐng)的研究,基于分形理念闡述了分形結(jié)構(gòu)在自然界的廣泛分布,并進(jìn)一步構(gòu)建了描述復(fù)雜自然現(xiàn)象的分形理論模型。
3.3 基于進(jìn)化學(xué)習(xí)的生成設(shè)計(jì)
基于進(jìn)化學(xué)習(xí)的生成設(shè)計(jì)是指計(jì)算機(jī)運(yùn)用遺傳算法、神經(jīng)網(wǎng)絡(luò)等優(yōu)化算法來(lái)求解并得到最優(yōu)設(shè)計(jì)方案的過(guò)程。目前,對(duì)于計(jì)算機(jī)輔助設(shè)計(jì)與生成的研究方法主要包括群智能算法、遺傳算法和神經(jīng)網(wǎng)絡(luò)等。針對(duì)于群智能算法輔助設(shè)計(jì)與生成,Ding等[53]提出一種基于改進(jìn)形狀語(yǔ)法和粒子群算法相結(jié)合的民族圖案再利用方法,實(shí)現(xiàn)了民族圖案的快速設(shè)計(jì)和重用設(shè)計(jì)。針對(duì)于遺傳算法輔助設(shè)計(jì)與生成,趙海英[34]提出了一種改進(jìn)的卷草紋樣生成算法,計(jì)算機(jī)通過(guò)進(jìn)化計(jì)算能夠自動(dòng)生成復(fù)雜的卷草紋樣。針對(duì)于神經(jīng)網(wǎng)絡(luò)輔助設(shè)計(jì)與生成,馮青等[54]基于BP神經(jīng)網(wǎng)絡(luò)建立起一個(gè)反映用戶感性評(píng)價(jià)的系統(tǒng),并根據(jù)用戶情感進(jìn)行優(yōu)化迭代獲得最優(yōu)配色方案,解決了復(fù)雜產(chǎn)品的配色問(wèn)題。
在基于進(jìn)化學(xué)習(xí)的生成設(shè)計(jì)應(yīng)用研究中,蠟染產(chǎn)品較多涉及二維圖案的快速生成和設(shè)計(jì)優(yōu)化。朱苗苗等[55]提出了一種基于動(dòng)態(tài)模糊區(qū)間適應(yīng)值交互式遺傳算法的圖案創(chuàng)新方法,通過(guò)抽取具有表征風(fēng)格的特征進(jìn)行交互式進(jìn)化計(jì)算,解決了復(fù)雜民族圖案的設(shè)計(jì)優(yōu)化問(wèn)題;丁寧等[56]運(yùn)用BP神經(jīng)網(wǎng)絡(luò)和遺傳算法對(duì)蠟染圖形的框架進(jìn)行重構(gòu),結(jié)合拓?fù)錁?gòu)型對(duì)圖形元素進(jìn)行變換填充,生成不同元素和結(jié)構(gòu)的圖形組合,通過(guò)方案權(quán)值總和比較表明BP神經(jīng)網(wǎng)絡(luò)在美觀性和組合合理性方面更適合于圖形重構(gòu)設(shè)計(jì)。
4 蠟染紋理與布料染色特征模擬
少數(shù)民族蠟染的特點(diǎn),主要體現(xiàn)在蠟染紋理(冰紋)及布料染色特征上。借助計(jì)算機(jī)技術(shù),模擬傳統(tǒng)蠟染工藝中蠟的涂抹、染料的滲透及最終形成的紋理效果,可以極大提升蠟染紋理生成的質(zhì)量與速度。
4.1 冰紋生成
冰紋是通過(guò)一種特殊的蠟染技法所形成的紋路。在染制過(guò)程中,蠟在織物上不規(guī)則地分布,蠟層破裂,染液隨著裂縫浸透在布上,形成了類似冰凌結(jié)晶的天然紋理效果,因此得名為冰紋。冰紋的紋理效果主要體現(xiàn)在粗細(xì)、曲度、交叉、形態(tài)等,這賦予了蠟染作品獨(dú)特的藝術(shù)魅力。蠟染冰紋生成就是通過(guò)計(jì)算機(jī)模擬的方法,以圖形的形式產(chǎn)生冰紋的效果,目前國(guó)內(nèi)外的學(xué)者已經(jīng)做了大量的相關(guān)研究。
由于蠟染冰紋屬于裂紋的范疇,因此其他物體裂紋的研究對(duì)冰紋生成也有一定的借鑒意義。早期的研究主要基于物理建模等[57]算法,進(jìn)行各類裂紋的靜態(tài)和動(dòng)態(tài)效果仿真。該方法優(yōu)點(diǎn)在于真實(shí)性高、可控性強(qiáng)、可預(yù)測(cè)性強(qiáng),但是也存在計(jì)算復(fù)雜度高、精確數(shù)據(jù)獲取難度高等缺點(diǎn)?;诜钦鎸?shí)感繪制(Non-Photorealistic Rendering,NPR)的仿真方法生成僅部分具有或者不具有真實(shí)感的視覺(jué)效果,相比較而言,更加關(guān)注模擬作品的抽象特征[58]。Wyvil等[59]首次提出了基于距離變換的冰紋生成方法,其主要思想是模擬實(shí)際冰紋產(chǎn)生的張力作用,該方法能夠較好模擬冰紋的狀態(tài),但實(shí)時(shí)性不強(qiáng);Tang等[60]提出Voronoi圖的冰紋生成算法,生長(zhǎng)的思路與Wyvil等基本一致,通過(guò)控制算法中的參數(shù),可以生成具有真實(shí)感的蠟印紋樣,以及裂紋的分布和擴(kuò)散方向;在此基礎(chǔ)上,喻揚(yáng)濤等[61]提出FIT算法,使冰紋生成具有一定的實(shí)時(shí)性,同時(shí)提出復(fù)合距離參數(shù),使用形態(tài)修正方法改善冰紋形態(tài)。
4.2 布料染色特征模擬
蠟染常用棉線紡布,由于紡線的交叉、重疊,也產(chǎn)生了與生俱來(lái)的蠟染布料染色特征,主要包括暈染、斑駁、邊緣梯度變化和矩陣織紋。暈染是指在蠟層厚度、濃度等因素影響下,染料直接滲過(guò)蠟層的現(xiàn)象;斑駁現(xiàn)象是指蠟染圖像的邊緣較之其他部分的顏色更濃且不光滑,通常呈現(xiàn)不規(guī)則的齒狀排列;矩形織紋是指蠟染的布料中存在矩形排列的特征;邊緣梯度變化是指在染色區(qū)域與非染色區(qū)域的邊緣處,呈現(xiàn)梯度漸變的顏色變化。
布料模擬因其較高的研究?jī)r(jià)值,已經(jīng)在服裝CAD/CAM、三維動(dòng)畫、虛擬試衣、模型重建等領(lǐng)域取得了廣泛的應(yīng)用。相較而言,蠟染模擬的研究主要聚焦在扎染、蠟染等的仿真,針對(duì)蠟染布料染色模擬的研究較少。Morimoto等[62]提出了一種設(shè)計(jì)染色圖案的布料建模方法,對(duì)日本扎染織紋進(jìn)行模擬,實(shí)現(xiàn)了在折疊的三維布料幾何形狀中模擬染料傳遞的效果,但效果過(guò)于規(guī)整缺乏變化;喻揚(yáng)濤等[63]以蠟染中常用的平織紋布料為對(duì)象,建立三層織物染制結(jié)構(gòu),遵循菲克第二定律,采用擴(kuò)散的方法對(duì)蠟染圖案及冰紋布料染色的視覺(jué)特征進(jìn)行模擬,效果更接近于真實(shí)的蠟染圖像。此外,喻揚(yáng)濤等[64]將二維Perlin噪聲應(yīng)用于布料特征染色中,實(shí)現(xiàn)染料濃度在連續(xù)性基礎(chǔ)上的隨機(jī)變化,有效模擬了布料染色中暈染、斑駁等多種效果,且生成的染色特征具有隨機(jī)性、不可復(fù)制性。
5 蠟染圖案風(fēng)格遷移
圖案風(fēng)格遷移是指在保持原始語(yǔ)義內(nèi)容的同時(shí),以目標(biāo)風(fēng)格參考為引導(dǎo),運(yùn)用圖像處理技術(shù)使原始圖呈現(xiàn)目標(biāo)風(fēng)格特征。傳統(tǒng)方法主要包括NPR及紋理遷移等,這些方法雖能有效地描繪特定的風(fēng)格,但普遍存在模型泛化能力差、無(wú)法提取高層抽象特征、編譯速度較慢等缺點(diǎn)。在此背景下,基于神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移技術(shù)(Neural Style Transfer,NST)得到了廣泛的研究和應(yīng)用,風(fēng)格遷移的質(zhì)量較以往傳統(tǒng)方法有了實(shí)質(zhì)性的突破。通過(guò)蠟染圖案的風(fēng)格遷移,不僅可以重現(xiàn)傳統(tǒng)蠟染的藝術(shù)效果,還可以根據(jù)需求進(jìn)行創(chuàng)新設(shè)計(jì),為蠟染產(chǎn)品設(shè)計(jì)和生產(chǎn)提供更多可能性。
5.1 卷積神經(jīng)網(wǎng)絡(luò)風(fēng)格遷移
早期研究者使用卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)來(lái)進(jìn)行風(fēng)格遷移,Gatys等[65]率先提出一種基于視覺(jué)幾何群(Visual Geometry Group,VGG)網(wǎng)絡(luò)的神經(jīng)風(fēng)格遷移模型,使用多個(gè)神經(jīng)網(wǎng)絡(luò)對(duì)圖像的內(nèi)容和風(fēng)格進(jìn)行分離與重組,提升了圖像特征的提取能力,為藝術(shù)圖像的創(chuàng)作提供新的算法。Gatys等[65]的開創(chuàng)性工作引起了學(xué)術(shù)界和工業(yè)界的廣泛關(guān)注,后續(xù)學(xué)術(shù)界進(jìn)行了大量的研究來(lái)改進(jìn)或擴(kuò)展該NST算法。
在以此算法為核心的基礎(chǔ)上,為了解決新的內(nèi)容圖需重新優(yōu)化、傳輸運(yùn)行時(shí)間過(guò)長(zhǎng)等問(wèn)題,Johnson等[66]使用預(yù)訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)提取的高層特征作為感知損失函數(shù)來(lái)訓(xùn)練網(wǎng)絡(luò),結(jié)合了基于前饋網(wǎng)絡(luò)的圖像轉(zhuǎn)換任務(wù)的高效性和基于優(yōu)化方法的高質(zhì)量圖像生成能力,為圖像轉(zhuǎn)換任務(wù)帶來(lái)了新的可能性和優(yōu)勢(shì)。為了解決紋理尺度不匹配問(wèn)題等問(wèn)題,Wang等[67]提出了一種快速風(fēng)格遷移的分層訓(xùn)練方案(多模式遷移),以在多個(gè)尺度上學(xué)習(xí)藝術(shù)風(fēng)格線索,包括顏色、粗糙的紋理結(jié)構(gòu)和精細(xì)、精致的筆觸,并在高分辨率圖像上生成更具視覺(jué)吸引力的風(fēng)格化結(jié)果。國(guó)外學(xué)者主要以油畫[65]、Logo[68]等作為對(duì)象展開相關(guān)研究,國(guó)內(nèi)的學(xué)者則結(jié)合水墨畫[69]、刺繡[70-71]、書法[72]等中國(guó)傳統(tǒng)文化,開展了大量的研究應(yīng)用。在蠟染圖案的研究中,針對(duì)現(xiàn)有方法存在的單色、暈染效果不明顯等問(wèn)題,黎智等[73]提出了基于卷積神經(jīng)網(wǎng)絡(luò)的蠟染多染色模擬方法,利用Labelme軟件進(jìn)行語(yǔ)義分割并結(jié)合PhotoWCT算法進(jìn)行染色平滑,較好地模擬了真實(shí)蠟染圖像的暈染效果;針對(duì)生成蠟染圖案無(wú)序性的問(wèn)題,侯宇康等[74]使用形狀文法生成大量構(gòu)型框架圖案,并結(jié)合風(fēng)格遷移網(wǎng)絡(luò)快速提取圖案中的底層特征,取得了較好的圖案設(shè)計(jì)效果。
盡管如此,使用CNN提取和維護(hù)輸入蠟染圖案的全局信息依然存在困難。由于卷積運(yùn)算的感受野有限,如果沒(méi)有足夠的層數(shù),CNN只能聚焦于局部感受野,無(wú)法捕捉全局依賴關(guān)系。然而,網(wǎng)絡(luò)深度的增加會(huì)導(dǎo)致特征分辨率和精細(xì)細(xì)節(jié)的損失,缺少細(xì)節(jié)會(huì)在內(nèi)容結(jié)構(gòu)保存和樣式顯示方面破壞風(fēng)格化遷移的結(jié)果。
5.2 生成對(duì)抗網(wǎng)絡(luò)風(fēng)格遷移
生成對(duì)抗網(wǎng)絡(luò)(Generative Adversarial Networks,GAN)模型作為早期生成模型的標(biāo)準(zhǔn)網(wǎng)絡(luò)架構(gòu),其生成能力相較于CNN等普適性模型有了大幅提升,因而被廣泛應(yīng)用在神經(jīng)風(fēng)格遷移領(lǐng)域。GAN首先由Goodfellow等提出,該模型通過(guò)對(duì)抗過(guò)程同時(shí)訓(xùn)練生成、判別兩個(gè)網(wǎng)絡(luò),這兩個(gè)網(wǎng)絡(luò)在互相博弈的過(guò)程中優(yōu)化彼此[75]。隨著判別網(wǎng)絡(luò)的辨?zhèn)文芰Σ粩嘣鰪?qiáng),生成網(wǎng)絡(luò)產(chǎn)生的數(shù)據(jù)將更接近真實(shí)數(shù)據(jù)。為了解決模型訓(xùn)練需要大量成對(duì)圖像數(shù)據(jù)的問(wèn)題,Zhu等[76]提出了一種無(wú)監(jiān)督循環(huán)一致生成對(duì)抗網(wǎng)絡(luò)(Cycle-Consistent Adversarial Networks,CycleGAN)圖像轉(zhuǎn)換模型,打破了成對(duì)訓(xùn)練數(shù)據(jù)在監(jiān)督學(xué)習(xí)中的局限性,在多種視覺(jué)和圖形任務(wù)中(如風(fēng)格遷移、對(duì)象變換、季節(jié)轉(zhuǎn)換和照片增強(qiáng)等)得到了廣泛的應(yīng)用,但是該模型生成多樣的結(jié)果需要龐大的網(wǎng)絡(luò)參數(shù)及大量的計(jì)算資源。而Park等[77]提出將對(duì)比學(xué)習(xí)應(yīng)用到圖像風(fēng)格遷移,實(shí)現(xiàn)了一種輕量級(jí)的圖像風(fēng)格轉(zhuǎn)換模型。
民族圖案作為民族文化中最富于藝術(shù)特征的部分之一,卻長(zhǎng)期存在圖像資料質(zhì)量較差、難以保存、缺乏創(chuàng)新等一系列問(wèn)題,而使用GAN的方法能對(duì)民族圖案進(jìn)行生成,或者能將某種民族圖案的風(fēng)格遷移到服飾、首飾上,對(duì)蠟染圖案風(fēng)格遷移有借鑒意義。何文澤[78]使用ESRGAN對(duì)生成的圖像進(jìn)行超分辨率重建,生成人眼難以分辨的、高分辨率的具有蒙古族風(fēng)格的圖案;周強(qiáng)等[79]使用門控卷積的生成對(duì)抗網(wǎng)絡(luò)(GC-GAN),提高了不規(guī)則大面積圖像區(qū)域的高分辨率修復(fù)效果,實(shí)現(xiàn)了對(duì)漢代木質(zhì)彩繪漆箱紋飾圖像的高質(zhì)量修復(fù)。盡管GAN方法在圖案風(fēng)格遷移方面已經(jīng)取得了顯著的成果,但由于網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)復(fù)雜、目標(biāo)函數(shù)設(shè)計(jì)困難及模式坍縮等問(wèn)題,生成圖像的質(zhì)量往往不能滿足實(shí)際應(yīng)用需求。
5.3 其他方法
Transformer作為一種基于注意力機(jī)制的深度神經(jīng)網(wǎng)絡(luò),最早由Vaswani等[80]提出,并由Dosovitskiy等[81]引入到計(jì)算機(jī)視覺(jué)(Computer Vision,CV)領(lǐng)域,并命名為視覺(jué)Transformer(Vision Transformer,ViT)。ViT及其變體模型可以在維持全局風(fēng)格一致的同時(shí),捕獲精確的內(nèi)容表示,避免遺漏細(xì)節(jié),在多個(gè)CV領(lǐng)域的任務(wù)上取得了持平甚至超過(guò)CNN的效果。在此基礎(chǔ)上,Deng等[82]提出了第一個(gè)基于ViT模型的風(fēng)格遷移模型StyTr2,該模型基于Transformer的圖像風(fēng)格轉(zhuǎn)換方法,將輸入圖像的長(zhǎng)期依賴關(guān)系考慮到圖像樣式傳輸中,為具有挑戰(zhàn)性的風(fēng)格遷移問(wèn)題提供了新的見解。有研究指出,與CNN相比ViT具有更高的形狀偏差[83],表現(xiàn)出更加優(yōu)異的性能,并在很大程度上可以與人類視覺(jué)相媲美[84]。
隨著大規(guī)模圖像-文本數(shù)據(jù)庫(kù)的出現(xiàn),擴(kuò)散模型(Diffusion Models,DM)[85]所顯示出強(qiáng)大的視覺(jué)生成能力,吸引了更多的研究人員研究如何利用DM模型來(lái)改善風(fēng)格遷移的效果。部分研究已經(jīng)基于DM模型對(duì)圖像和視頻的風(fēng)格遷移進(jìn)行了探索。為了擺脫風(fēng)格編輯中文本提示的限制,Ruta等[86]提出了DIFF-NST的方法,在保持對(duì)象結(jié)構(gòu)的同時(shí),實(shí)現(xiàn)了風(fēng)格對(duì)內(nèi)容進(jìn)行形變,使得風(fēng)格轉(zhuǎn)移更具藝術(shù)性和表現(xiàn)力。為了賦予風(fēng)格遷移模型自定義樣式化結(jié)果的能力,Wang等[87]提出了一種名為HiCAST的高度定制的任意風(fēng)格轉(zhuǎn)換方法。該方法基于適配器增強(qiáng)擴(kuò)散模型,能夠在圖像和視頻的風(fēng)格轉(zhuǎn)換中靈活地控制訓(xùn)練過(guò)程,與現(xiàn)有方法相比,該框架具有更優(yōu)越的性能。
6 結(jié) 語(yǔ)
結(jié)合本文著重分析的蠟染產(chǎn)品數(shù)智設(shè)計(jì)4個(gè)關(guān)鍵維度,該領(lǐng)域未來(lái)可能面臨的機(jī)遇主要體現(xiàn)在以下幾個(gè)方面。第一,對(duì)于蠟染文化符號(hào)精確化提取與語(yǔ)義表征豐富性。利用數(shù)智設(shè)計(jì)技術(shù)中的自然語(yǔ)言處理(Natural Language Processing,NLP)和計(jì)算機(jī)視覺(jué)等技術(shù),可以從海量的蠟染圖像、音視頻等數(shù)據(jù)中精確提取出與文化符號(hào)相關(guān)的特征,并構(gòu)建關(guān)于文化符號(hào)的設(shè)計(jì)知識(shí)庫(kù),作為后續(xù)語(yǔ)義分析的參考依據(jù)。第二,蠟染圖案紋理技術(shù)精度與真實(shí)感的提升。使用真實(shí)蠟染圖案樣本對(duì)深度學(xué)習(xí)模型進(jìn)行訓(xùn)練,并加入一些特定的損失函數(shù)或約束條件,使模型能夠準(zhǔn)確學(xué)習(xí)到樣本中的紋理和顏色特征。第三,用戶個(gè)性化定制與交互式設(shè)計(jì)。借助于預(yù)訓(xùn)練的圖像生成模型,開發(fā)交互式設(shè)計(jì)工具。用戶可以通過(guò)輸入一些簡(jiǎn)單的指令或參數(shù),快速獲取具有特定紋理和風(fēng)格的蠟染圖案。
然而,作為一種傳統(tǒng)的手工藝,蠟染的獨(dú)特性和復(fù)雜性使其與現(xiàn)代數(shù)智技術(shù)的融合并非易事,其挑戰(zhàn)主要表現(xiàn)在以下的幾個(gè)方面。第一,蠟染文化符號(hào)通常具有豐富的文化內(nèi)涵和復(fù)雜的藝術(shù)表現(xiàn)形式,正因如此相關(guān)的標(biāo)注數(shù)據(jù)可能非常有限,極大影響了NLP訓(xùn)練模型和提高性能。第二,光照是影響紋理真實(shí)感的重要因素。模擬真實(shí)的光照效果,特別是考慮到蠟染材料的特殊光學(xué)性質(zhì)(如反射、折射、漫反射等),需要強(qiáng)大的計(jì)算能力和高效的渲染算法。第三,因?yàn)橛脩襞c專業(yè)設(shè)計(jì)師的認(rèn)知偏差,所以將用戶的非專業(yè)描述或概念轉(zhuǎn)化為計(jì)算機(jī)可以理解的參數(shù)和指令,將面臨著較大的挑戰(zhàn)。綜上所述,蠟染數(shù)智設(shè)計(jì)領(lǐng)域的機(jī)遇與挑戰(zhàn)并存,有待研究者開展更加深入的研究。
參考文獻(xiàn):
[1]陳寧康. 陳寧康蠟染紀(jì)念文集[M]. 上海: 學(xué)林出版社, 2005.
CHEN N K. Chen Ningkang Batik Commemorative Collection[M]. Shanghai: Academia Press, 2005.
[2]盧兆麟, 宋新衡, 金昱成. AIGC技術(shù)趨勢(shì)下智能設(shè)計(jì)的現(xiàn)狀與發(fā)展[J]. 包裝工程, 2023, 44(24): 18-33.
LU Z L, SONG X H, JIN Y C. State of arts and development of intelligent design methods under the AlGC trend[J]. Packaging Engineering, 2023, 44(24): 18-33.
[3]TRANFIELD D, DENYER D, SMART P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review[J]. British Journal of Management, 2003, 14(3): 207-222.
[4]LIU L, CHEN J, ZHAO G Y, et al. Texture classification in extreme scale variations using GANet[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3910-3922.
[5]LOCKERMAN Y D, SAUVAGE B, ALLEGRE R, et al. Multi-scale label-maps extraction for texture synthesis[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 140-152.
[6]LIU Q. Technological innovation in the recognition process of Yaozhou Kiln ware patterns based on image classification[J]. Soft Computing, 2023(7): 1-10.
[7]鄒悅, 潘偉杰, 呂健, 等. 基于多任務(wù)學(xué)習(xí)的蠟染紋樣圖案檢索方法[J]. 計(jì)算機(jī)工程與設(shè)計(jì), 2022, 43(4): 1052-1058.
ZOU Y, PAN W J, L J, et al. Batik pattern retrieval method based on multi-task learning[J]. Computer Engineering and Design, 2022, 43(4): 1052-1058.
[8]方婷玉. 傣錦圖案矢量化方法研究及圖庫(kù)平臺(tái)構(gòu)建[D]. 杭州: 浙江理工大學(xué), 2023.
FANG T Y. Research on Vectorization Method of Dai Brocade Patterns and Construction of Gallery Platform[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[9]FAVREAU J D, LAFARGE F, BOUSSEAU A. Fidelity vs. simplicity: A global approach to line drawing vectorization[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 120-130.
[10]JESCHKE S. Generalized diffusion curves: An improved vector representation for smooth-shaded images[J]. Computer Graphics Forum, 2016, 35(2): 71-79.
[11]LIENG H, TASSE F, KOSINKA J, et al. Shading curves: Vector-based drawing with explicit gradient control[J]. Computer Graphics Forum, 2015, 34(6): 228-239.
[12]CHEN R J, WEBER O. Bounded distortion harmonic mappings in the plane[J]. ACM Transactions on Graphics (TOG), 2015, 34(4): 1-12.
[13]CHIEN E, CHEN R J, WEBER O. Bounded distortion harmonic shape interpolation[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 1-15.
[14]丁雪峰. 基于Diffusion Curves的矢量圖生成與編輯[D]. 杭州: 浙江工業(yè)大學(xué), 2020.
DING X F. Vector Image Generation and Manipulation Based on Diffusion Curves[D]. Hangzhou: Zhejiang University of Technology, 2020.
[15]林麗, 郭主恩, 陽(yáng)明慶. 面向產(chǎn)品感性意象的造型優(yōu)化設(shè)計(jì)研究現(xiàn)狀及趨勢(shì)[J]. 包裝工程, 2020, 41(2): 65-79.
LIN L, GUO Z E, YANG M Q. Current research situation and trend of product image-based modeling optimization[J]. Packaging Engineering, 2020, 41(2): 65-79.
[16]NAGAMACHI M. Kansei engineering as a powerful consumer-oriented technology for product development[J]. Applied Ergonomics, 2002, 33(3): 289-294.
[17]陳金亮, 趙鋒. 產(chǎn)品感性意象設(shè)計(jì)研究進(jìn)展[J]. 包裝工程, 2021, 42(20): 178-187.
CHEN J L, ZHAO F. Review of product kansei image design[J]. Packaging Engineering, 2021, 42(20): 178-187.
[18]WANG Z X, HO S B, CAMBRIA E. A review of emotion sensing: Categorization models and algorithms[J]. Multimedia Tools and Applications, 2020, 79(47): 35553-35582.
[19]賈耀程, 王美超. 創(chuàng)新設(shè)計(jì)中腦電認(rèn)知的服飾圖案與感性意象關(guān)聯(lián)[J]. 毛紡科技, 2021, 49(11): 70-74.
JIA Y C, WANG M C. Correlation between clothing pattern and kansei image based on electroencephalogram cognition in innovation design[J]. Wool Textile Journal, 2021, 49(11): 70-74.
[20]施實(shí)芳, 潘偉杰, 呂健, 等. 基于眼動(dòng)數(shù)據(jù)的蠟染紋樣個(gè)性化偏好研究[J]. 圖學(xué)學(xué)報(bào), 2017, 38(4): 516-522.
SHI S F, PAN W J, L J, et al. Batiks patterns of individual preference research based on eye movement data[J]. Journal of Graphics, 2017, 38(4): 516-522.
[21]CHOI K, JUN C. A systematic approach to the kansei factors of tactile sense regarding the surface roughness[J]. Applied Ergonomics, 2007, 38(1): 53-63.
[22]蘇建寧, 蘇玉姣, 張志鵬, 等. 基于復(fù)雜網(wǎng)絡(luò)的產(chǎn)品形態(tài)意象與要素挖掘方法[J]. 包裝工程, 2023, 44(16): 48-58.
SU J N, SU Y J, ZHANG Z P, et al. Product form lmage and element mining method based on complex network[J]. Packaging Engineering, 2023, 44(16): 48-58.
[23]鄭畑子, 王建萍. 服裝印花圖案設(shè)計(jì)的感性研究[J]. 紡織學(xué)報(bào), 2020, 41(8): 101-107.
ZHENG T Z, WANG J P. Perceptual research on printing pattern design for clothing[J]. Journal of Textile Research, 2020, 41(8): 101-107.
[24]吳艷華, 林麗. 貴州苗族服飾色彩意象認(rèn)知的KCQ-KE模型構(gòu)建[J]. 絲綢, 2021, 58(2): 122-130.
WU Y H, LIN L. The construction of a KCQ-KE model for the color image cognition of Miao costumes in Guizhou[J]. Journal of Silk, 2021, 58(2): 122-130.
[25]吳艷華, 林麗, 楊勤, 等. 黎平縣苗侗民族服飾刺繡繡種意象認(rèn)知貼合度分檔[J]. 絲綢, 2021, 58(6): 70-75.
WU Y H, LIN L, YANG Q, et al. Classifcation of fit degrees between images and embroidery varieties of Miao-Dong ethnic costumes in Liping county[J]. Journal of Silk, 2021, 58(6): 70-75.
[26]皮珂珂, 陳敏之. 連衣裙感性因子與款式要素關(guān)系模型的構(gòu)建[J]. 浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 47(2): 173-180.
PI K K, CHEN M Z. The construction of the relation model between dress perceptual factors and style elements[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2022, 47(2): 173-180.
[27]吳夢(mèng)瑤, 虞倩雯, 王建萍, 等. 黔東南苗繡感性意象與紋樣設(shè)計(jì)要素的回歸模型構(gòu)建[J]. 毛紡科技, 2023, 51(7): 97-103.
WU M Y, YU Q W, WANG J P, et al. Regression model construction of perceptual image and pattern design elements[J]. Wool Textile Journal, 2023, 51(7): 97-103.
[28]呂健, 謝慶生, 黃海松, 等. 基于圖解特征語(yǔ)義認(rèn)知的產(chǎn)品設(shè)計(jì)過(guò)程知識(shí)模型[J]. 圖學(xué)學(xué)報(bào), 2015, 36(5): 703-711.
L J, XIE Q S, HUANG H S, et al. A method of product appearance design based on graphical semantic cognition[J]. Journal of Graphics, 2015, 36(5): 703-711.
[29]羅仕鑒, 朱上上. 工業(yè)設(shè)計(jì)中基于本體的產(chǎn)品族設(shè)計(jì)DNA[J]. 計(jì)算機(jī)集成制造系統(tǒng), 2009, 15(2): 226-233.
LUO S J, ZHU S S. Ontology-based product family design DNA in industrial design[J]. Computer Integrated Manufacturing Systems, 2009, 15(2): 226-233.
[30]羅仕鑒, 朱上上, 馮騁. 面向工業(yè)設(shè)計(jì)的產(chǎn)品族設(shè)計(jì)DNA[J]. 機(jī)械工程學(xué)報(bào), 2008(7): 123-128.
LUO S J, ZHU S S, FENG P. Product family design DNA for industrial design[J]. Journal of Mechanical Engineering, 2008(7): 123-128.
[31]茍秉宸, 于輝, 李振方, 等. 半坡彩陶文化基因提取與設(shè)計(jì)應(yīng)用研究[J]. 西北工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版), 2011, 31(4): 66-69.
GOU B C, YU H, LI Z F, et al. Research on gene extraction and design application of Banpo colored pottery culture[J]. Journal of Northwestern Polytechnical University (Social Sciences), 2011, 31(4): 66-69.
[32]鄧麗, 陳波, 張旭偉, 等. 涼山彝族服飾文化基因提取及應(yīng)用[J]. 包裝工程, 2018, 39(2): 270-275.
DENG L, CHEN B, ZHANG X W, et al. The extraction and application of costume culture gene of Liangshan Yi nationality[J]. Packaging Engineering, 2018, 39(2): 270-275.
[33]岳巖. 秦淮剪紙工藝文化基因提取及設(shè)計(jì)應(yīng)用研究[J]. 藝術(shù)與設(shè)計(jì)(理論), 2020, 2(12): 93-95.
YUE Y. Design application and gene extraction of Qinhuai (Nan Jing) paper-cut technology culture[J]. Art and Design, 2020, 2(12): 93-95.
[34]趙海英. 文化基因研究緣起、進(jìn)展與未來(lái)研究思考綜述[J]. 中國(guó)傳媒大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 28(5): 1-10.
ZHAO H Y. Review of the origin, progress and future research plan of cultural gene research[J]. Journal of Communication University of China (Science and Technology), 2021, 28(5): 1-10.
[35]劉宗明, 王藝潼. 湘繡手工藝文化基因譜系圖構(gòu)建及設(shè)計(jì)應(yīng)用[J]. 包裝工程, 2024, 45(2): 234-240.
LIU Z M, WANG Y T. Construction and application of gene pedigree of Hunan embroidery handicraft culture[J]. Packaging Engineering, 2024, 45(2): 234-240.
[36]王鐵君, 王維蘭. 唐卡領(lǐng)域本體研究與構(gòu)建[J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2017, 55(2): 363-370.
WANG T J, WANG W L. Research and construction of Thangka domain ontology[J]. Journal of Jilin University (Science Edition), 2017, 55(2): 363-370.
[37]王鐵君, 王維蘭. 基于Jena的唐卡領(lǐng)域本體推理[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 2016, 46(6): 2059-2066.
WANG T J, WANG W L. Thangka domain ontology reasoning based on Jena[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(6): 2059-2066.
[38]LIU J, ZHENG B J, LUO L M, et al. Ontology representation and mapping of common fuzzy knowledge[J]. Neurocomputing, 2016(215): 184-195.
[39]PARK E H, STOREY V C. Emotion ontology studies: A framework for expressing feelings digitally and its application to sentiment analysis[J]. ACM Computing Surveys, 2023, 55(9): 1-38.
[40]AL-KAZZAZ D A, BRIDGES A H. A framework for adaptation in shape grammars[J]. Design Studies, 2012, 33(4): 342-356.
[41]HAAKONSEN S M, RNNQUIST A, LABONNOTE N. Fifty years of shape grammars: A systematic mapping of its application in engineering and architecture[J]. International Journal of Architectural Computing, 2023, 21(1): 5-22.
[42]GRASL T, ECONOMOU A. From shapes to topologies and back: An introduction to a general parametric shape grammar interpreter[J]. Ai Edam, 2018, 32(2): 208-224.
[43]OSTWALD M J, LEE J H. Computational analytical methods for buildings and cities: Space syntax and shape grammar[J]. Buildings, 2023, 13(7): 1613.
[44]MUSLIMIN R. Experience grammar: Creative space planning with generative graph and shape for early design stage[J]. Buildings, 2023, 13(4): 869.
[45]RUIZ-MONTIEL M, BELMONTE M-V, BONED J, et al. Layered shape grammars[J]. Computer-Aided Design, 2014(56): 104-119.
[46]JESUS D, COELHO A, SOUSA A A. Layered shape grammars for procedural modelling of buildings[J]. The Visual Computer, 2016(32): 933-943.
[47]HOU X G, GOU B C, CHEN D K, et al. A semantic data-driven knowledge base construction method to assist designers in design inspiration based on traditional motifs[J]. Advanced Engineering Informatics, 2023(56): 101987.
[48]李敏, 白寒, 殷果. 以形狀文法為導(dǎo)向的參數(shù)化傳統(tǒng)紋樣設(shè)計(jì)技術(shù)研究[J]. 包裝工程, 2023, 44(22): 242-251.
LI M, BAI H, YIN G. Parametric design technology of traditional patterns based on shape grammar[J]. Packaging Engineering, 2023, 44(22): 242-251.
[49]BARNSLEY M, VINCE A. Developments in fractal geometry[J]. Bulletin of Mathematical Sciences, 2013(3): 299-348.
[50]YUAN Q N, L J, HUANG H S. Auto-generation method of butterfly pattern of batik based on fractal geometry[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(4): 369-392.
[51]HAIDEKKER M A, ANDRESEN R, EVERTSZ C J, et al. Assessing the degree of osteoporosis in the axial skeleton using the dependence of the fractal dimension on the grey level threshold[J]. The British Journal of Radiology, 1997, 70(834): 586-593.
[52]MANDELBROT B, 王繼振. 分形: 自然界的幾何學(xué)[J]. 世界科學(xué), 1991(11): 1-4.
MANDELBROT B, WANG J Z, Fractal: Geometry in nature[J]. World Science, 1991(11): 1-4.
[53]DING N, LV J, HU L. Research on national pattern reuse design and optimization method based on improved shape grammar[J]. International Journal of Computational Intelligence Systems, 2020, 13(1): 300-309.
[54]馮青, 吳夢(mèng)迪, 余隋懷, 等. 基于BP神經(jīng)網(wǎng)絡(luò)的罐式車輛配色與評(píng)價(jià)方法研究[J]. 機(jī)械設(shè)計(jì), 2019, 36(1): 118-123.
FENG Q, WU M D, YU S H, et al. Research of tank vehicle colour matching and evaluation method based on BP neural network[J]. Journal of Machine Design, 2019, 36(1): 118-123.
[55]朱苗苗, 呂健, 劉翔, 等. 交互式遺傳算法在民族圖案創(chuàng)新設(shè)計(jì)中的應(yīng)用[J]. 計(jì)算機(jī)工程與設(shè)計(jì), 2019, 40(11): 3342-3348.
ZHU M M, L J, LIU X, et al. Application of interactive genetic algorithm in innovative design method of national pattern[J]. Computer Engineering and Design, 2019, 40(11): 3342-3348.
[56]丁寧, 呂健, 胡淶, 等. 綜合神經(jīng)網(wǎng)絡(luò)與遺傳算法的圖形重構(gòu)方法研究[J]. 微電子學(xué)與計(jì)算機(jī), 2019, 36(7): 81-86.
DING N, L J, HU L, et al. Research on graph reconstruction method based on neural network and genetic algorithm[J]. Microelectronics amp; Computer, 2019, 36(7): 81-86.
[57]PAULY M, KEISER R, ADAMS B, et al. Meshless animation of fracturing solids[J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 957-964.
[58]喻揚(yáng)濤. 蠟染數(shù)字化關(guān)鍵技術(shù)研究[D]. 昆明: 云南大學(xué), 2017.
YU Y T. Research on Key Technologies of Batik Simulation[D]. Kunming: Yunnan University, 2017.
[59]WYVILL B, VAN OVERVELD K, CARPENDALE S. Rendering cracks in batik[C]//Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering. New York, USA: ACM, 2004.
[60]TANG Y, FANG K J, FU S H, et al. An improved algorithm for simulating wax-printing patterns[J]. Textile Research Journal, 2011, 81(14): 1510-1520.
[61]喻揚(yáng)濤, 徐丹, 錢文華. 蠟染冰紋生成與染色模擬[J]. 中國(guó)科學(xué): 信息科學(xué), 2019, 49(2): 159-171.
YU Y T, XU D, QIAN W H. Simulation of batik cracks and cloth dying[J]. Science Sinica (Informationis), 2019, 49(2): 159-171.
[62]MORIMOTO Y, ONO K. New Cloth Modeling for Designing Dyed Patterns[M]. New York, USA: ACM, 2010.
[63]喻揚(yáng)濤, 俞振璐, 錢文華, 等. 基于擴(kuò)散的蠟染染色模擬[J]. 系統(tǒng)仿真學(xué)報(bào), 2018, 30(6): 2117-2124.
YU Y T, YU Z L, QIAN W H, et al. Batik dying simulation based on diffusion[J]. Journal of System Simulation, 2018, 30(6): 2117-2124.
[64]喻揚(yáng)濤, 段鵬. 蠟染數(shù)字化中Perlin噪聲的應(yīng)用[J]. 云南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 29(6): 607-613.
YU Y T, DUAN P. Application of Perlin noise to batik simulation[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2020, 29(6): 607-613.
[65]GATYS L, ECKER A, BETHGE M. A neural algorithm of artistic style[J]. Journal of Vision, 2016(36): 326.
[66]JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision-ECCV 2016: 14th European Conference. Amsterdam, The Netherlands: Springer International Publishing, 2016.
[67]WANG X, OXHOLM G, ZHANG D, et al. Multimodal transfer: A hierarchical deep convolutional neural network for fast artistic style transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017.
[68]ATARSAIKHAN G, IWANA B K, UCHIDA S. Contained neural style transfer for decorated logo generation[C]//2018 13th IAPR International Workshop on Document Analysis Systems (DAS). Vienna, Austria: IEEE, 2018.
[69]王晨琛, 王業(yè)琳, 葛中芹, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的中國(guó)水墨畫風(fēng)格提?。跩]. 圖學(xué)學(xué)報(bào), 2017, 38(5): 754-759.
WANG C C, WANG Y L, GE Z Q, et al. Convolutional neural network-based Chinese Ink-Painting artistic style extraction[J]. Journal of Graphics, 2017, 38(5): 754-759.
[70]鄭銳, 錢文華, 徐丹, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的刺繡風(fēng)格數(shù)字合成[J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2019, 46(3): 270-278.
ZHENG R, QIAN W H, XU D, et al. Synthesis of embroidery based on convolutional neural network[J]. Journal of Zhejiang University (Science Edition), 2019, 46(3): 270-278.
[71]馬皎. 寧強(qiáng)羌族刺繡紋樣的轉(zhuǎn)譯與創(chuàng)新設(shè)計(jì)研究[J]. 包裝工程, 2018, 39(20): 22-28.
MA J. Translation and innovation design of Ninggiang Qiang embroidery patterns[J]. Packaging Engineering, 2018, 39(20): 22-28.
[72]溫佩芝, 姚航, 沈嘉煒. 基于卷積神經(jīng)網(wǎng)絡(luò)的石刻書法字識(shí)別方法[J]. 計(jì)算機(jī)工程與設(shè)計(jì), 2018, 39(3): 867-872.
WEN P Z, YAO H, SHEN J W. Recognition method of stone inscription font based on convolution neural network[J]. Computer Engineering and Design, 2018, 39(3): 867-872.
[73]黎智, 徐丹. 基于卷積神經(jīng)網(wǎng)絡(luò)的蠟染染色模擬[J]. 圖學(xué)學(xué)報(bào), 2020, 41(2): 196-203.
LI Z, XU D. Batik dyeing simulation based on convolutional neural network[J]. Journal of Graphics, 2020, 41(2): 196-203.
[74]侯宇康, 呂健, 劉翔, 等. 基于神經(jīng)風(fēng)格遷移網(wǎng)絡(luò)的民族圖案創(chuàng)新方法[J]. 圖學(xué)學(xué)報(bào), 2020, 41(4): 606-613.
HOU Y K, L J, LIU X, et al. Innovative method of ethnic pattern based on neural style transfer network[J]. Journal of Graphics, 2020, 41(4): 606-613.
[75]WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: Introduction and outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 588-598.
[76]ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017.
[77]PARK T, EFROS A A, ZHANG R, et al. Contrastive learning for unpaired image-to-image translation[C]//Computer Vision-ECCV 2020: 16th European Conference. Glasgow, UK, August: Springer International Publishing, 2020.
[78]何文澤. 基于生成式對(duì)抗網(wǎng)絡(luò)的民族圖案生成研究[D]. 長(zhǎng)春: 吉林大學(xué), 2022.
HE W Z. Research on Ethnic Pattern Generation Based on Generative Adversarial Networks[D]. Changchun: Jilin University, 2022.
[79]周強(qiáng), 王露, 馮金牛, 等. 基于門控卷積生成對(duì)抗網(wǎng)絡(luò)的西漢漆箱紋飾圖案數(shù)字化修復(fù)研究[J]. 陜西科技大學(xué)學(xué)報(bào), 2024, 42(1): 153-160.
ZHOU Q, WANG L, FENG J N, et al. Study on digital restoration of ornamentation of lacquer boxes of the Western Han Dynasty based on gated convolutional generative adversarial networks[J]. Journal of Shaanxi University of Science amp; Technology, 2024, 42(1): 153-160.
[80]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000-6010.
[81]DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]//9th International Conference on Learning Representations (ICLR). Vienna, Austria: OpenReview. net, 2021.
[82]DENG Y Y, TANG F, DONG W M, et al. Sty Tr2: Image style transfer with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA: IEEE, 2022.
[83]TULI S, DASGUPTA I, GRANT E, et al. Are convolutional neural networks or transformers more like human vision?[J]. arXiv preprint, 2021, 5: 7197-7204.
[84]NASEER M M, RANASINGHE K, KHAN S, et al. Intriguing properties of vision transformers[J]. Advances in Neural Information Processing Systems, 2021(34): 23296-23308.
[85]HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.
[86]RUTA D, TARRS G C, GILBERT A, et al. Diff-nst: Diffusion interleaving for deformable neural style transfer[J]. arXiv preprint, 2023, 7: 4157-4172.
[87]WANG H Z, WANG H R, YANG J Z, et al. HiCAST: Highly customized arbitrary style transfer with adapter enhanced diffusion models[J]. arXiv preprint, 2024, 5: 5870-5893.
Hot spots and development trends of digital intelligent design technology research on batik products
ZHANG Chi, WANG Xiangrong
LUO Shijian, ZHANG Longyu, TIAN Xin, L Jian
(College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)
Abstract: Batik, a time-honored Chinese dyeing technique steeped in profound historical and cultural significance, has been handed down through countless generations, standing as a testament to the wisdom and masterful craftsmanship of our ancestors. Its essence lies in the artful utilization of techniques such as “covering” or “folding” to precisely control which parts of the fabric are dyed, thus creating captivating “blanks” that form intricate and alluring patterns. This unique approach has not only been recognized as a national intangible cultural heritage but has also sparked widespread interest and application in diverse product design fields due to its unparalleled artistic and aesthetic appeal. Modern designers incorporate batik motifs by extracting them and seamlessly integrating them as integral components in their works, thus marrying traditional values with contemporary design aesthetics. However, with the rapid advancements in technologies like artificial intelligence, design methodologies are evolving at a breakneck pace, ushering in the emergence of digital-intelligence design. This paradigm shift transcends the traditional boundaries of digital or computational design, integrating human and non-human intelligence into a multifaceted, interactive, and bidirectional thinking process that fosters innovation and creativity. The integration of digital-intelligence technology with batik product design holds immense potential, promising to be revolutionized in the way it is approached, becoming more efficient, innovative, and responsive to the evolving needs of modern consumers. However, the complexity of the academic research landscape has posed challenges in providing robust theoretical support to the industry, which has been hampered in harnessing the full potential of digital-intelligence technology for batik product design due to the scarcity of comprehensive research. Currently, batik is scarcely studied comprehensively, with most studies narrowly focused on specific batik types and exploring topics such as cultural industry development, historical inheritance, and preservation. This gap in research underscores the need for batik and its potential applications in the digital era to be understood more holistically and thoroughly. To address this gap, a comprehensive overview of the current research hotspots and future trends in digital-intelligence technology for batik product design is necessitated.
To address the scarcity of research and lack of comprehensive, systematic approaches in digital-intelligence design for batik products, this comprehensive study employs bibliometric analysis as its foundational methodology, and selectively utilizes the China National Knowledge Infrastructure (CNKI) and the Web of Science (WOS) databases encompassing both Chinese and English sources as the statistical backbone. Each paper undergoes rigorous individual screening, with its title, abstract, keywords, and core viewpoints being considered, while non-academic contents such as introductions, book reviews, news articles, and papers unrelated to digital-intelligence design for batik products are excluded. This screening process effectively diminishes the number of ineffective factors, thus enhancing the precision of the research data and enabling a focused approach on the most pertinent research priorities. Ultimately, a total of 220 Chinese and 208 English documents are identified and compiled. By utilizing these findings, VOSviewer software is leveraged to conduct a thorough systematic review, emphasizing the evolution trends and co-occurrence clustering of keywords. This analysis is conducted to provide insights into the evolution of key technologies, identify current research hotspots, and forecast potential future development trends. The design methodology itself is thoroughly examined, with a scrutinization of four pivotal dimensions that are critical to its success: the precise extraction and meaningful representation of cultural symbols, the generation and reasoning of rule-driven designs, the simulation of batik textures and fabric dyeing processes, and the transfer of pattern styles. Within each of these dimensions, close attention is paid to the current status and evolving trends of critical technologies. The study pinpoints the gaps in existing research, highlighting areas that demand further exploration and advancement. The research endeavors to establish theoretical frameworks and technological breakthroughs that constitute a robust foundation for propelling future scholarly inquiries. The ultimate ambition is to kindle research interest in the intersection of modern digital-intelligence technology and intangible cultural heritage. By bridging the divide between traditional craftsmanship and contemporary technology, the study seeks to spark innovative approaches to safeguarding and transmitting our rich traditional culture, so as to ensure its vibrancy and relevance in the modern world.
The potential opportunities for the future of digital-intelligence design in batik are primarily resided in three key areas: the precise extraction and enriched semantic representation of batik cultural symbols, the enhancement of technical precision and realism in batik pattern textures, and the facilitation of user personalization and interactive design. However, we are also faced with challenges such as the impact of limited annotated data on model performance, the significant computational requirements for simulating realistic lighting effects, and the cognitive gaps between users and professional designers. Navigating these opportunities and overcoming these challenges will require that researchers conduct more rigorous and in-depth studies.
Key words: batik; traditional handicraft; digital intelligence design; VOSviewer; bibliometrics
收稿日期: 2024-04-27; 修回日期: 2024-05-21
基金項(xiàng)目: 國(guó)家社會(huì)科學(xué)基金藝術(shù)學(xué)重大項(xiàng)目(20ZD09)
作者簡(jiǎn)介: 羅仕鑒(1974),男,教授,博導(dǎo),主要從事工業(yè)設(shè)計(jì)、智能設(shè)計(jì)、服務(wù)體驗(yàn)設(shè)計(jì)等研究。