摘要: 針對復(fù)雜場地環(huán)境下傳統(tǒng)經(jīng)驗(yàn)公式預(yù)測精度不高的問題,提出了一種主成分分析(PCA)特征選取下基于灰狼優(yōu)化支持向量回歸機(jī)算法(PCA?GWO?SVR)的爆破振動速度峰值預(yù)測模型。以白鶴灘水電站右岸壩肩槽爆破開挖監(jiān)測數(shù)據(jù)為依據(jù),選取爆心距、單響藥量、高程差、縱波波速、炮孔間距、炮孔排距作為輸入?yún)?shù),通過PCA的數(shù)據(jù)降維對特征值進(jìn)行選取,將選取的6種特征降維后化為4種相關(guān)性更高的特征;使用灰狼優(yōu)化算法(GWO)改進(jìn)支持向量回歸機(jī)(SVR)以獲取最優(yōu)參數(shù);將參數(shù)輸入到SVR模型中進(jìn)行計(jì)算評估。研究結(jié)果表明:PCA?GWO?SVR算法對比薩道夫斯基公式,改進(jìn)的薩道夫斯基公式,SVR,PCA?SVR和GWO?SVR的預(yù)測值和實(shí)測值的吻合效果更好,預(yù)測結(jié)果的準(zhǔn)確度更高,更能有效地預(yù)測邊坡爆破振動峰值,為邊坡爆破施工安全控制提供幫助。
關(guān)鍵詞: 爆破振動;"主成分分析;"灰狼優(yōu)化算法;"支持向量回歸機(jī)
中圖分類號: TV542 """文獻(xiàn)標(biāo)志碼: A """文章編號: 1004-4523(2024)08-1431-11
DOI:10.16385/j.cnki.issn.1004-4523.2024.08.017
引""言
中國西南地區(qū)大型水利水電工程通常布置于深切河谷,均涉及大規(guī)模、高強(qiáng)度的高陡邊坡開挖。爆破作為邊坡開挖的主要手段,其誘發(fā)的振動必然會導(dǎo)致巖體的損傷,嚴(yán)重影響邊坡的安全與穩(wěn)定。因此,準(zhǔn)確預(yù)測爆破振動速度峰值(PPV)對保障大型水電工程邊坡開挖安全穩(wěn)定有重要意義。
目前國內(nèi)外學(xué)者普遍使用的PPV預(yù)測公式有:薩道夫斯基公式、考慮高程效應(yīng)的改進(jìn)薩道夫斯基公式[1]、美國礦務(wù)局公式和印度標(biāo)準(zhǔn)局公式等。這些經(jīng)驗(yàn)公式僅僅考慮了最大單響藥量、爆心距和高程差對爆破振動峰值的影響,其他如場地介質(zhì)和爆破條件等影響因素歸為了公式中的經(jīng)驗(yàn)系數(shù)[2],無法反映影響PPV的參數(shù)與PPV之間的非線性關(guān)系,這導(dǎo)致其使用具有一定的局限性,預(yù)測精度不高[3]。
近年來,機(jī)器學(xué)習(xí)越來越多的運(yùn)用到實(shí)際工程數(shù)據(jù)分析中,為PPV預(yù)測提供了新的思路[4?5]。彭府華等[6]利用SVM(Support Vector Machines)對某礦山爆破振動實(shí)測數(shù)據(jù)進(jìn)行預(yù)測,驗(yàn)證了模型的可行性、穩(wěn)定性。史秀志等[7]基于基因表達(dá)式編程(GEP)實(shí)現(xiàn)了爆破振動速度峰值預(yù)測。Dindarloo[8]采用SVM對露天礦場PPV進(jìn)行了預(yù)測,選取了12個(gè)輸入變量,證明了該算法的適用性。陳秋松等[9]采用灰色關(guān)聯(lián)度理論(GRA)改進(jìn)了GEP算法,使PPV預(yù)測誤差得到了降低。盧二偉等[10]運(yùn)用最小二乘支持向量機(jī)(LSSVM)理論對小樣本PPV數(shù)據(jù)進(jìn)行了預(yù)測,取得了良好效果。Faradonbeh等[11]利用布谷鳥算法(CS)優(yōu)化了GEP算法,實(shí)現(xiàn)了鐵礦爆破振動峰值準(zhǔn)確預(yù)測。Mokfi[12]采用數(shù)據(jù)處理群(GMDH)方法對馬來西亞檳城采石場爆破振動進(jìn)行了預(yù)測,并驗(yàn)證了其可行性。Xu[13]將主成分分析方法(PCA)和支持向量機(jī)(SVM)結(jié)合,實(shí)現(xiàn)了紅頭山銅礦采場??爆破振動預(yù)測。??Yang[14]分別采用螢火蟲算法(FFA)、遺傳算法(GA)和粒子群算法(PSO)優(yōu)化支持向量回歸機(jī)(SVR),并比較了幾種優(yōu)化算法在爆破振動預(yù)測方面的效果。Ke[15]將神經(jīng)網(wǎng)絡(luò)(NN)和支持向量回歸機(jī)模型(SVR)混合編碼,形成雜交的智能模型對爆破振動進(jìn)行預(yù)測,預(yù)測精度顯著提高。Zeng[16]將提升卡方自動相互作用檢測(CHAID)與支持向量機(jī)(SVM)結(jié)合實(shí)現(xiàn)了爆破振動預(yù)測。
綜上所述,機(jī)器學(xué)習(xí)作為一種新型的智能預(yù)測方法,在預(yù)測爆破振動速度峰值上有著良好的效果,但上述方法在穩(wěn)定性上仍有不足,實(shí)測數(shù)據(jù)往往復(fù)雜多樣,噪聲數(shù)據(jù)參雜其中會影響預(yù)測的準(zhǔn)確度和穩(wěn)定性。本文首先采用PCA方法進(jìn)行特征降維,然后采用灰狼優(yōu)化算法(GWO)改進(jìn)支持向量回歸機(jī)(SVR),從而建立基于PCA?GWO?SVR機(jī)器學(xué)習(xí)的爆破振動速度峰值預(yù)測模型;以白鶴灘水電站右岸壩肩槽爆破開挖監(jiān)測數(shù)據(jù)為依據(jù),加入可反映場地因素的縱波波速作為輸入?yún)?shù),對所提出的模型進(jìn)行訓(xùn)練和檢驗(yàn),并與傳統(tǒng)經(jīng)驗(yàn)公式和其他智能預(yù)測模型進(jìn)行對比,驗(yàn)證PCA?GWO?SVR模型的適用性和優(yōu)越性。
1 基于PCA-GWO-SVR算法的爆破振動速度峰值智能預(yù)測模型構(gòu)建
本文提出的基于機(jī)器學(xué)習(xí)的爆破振動速度峰值預(yù)測模型構(gòu)建步驟如下:(1)為了降低爆破振動實(shí)測數(shù)據(jù)內(nèi)不同參數(shù)的量綱和量級差異帶來的支配性影響,采用極值歸一化處理;(2)采用PCA方法對復(fù)雜參數(shù)進(jìn)行特征選取,篩選出影響PPV較大的關(guān)鍵參數(shù)作為輸入特征;(3)引入GWO算法,利用其收斂性較好,參數(shù)選取較少,易實(shí)現(xiàn)的優(yōu)勢進(jìn)行參數(shù)優(yōu)化,迭代選取最有利于提高預(yù)測精度的參數(shù);(4)結(jié)合SVR方法對優(yōu)化后的模型參數(shù)進(jìn)行預(yù)測建模。
1.1 數(shù)據(jù)劃分及預(yù)處理
模型預(yù)測前需要對原始數(shù)據(jù)進(jìn)行數(shù)據(jù)劃分和預(yù)處理,收集有關(guān)裝藥結(jié)構(gòu)、場地環(huán)境信息,如裝藥量、爆心距、縱波波速、高程差及炮孔排間距等。這些不同類型的特征參數(shù)量綱各異,且數(shù)據(jù)量級差距較大。例如,爆破振動在巖石介質(zhì)中的傳播速度可達(dá)3000~4000 m/s,而其爆心距僅有幾十米。它們都是表征PPV大小的重要因素。
由于大多數(shù)特征選擇和機(jī)器學(xué)習(xí)算法沒有伸縮不變性,因此必須在數(shù)據(jù)分析之前對數(shù)據(jù)進(jìn)行預(yù)處理,以避免由于數(shù)據(jù)挖掘過程中的大小差異而導(dǎo)致某些參數(shù)的支配性作用,對數(shù)據(jù)進(jìn)行歸一化處理可以很好地解決特征向量量綱存在差異的問題:
1.2 主成分分析PCA模型構(gòu)建
工程現(xiàn)場收集到的數(shù)據(jù)眾多,只需選取相關(guān)性最高的參數(shù)進(jìn)行數(shù)據(jù)分析。因此,為了充分挖掘不同參數(shù)與PPV間的變化規(guī)律,實(shí)現(xiàn)有效的爆破振動速度峰值預(yù)測,需合理、準(zhǔn)確地選取對PPV變化較為敏感的參數(shù)作為后續(xù)機(jī)器學(xué)習(xí)的輸入?yún)?shù)。
本文采用主成分分析(PCA)"方法[17]對數(shù)據(jù)進(jìn)行預(yù)處理。它的原理是通過空間坐標(biāo)轉(zhuǎn)換將原有數(shù)據(jù)對應(yīng)的坐標(biāo)轉(zhuǎn)化到另外一組坐標(biāo)系下,在新的坐標(biāo)系下,把多種變量數(shù)據(jù)轉(zhuǎn)化為少數(shù)幾個(gè)彼此互不相關(guān)的主成分[18],其主要的原理是進(jìn)行數(shù)據(jù)降維。PCA算法的具體步驟劃分為以下6步[19]:
1.2.1 標(biāo)準(zhǔn)化處理原始數(shù)據(jù)
1.2.2 計(jì)算相關(guān)系數(shù)矩陣
1.2.3 求矩陣的協(xié)方差矩陣,進(jìn)而求出對應(yīng)的特征值λi及特征向量
1.2.4 確定主成分的數(shù)量
1.2.5 求主成分的表達(dá)式
1.2.6 求綜合評價(jià)功能
1.3 灰狼優(yōu)化算法GWO模型構(gòu)建
爆破過程中影響PPV大小的參數(shù)眾多,并且參數(shù)間存在著復(fù)雜的非線性關(guān)系。對于處理此類維度高及非線性的數(shù)據(jù)問題,傳統(tǒng)的預(yù)測公式在處理非線性問題上預(yù)測精度不高。因此需要尋找一種能改善算法精度、增加其穩(wěn)定性、有效收斂的方法來優(yōu)化參數(shù)。
灰狼優(yōu)化算法(GWO)具有較強(qiáng)的收斂性、參數(shù)較少、容易實(shí)現(xiàn)等優(yōu)點(diǎn)。GWO算法模擬了自然界灰狼的領(lǐng)導(dǎo)層級和狩獵機(jī)制。圖1所示4種類型的灰狼,包括α,β,δ和ω,被用于模擬領(lǐng)導(dǎo)層級。GWO可以描述為ω跟隨α,β和δ搜索和包圍獵物的過程,并且獵物R1的位置是最佳的。具體流程如圖1所示[19]。
為了對灰狼的捕獵行為進(jìn)行數(shù)學(xué)建模,假設(shè)α,β和δ對獵物R1的潛在位置有了更好的了解。因此,保存當(dāng)前可用的3個(gè)最佳解決方案,并強(qiáng)制其他搜索代理根據(jù)最佳搜索代理的位置更新其位置:
式中""C1,C2,C3表示控制狼的行為的系數(shù)向量;Xα,Xβ,Xδ分別為當(dāng)前種群中的3個(gè)等級狼群的位置向量;X表示灰狼的位置向量;Dα,Dβ,Dδ分別表示當(dāng)前候選狼群與最優(yōu)3只狼的距離;A表示控制狼行為的系數(shù)向量(A指代式(11)中的A1,A2和A3),當(dāng)|A|gt;1時(shí),灰狼之間盡量分散在各區(qū)域并搜尋獵物;當(dāng)|A|lt;1時(shí),灰狼將集中搜索某個(gè)或某些區(qū)域的獵物。
1.4 支持向量回歸機(jī)SVR模型構(gòu)建
為了探究爆破振動在傳播過程中各特征間的相互作用以及存在的非線性關(guān)系,需在特征樣本中尋求一個(gè)最佳超平面,通過目標(biāo)函數(shù)將原始訓(xùn)練數(shù)據(jù)映射到更高維中,在擴(kuò)維后的樣本空間進(jìn)行計(jì)算,得到期望值。
支持向量回歸機(jī)(SVR)作為一種基于統(tǒng)計(jì)理論的機(jī)器學(xué)習(xí)方法,在處理非線性回歸問題上具有獨(dú)特的優(yōu)勢[21?22]。同時(shí),因?yàn)楣こ虒?shí)測數(shù)據(jù)在收集時(shí)不可避免有噪聲和異常值[23],采用SVR方法可以依靠少量樣本點(diǎn)作為支持向量來確定預(yù)測模型,對噪聲和離群值擁有一定的魯棒性[24]。其結(jié)構(gòu)圖如圖2所示[25]。
1.5 基于PCA-GWO-SVR的PPV預(yù)測流程
單純使用SVR對于損失函數(shù)構(gòu)成的模型,無法確定權(quán)重大小,很容易導(dǎo)致過擬合,而過擬合的根本原因是樣本中太多的特征被包含進(jìn)來,從而使得模型預(yù)測的準(zhǔn)確度降低。其中的兩個(gè)重要參數(shù)懲罰因子c和誤差系數(shù)g(必須大于0)的選取根據(jù)經(jīng)驗(yàn)取得,對模型的預(yù)測準(zhǔn)確度有很大的影響。PCA?GWO?SVR模型的搭建思路為:通過主成分分析PCA將數(shù)據(jù)特征進(jìn)行降維,使得特征相關(guān)性簡單化,同時(shí)利用GWO算法迭代計(jì)算優(yōu)化SVR的2個(gè)參數(shù)c和g;將最后計(jì)算得出的值與實(shí)測爆破振動速度峰值進(jìn)行對比。其具體的流程如圖3所示。
1.6 模型評估指標(biāo)
模型經(jīng)過計(jì)算預(yù)測后應(yīng)對計(jì)算結(jié)果進(jìn)行評估,以驗(yàn)證該算法的準(zhǔn)確度與適用性。在本研究中,采用以下4個(gè)性能評價(jià)系數(shù):決定系數(shù)r2、均方誤差MAE、平均絕對誤差RMSE和平均絕對百分比誤差MAPE[27?28]。計(jì)算公式分別如下:
2 工程概況和數(shù)據(jù)收集
2.1 工程概況
白鶴灘水電站位于金沙江下游,壩型為混凝土雙曲拱壩(如圖4(a)所示),壩高289 m。在混凝土澆筑前,應(yīng)先進(jìn)行壩址處強(qiáng)風(fēng)化巖體爆破開挖過程,如圖4(b)所示,邊坡開挖高度達(dá)400 m,采用分層爆破方式依次進(jìn)行開挖。爆破必然會產(chǎn)生振動,從而影響邊坡穩(wěn)定,加上壩址處地質(zhì)條件復(fù)雜,柱狀玄武巖節(jié)理發(fā)育,小規(guī)模間斷層較多(如圖5所示),使得邊坡爆破施工的安全穩(wěn)定問題更加突出。
2.2 爆破振動監(jiān)測
為了評估爆破損傷,防止爆破振動過大引起邊坡失穩(wěn),在邊坡分層開挖過程中進(jìn)行爆破振動監(jiān)測。以高程824~834 m爆破開挖為例,相關(guān)爆破參數(shù)如表1所示。采用預(yù)裂爆破技術(shù),爆破設(shè)計(jì)如圖6(a)所示。首先起爆預(yù)裂孔,然后主爆孔,最后緩沖孔。根據(jù)地形條件及現(xiàn)場場地條件,在爆破區(qū)域后方共布置12個(gè)測點(diǎn),測點(diǎn)位置如圖6(b)和(d)所示。采用TC?4850爆破監(jiān)測儀,現(xiàn)場安裝如圖6(c)所示。
實(shí)測爆破振動波形如圖7所示。波形主要由3段組成,分別由預(yù)裂孔、主爆破孔和緩沖孔起爆產(chǎn)生,取其最大值,即可獲得PPV。
收集白鶴灘水電站右岸壩肩槽634~864 m高程爆破開挖實(shí)測振動速度峰值PPV如表2所示,共計(jì)107組。表2中還給出了對應(yīng)的單響藥量Q、爆心距R、測點(diǎn)高程差H、巖體縱波波速Cp、孔間距a和排間距b。
2.3 巖體聲波檢測
由于具有高程差,爆破振動的傳播路徑主要集中在巖體內(nèi)部(白鶴灘水電站的測點(diǎn)布置分為兩大類:第一類布置在頂部巖體,第二類布置在馬道上),因此,采用縱波波速可以反映巖體在傳播途徑上的結(jié)構(gòu)特征。結(jié)合實(shí)地環(huán)境,采用HX?SYB智能型巖石聲波儀檢測爆源近區(qū)10 m左右深度的縱波波速,單孔和跨孔聲波監(jiān)測實(shí)驗(yàn)如圖8所示。測試過程中,將聲級計(jì)傳感器放置在測試孔底部,并向測試孔注水,直到水流出孔,關(guān)小鉆孔注水閥門,保持鉆孔孔口有水流出即可;操作聲波儀進(jìn)行檢測、讀數(shù)并記錄;按照0.2 m的間隔進(jìn)行讀數(shù),對每一測點(diǎn)測讀兩次,取其平均值。第一類測點(diǎn)的縱波波速選取的是非損傷區(qū)爆前、爆后的平均值,第二類選取的是爆后損傷區(qū)聲波速度的平均值,某層邊坡開挖實(shí)測聲波曲線如圖9所示。
3 模型訓(xùn)練與檢驗(yàn)
3.1 薩道夫斯基公式預(yù)測
收集整理白鶴灘水電站右岸壩肩槽開挖的107組數(shù)據(jù)的前96組數(shù)據(jù)和高程824~834 m,利用薩道夫斯基公式和改進(jìn)的薩道夫斯基公式進(jìn)行擬合:
從表4中實(shí)測值與預(yù)測值可以看出,薩道夫斯基公式的誤差值均在140%以上,預(yù)測效果準(zhǔn)確度較低,而加入高程效應(yīng)的改進(jìn)薩道夫斯基公式各項(xiàng)數(shù)據(jù)預(yù)測誤差均比薩道夫斯基公式預(yù)測誤差要低,說明高程可作為影響PPV的一個(gè)重要參數(shù)。但改進(jìn)的薩道夫斯基公式最低誤差為38.55%,預(yù)測準(zhǔn)確度較差,說明還需考慮其他因素的影響??v波波速可以很好地反映巖體裂隙和結(jié)構(gòu)面發(fā)育程度的影響,因此選擇加入縱波波速作為PPV的影響因素。
不同炮孔間的炮孔布置也會互相產(chǎn)生干擾,因此,考慮將炮孔排距、間距作為影響因素加入到模型中去。
3.2 GWO-SVR模型內(nèi)部參數(shù)選取
GWO?SVR模型選擇輸入的參數(shù)為Q,R,H,Cp,a和b,利用GWO優(yōu)化算法對參數(shù)進(jìn)行優(yōu)化,GWO?SVR各參數(shù)采用試算法[30]多次取值進(jìn)行訓(xùn)練,最優(yōu)參數(shù)設(shè)置如下:采用徑向基(高斯)核函數(shù)、種群最大數(shù)量設(shè)為15、最大迭代數(shù)設(shè)為50、最小搜索范圍設(shè)為[0,"0,"0]、最大搜索范圍設(shè)為[10,"10,"100]。從表2中隨機(jī)選取96組數(shù)據(jù)作為學(xué)習(xí)樣本訓(xùn)練模型,剩余11組作為樣本集進(jìn)行檢驗(yàn)。選擇的迭代次數(shù)為50次,得到的適應(yīng)度曲線如圖11所示,得到的優(yōu)化改進(jìn)的參數(shù)c=4.8353744,g=0.0441592。
3.3 基于PCA方法的特征選取
在對實(shí)測數(shù)據(jù)進(jìn)行預(yù)測之前,需處理掉與爆破振動速度峰值PPV關(guān)聯(lián)性較小、甚至不相關(guān)的特征,從而提高數(shù)據(jù)處理的速度。影響PPV的參數(shù)有6個(gè):最大單響藥量Q、爆心距R、高程差H、縱波波速Cp、孔間距a和排間距b。采用PCA進(jìn)行特征降維,獲得各成分的貢獻(xiàn)值,如圖12所示。
由圖12可以看出,前4個(gè)主成分Q,R,H和Cp分別占據(jù)了40%,29%,13%和12%的信息量,前4個(gè)總和幾乎包含了94%(gt;86%)的特征信息,因此,以占比10%為界,取Q,R,H和Cp作為輸入?yún)?shù)。
3.4 PCA-GWO-SVR模型內(nèi)部參數(shù)選取
經(jīng)過PCA降維分析后,選取前4個(gè)主成分Q,R,H和Cp作為輸入變量,引入到GWO算法中進(jìn)行參數(shù)優(yōu)化。參數(shù)設(shè)置及迭代次數(shù)同上,得到的適應(yīng)度曲線如圖13所示,得到的優(yōu)化改進(jìn)的參數(shù)c=4.2562448,g=0.1835821。
3.5 四種模型訓(xùn)練結(jié)果
確定模型參數(shù)后,采用表2中收集到的數(shù)據(jù),分別對SVR,PCA?SVR,GWO?SVR和PCA?GWO?SVR模型進(jìn)行訓(xùn)練。通過r2,MAE,RMSE和MAPE指標(biāo)進(jìn)行評估,結(jié)果如表5所示。
由表5可以看出,經(jīng)過多次模型訓(xùn)練后,PCA?GWO?SVR相較于其他幾種模型訓(xùn)練效果最好,相關(guān)系數(shù)r2達(dá)到了0.949,平均絕對百分比誤差MAPE減小到了8.41%。從結(jié)果上可以看出,經(jīng)過PCA降維和灰狼算法GWO改進(jìn)后,支持向量回歸機(jī)SVR模型訓(xùn)練準(zhǔn)確度有了顯著提升。
3.6 四種模型預(yù)測結(jié)果分析與評估
SVR,PCA?SVR,GWO?SVR和PCA?GWO?SVR四種模型預(yù)測結(jié)果如圖14所示。從圖14可以看出,PCA?GWO?SVR模型預(yù)測結(jié)果與實(shí)測值最接近,預(yù)測效果最佳。
將四種模型預(yù)測結(jié)果和圖10兩種公式預(yù)測結(jié)果進(jìn)行誤差分析,如圖15所示。PCA?GWO?SVR模型的最大誤差為25.56%,薩道夫斯基公式的最大誤差為30.25%,改進(jìn)的薩道夫斯基公式的最大誤差為18.21%,SVR的最大誤差達(dá)到了105.75%,PCA?SVR的最大誤差達(dá)到了186.47%,GWO?SVR的最大誤差達(dá)到了110.3%。對比平均誤差百分比可以看出,PCA?GWO?SVR的平均誤差百分比值最低,表明該模型預(yù)測準(zhǔn)確度最高,與真實(shí)結(jié)果更加接近。
4 結(jié)""論
本文采用主成分分析PCA方法進(jìn)行特征降維,利用灰狼優(yōu)化算法(GWO)改進(jìn)支持向量回歸機(jī)(SVR),構(gòu)建了基于PCA?GWO?SVR機(jī)器學(xué)習(xí)的爆破振動速度峰值預(yù)測模型,并成功應(yīng)用于白鶴灘水電站拱壩壩肩槽爆破開挖振動預(yù)測。訓(xùn)練和預(yù)測結(jié)果顯示,基于PCA?GWO?SVR算法預(yù)測平均誤差百分比只有6.9%,相較于薩道夫斯基公式、改進(jìn)的薩道夫斯基公式、SVR、PCA?SVR和GWO?SVR算法,分別降低了4.4%,3.5%,19.8%,27.3%和12.2%,這表明PCA?GWO?SVR模型可以有效預(yù)測邊坡爆破振動峰值,為邊坡爆破施工安全控制提供幫助。
參考文獻(xiàn):
[1] 蔣楠,"周傳波,"平雯,"等. 巖質(zhì)邊坡爆破振動速度高程效應(yīng)[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版),"2014,"45(1):"237-243.
Jiang Nan,"Zhou Chuanbo,"Ping Wen,"et al. Altitude effect of blasting vibration velocity in rock slopes[J]. Journal of Central South University (Science and Technology),"2014,"45(1):"237-243.
[2] Hu X,"Qu S. A new approach for predicting bench blasting-induced ground vibrations:"a case study[J]. The Journal of the Southern African Institute of Mining and Metallurgy,"2018,"118(5):"531-538.
[3] Rezaeineshat A,"Monjezi M,"Mehrdanesh A,"et al. Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,"2020,"6(2):"1-14.
[4] 汪磊,"謝彥初,"孫德安,"等. 基于GS-SVM的膨脹土邊坡防護(hù)工程健康預(yù)測模型[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版),"2022,"53(1):"250-257.
Wang Lei,"Xie Yanchu,"Sun Dean,"et al. Health prediction model of expansive soil slope protection works based on GS-SVM[J]. Journal of Central South University (Science and Technology),"2022,"53(1):"250-257.
[5] 張偉光,"鐘靖濤,"于建新,"等. 基于機(jī)器學(xué)習(xí)和圖像處理的路面裂縫檢測技術(shù)研究[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版),"2021,"52(7):"2402-2415.
Zhang Weiguang,"Zhong Jingtao,"Yu Jianxin,"et al. Research on pavement crack detection technology based on convolution neural network[J]. Journal of Central South University (Science and Technology),"2021,"52(7):"2402-2415.
[6] 彭府華,"劉建. 爆破振動峰值速度預(yù)測的SVM模型及應(yīng)用[J]. 湖南有色金屬,"2021,"37(3):"11-13.
Peng Fuhua,"Liu Jian. SVM model for predicting the peak velocity of blasting vibration and its application[J]. Hunan Nonferrous Metals,"2021,"37(3):"11-13.
[7] 史秀志,"陳新,"史采星,"等. 基于GEP的爆破峰值速度預(yù)測模型[J]. 振動與沖擊,"2015,"34(10):"95-99.
Shi Xiuzhi,"Chen Xin,"Shi Caixing,"et al. Prediction model for blasting?vibration?peak?speed based on GEP[J]. Journal of Vibration and Shock,"2015,"34(10):"95-99.
[8] Dindarloo S R. Peak particle velocity prediction using support vector machines:"a surface blasting case study[J]. Journal of the Southern African Institute of Mining and Metallurgy,"2015,"115(7):"637-643.
[9] 陳秋松,"張欽禮,"陳新,"等. 基于GRA-GEP 的爆破峰值速度預(yù)測[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版),"2016,"47(7):"2441-2447.
Chen Qiusong,"Zhang Qinli,"Chen Xin,"et al. Prediction of blasting?vibration?peak?speed based on GRA-GEP[J]. Journal of Central South University(Science and Technology),"2016,"47(7):"2441-2447.
[10] 盧二偉,"史秀志,"陳佳耀. 基于LS-SVR小樣本容量的爆破振動峰值速度預(yù)測研究[J]. 世界科技研究與發(fā)展,"2016,"38(6):"1258-1261.
Lu Erwei,"Shi Xiuzhi,"Chen Jiayao. Prediction research for blasting?vibration?peak?speed based on LS-SVR in small sample space[J]. World Science and Technology Research and Development,"2016,"38(6):"1258-1261.
[11] Faradonbeh R S,"Monjezi M. Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms[J]. Engineering with Computers,"2017,"33(4):"835-851.
[12] Mokfi T. Proposing of a new soft computing-based model to predict peak particle velocity induced by blasting[J]. Engineering with Computers,"2018,"34(4):"881-888.
[13] Xu S D. Optimization of blasting parameters for an underground mine through prediction of blasting vibration[J]. Journal of Vibration and Control,"2019,"25(9):"1585-1595.
[14] Yang H Q. Prediction of vibration velocity generated in mine blasting using support vector regression improved by optimization algorithms[J]. Natural Resources Research,"2019,"29(2):"807-830.
[15] Ke B,"Nguyen H,"Bui X N,"et al. Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model[J]. Natural Resources Research,"2021,"30(3):"3853-3864.
[16] Zeng J. Prediction of peak particle velocity caused by blasting through the combinations of boosted-CHAID and SVM models with various kernels[J]. Applied Sciences,"2021,"11(8):"3705.
[17] 葉濤,"韋阿娟,nbsp;黃志,"等. 基于主成分分析法與Bayes判別法組合應(yīng)用的火山巖巖性定量識別:以渤海海域中生界為例[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),"2019,"43(3):"873-880.
Ye Tao,"Wei Ajuan,"Huang Zhi,"et al. Quantitative identification of volcanic lithology based on the combination of principal component analysis method and Bayes discriminant method:"a case study of mesozoic in Bohai Bay[J]. Journal of Jilin University (Earth Science Edition),"2019,"43(3):"873-880.
[18] 史耀凡,"欒元重,"于水,"等. 基于PCA-GA-SVM模型的地表下沉系數(shù)預(yù)測[J]. 礦業(yè)研究與開發(fā),"2022,"42(2):"65-69.
Shi Yaofan,"Luan Yuanzhong,"Yu Shui,"et al. Prediction of surface subsidence coefficient based on PCA-GA-SVM model[J]. Mining Research and Development,"2022,"42(2):"65-69.
[19] Li L M,"Zhao J,"Wang C R. Comprehensive evaluation of robotic global performance based on modified principal component analysis[J]. International Journal of Advanced Robotic Systems,"2022,"17(4):"220-226.
[20] Mirjalili S,"Mirjalili S M,"Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software,"2014,"69:"46-61.
[21] 賴永標(biāo). 支持向量機(jī)在地下工程中的應(yīng)用研究[D]. 青島:山東科技大學(xué),"2004:"22-24.
Lai Yongbiao. Application and study of support vector machine in the underground engineering[D]. Qingdao:"Shandong University of Science and Technology,"2004:"22-24.
[22] 王健. 基于機(jī)器學(xué)習(xí)的TBM掘進(jìn)性能預(yù)測與巖體參數(shù)表征方法研究[D]. 濟(jì)南:山東大學(xué),"2017:20-23.
Wang Jian. Research on TBM performance prediction and rock mass parameters characterization method based on machine learning[D]. Jinan:"Shandong University,"2017:"20-23.
[23] Yang J P,"Chen W Z,"Li M,"et al. Structural health monitoring and analysis of an underwater TBM tunnel[J]. Tunnelling and Underground Space Technology,"2018,"82:"235-247.
[24] Boser B E,"Guyon I M,"Vapnik V N. A training algorithm for optimal margin classifier[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York:"Association for Computing Machinery,"1992:"144-152.
[25] Chen K,"Laghrouche S,"Djerdir S. Remaining useful life prediction for fuel cell based on support vector regression and grey wolf optimizer algorithm[J]. IEEE Transactions on Energy Conversion,"2021,"37(2):"778-787.
[26] Shilton A,"Lai D,"Palaniswami M. A division algebraic framework for multidimensional support vector regression[J]. IEEE Transactions on Systems Man and Cybernetics,"Part B:"Cybernetics,"2009,"40(2):"517-528.
[27] Hui Y,"Wang Y G,"Peng H,"et al. Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics[J]. Journal of Traffic and Transportation Engineering,"2021,"21(4):"210-222.
[28] Zhou J,"Qiu Y G,"Khandelwal M,"et al. Developing a hybrid model of jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations[J]. International Journal of Rock Mechanics and Mining Sciences,"2021,"145:"1365-1609.
[29] 孫鵬昌,"盧文波,"楊招偉,"等. 白鶴灘壩肩邊坡開挖爆破損傷預(yù)測研究[J]. 水力發(fā)電學(xué)報(bào),"2022,"41(10):"1-11.
Sun Pengchang,"Lu Wenbo,"Yang Zhaowei,"et al. Prediction of rock damage induced by blasting excavation in high rock slope of Baihetan Dam Abutment[J]. Journal of Hydroelectric Engineering,"2022,"41(10):"1-11.
[30] Mirjalili S,"Mirjalili S M,"Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software,"2014,"69:"46-61.
PCA-GWO-SVR machine learning applied to prediction of peak vibration velocity of slope blasting
FAN Yong HU Ming-dong YANG Guang-dong CUI Xian-ze GAO Qi-dong
(1.Hubei Key Laboratory of Construction and Management in Hydropower Engineering,"China Three Gorges University,"Yichang 443002,"China;"2.College of Hydraulic amp; Environmental Engineering,"China Three Gorges University,Yichang 443002,"China;"3.School of Highway,"Chang’an University,"Xi’an 710064,"China)
Abstract: Aiming at the low accuracy of traditional empirical formulas in complex site environment,"a predictive model for peak blasting vibration velocity based on grey wolf optimization support vector regression (PCA-GWO-SVR)"with principal component analysis (PCA)"feature selection is proposed. Based on the monitoring data of blasting excavation of dam abutment trough on the right bank of Baihetan Hydropower Station,"the blasting center distance,"maximum single-shot charge quantity,"elevation difference,"longitudinal wave velocity,"bore spacing and bore row distance are selected as input parameters,"and the characteristic values are selected by data dimension reduction of PCA,"and the six selected features are dimensionally reduced to four characteristics with higher correlation. Support vector regression (SVR)"is improved by grey wolf optimization algorithm (GWO)"to obtain the optimal parameters. Parameters are input into the SVR model for evaluation. The research results show that the PCA-GWO-SVR algorithm has better agreement with the predicted values and the measured values of Sadowski formula,"improved Sadowski formula,"SVR,"PCA-SVR,"GWO-SVR. The predicted results are more accurate and can predict the peak value of blasting vibration of slope more effectively,"which provides help for safety control of blasting construction of slope.
Key words: blasting vibration;"principal component analysis;"grey wolf optimization algorithm;"support vector regression
作者簡介: 范""勇(1988—),男,博士,教授。"E-mail:"yfan@ctgu.edu.cn。
通訊作者: 楊廣棟(1991—),男,博士,副教授。"E-mail:"ygd@ctgu.edu.cn。