摘要: 因?qū)ε_(tái)階式加筋土擋墻損傷識(shí)別的研究不足,開(kāi)展了雙級(jí)加筋土擋墻的大型振動(dòng)臺(tái)試驗(yàn)。采用時(shí)域識(shí)別方法分析了水平地震作用下模型的動(dòng)力響應(yīng)特征,闡述了上、下級(jí)擋墻自振頻率、阻尼比的分布規(guī)律,探究了結(jié)構(gòu)損傷程度與自振頻率、阻尼比間的對(duì)應(yīng)關(guān)系。研究結(jié)果表明:加載前上、下級(jí)擋墻的自振頻率基本一致,阻尼比隨墻高的增加而減??;隨著加載工況的累積,自振頻率逐漸減小,阻尼比逐漸增大。采用數(shù)學(xué)方法對(duì)自振頻率和阻尼比分布曲線進(jìn)行多項(xiàng)式擬合,對(duì)比分析可得:當(dāng)自振頻率減小0~15.41%、阻尼比增大0~299.35%時(shí),結(jié)構(gòu)處于基本完好階段;當(dāng)自振頻率減小15.41%~18.92%、阻尼比增大299.35%~360.07%時(shí),結(jié)構(gòu)處于輕微破壞階段;當(dāng)自振頻率減小18.92%~21.29%、阻尼比增大360.07%~398.21%時(shí),結(jié)構(gòu)處于中等破壞階段;當(dāng)自振頻率減小21.29%~29.60%、阻尼比增大398.21%~532.99%時(shí),結(jié)構(gòu)處于毀壞狀態(tài)。
關(guān)鍵詞:"雙級(jí)加筋土擋墻;"損傷識(shí)別;"振動(dòng)臺(tái)試驗(yàn);"時(shí)域識(shí)別方法;"阻尼比
中圖分類號(hào): U417.1+1 """文獻(xiàn)標(biāo)志碼: A nbsp;""文章編號(hào): 1004-4523(2024)08-1423-08
DOI:10.16385/j.cnki.issn.1004-4523.2024.08.016
引""言
加筋土擋墻因施工簡(jiǎn)單[1]、碳排放量低[2?3]、抗震性能優(yōu)越[4]等優(yōu)勢(shì)被廣泛應(yīng)用于公路、鐵路、機(jī)場(chǎng)等基礎(chǔ)設(shè)施建設(shè)領(lǐng)域。單級(jí)擋墻的設(shè)計(jì)高度不宜超過(guò)10"m[5],因此對(duì)于高邊坡填方工程(例如,承德機(jī)場(chǎng)中高達(dá)80 m的邊坡工程、錦屏水電站66 m高的棉沙溝邊坡工程),宜采用分級(jí)臺(tái)階式加筋土擋墻。
隨著“交通強(qiáng)國(guó)”戰(zhàn)略的實(shí)施,多級(jí)加筋土擋墻不可避免地建設(shè)在高烈度區(qū)。例如,汶川地震中國(guó)道G213上一座雙級(jí)加筋土擋墻發(fā)生了局部破壞,嚴(yán)重影響了道路交通。震后對(duì)加筋土擋墻服役狀態(tài)快速評(píng)估,可為應(yīng)急救援規(guī)劃路線提供幫助。目前,對(duì)于加筋土擋墻的損傷評(píng)估方法,部分學(xué)者[6?9]提出采用墻體變形指數(shù)對(duì)損傷狀態(tài)進(jìn)行劃分。
變形是加筋土擋墻損傷狀態(tài)的外觀表現(xiàn),而損傷也會(huì)引起加筋土擋墻固有特性的改變。自振頻率是加筋土結(jié)構(gòu)的關(guān)鍵參數(shù)之一,利用自振頻率的異常變化判斷損傷程度和部位,已被應(yīng)用于機(jī)械、航天、建筑結(jié)構(gòu)、巖土工程領(lǐng)域[10?11]。例如杜巖等[10]采用自振頻率對(duì)滑坡?lián)p傷進(jìn)行定量判斷,并闡述了自振頻率方法的可行性。
眾多學(xué)者利用振動(dòng)臺(tái)試驗(yàn)[12?13]、數(shù)值模擬[14?15]和理論分析[16?20]對(duì)加筋土擋墻的自振頻率解析式、影響因素進(jìn)行了研究。朱宏偉等[12]對(duì)土工袋加筋土擋墻進(jìn)行振動(dòng)臺(tái)試驗(yàn),發(fā)現(xiàn)隨著加載的持續(xù)進(jìn)行,模型的自振頻率減小,阻尼比增大;輸入的地震動(dòng)越強(qiáng),自振頻率的減小幅度越大。Huang[13]通過(guò)6 Hz和10 Hz正弦波對(duì)一系列返包式加筋土擋墻自振頻率進(jìn)行了研究,驗(yàn)證了輸入頻率與自振頻率之比在0.6~1.0時(shí)結(jié)構(gòu)發(fā)生共振響應(yīng)的研究成果的正確性。伍永勝[14]利用ANSYS對(duì)不同高度的加筋土擋墻自振頻率進(jìn)行分析,歸納了自振頻率與墻高的基本關(guān)系。Hatami等[15]總結(jié)了部分自振頻率計(jì)算公式(如文獻(xiàn)[16]方法),對(duì)影響加筋土擋墻模型自振頻率的一些結(jié)構(gòu)設(shè)計(jì)參數(shù)進(jìn)行了研究和討論,認(rèn)為共振頻率與地震動(dòng)強(qiáng)度有關(guān)。
綜上,目前尚未見(jiàn)自振頻率在地震作用下分布規(guī)律的相關(guān)研究。對(duì)于資料欠缺或變形不易觀測(cè)的加筋土擋墻,可借鑒杜巖等[10]利用固有特性對(duì)滑坡進(jìn)行判斷的思路。然而目前對(duì)于自振頻率和阻尼比的分布規(guī)律尚不清楚,其變化幅度與加筋土擋墻損傷狀態(tài)之間的對(duì)應(yīng)關(guān)系尚未掌握。
因此,本文采用時(shí)域識(shí)別方法對(duì)雙級(jí)加筋土擋墻的自振頻率和阻尼比進(jìn)行分析,探究不同損傷程度下的自振頻率和阻尼比的變化幅度。
1 振動(dòng)臺(tái)試驗(yàn)
1.1 試驗(yàn)概述
振動(dòng)臺(tái)試驗(yàn)因其重復(fù)性好,是研究巖土體結(jié)構(gòu)地震性能的主流方式[21?22]。模型試驗(yàn)在防災(zāi)科技學(xué)院的土木工程試驗(yàn)中心進(jìn)行,試驗(yàn)?zāi)P腿鐖D1所示。模型箱為3.0 m(長(zhǎng))×1.5 m(寬)×2.0 m(高)的剛性箱,模型箱沿長(zhǎng)度方向兩側(cè)鑲嵌有機(jī)玻璃,便于在試驗(yàn)中觀察擋墻和墻后回填土的變化。同時(shí),為了盡量減少剛性邊界的反射波影響,在振動(dòng)方向上,剛性箱與回填土接觸處布設(shè)50 mm厚的海綿。振動(dòng)臺(tái)設(shè)備的主要參數(shù)[23?27]為:臺(tái)面尺寸為3.0 m×3.0 m;雙水平向地震模擬;最大位移:X向±100 mm,Y向±100"mm;最大加速度:X向1g(滿載),Y向1g(滿載);最大承載質(zhì)量為20 t。
考慮振動(dòng)臺(tái)的承載能力和模型箱尺寸,試驗(yàn)?zāi)P拖嗨票仍O(shè)定為1∶10,按照Iai[28]提出的相似關(guān)系推導(dǎo)得出模型的主要相似參數(shù),如表1所示。圖2為雙級(jí)加筋土擋墻模型試驗(yàn)設(shè)計(jì)圖:(1)模型總高度為1.8 m,上級(jí)墻和下級(jí)墻墻高各為0.9 m,平臺(tái)寬度為0.18 m;(2)筋材水平等長(zhǎng)布置,長(zhǎng)度為0.9 m,層間距為0.15 m;(3)模型外側(cè)布設(shè)12個(gè)頂桿位移計(jì)用于量測(cè)墻體的動(dòng)態(tài)位移變化,內(nèi)部布設(shè)14個(gè)加速度計(jì)用于采集加筋區(qū)和非加筋區(qū)不同高度處的加速度響應(yīng);(4)沿振動(dòng)方向在模型箱外側(cè)布設(shè)2個(gè)加速度計(jì),用于記錄臺(tái)面輸入加速度時(shí)程。
為測(cè)試加筋土擋墻的抗震性能,試驗(yàn)過(guò)程中單向輸入經(jīng)過(guò)處理的臥龍波(WL)和El?Centro波(El)。同時(shí),為了獲取加筋土擋墻的動(dòng)力特性,在每次地震動(dòng)輸入前后均采用白噪聲(WN)進(jìn)行微震,試驗(yàn)工況如表2所示。
1.2 試驗(yàn)材料
回填土采用級(jí)配不良的中砂,其顆粒級(jí)配曲線如圖3所示?;靥钔恋奈锢韰?shù)如表3所示。在相對(duì)密實(shí)度為70%的設(shè)定下,回填土采取分層填筑夯實(shí)。
筋材采用高密度聚乙烯單向土工格柵,拉伸單元長(zhǎng)度為22.5 cm,橫肋間距為2.22 cm。參考ASTM D6637[29]進(jìn)行拉伸試驗(yàn),可得土工格柵的拉伸強(qiáng)度分別為T2%=17.4 kN/m,"T5%=32.7 kN/m及Tult=50 kN/m。
面板采用預(yù)制砌塊錯(cuò)縫搭接而成,采用的模塊尺寸分別為0.25 m(長(zhǎng))×0.15 m(寬)×0.15 m(高)和0.125 m(長(zhǎng))×0.15 m(寬)×0.15 m(高)。土工格柵與模塊通過(guò)塑料卡扣進(jìn)行連接,如圖4所示。
2 試驗(yàn)結(jié)果
2.1 動(dòng)力特性
加筋土擋墻的動(dòng)力特性主要有頻率、阻尼及振型[15?16,30]。在模型試驗(yàn)時(shí)輸入白噪聲的目的是獲得其動(dòng)力特性,判斷結(jié)構(gòu)的自振頻率是為了避免結(jié)構(gòu)與場(chǎng)地頻率接近產(chǎn)生共振。Richardson等[16]采用簡(jiǎn)化公式F=1/HC預(yù)測(cè)自振頻率,其中,H為墻高,C為系數(shù)(其值在0.02~0.033之間變化)。伍永勝[14]采用ANSYS分析墻高(3,"6,"9,"12,"15 m)與自振頻率的關(guān)系,通過(guò)統(tǒng)計(jì)分析建議采用F=38/H(H為墻高)進(jìn)行自振頻率的估算。
對(duì)于動(dòng)力特性求解的計(jì)算理論主要有頻域識(shí)別方法和時(shí)域識(shí)別方法兩種。時(shí)域識(shí)別方法[31]具有可直接使用實(shí)測(cè)響應(yīng)信號(hào)、處理簡(jiǎn)單便捷、識(shí)別精度高等優(yōu)勢(shì)。因此,本文采用時(shí)域識(shí)別方法對(duì)白噪聲工況(WN4工況下A2?N的加速度時(shí)程曲線如圖5所示)進(jìn)行自振頻率和阻尼比的計(jì)算。其處理步驟為:(1)對(duì)輸入數(shù)據(jù)進(jìn)行預(yù)處理;(2)采用節(jié)時(shí)時(shí)域方法(STD法)進(jìn)行動(dòng)力特性識(shí)別。
雙級(jí)加筋土擋墻加筋區(qū)內(nèi)上級(jí)墻、下級(jí)墻在不同位置、不同加載階段的自振頻率和阻尼比分布如圖6所示。由圖6(a)數(shù)據(jù)可知:(1)加載前(即WN1工況時(shí)),不同位置處的自振頻率基本一致(上級(jí)墻的自振頻率在19.84~20.23 Hz范圍內(nèi),下級(jí)墻的自振頻率在20.07~20.21 Hz范圍內(nèi));加載階段,上、下級(jí)擋墻各位置處的自振頻率開(kāi)始減??;(2)加載過(guò)程中,下級(jí)擋墻整體自振頻率呈逐漸減小趨勢(shì);上級(jí)擋墻自振頻率整體亦呈逐漸減小趨勢(shì),與下級(jí)擋墻整體分布規(guī)律一致;(3)對(duì)比上、下級(jí)擋墻可知,下級(jí)擋墻自振頻率小于上級(jí)擋墻自振頻率。由圖6(b)可知:(1)加載前,上、下級(jí)擋墻的阻尼比隨著墻高的升高而減小,這是土體剪應(yīng)變隨埋深增加而逐漸增大導(dǎo)致的[32],如下式所示:
將加筋區(qū)內(nèi)(上級(jí)墻(A7?N,A8?N,A10?N,A12?N)、下級(jí)墻(A2?N,A4?N,A6?N))各測(cè)點(diǎn)的自振頻率和阻尼比取平均值,作為上級(jí)擋墻、下級(jí)擋墻的自振頻率和阻尼比,如圖7所示。由圖7可知:(1)上、下級(jí)擋墻的自振頻率分布規(guī)律、阻尼比分布規(guī)律基本一致:隨著加載工況的累積,自振頻率逐漸減小、阻尼比逐漸增大;(2)開(kāi)始加載后,下級(jí)擋墻的自振頻率始終小于上級(jí)擋墻自振頻率;(3)在WN7工況前,下級(jí)擋墻阻尼比略大于上級(jí)擋墻阻尼比,這與不同深度處的土體剪應(yīng)變不同有關(guān);WN8工況后,下級(jí)擋墻阻尼比小于上級(jí)擋墻阻尼比,其原因是上級(jí)擋墻墻體的水平位移較大,導(dǎo)致上部擋墻的土體變形和剪應(yīng)變值大于下部擋墻。
將圖7中上、下級(jí)擋墻的自振頻率和阻尼比取平均值,作為雙級(jí)擋墻整體結(jié)構(gòu)的自振頻率和阻尼比,如圖8所示。由圖8數(shù)據(jù)可知:(1)自振頻率幅值由20.10 Hz(WN1工況)降至13.57 Hz(WN10工況),各階段幅值均比文獻(xiàn)[14]的預(yù)測(cè)值低,在文獻(xiàn)[16]預(yù)測(cè)的限值附近波動(dòng)。其原因是文獻(xiàn)[14]及文獻(xiàn)[16]的方法均為不同高度的單級(jí)擋墻的計(jì)算結(jié)果擬合所得,整體性較好,而雙級(jí)擋墻中臺(tái)階的存在導(dǎo)致雙級(jí)擋墻的整體性變差。(2)阻尼比呈逐漸增大趨勢(shì)(由1.06%增至16.70%),變化范圍較大。
2.2 破壞等級(jí)
墻體變形大小是判斷加筋土擋墻是否產(chǎn)生損傷及損傷程度的直觀指標(biāo),因此文獻(xiàn)[6?9]均提出了相關(guān)的位移指數(shù)。結(jié)合Li等[9]所提出的0~1.5%(基本完好),1.5%~1.85%(輕微破壞),1.85%~3.8%(中等破壞),gt;3.8%(毀壞)四級(jí)模塊式加筋土擋墻損傷評(píng)估指標(biāo),對(duì)各白噪聲工況對(duì)應(yīng)的擋墻位移指數(shù)及損傷程度進(jìn)行細(xì)化分類。雙級(jí)擋墻加載工況與損傷程度的對(duì)應(yīng)關(guān)系如表4所示。
由表4數(shù)據(jù)可知:(1)WN2~WN5工況時(shí),最大墻高比為0.68%,擋墻結(jié)構(gòu)屬于基本完好;(2)WN6~WN7工況時(shí),擋墻發(fā)生輕微破壞;(3)WN8工況時(shí),最大墻高比在1.85%~3.8%之間,擋墻處于中等破壞狀態(tài);(4)WN9工況時(shí),最大墻高比超過(guò)了3.8%,此時(shí)模型磚并未掉落,為保守評(píng)估安全性,將其定義為破壞狀態(tài);(5)WN10工況時(shí),頂部模型磚掉落,部分位移計(jì)被擊中導(dǎo)致部分位移數(shù)據(jù)失真,模型出現(xiàn)宏觀破壞現(xiàn)象。擋墻不同損傷程度下的試驗(yàn)照片如圖9所示。
2.3 損傷識(shí)別
將表4中損傷程度與結(jié)構(gòu)自身特性相結(jié)合,嘗試根據(jù)加筋土擋墻動(dòng)力特性的變化范圍判斷結(jié)構(gòu)的損傷程度,動(dòng)力特性與損傷程度的對(duì)應(yīng)關(guān)系如圖10所示。
由于數(shù)據(jù)的離散性,直接利用數(shù)據(jù)推測(cè)加筋土擋墻的損傷程度存在困難。因此,采用動(dòng)力特性探知擋墻損傷程度的步驟如下:(1)對(duì)雙級(jí)加筋土擋墻的動(dòng)力特性分布規(guī)律進(jìn)行三次多項(xiàng)式數(shù)據(jù)擬合;(2)利用擬合公式求解各工況下的動(dòng)力特性(自振頻率和阻尼比)數(shù)值;(3)以WN1工況時(shí)的動(dòng)力特性(自振頻率和阻尼比)的結(jié)果作為模型結(jié)構(gòu)的基準(zhǔn)值,求解各工況下結(jié)構(gòu)的動(dòng)力特性變化率;(4)結(jié)合各工況所處的損傷階段,確定各損傷狀態(tài)下動(dòng)力特性的變化率,明確動(dòng)力特性變化率對(duì)應(yīng)的損傷程度。
圖11為雙級(jí)加筋土擋墻的自振頻率與阻尼比的數(shù)據(jù)擬合結(jié)果。由圖11數(shù)據(jù)可知:(1)由于自振頻率和阻尼比數(shù)據(jù)較離散,兩條擬合曲線的判定系數(shù)R2分別為0.83和0.72;(2)相對(duì)于基準(zhǔn)值,自振頻率擬合曲線呈整體減小的趨勢(shì),減小幅度分別為0~15.41%(基本完好)、15.41%~18.92%(輕微破壞)、18.92%~21.29%(中等破壞)、21.29%~29.60%(毀壞);(3)阻尼比擬合曲線呈整體增大趨勢(shì),結(jié)構(gòu)處于基本完好、輕微破壞、中等破壞和毀壞階段時(shí),阻尼比的增大幅度分別為0~299.35%,299.35%~360.07%,360.07%~398.21%,398.21%~532.99%。
3 結(jié)""論
本文采用時(shí)域識(shí)別方法,研究了水平地震作用下雙級(jí)加筋土擋墻的自振頻率和阻尼比的分布規(guī)律,分析了自振頻率和阻尼比變化特征與加筋土擋墻損傷識(shí)別的關(guān)系。具體結(jié)論如下:
(1)加載前,各位置處的自振頻率基本一致,阻尼比隨著墻高的升高而減?。患虞d開(kāi)始后,自振頻率逐漸減小,阻尼比逐漸增大。
(2)按照變形控制指數(shù),將加載階段的加筋土擋墻損傷程度劃分為基本完好、輕微破壞、中等破壞和毀壞四個(gè)階段。
(3)對(duì)自振頻率分布曲線進(jìn)行數(shù)據(jù)擬合,并與自振頻率基準(zhǔn)值進(jìn)行對(duì)比:當(dāng)自振頻率減小0~15.41%時(shí),結(jié)構(gòu)處于基本完好狀態(tài);當(dāng)自振頻率減小15.41%~18.92%時(shí),結(jié)構(gòu)處于輕微破壞狀態(tài);當(dāng)自振頻率減小18.92%~21.29%時(shí),結(jié)構(gòu)處于中等破壞狀態(tài);當(dāng)減小21.29%~29.60%時(shí),結(jié)構(gòu)處于毀壞狀態(tài)。
(4)對(duì)阻尼比分布特征進(jìn)行多項(xiàng)式擬合,并與基準(zhǔn)值進(jìn)行對(duì)比分析:當(dāng)阻尼比增幅分別為0%~299.35%,299.35%~360.07%,360.07%~398.21%和398.21%~532.99%時(shí),可認(rèn)為加筋土擋墻分別處于基本完好、輕微破壞、中等破壞和毀壞狀態(tài)。
利用自振頻率和阻尼比變化率對(duì)震后加筋土擋墻的損傷狀態(tài)進(jìn)行識(shí)別,這種方法可行的關(guān)鍵之一是初始狀態(tài)時(shí)自振頻率和阻尼比的確定。目前的研究主要針對(duì)單級(jí)擋墻,對(duì)于臺(tái)階式加筋土擋墻的自振頻率和阻尼比的精確確定,還需進(jìn)一步考慮臺(tái)階寬度、臺(tái)階階數(shù)的影響。
參考文獻(xiàn):
[1] Han J,"Jiang Y,"Xu C. Recent advances in geosynthetic?reinforced retaining walls for highway applications[J]. ASCE Journal Frontiers of Structural and Civil Engineering,"2017,"12(2):"239?247.
[2] Bizjak K F,"Lenart S. Life cycle assessment of a geosynthetic?reinforced soil bridge system—a case study[J]. Geotextiles and Geomembranes,"2018,"46(5):"543?558.
[3] Zhu Yuming,"Zhang Fei,"Jia Shilin. Embodied energy and carbon emissions analysis of geosynthetic reinforced soil structures[J]. Journal of Cleaner Production,"2022,"370:"133510.
[4] Kuwano J,"Miyata Y,"Koseki J. Performance of reinforced soil walls during the 2011 Tohoku earthquake[J]. Geosynthetics International,"2014,"21(3):"179?196.
[5] 中鐵二院工程集團(tuán)有限責(zé)任公司. 鐵路路基支擋結(jié)構(gòu)設(shè)計(jì)規(guī)范:TB 10025—2019[S]. 北京:"中國(guó)鐵道出版社有限公司,2019.
China Railway Eryuan Engineering Group Co.,"Ltd. Code for design of retaining structures of railway earthworks:"TB 10025—2019[S]. Beijing:"China Railway Publishing Co.,"Ltd.,"2019.
[6] Huang C C,"Wu S H,"Wu H J. Seismic displacement criterion for soil retaining walls based on soil strength mobilization[J]. Journal of Geotechnical and Geoenvironmental Engineering,"2009,"135(1):"74?83.
[7] Yazdandoust M. Investigation on the seismic performance of steel?strip reinforced?soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering,"2017,"97:"216?232.
[8] 張建經(jīng),韓鵬飛.重力式擋墻基于位移的抗震設(shè)計(jì)方法研究——大型振動(dòng)臺(tái)模型試驗(yàn)研究[J].巖土工程學(xué)報(bào),2012,34(3):416?423.
ZHANG Jianjing,"HAN Pengfei. Displacement?based aseismic design method for gravity retaining walls—large scale shaking table tests[J]. Chinese Journal of Geotechnical Engineering,"2012,"34(3):"416?423.
[9] Li Sihan,"Cai Xiaoguang,"Jing Liping,"et al. Lateral displacement control of modular?block reinforced soil retaining walls under horizontal seismic loading[J]. Soil Dynamics and Earthquake Engineering,"2021,"141:"106485.
[10] 杜巖,謝謨文,蔣宇靜,等.基于固有振動(dòng)頻率的滑坡安全評(píng)價(jià)新方法[J].工程科學(xué)學(xué)報(bào),2015,37(9):"1118?1123.
DU Yan,"XIE Mowen,"JIANG Yujing,"et al. A new method for landslide safety assessments based on natural vibration frequency[J]. Chinese Journal of Engineering,"2015,37(9):"1118?1123.
[11] 孟鑫,劉鵬輝,王巍,等.地震作用下高速鐵路橋梁動(dòng)力響應(yīng)試驗(yàn)分析[J].振動(dòng)工程學(xué)報(bào),"2021,"34(6):"1250?1256.
MENG Xin,"LIU Penghui,"WANG Wei,"et al. Dynamic responses test analysis of high?speed railway bridges under earthquake action[J]. Journal of Vibration Engineering,"2021,"34(6):"1250?1256.
[12] 朱宏偉,姚令侃,陳曉龍,等. 土工格柵返包土工袋加筋土擋墻的地震響應(yīng)分析及設(shè)計(jì)建議[J]. 巖土工程學(xué)報(bào),2017,39(2):319?326.
Zhu Hongwei,"Yao Lingkan,"Chen Xiaolong,"et al. Seismic behaviors and design recommendations of ecological bag?reinforced retaining wall[J]. Chinese Journal of Geotechnical Engineering,"2017,"39(2):"319?326.
[13] Huang C C. Seismic response of vertical?face wrap-around reinforced soil walls[J]. Geosynthetics International,"2019,"26(2):"146?163.
[14] 伍永勝. 加筋土擋墻動(dòng)力特性及抗震設(shè)計(jì)方法研究[D].長(zhǎng)沙:"湖南大學(xué),2006.
Wu Yongsheng. The research on the dynamical property and anti?seismic design method of reinforced earth retaining walls[D]. Changsha:"Hunan University,"2006.
[15] Hatami K,"Bathurst R J. Effect of structural design on fundamental frequency of reinforced?soil retaining walls[J]. Soil Dynamics and Earthquake Engineering,"2000,"19(3):"137?157.
[16] Richardson G N,"Lee K L. Seismic design of reinforced earth walls[J]. Journal of the Geotechnical Engineering Division,"1975,"101(2):"167?188.
[17] Ghanbari A,"Hoomaan E,"Mojallal M. An analytical method for calculating the natural frequency of retaining walls[J]. International Journal of Civil Engineering,"2013,"11(1):"1?9.
[18] Sarbishei S,"Fakher A. Energy?based horizontal slice method for pseudo?static analysis of reinforced walls[J]. Geosynthetics International,"2012,"19(5):"370?384.
[19] Ramezani M S,"Ghanbari A,"Hosseini S A A. Analytical method for calculating natural frequencies of geosynthetic-reinforced wall with full?height concrete facing[J]. Geosynthetics International,"2017,"24(1):"1?13.
[20] 徐鵬,蔣關(guān)魯,胡耀芳,等. 整體剛性面板加筋土擋墻基頻影響因素計(jì)算分析[J]. 巖土力學(xué),2018,"39(12):4475?4481.
XU Peng,"JIANG Guanlu,"HU Yaofang,"et al. Calculation of fundamental frequencies of reinforced retaining walls with full?height rigid facing[J]. Rock and Soil Mechanics,"2018,"39(12):"4475?4481.
[21] 羅東雨,孫建剛,柳春光,等.樁?土?LNG儲(chǔ)罐振動(dòng)臺(tái)試驗(yàn)與數(shù)值仿真分析[J]. 振動(dòng)工程學(xué)報(bào),"2021,"34(3):"515?527.
LUO Dongyu,"SUN Jiangang,"LIU Chunguang,"et al. Pile?soil?LNG storage tank shaking table test and numerical simulation analysis[J]. Journal of Vibration Engineering,"2021,34(3):"515?527.
[22] 蔡曉光,王學(xué)鵬,李思漢,等.復(fù)合格賓土工格柵加筋土擋墻模型振動(dòng)臺(tái)試驗(yàn)[J].振動(dòng)工程學(xué)報(bào),"2023,"36(3):"767?775.
CAI Xiaoguang,"WANG Xuepeng,"LI Sihan,"et al. Shaking table test on the model of reinforced soil retaining wall with composite Gabion and geogrid[J]. Journal of Vibration Engineering,"2023,"36(3):"767?775.
[23] 蔡曉光,李思漢,黃鑫.雙級(jí)加筋土擋墻動(dòng)力特性振動(dòng)臺(tái)試驗(yàn)[J].中國(guó)公路學(xué)報(bào),2018,31(2):200?207.
CAI Xiaoguang,LI Sihan,HUANG Xin. Shaking table tests on dynamic characteristics of two?stage reinforced soil?retaining wall[J]. China Journal of Highway and Transport,2018,31(2):"200?207.
[24] 蔡曉光,李思漢,黃鑫.水平地震作用下雙級(jí)加筋土擋墻格柵應(yīng)變及破裂面分析[J].巖土工程學(xué)報(bào),2018,40(8):1528?1534.
CAI Xiaoguang,LI Sihan,HUANG Xin. Geogrid strain and failure surface of two?stage reinforced soil retaining wall under horizontal seismic loading[J]. Chinese Journal of Geotechnical Engineering,"2018,40(8):1528?1534.
[25] 李思漢. 模塊式加筋土擋墻動(dòng)力反應(yīng)試驗(yàn)研究及數(shù)值分析[D].三河:防災(zāi)科技學(xué)院,"2018.
Li Sihan. Test study and numerical analysis on dynamic response of block reinforced soil retaining walls[D]. Sanhe:"Institute of Disaster Prevention,"2018.
[26] Li Sihan,"Cai Xiaoguang,"Jing Liping,"et al. Reinforcement strain and potential failure surface of geogrid reinforced soil?retaining wall under horizontal seismic loading[J]. Shock and Vibration,"2020(3):"8864256.
[27] Cai Xiaoguang,"Li Sihan,"Xu Honglu,"et al. Shaking table study on the seismic performance of geogrid reinforced soil retaining wall[J]. Advances in Civil Engineering,"2021(4):"6668713.
[28] Iai S. Similitude for shaking table tests on Soil-Structure?Fluid model in 1g"gravitational field[J]. Soils and Foundations,"1989,29(1):105?118.
[29] Standard test method for determining tensile properties of geogrids by the single or multi?rib tensile method:ASTM D6637[S]. West Conshohocken,"PA:"ASTM,2015.
[30] 魏明,羅強(qiáng),蔣良濰,等. 懸臂式加筋土復(fù)合支擋結(jié)構(gòu)振動(dòng)臺(tái)模型試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2021,40(3):607?618.
WEI Ming,"LUO Qiang,"JIANG Liangwei,"et al. Shaking table tests on cantilever reinforced soil retaining walls[J]. Chinese Journal of Rock Mechanics and Engineering,"2021,"40(3):"607?618.
[31] 王濟(jì),胡曉. MATLAB在振動(dòng)信號(hào)處理中的應(yīng)用[M].北京:中國(guó)水利水電出版社,2006.
[32] 徐琨鵬.地下結(jié)構(gòu)擬靜力抗震分析方法及推覆試驗(yàn)研究[D].哈爾濱:中國(guó)地震局工程力學(xué)研究所,2019.
XU Kunpeng. Study on pseudo?static seismic analysis method of underground structures and pushover test[D]. Harbin:"Institute of Engineering Mechanics,"China Earthquake Administration,"2019.
Damage identification of two?tiered reinforced soil retaining wall under horizontal seismic loading
LI Si?han CAI Xiao?guang XU Hong?lu JING Li?ping HUANG Xin FENG Jia?yu
(1.College of Geological Engineering,"Institute of Disaster Prevention,"Sanhe 065201,"China;2.Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment,"Sanhe 065201,"China;3.Key Laboratory of Building Collapse Mechanism and Disaster Prevention,"China Earthquake Administration,"Sanhe 065201,"China;4.Key Laboratory of Earthquake Engineering and Engineering Vibration,"Institute of Engineering Mechanics,"China Earthquake Administration,"Harbin 150080,"China)
Abstract: In allusion to inadequate research on damage identification of multi-tiered reinforced soil retaining wall,"a large shaking table test of two-tiered reinforced soil retaining wall was carried out. The time domain identification method was used to analyze the dynamic response characteristics of the model under horizontal seismic loading,"and the distribution laws of the natural frequency and damping ratio of the upper and lower retaining walls were expounded. The corresponding relationship between the structural damage degree and the natural frequency and damping ratio was explored. The results show that the natural frequencies of the upper and lower retaining walls are basically the same before loading,"and the damping ratio decreases with the increase of wall height. With the accumulation of loading conditions,"the natural frequency gradually decreases and the damping ratio gradually increases. The distribution curves of natural frequency and damping ratio are fitted by polynomial method. The comparative analysis shows that when the natural frequency decreases by 0~15.41% and the damping ratio increases by 0~299.35%,"the structure is basically intact. When the natural frequency decreases 15.41%~18.92% and the damping ratio increases 299.35%~360.07%,"the structure is slight damage. When the natural frequency decreases by 18.92%~21.29% and the damping ratio increases by 360.07%~398.21%,"the structure is in the middle damage stage;"when the natural frequency decreases by 21.29%~29.60% and the damping ratio increases by 398.21%~532.99%,"the structure is destroyed.
Key words:"two-tiered reinforced soil retaining wall;"damage identification;"shaking table test;"time domain identification method;"damping ratio
作者簡(jiǎn)介: 李思漢(1992―),男,博士,講師。"E?mail:"lisihan@st.cidp.edu.cn。
通訊作者: 蔡曉光(1979―),男,博士,教授。"E?mail:"caixiaoguang123@163.com。