摘要: 針對(duì)調(diào)諧質(zhì)量阻尼器(Tuned Mass Damper,TMD)通常需要較大的附加質(zhì)量,安裝空間受限以及質(zhì)量塊運(yùn)動(dòng)時(shí)需要較大的行程等問題,基于平動(dòng)?轉(zhuǎn)動(dòng)運(yùn)動(dòng)形式相互轉(zhuǎn)化和能量守恒原理,本文提出了利用轉(zhuǎn)動(dòng)慣量虛擬平動(dòng)慣性質(zhì)量的TMD控制系統(tǒng)(Rotary inertia virtualizing translational mass based Tuned Mass Damper,簡稱RTMD),進(jìn)行RTMD控制系統(tǒng)的設(shè)計(jì)概念,以單自由度結(jié)構(gòu)對(duì)象為例建立了附加RTMD控制系統(tǒng)的運(yùn)動(dòng)方程,分析了RTMD控制系統(tǒng)參數(shù)對(duì)結(jié)構(gòu)振動(dòng)控制效果的影響規(guī)律。結(jié)果表明控制效果與系統(tǒng)的質(zhì)量比、慣質(zhì)比、阻尼比等參數(shù)密切相關(guān),相關(guān)規(guī)律也可以推廣到一般多自由度結(jié)構(gòu)體系一階振動(dòng)的調(diào)諧吸振減振控制。進(jìn)行了模型振動(dòng)臺(tái)試驗(yàn)研究,時(shí)域分析和頻域分析結(jié)果均表明,試驗(yàn)結(jié)果與基于理論模型的數(shù)值分析結(jié)果一致性良好,驗(yàn)證了RTMD控制系統(tǒng)理論模型的正確性、設(shè)計(jì)參數(shù)的合理性以及控制系統(tǒng)應(yīng)用于實(shí)際問題的可行性。
關(guān)鍵詞: 結(jié)構(gòu)振動(dòng)控制;"TMD控制系統(tǒng);"平動(dòng)?轉(zhuǎn)動(dòng)轉(zhuǎn)化;"轉(zhuǎn)動(dòng)慣量;"振動(dòng)臺(tái)試驗(yàn)
中圖分類號(hào): TU352.1 """文獻(xiàn)標(biāo)志碼: A """文章編號(hào): 1004-4523(2024)08-1377-09
DOI:10.16385/j.cnki.issn.1004-4523.2024.08.012
引""言
調(diào)諧質(zhì)量阻尼器(Tuned Mass Damper,TMD)由于安裝簡單、方便,維修更換容易,并且對(duì)結(jié)構(gòu)功能的影響較小,無需外部能量輸入便可以發(fā)揮作用而被廣泛應(yīng)用,可以較好地控制由風(fēng)振或地震等不利條件引起的結(jié)構(gòu)振動(dòng)響應(yīng)。但是TMD控制通常需要給結(jié)構(gòu)附加一定的質(zhì)量,有時(shí)所附加的質(zhì)量很大才能對(duì)結(jié)構(gòu)起到一定的控制效果。為了減小附加質(zhì)量,同時(shí)保證原有的控制效果,各國學(xué)者開始對(duì)TMD裝置進(jìn)行更加深入的研究。Smith[1]通過力學(xué)與電學(xué)之間的力?電流類比,首次提出慣容器(Inerter)的概念,隨后將慣容器應(yīng)用在汽車的懸架系統(tǒng)中[2],測(cè)試出含有慣容的懸架系統(tǒng)性能要優(yōu)于普通的懸架系統(tǒng)。由于慣性元件可以放大速度和產(chǎn)生幾倍甚至幾百倍于自身的慣性質(zhì)量等特征,此后被國內(nèi)外學(xué)者逐漸關(guān)注、研究并應(yīng)用到土木工程領(lǐng)域。Arakaki等[3]將滾珠絲杠放大速度的特性與黏滯阻尼器相結(jié)合,增大了阻尼器的有效黏滯阻尼,試驗(yàn)表明提高了阻尼器的耗能能力。Saito等[4]以單自由度結(jié)構(gòu)為試驗(yàn)?zāi)P停芯苛藨T性黏滯阻尼器(Viscous Damper with Inertial Mass)在最優(yōu)狀態(tài)下的減振效果。基于質(zhì)量放大效應(yīng)的思路,Hwang等[5]提出了轉(zhuǎn)動(dòng)慣性質(zhì)量的黏滯阻尼器"(Viscous Mass Damper,"VMD),該裝置除了具有放大阻尼的效應(yīng)外,還會(huì)有額外的慣性質(zhì)量生成,進(jìn)一步提高了阻尼器的耗能能力。Lazar等[6]將傳統(tǒng)TMD中的質(zhì)量塊用慣性元件替代,稱之為調(diào)諧慣性阻尼器(TID),并進(jìn)行試驗(yàn),試驗(yàn)表明此裝置具有較好的減振效果。劉良坤等[7]推導(dǎo)了TID在白噪聲的作用下最優(yōu)阻尼和最優(yōu)剛度參數(shù)的解析式,并且得到了TID的最佳控制參數(shù)。Marian等[8]將慣容器和TMD相結(jié)合,設(shè)計(jì)出一種被動(dòng)控制裝置——調(diào)諧質(zhì)量慣容阻尼器(Tuned Mass Damper Inerter,"TMDI),這種被動(dòng)控制裝置利用了慣容器的質(zhì)量放大效應(yīng),通過三自由度結(jié)構(gòu)分析,發(fā)現(xiàn)TMDI附加在結(jié)構(gòu)的減振效果比傳統(tǒng)的TMD附加在結(jié)構(gòu)的減振效果更優(yōu)。莫?jiǎng)P程[9]對(duì)比了慣性阻尼器和黏滯阻尼器的減振效果,經(jīng)過試驗(yàn)表明慣性阻尼器的減振效果要優(yōu)于黏滯阻尼器。綜上所述,利用慣性元件的質(zhì)量放大效應(yīng)特征,調(diào)整子結(jié)構(gòu)的頻率,與主結(jié)構(gòu)的頻率一致,達(dá)到抑制主結(jié)構(gòu)振動(dòng)響應(yīng)的目的[10?11],慣性元件與阻尼、彈簧等組合形成的慣性系統(tǒng)具有耗能增效的作用,與被動(dòng)控制裝置結(jié)合使用能夠達(dá)到更好的結(jié)構(gòu)振動(dòng)抑制效果[12?14]。Zhang等[15?17]提出了犧牲轉(zhuǎn)動(dòng)速度以換取更大的轉(zhuǎn)動(dòng)慣性(即轉(zhuǎn)動(dòng)慣量)的方法,在懸吊結(jié)構(gòu)擺振控制研究中進(jìn)行了大量的實(shí)驗(yàn)嘗試,相關(guān)方法與慣容出發(fā)點(diǎn)不同,但結(jié)果類似。
本文提出的RTMD控制系統(tǒng)是為了減小TMD附加給結(jié)構(gòu)的實(shí)際質(zhì)量需求,同時(shí)降低對(duì)附加結(jié)構(gòu)安裝空間的需求,降低控制代價(jià)的同時(shí)RTMD能夠表現(xiàn)出更魯棒的控制效果,還可以推廣到結(jié)構(gòu)振動(dòng)主動(dòng)控制的多個(gè)相關(guān)領(lǐng)域[18?19]。在提出轉(zhuǎn)動(dòng)慣量虛擬平動(dòng)慣性質(zhì)量的控制系統(tǒng)(RTMD)后,建立了單自由度結(jié)構(gòu)附加RTMD控制系統(tǒng)模型,通過對(duì)參數(shù)的影響分析以及模型的試驗(yàn)驗(yàn)證,研究控制系統(tǒng)參數(shù)對(duì)結(jié)構(gòu)振動(dòng)控制效果的影響規(guī)律以及RTMD控制裝置設(shè)計(jì)的合理性和有效性。
1 RTMD控制系統(tǒng)設(shè)計(jì)概念
RTMD控制系統(tǒng)通過滾珠絲杠來實(shí)現(xiàn)平動(dòng)?轉(zhuǎn)動(dòng)運(yùn)動(dòng)方式的相互轉(zhuǎn)化,滾珠絲杠外部有套筒,套筒可以在滾珠絲杠上線性運(yùn)動(dòng)。套筒兩端有凸起,套筒固定于質(zhì)量塊內(nèi)部,保證質(zhì)量塊在線性運(yùn)動(dòng)時(shí)不與套筒滑移脫落。如圖1所示,絲杠的長度應(yīng)遠(yuǎn)大于質(zhì)量塊在受到外部激勵(lì)之后平動(dòng)的最大值(行程范圍)。絲杠兩端固定在被控結(jié)構(gòu)上,滾珠絲杠與固定端用軸承連接,可以保證絲杠在固定端處的自由轉(zhuǎn)動(dòng),絲杠穿過兩固定端外接飛輪,飛輪與絲杠等速旋轉(zhuǎn)。飛輪做成空心圓環(huán)狀,可以減小控制系統(tǒng)的實(shí)際安裝質(zhì)量,加設(shè)飛輪是為了獲得較大的轉(zhuǎn)動(dòng)慣量,產(chǎn)生大于自身實(shí)際質(zhì)量幾倍甚至幾百倍的虛擬平動(dòng)慣性質(zhì)量效應(yīng)。如圖2所示,兩側(cè)固定端與質(zhì)量塊之間設(shè)置彈簧,提供恢復(fù)力,保證質(zhì)量塊在線性運(yùn)動(dòng)時(shí)的調(diào)諧機(jī)制,發(fā)揮TMD的正常功能。
2 系統(tǒng)運(yùn)動(dòng)方程
以單自由度結(jié)構(gòu)為例進(jìn)行分析,相關(guān)結(jié)果可以推廣到一般多自由度體系的一階振動(dòng)問題[20?21]。如圖3所示,單自由度結(jié)構(gòu)附加RTMD控制系統(tǒng)的運(yùn)動(dòng)方程為:
3 RTMD系統(tǒng)參數(shù)影響分析
3.1 質(zhì)量比對(duì)控制效果的影響
3.2 慣質(zhì)比對(duì)控制效果的影響
由圖6可見,結(jié)構(gòu)在無控狀態(tài)下,當(dāng)頻率處在結(jié)構(gòu)的自振頻率時(shí),位移幅值達(dá)到最大,此時(shí)結(jié)構(gòu)處在最不利的振動(dòng)狀態(tài)。如表3所示,相比于無控制狀態(tài),當(dāng)結(jié)構(gòu)加入RTMD控制系統(tǒng)之后,振幅在共振頻率范圍內(nèi)RTMD控制狀態(tài)分別下降了18.6,22.6,27.43,32.8 dB。
3.3 阻尼比對(duì)控制效果的影響
當(dāng)外部激勵(lì)頻率在3.00~3.39 Hz范圍內(nèi)時(shí),結(jié)構(gòu)進(jìn)入“共振”區(qū)間,由圖7相位角圖可以看出,在此頻率范圍內(nèi)時(shí)相位角迅速接近90°,當(dāng)達(dá)到結(jié)構(gòu)自振頻率時(shí),RTMD控制系統(tǒng)與結(jié)構(gòu)相位完全相反達(dá)到90°,此時(shí)是控制效果最佳狀態(tài)。隨著控制系統(tǒng)的阻尼比增加,減振效果越來越差,所以設(shè)計(jì)控制裝置時(shí),選擇阻尼比較小的材料。但是選擇小阻尼比時(shí),對(duì)頻率比的敏感性會(huì)增加,因此在進(jìn)行RTMD控制系統(tǒng)的設(shè)計(jì)時(shí),需要確定最優(yōu)的頻率和阻尼比。
根據(jù)圖8可知,用最優(yōu)參數(shù)確定RTMD控制系統(tǒng)的剛度和阻尼后,被控結(jié)構(gòu)的振幅在3.11~3.96 Hz頻率范圍內(nèi)下降約43.86%,減振效果明顯且振幅波動(dòng)較為平緩。在上述頻率范圍之外,RTMD幾乎沒有對(duì)結(jié)構(gòu)產(chǎn)生控制作用,并且在非共振區(qū)也沒有對(duì)結(jié)構(gòu)產(chǎn)生明顯的負(fù)面影響。在圖5和7中,可以明顯地看出當(dāng)RTMD控制系統(tǒng)所在的頻率位于結(jié)構(gòu)有控制效果的頻率范圍之外時(shí),此時(shí)由于控制系統(tǒng)的剛度和阻尼沒有取得最優(yōu)值,RTMD控制系統(tǒng)會(huì)給結(jié)構(gòu)帶來一定的負(fù)面效果,使被控結(jié)構(gòu)的振幅大于無控狀態(tài)時(shí)結(jié)構(gòu)的振幅。綜上所述,為達(dá)到理想的減振效果,在設(shè)計(jì)RTMD控制系統(tǒng)時(shí),要合理選擇最佳的阻尼比和頻率比,使得RTMD系統(tǒng)的減振效果和控制頻帶處于一個(gè)最優(yōu)的組合范圍內(nèi),這也提示我們今后對(duì)RTMD控制系統(tǒng)開展可變阻尼設(shè)計(jì)研究的意義。
4 試驗(yàn)研究
4.1 模型配置
4.2 自由振動(dòng)試驗(yàn)
由于阻尼的存在會(huì)引起結(jié)構(gòu)不同的動(dòng)力特性及復(fù)雜的動(dòng)力響應(yīng),通過理論模擬分析和振動(dòng)臺(tái)試驗(yàn)驗(yàn)證來綜合確定RTMD控制系統(tǒng)的阻尼參數(shù)。給質(zhì)量塊一個(gè)初始狀態(tài)(初始位移),測(cè)出質(zhì)量塊的位移時(shí)程曲線如圖10所示。由圖10可以看出,通過數(shù)值模擬與試驗(yàn)得到的質(zhì)量塊位移響應(yīng)一致,根據(jù)對(duì)數(shù)衰減率計(jì)算出阻尼比為14%。由于試驗(yàn)中控制裝置的兩端固定支座、滾珠絲杠與套筒之間、質(zhì)量塊與振動(dòng)臺(tái)臺(tái)面之間存在不可避免的機(jī)械摩擦阻力,所以在1.2 s之后試驗(yàn)曲線不再像模擬曲線那樣產(chǎn)生多個(gè)周期的往復(fù)振動(dòng)。圖11為頻域曲線,在自由衰減運(yùn)動(dòng)狀態(tài)下試驗(yàn)值和模擬值的曲線趨勢(shì)一致,在共振處達(dá)到峰值。
4.3 強(qiáng)迫振動(dòng)試驗(yàn)
通過輸入不同頻率的正弦激勵(lì)作用,由圖13可知,質(zhì)量塊的行程在接近自振頻率時(shí)達(dá)到最大值72.1 mm,當(dāng)偏離此頻率時(shí)質(zhì)量塊的行程逐漸降低,這與傳統(tǒng)的TMD系統(tǒng)的工作機(jī)理一致。
5 結(jié)""論
本文提出利用轉(zhuǎn)動(dòng)慣量虛擬平動(dòng)慣性質(zhì)量的TMD,即RTMD控制系統(tǒng)的概念,采用RTMD控制以單自由度結(jié)構(gòu)為代表的受控對(duì)象,進(jìn)行參數(shù)影響分析,獲得控制系統(tǒng)參數(shù)影響規(guī)律的基礎(chǔ)上,進(jìn)行了控制系統(tǒng)模型的振動(dòng)臺(tái)試驗(yàn)驗(yàn)證,得到以下主要結(jié)論:
(1)參數(shù)分析結(jié)果表明,當(dāng)質(zhì)量比和慣質(zhì)比較大、阻尼比較小時(shí),RTMD的控制效果較好,當(dāng)激勵(lì)頻率接近結(jié)構(gòu)的自振頻率時(shí),RTMD的控制效果最佳。
(2)振動(dòng)臺(tái)試驗(yàn)驗(yàn)證了RTMD控制系統(tǒng)理論模型的正確性和合理性。通過時(shí)域分析和頻域分析得到試驗(yàn)值和模擬值高度一致的結(jié)果,表明此裝置可以產(chǎn)生預(yù)期的虛擬平動(dòng)慣性質(zhì)量效應(yīng),并且產(chǎn)生的虛擬質(zhì)量效應(yīng)已經(jīng)超過了質(zhì)量塊的原有實(shí)際物理質(zhì)量。
(3)通過RTMD與TMD兩種系統(tǒng)傳遞函數(shù)的對(duì)比,可知兩者在達(dá)到類似控制效果的前提下,RTMD控制系統(tǒng)的實(shí)際質(zhì)量要遠(yuǎn)遠(yuǎn)低于TMD控制系統(tǒng)的實(shí)際質(zhì)量,可以達(dá)到減輕控制系統(tǒng)實(shí)際物理質(zhì)量的目的,并且RTMD系統(tǒng)的魯棒性更優(yōu)。
本文研究結(jié)果表明基于轉(zhuǎn)動(dòng)慣量虛擬平動(dòng)慣性質(zhì)量的方法是可行的,RTMD控制系統(tǒng)的原理完全不同于現(xiàn)有的慣容裝置,現(xiàn)有文獻(xiàn)報(bào)導(dǎo)的慣容裝置(如TMDI)均是一個(gè)額外附加的元件,需要與TMD質(zhì)量塊采用不同的連接方式(如并聯(lián),串聯(lián)等)結(jié)合起來使用,共同工作。本文提出的RTMD系統(tǒng)是一個(gè)獨(dú)立、完整、高度集成的控制系統(tǒng),不需要與TMD并聯(lián)、串聯(lián)等,是直接安裝在被控結(jié)構(gòu)上,即可進(jìn)行工作的TMD系統(tǒng)。在本文方法和概念模型的基礎(chǔ)上,未來還有很多技術(shù)問題值得深入研究,例如通過設(shè)計(jì)不同的飛輪尺寸和導(dǎo)程,獲得不同量級(jí)的虛擬平動(dòng)慣性質(zhì)量等。
參考文獻(xiàn):
[1] Smith M C. Synthesis of mechanical networks:"the inerter[J]. IEEE Transactions on Automatic Control,"2002,"47(10):"1648-1662.
[2] Smith M C,"Wang F C. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics,"2004,"42(4):"235-257.
[3] Arakaki T,"Kuroda H,"Arima F,"et al. Development of seismic devices applied to ball screw:"part 1 basic performance test of RD-series[J]. AIJ Journal of Technology and Design,"1999,"5(8):"239-244.
[4] Saito K,"Inoue N. A study on optimum response control of passive control systems using viscous damper with inertial mass:"substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems[J]. AIJ Journal of Technology and Design,2007,13(26):457-462.
[5] Hwang J S,"Kim J,"Kim Y M. Rotational inertia dampers with toggle bracing for vibration control of a building structure[J]. Engineering Structures,"2007,"29(6):"1201-1208.
[6] Lazar I F,"Neild S A,"Wagg D J. Using an inerter-based device for structural vibration suppression[J]. Earthquake Engineering amp; Structural Dynamics,"2014,"43(8):"1129-1147.
[7] 劉良坤,譚平,閆維明,等.具有調(diào)諧慣容阻尼器的建筑結(jié)構(gòu)減震設(shè)計(jì)[J]. 振動(dòng)、測(cè)試與診斷,"2018,38(4):"751-757.
Liu Liangkun,"Tan Ping,"Yan Weiming,"et al. The seismic mitigation design of tuned inerter damper for building structure[J]. Journal of Vibration,"Measurement amp; Diagnosis,"2018,38(4):"751-757.
[8] Marian L,"Giaralis A. Optimal design of a novel tuned mass-damper-inerter (TMDI)"passive vibration control configuration for stochastically support-excited structural systems[J]. Probabilistic Engineering Mechanics,"2014,"38:"156-164.
[9] 莫?jiǎng)P程. 采用慣性質(zhì)量阻尼器的斜拉索振動(dòng)控制研究[D]. 杭州:"浙江大學(xué),"2017.
Mo Kaicheng. Vibration control of stay cables using inertial mass damper[D]. Hangzhou:"Zhejiang University,"2017.
[10] 潘超,韓笑,張瑞甫,等. 耗能增效慣容系統(tǒng)的自適應(yīng)權(quán)重粒子群優(yōu)化[J]. 振動(dòng)工程學(xué)報(bào),2022,"35(5):"1233-1241.
Pan Chao,"Han Xiao,"Zhang Ruifu,"et al. Adaptively weighted particle swarm optimization for damping enhanced inerter system[J]. Journal of Vibration Engineering,"2022,"35(5):"1233-1241.
[11] 趙祥昇,李春祥,曹黎媛. 結(jié)構(gòu)-NFVD-TTMDI的控制性能[J]. 振動(dòng)工程學(xué)報(bào),2022,"35(1):"55-63.
Zhao Xiangsheng,"Li Chunxiang,"Cao Liyuan. Control performance of structure-NFVD-TTMDI[J]. Journal of Vibration Engineering,"2022,"35(1):"55-63.
[12] 張春巍,歐進(jìn)萍. 電磁式慣性型作動(dòng)器與結(jié)構(gòu)耦合系統(tǒng)建模與試驗(yàn)研究[J]. 振動(dòng)工程學(xué)報(bào),2006,19(3):"289-295.
Zhang Chunwei,"Ou Jinping. Modeling and testing for electromagnetic mass damper and structure coupled system[J]. Journal of Vibration Engineering,"2006,19(3):"289-295.
[13] 周子博,申永軍,邢海軍,等. 含慣容和杠桿元件的減振系統(tǒng)參數(shù)優(yōu)化及性能分析[J]. 振動(dòng)工程學(xué)報(bào),2022,"35(2):"407-416.
Zhou Zibo,"Shen Yongjun,"Xing Haijun,"et al. Parameter optimization and performance analysis of vibration mitigation systems with inertia and lever components[J]. Journal of Vibration Engineering,"2022,"35(2):"407-416.
[14] Ma R S,"Bi K M,"Hao H. Inerter-based structural vibration control:"a state-of-the-art review[J]. Engineering Structures,"2021,"243:"112655.
[15] Zhang C W,"Ou J P. Modeling and control of sway vibration for flexible suspending structure system[C]//The 7th World Congress on Computational Mechanics,"Los Angeles,"California,"USA,"2006.
[16] Zhang C W,"Li L Y,"Ou J P. Principles and applications of structural pendular vibration control[C]//Earth and Space Conference 2008:"Proceedings of the 11th Aerospace Division International Conference on Engineering,"Science,"Construction,"and Operations in Challenging Environments,"Long Beach,"California,"USA,"2008.
[17] Zhang C W,"Xu H B. Recent advances on structural vibration control and blast resistance research in HIT blast resistance and protective engineering laboratory[C]//Proceeding of the 1st Asia Pacific Young Researchers and Graduates Symposium,"Kunsan,"South Korea,"2009.
[18] Zhang C W. The active rotary in-ertia driver system for flutter vibration control of bridges and various promising applications[J]. Science China Technological Sciences,"2023,"66(2):"390-405.
[19] Zhang C W,"Ou J P. Bench-scale building controlled by a miniature AMD system for education in control engineering[C]//Proceedings of the 8th International Conference on Control,"Automation,"Robotics and Vision (ICARCV),"2004:"1791-1795.
[20] 陳政清,華旭剛.人行橋的振動(dòng)與動(dòng)力設(shè)計(jì)[M].北京:人民交通出版社,2009:"199-200.
Chen Zhengqing,"Hua Xugang. Vibration and Dynamic Design of Footbridges[M]. Beijing:"China Communication Press,"2009:"199-200.
[21] 劉晶波,杜修力. 結(jié)構(gòu)動(dòng)力學(xué)[M]. 北京:機(jī)械工業(yè)出版社,2005.
[22] Rana R,"Soong T T. Parametric study and simplified design of tuned mass dampers[J]. Engineering Structures,"1998,"20(3):193-204.
TMD control system based on kinetic energy transformation and the use of rotary inertia to virtualize translational mass
ZHANG Chun-wei SHI Yi-feng ZHAN Xin LIU Zhi-hu SUN Li
(1.School of Architecture and Civil Engineering,"Shenyang University of Technology,"Shenyang 110870,"China;"2.School of Civil Engineering,"Shenyang Jianzhu University,"Shenyang 110168,"China)
Abstract: The traditional Tuned Mass Damper (TMD)"has many issues,"such as large additional mass requirement,"limited installation space restrictions and large motion stroke required when the mass block vibrates. Based on the principle of translation-rotation mutual transformation and conservation of kinetic energy,"the rotary inertia virtualizing translational mass based Tuned Mass Damper (RTMD)"is proposed in this paper. The conceptual design of RTMD control system is carried out,"and the motion equation of RTMD control system is established with the reference of a single degree of freedom system. The influence law of RTMD control system parameters on the vibration control effect of structure is analyzed. It is discovered that the control effect is closely related to the system’s physical mass ratio,"inertial mass ratio,"damping ratio,"and such regulations can be applicable to general multiple degrees of freedom systems. The correctness of the design parameters of the RTMD control system and the realizability of the control system are verified by shaking table test of the design model. The results of time domain analysis and frequency domain analysis show that the dynamic response obtained from shaking table test is consistent with the dynamic response of numerical simulation,"which verifies the correctness of the established theoretical equations of RTMD control system.
Key words: structural vibration control;"TMD control system;"transformation of translational and rotational motions;"rotary inertia;"shaking table experiment
作者簡介: 張春?。?977―),男,博士,教授,博士生導(dǎo)師。E-mail:"zhangchunwei@sut.edu.cn。