摘 要: 旨在研究海南黑山羊ATG16L2基因啟動(dòng)子區(qū)的結(jié)構(gòu)特征及其遺傳分布情況,為進(jìn)一步探索該基因的表達(dá)調(diào)控機(jī)制及功能提供理論依據(jù)。本研究以200頭海南黑山羊?yàn)檠芯繉?duì)象,構(gòu)建DNA混池,采用Sanger法測(cè)序?qū)D虾谏窖駻TG16L2基因啟動(dòng)子區(qū)的多態(tài)性進(jìn)行初篩,應(yīng)用PCR-RFLP技術(shù)對(duì)200頭海南黑山羊個(gè)體進(jìn)行基因型鑒定。對(duì)篩選到的SNP位點(diǎn)進(jìn)行連鎖不平衡分析,構(gòu)建單倍型。利用生物信息學(xué)方法分析SNP位點(diǎn)對(duì)海南黑山羊ATG16L2基因表達(dá)的影響。在海南黑山羊ATG16L2基因啟動(dòng)子區(qū)共檢測(cè)到3個(gè)SNPs位點(diǎn),分別為SNP1(g.30667970T>C)、SNP2(g.30668540T>C)和SNP3(g.30668664C>T),且彼此連鎖。SNP1和SNP2位點(diǎn)均表現(xiàn)為中度多態(tài)性,SNP3位點(diǎn)表現(xiàn)為低度多態(tài)性,且符合Hardy-Weinberg平衡(P>0.05)。單倍型分析結(jié)果顯示,H1、H2、H3和H4單倍型頻率分別為0.321、0.304、0.271和0.097,且H1(CGC)為優(yōu)勢(shì)單倍型。生物信息學(xué)分析顯示,山羊ATG16L2基因共預(yù)測(cè)到3個(gè)啟動(dòng)子和4個(gè)CpG島區(qū)域;存在2個(gè)重復(fù)元件LINE2(-1 989~-1 826 bp、-562~-426 bp)、hAT-Charlie (-1 804~-1 511 bp)以及5個(gè)CCAAT-Box、13個(gè)CAAT-Box、10個(gè)CGCG-Box、11個(gè)GATA-Box和2個(gè)TATA-Box。綜合多種在線軟件預(yù)測(cè)發(fā)現(xiàn),上述SNPs可能通過影響ATG16L2基因的啟動(dòng)子區(qū)的順式作用元件,從而影響海南黑山羊ATG16L2基因的轉(zhuǎn)錄表達(dá)。本研究在海南黑山羊ATG16L2基因啟動(dòng)子序列中發(fā)現(xiàn)3個(gè)SNPs位點(diǎn),其中SNP1和SNP2表現(xiàn)為中度多態(tài)性,SNP3表現(xiàn)為低度多態(tài)性,并預(yù)測(cè)這些SNPs可能影響轉(zhuǎn)錄因子結(jié)合,從而調(diào)控基因表達(dá),為進(jìn)一步探究ATG16L2基因功能及其調(diào)控機(jī)制提供了理論依據(jù)。
關(guān)鍵詞: 海南黑山羊;ATG16L2基因;啟動(dòng)子;多態(tài)性;生物信息學(xué)
中圖分類號(hào): S827.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)11-4980-12
收稿日期:2024-05-14
基金項(xiàng)目:國家自然科學(xué)基金青年基金項(xiàng)目(32202631);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(財(cái)政部和農(nóng)業(yè)農(nóng)村部-CARS38)
作者簡介:王 歡(1997-),女,河南南陽人,碩士生,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:772101737@qq.com
*通信作者:陳 思,主要從事反芻動(dòng)物遺傳免疫學(xué)研究,E-mail:chensi.ruth@hotmail.com
Polymorphism Analysis of the ATG16L2 Gene Promoter Region in Hainan Black Goat
WANG" Huan1, CHEN" Taoyu1, WU" Hui2, MENG" Yong1, LI" Shiyuan1, QIAN" Hejie1, NIU" Shihua1, MAN" Churiga1, CHEN" Qiaoling1, GAO" Hongyan1, DU" Li1, WANG" Fengyang1, CHEN" Si1*
(1.Key Laboratory of Tropical Animal Reproduction amp; Breeding and Epidemic Disease
Research of Hainan Province, College of Tropical Agriculture and Forestry, Hainan University,
Haikou 570228," China;
2.Animal Husbandry and Veterinary Workstation of Barkol Kazak
Autonomous County, Hami City, Xinjiang
Uygur Autonomous Region, Hami 839202," China)
Abstract:" The study aimed to investigate the structural characteristics and genetic distribution of the ATG16L2 gene promoter region in Hainan Black goat, providing a theoretical basis for further exploring the expression regulation mechanism and function of this gene. This study focused on 200 Hainan Black goats, constructing a DNA pooling strategy. The polymorphism of the ATG16L2 gene promoter region in Hainan Black goats was initially screened using Sanger sequencing. PCR-RFLP technology was applied for genotyping the 200 Hainan Black goats. Linkage disequilibrium analysis was performed on the identified SNP loci to construct haplotypes. Bioinformatics methods were utilized to analyze the impact of SNP loci on the expression of the ATG16L2 gene in Hainan Black goats. The promoter region of the ATG16L2 gene in Hainan Black goats contained 3 linked single nucleotide polymorphisms (SNPs): SNP1 (g.30667970T>C), SNP2 (g.30668540T>C), and SNP3 (g.30668664C>T). Both SNP1 and SNP2 exhibited moderate levels of polymorphism, whereas SNP3 showed low levels. Notably, all three SNPs conformed to the principles of Hardy-Weinberg equilibrium(P>0.05). The haplotype analysis revealed that the frequencies of haplotype H1, H2, H3, and H4 were 0.321, 0.304, 0.271, and 0.097, respectively, with H1 (CGC) being the predominant haplotype.The bioinformatics analysis results showed that there were 3 promoters, 4 CpG island regions, 2 repetitive elements LINE2 (-1 989--1 826 bp, -562--426 bp), hAT-Charlie (-1 804--1 511 bp), and 5 CCAAT-Box, 13 CAAT-Box, 10 CGCG-Box, 11 GATA-Box and 2 TATA-Box of the ATG16L2 gene in Hainan Black goat. The integrated prediction from various online tools suggests that the above SNPs may affect the expression regulation of the ATG16L2 gene in Hainan Black goats by influencing the changes in transcription factors in the gene’s promoter region. In this study, 3 SNP loci were identified in the promoter sequence of the ATG16L2 gene in Hainan Black goats. Among these, SNP1 and SNP2 exhibited moderate polymorphism, while SNP3 showed low polymorphism. It is predicted that these SNPs may influence transcription factor binding, thereby regulating gene expression. This provides a theoretical basis for further exploration of the function and regulatory mechanisms of the ATG16L2 gene.
Key words: Hainan Black goat; ATG16L2 gene; promoter; polymorphism; bioinformatics
*Corresponding author:CHEN Si, E-mail: chensi.ruth@hotmail.com
自噬是一種保守的細(xì)胞降解途徑,由自噬相關(guān)基因(autophagy-related genes, ATG)編碼的蛋白介導(dǎo),它在維持機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)[1]、抵抗應(yīng)激反應(yīng)[2]、調(diào)節(jié)先天性免疫反應(yīng)[3]、緩解炎癥反應(yīng)[4]方面起著至關(guān)重要的作用,是機(jī)體抵抗病原體感染的重要防御機(jī)制。ATG16L2是自噬相關(guān)蛋白16-1(autophagy-related 16-like 1, ATG16L1)的旁系同源物,是自噬體形成的另一種關(guān)鍵自噬蛋白,它能夠與其他蛋白如ATG5、ATG16L1等協(xié)同參與巨自噬、自噬小體組裝、線粒體自噬等生物學(xué)過程。海南黑山羊是中國熱帶島嶼上的山羊品種,也是海南獨(dú)特的地方品種[5]。海南黑山羊經(jīng)過長期自然選擇,逐步形成了耐粗飼、抗病力強(qiáng)、耐高溫高濕的品種特性,并且具備肉質(zhì)鮮美、無膻味、營養(yǎng)豐富、肉質(zhì)鮮嫩的特點(diǎn)[6-7]。Wang等[8]通過細(xì)胞水平和活體水平研究ATG16L2基因?qū)LRP3炎癥小體的影響,發(fā)現(xiàn)ATG16L2在調(diào)控異常炎癥反應(yīng)中存在潛在的作用。Mo等[9]通過對(duì)中國人群ATG16L2 rs11235604多態(tài)性與類風(fēng)濕性關(guān)節(jié)炎的遺傳關(guān)聯(lián)分析發(fā)現(xiàn),ATG16L2 rs11235604與類風(fēng)濕性關(guān)節(jié)炎(RA)的發(fā)病率相關(guān)。Luu等[10]研究發(fā)現(xiàn),ATG16L2 rs11235667與炎癥性腸病密切相關(guān)。Ma等[11]研究結(jié)果表明,ATG16L2是中國人群中克羅恩病的易感基因,rs11235604 SNP與ATG16L2表達(dá)下調(diào)顯著相關(guān)。Molineros等[12]通過薈萃分析發(fā)現(xiàn),ATG16L2基因的rs11235604與系統(tǒng)性紅斑狼瘡(SLE)存在關(guān)聯(lián)。上述研究說明,ATG16L2的多態(tài)性與多種免疫相關(guān)疾病的發(fā)生發(fā)展密切相關(guān)。
啟動(dòng)子是位于基因轉(zhuǎn)錄起始位點(diǎn)上游的特定DNA片段,在調(diào)控基因表達(dá)過程中發(fā)揮重要作用。啟動(dòng)子通過染色質(zhì)重塑促進(jìn)核小體解聚、調(diào)節(jié)轉(zhuǎn)錄起始復(fù)合物形成、與特定轉(zhuǎn)錄因子相互作用以及經(jīng)歷表觀遺傳修飾等機(jī)制調(diào)控基因轉(zhuǎn)錄活性。深入研究啟動(dòng)子功能對(duì)于了解生物的生長發(fā)育、防御系統(tǒng)、疾病等都有非常重要的意義。多項(xiàng)研究揭示啟動(dòng)子區(qū)域的多態(tài)性可能通過改變啟動(dòng)子活性[13-15]和轉(zhuǎn)錄因子[16-17]結(jié)合等來影響基因表達(dá)[18]。單核苷酸多態(tài)性(single nucleotide polymorphism, SNP)是繼限制性片段長度多態(tài)性和微衛(wèi)星多態(tài)性之后的第三代遺傳標(biāo)記,目前檢測(cè)分析SNP的方法包括,PCR擴(kuò)增與Sanger測(cè)序[19-21],此方法準(zhǔn)確性高,適用于多種規(guī)模的樣本;限制性酶切分析(RFLP)[22-23]方法簡單易行且成本低;基于芯片的SNP檢測(cè)[24]方法只能檢測(cè)芯片上存在的SNPs,無法檢測(cè)新的SNPs位點(diǎn);全基因組測(cè)序方法[25]雖然節(jié)省時(shí)間且能夠獲得高通量的SNPs信息,但存在成本較高的問題。
綜上所述,大多數(shù)有關(guān)ATG16L2多態(tài)性的研究主要集中于人類相關(guān)疾病和基因編碼區(qū),目前尚未有涉及山羊ATG16L2基因啟動(dòng)子多態(tài)性的研究報(bào)道。本試驗(yàn)采用限制性片段長度多態(tài)性聚合酶鏈反應(yīng)(PCR-RFLP)技術(shù)和Sanger法測(cè)序,檢測(cè)200頭海南黑山羊ATG16L2基因啟動(dòng)子區(qū)域的單核苷酸多態(tài)(single nucleotide polymorphisms, SNPs)位點(diǎn),并利用生物信息學(xué)分析方法預(yù)測(cè)該區(qū)域的核心啟動(dòng)子區(qū)、CpG島、轉(zhuǎn)錄因子結(jié)合域,以期為進(jìn)一步研究ATG16L2基因的表達(dá)調(diào)控機(jī)制及其在機(jī)體自噬的調(diào)控機(jī)制提供參考。
1 材料與方法
1.1 試驗(yàn)樣品
于三亞、昌江、定安等地采集200頭海南黑山羊的血樣,保存至5 mL的EDTA-K2抗凝采血管中。通過血液基因組提取試劑盒提取血樣中基因組DNA,置于-20 ℃保存。超微量分光光度計(jì)對(duì)提取的DNA濃度進(jìn)行檢測(cè),每個(gè)樣品的濃度不低于70 ng·μL-1;以10 g·L-1瓊脂糖凝膠電泳對(duì)提取DNA質(zhì)量進(jìn)行檢測(cè),條帶單一明亮整齊。
1.2 試驗(yàn)材料
試驗(yàn)試劑:DNA提取試劑盒、2000 DNA Marker、2×Taq PCR Master Mix均購自天根生化科技(北京)有限公司;2×Es Taq PCR Master Mix購自康為世紀(jì)生物科技股份有限公司;6×Loading Buffer 購自TaKaRa公司;DNA 分子量標(biāo)準(zhǔn)Marker(50~1 031 bp)購自生工生物工程(上海)股份有限公司;50 bp DNA Ladder購自索萊寶生物科技有限公司;Pvu Ⅱ和BamH Ⅰ 內(nèi)切酶購自Thermo Fisher Scientific;Nde Ⅰ內(nèi)切酶購自上海圣爾生物科技有限公司;紅細(xì)胞裂解液均購自Biosharp;引物合成及測(cè)序由生工生物工程(上海)股份有限公司完成。
1.3 試驗(yàn)方法
1.3.1 SNP位點(diǎn)鑒定
以NCBI數(shù)據(jù)庫(登錄號(hào):NC_030822.1)為參考序列,利用Primer 5.0設(shè)計(jì)7對(duì)特異性引物(表1)。隨機(jī)選取73頭羊的DNA樣品,各取1 μL構(gòu)建DNA混池模板,-20℃保存。PCR擴(kuò)增總體積為50 μL,包括25 μL 2×Taq PCR Master Mix、21 μL ddH2O、2 μL DNA混池模板及上、下游引物各1 μL。擴(kuò)增程序?yàn)?5℃預(yù)變性5min;95℃ 30s;適宜溫度退火30s,72℃延伸(根據(jù)目的片段長度設(shè)不同延伸時(shí)間),35個(gè)循環(huán);72℃終延伸5min。PCR產(chǎn)物經(jīng)10 g·L-1瓊脂糖凝膠檢測(cè)合格后測(cè)序,測(cè)序結(jié)果用DNAMAN軟件對(duì)擴(kuò)增序列進(jìn)行比對(duì),鑒定SNP位點(diǎn)。
1.3.2 基因分型
根據(jù)Sanger法測(cè)序結(jié)果,設(shè)計(jì)突變引物(表1),用于在SNP位點(diǎn)附近引入限制性內(nèi)切酶位點(diǎn),具體設(shè)計(jì)方法參照文獻(xiàn)[26]。采用PCR-RFLP方法對(duì)海南黑山羊個(gè)體的基因型進(jìn)行分型鑒定。酶切總體系10.0 μL,含PCR擴(kuò)增產(chǎn)物7.0 μL,10×Buffer 1.0 μL,內(nèi)切酶0.5 μL,ddH2O 1.5 μL。
1.3.3 進(jìn)化樹構(gòu)建
從NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov)中檢索并下載19個(gè)物種的ATG16L2基因序列,再從海南黑山羊全基因組測(cè)序信息中提取ATG16L2基因序列。用ClustalW(codon)方法對(duì)20條基因CDS區(qū)序列進(jìn)行系統(tǒng)發(fā)育分析。利用MEGA 11軟件采用極大似然法構(gòu)建系統(tǒng)發(fā)育樹。模擬1 000次重復(fù)抽樣中獲得Bootstrap值。
1.3.4 山羊ATG16L2基因啟動(dòng)子區(qū)的生物信息學(xué)分析
利用NCBI數(shù)據(jù)庫搜索山羊ATG16L2(NCBI登錄號(hào):NC_030822.1)基因組DNA信息,并結(jié)合NCBI公布的ATG16L2基因的轉(zhuǎn)錄起始位點(diǎn)(TSS),選取山羊ATG16L2基因5′ UTR上游啟動(dòng)子區(qū)2 000 bp (Chr15∶30666994-30669217)作為研究的序列。使用Promoter 2.0在線軟件對(duì)啟動(dòng)子的序列特征進(jìn)行分析,評(píng)分設(shè)定要求:評(píng)分lt;0.5,結(jié)果被忽略;0.5≤評(píng)分lt;0.8,表示低可能性預(yù)測(cè);0.8≤評(píng)分lt;1.0,表示中等可能性預(yù)測(cè);評(píng)分≥1.0,表示高度可能性預(yù)測(cè)。采用在線軟件JASPAR和AnimalTFDB4.0對(duì)啟動(dòng)子區(qū)進(jìn)行轉(zhuǎn)錄因子結(jié)合位點(diǎn)的預(yù)測(cè)。同時(shí)使用MethPrimer在線軟件對(duì)啟動(dòng)子區(qū)進(jìn)行CpG島預(yù)測(cè),設(shè)定參數(shù)為CpG島長度gt;100 bp;GC含量gt;50%;CpG觀察值(0bs)/預(yù)測(cè)值(Exp)gt;0.6。具體的生物信息學(xué)軟件信息見表2。
1.3.5 數(shù)據(jù)分析
利用Excel 2022統(tǒng)計(jì)PCR-RFLP基因分型結(jié)果,計(jì)算ATG16L2基因不同基因型在海南黑山羊群體中的等位基因頻率和基因型頻率;通過POPGENE v1.32計(jì)算基因期望雜合度(heterozygosity,He)、觀測(cè)純合度(homozygosity,Ho)、有效等位基因數(shù)(effective number of alleles,Ne)和多態(tài)信息含量(polymorphism information content,PIC),并進(jìn)行Hardy-Weinberg平衡(HWE)的χ2檢驗(yàn),用于評(píng)估理論基因型數(shù)與觀測(cè)基因型數(shù)之間的偏差;通過Haploview計(jì)算LD系數(shù)(D’)和相關(guān)系數(shù)(r2),構(gòu)建單倍體模型,舍棄單倍型頻率小于0.01的數(shù)據(jù)模型。
2 結(jié) 果
2.1 ATG16L2基因系統(tǒng)進(jìn)化樹分析
為了解不同物種中潛在的進(jìn)化關(guān)系,采用MEGA 11軟件對(duì)20個(gè)物種的ATG16L2基因編碼序列構(gòu)建系統(tǒng)進(jìn)化樹(圖1),并應(yīng)用DNAMAN軟件對(duì)序列進(jìn)行相似性分析(表3)。結(jié)果顯示,山羊與反芻動(dòng)物(綿羊、牛)的進(jìn)化距離最小,說明親緣關(guān)系最近。
2.2 ATG16L2基因啟動(dòng)子序列的特征性分析
通過NCBI數(shù)據(jù)庫分別下載以轉(zhuǎn)錄起始位點(diǎn)為“0”的-2 000~+224 bp間的山羊和綿羊ATG16L2基因啟動(dòng)子序列。利用在線軟件Promoter 2.0對(duì)山羊和綿羊ATG16L2基因可能的啟動(dòng)子進(jìn)行預(yù)測(cè),結(jié)果顯示,在山羊中存在3個(gè)啟動(dòng)子,分別位于第-1 401、-901、-401 bp處;在綿羊中也存在3個(gè)啟動(dòng)子,分別位于第-501、-1 001、-1 501 bp處。用RepeatMasker軟件來預(yù)測(cè)序列的重復(fù)元件,發(fā)現(xiàn)在山羊序列存在兩個(gè)重復(fù)元件LINE2(-1 989~-1 826 bp、-562~-426 bp)、hAT-Charlie(-1 804~-1 511 bp);在綿羊序列中也存在兩個(gè)重復(fù)元件LINE2(-1 990~-1 912 bp)、hAT-Charlie(-1 908~-1 601 bp)。利用NARO DNA Bank預(yù)測(cè)發(fā)現(xiàn),山羊ATG16L2基因啟動(dòng)子區(qū)域存在5個(gè)CCAAT-Box、13個(gè)CAAT-Box、10個(gè)CGCG-Box、11個(gè)GATA-Box和2個(gè)TATA-Box;綿羊TG16L2基因啟動(dòng)子區(qū)域存在2個(gè)ACGTC-Box、10個(gè)CAAT-Box、4個(gè)CCAAT-Box、13個(gè)CGCG-Box、10個(gè)GATA-Box和3個(gè)TATA-Box。通過MethPrimer網(wǎng)站對(duì)ATG16L2基因啟動(dòng)子區(qū)的CpG島進(jìn)行分析,結(jié)果顯示(圖2),山羊序列中存在4個(gè)CpG島,長度分別約為106、105、164和197 bp,分別位于第 -567~-462 bp、第-412~-308 bp、第 -296~-133 bp和第 -51~+145 bp處;綿羊序列中存在2個(gè)CpG島,長度分別約為320和298 bp,分別位于第 -499~-180 bp和第-132~+165 bp處。其中,發(fā)現(xiàn)在第 -412~-308 bp的CpG島中存在一個(gè)核心啟動(dòng)子。利用JASPAR對(duì)此啟動(dòng)子區(qū)域進(jìn)行轉(zhuǎn)錄因子預(yù)測(cè),發(fā)現(xiàn)在此區(qū)域內(nèi)存在兩個(gè)轉(zhuǎn)錄因子(圖2),分別為GATA2和YY1。運(yùn)用DNAMAN軟件和ClustalW網(wǎng)站對(duì)山羊和綿羊啟動(dòng)子序列進(jìn)行比對(duì),結(jié)果發(fā)現(xiàn),山羊與綿羊序列的一致性高達(dá)90.80%,山羊與綿羊ATG16L2基因啟動(dòng)子序列存在32處差異(圖3)。其中,在綿羊 -2 000~+132區(qū)間內(nèi),綿羊序列比山羊序列缺6個(gè)堿基。
2.3 山羊ATG16L2基因啟動(dòng)子區(qū)SNPs位點(diǎn)鑒定及基因分型分析
為了篩選山羊ATG16L2基因啟動(dòng)子區(qū)中可能存在的SNP位點(diǎn),以DNA混池為模板進(jìn)行PCR擴(kuò)增,測(cè)序分析結(jié)果表明(圖4),在ATG16L2基因的啟動(dòng)子區(qū)存在3個(gè)SNPs位點(diǎn),分別為SNP1(g.30667970T>C)、SNP2(g.30668540T>C)、SNP3(g.30668664C>T)。為了分析山羊群體中3個(gè)突變位點(diǎn)的基因型分型情況,利用PCR-RFLP技術(shù)在200只海南黑山羊群體中進(jìn)行分型分析。SNP1(g.30667970T>C)位點(diǎn)是Pvu Ⅱ酶的酶切位點(diǎn),該酶識(shí)別序列為CAG/CTG。若該位點(diǎn)存在T突變?yōu)镃,則Pvu Ⅱ酶能識(shí)別該位點(diǎn),也能對(duì)該位點(diǎn)進(jìn)行酶切;相反則不能識(shí)別且不能酶切。利用這一原理,將PCR產(chǎn)物進(jìn)行RFLP檢測(cè)后出現(xiàn)了3種帶型,結(jié)合測(cè)序判定其片段大小分別是:TT型為294 bp,CC型為275 bp和19 bp,CT型為294、275和19 bp,其中19 bp的條帶過小,經(jīng)3%的瓊脂糖凝膠電泳后不顯示該條帶(圖5A)。SNP2(g.30668540T>C)位點(diǎn)上G為等位基因時(shí),存在BamH Ⅰ酶切位點(diǎn),突變前基因型為TT,即圖5B中的198 bp片段;GG基因型為純合突變位點(diǎn),經(jīng)BamH Ⅰ酶切后分為179和19 bp;CT基因型為其雜合突變位點(diǎn),經(jīng)BamH Ⅰ酶酶切后片段大小為198、179和19 bp。同上,SNP3(g.30668664C>T)位點(diǎn)存在Nde Ⅰ酶切位點(diǎn),PCR產(chǎn)物經(jīng)酶切后出現(xiàn)了兩種帶型,片段大小分別是:CC型為317 bp,CT型為317、292和25 bp,其中25 bp沒有在圖中顯示(圖5C)。
2.4 海南黑山羊ATG16L2基因啟動(dòng)子區(qū)SNPs位點(diǎn)種群遺傳多樣性分析
在海南黑山羊群體內(nèi),SNP1位點(diǎn)存在3種基因型,即TT、TC和CC,其中優(yōu)勢(shì)等位基因?yàn)門,其基因頻率為0.575(表4),TC的基因型頻率高于其他基因型;SNP2位點(diǎn)也存在3種基因型,分別為GG、TG和TT,G為優(yōu)勢(shì)等位基因,等位基因頻率為0.723(表4),GG為優(yōu)勢(shì)基因型;SNP3位點(diǎn)的基因分型結(jié)果表明,等位基因C的頻率在樣本群體中占主導(dǎo)地位,CC基因型是優(yōu)勢(shì)基因型。由于0.25≤PIC<0.5,所以SNP1和SNP2位點(diǎn)在海南黑山羊群體中均表現(xiàn)為中度多態(tài)性;由于PIC<0.25,SNP3位點(diǎn)在海南黑山羊群體中表現(xiàn)為低度多態(tài)性。χ2檢驗(yàn)結(jié)果顯示,海南黑山羊群體中3個(gè)SNPs位點(diǎn)的基因型分布符合Hardy-Weinberg平衡定律(P>0.05)。
2.5 海南黑山羊ATG16L2基因啟動(dòng)子區(qū)SNPs位點(diǎn)連鎖不平衡及單倍型分析
海南黑山羊ATG16L2基因啟動(dòng)子區(qū)3個(gè)SNPs位點(diǎn)連鎖不平衡分析結(jié)果表明,SNP1(g.30667970T>C)、SNP2(g.30668540T>C)和SNP3(g.30668664C>T)3個(gè)SNPs位點(diǎn)之間存在強(qiáng)連鎖不平衡(圖6),各位點(diǎn)間的D’和相關(guān)系數(shù)(r2)詳見表5。基于連鎖不平衡分析結(jié)果構(gòu)建存在強(qiáng)連鎖SNP位點(diǎn)間的單倍型,且過濾掉頻率小于0.01的單倍型,結(jié)果共形成4種不同的單倍型(表6),其中,H3(TTC)單倍型為突變前基因型,頻率為0.271,H1(CGC)單倍型頻率最高(0.321)為優(yōu)勢(shì)單倍型,H4(CGT)單倍型頻率最低(0.097)。以此評(píng)估海南黑山羊群體中各單倍型的分布情況。
2.6 海南黑山羊ATG16L2基因啟動(dòng)子區(qū)SNPs位點(diǎn)功能分析
利用2個(gè)在線軟件對(duì)山羊ATG16L2基因啟動(dòng)子區(qū)轉(zhuǎn)錄因子的結(jié)合位點(diǎn)進(jìn)行預(yù)測(cè),發(fā)現(xiàn)啟動(dòng)子區(qū)上包含多個(gè)潛在的轉(zhuǎn)錄因子結(jié)合位點(diǎn)。其中在SNP位點(diǎn)附近,選取被2種軟件共同預(yù)測(cè)到的且評(píng)分在10以上的轉(zhuǎn)錄因子發(fā)現(xiàn),SNP2和SNP3在突變前后均未預(yù)測(cè)到相同的轉(zhuǎn)錄因子,SNP1突變以后會(huì)產(chǎn)生新的轉(zhuǎn)錄因子SNAI2、MYOD1和FIGLA,如圖7所示。說明,這些SNPs可能通過干擾轉(zhuǎn)錄因子(TF)與ATG16L2基因啟動(dòng)子的結(jié)合來改變ATG16L2基因啟動(dòng)子的活性進(jìn)而影響ATG16L2基因的轉(zhuǎn)錄水平。
3 討 論
ATG16L2作為一個(gè)自噬相關(guān)基因,是細(xì)胞自噬過程中的一個(gè)調(diào)節(jié)器,在自身免疫性疾病和抵御病原體入侵[27]中發(fā)揮作用,但對(duì)其基因結(jié)構(gòu)功能的了解目前仍知之甚少。啟動(dòng)子是結(jié)構(gòu)基因的一個(gè)重要組成部分,在基因的表達(dá)過程中,轉(zhuǎn)錄起始階段最為關(guān)鍵,這一階段主要發(fā)生RNA聚合酶與啟動(dòng)子的相互作用,啟動(dòng)子結(jié)構(gòu)改變會(huì)影響其與RNA聚合酶的親和力、啟動(dòng)子序列的變異,直接影響基因的表達(dá)水平[28]。據(jù)報(bào)道,位于亮氨酸氨基肽酶3(leucine aminopeptidase 3, LAP3)基因啟動(dòng)子區(qū)的2個(gè)SNPs(rs720373055:Tgt;C和rs715189731:Agt;G)通過產(chǎn)生新的轉(zhuǎn)錄因子鋅指轉(zhuǎn)錄因子26(zinc finger protein 26, ZF26),從而調(diào)控LAP3基因的表達(dá)[19]。Luo等[29]在豬HHEX的啟動(dòng)子區(qū)發(fā)現(xiàn)了一個(gè)新的單倍型,該單倍型由2個(gè)SNPs rs80901185 (Tgt;C)和rs80934526 (Agt;G)組成,這個(gè)單倍型可能通過影響轉(zhuǎn)錄因子的結(jié)合,進(jìn)而改變HHEX基因的啟動(dòng)子活性。因此,本研究通過Sanger測(cè)序法在海南黑山羊ATG16L2基因啟動(dòng)子區(qū)鑒定得到3個(gè)SNPs。采用PCR-RFLP方法對(duì)SNPs位點(diǎn)進(jìn)行基因分型分析發(fā)現(xiàn),SNP1(g.30667970T>C)和SNP2(g.30668540T>C)均存在3種基因型,但SNP3(g.30668664C>T)只存在2種基因型,猜測(cè)可能在海南黑山羊群體中存在TT純合子基因型致死現(xiàn)象,有待進(jìn)一步證實(shí)。其中2個(gè)SNPs位點(diǎn)在海南黑山羊群體中均表現(xiàn)為中度多態(tài)性(0.25≤PIC<0.5),1個(gè)SNPs位點(diǎn)表現(xiàn)為低多態(tài)性(PIC<0.25),處于Hardy-Weinberg平衡狀態(tài),說明這3個(gè)SNPs位點(diǎn)的基因型在海南黑山羊群體中廣泛存在,具有較豐富的遺傳多樣性。下一步將探討該SNP位點(diǎn)是否調(diào)控基因表達(dá),進(jìn)而對(duì)機(jī)體自噬產(chǎn)生影響。
基因表達(dá)既受啟動(dòng)子區(qū)SNP的影響,也可能受到啟動(dòng)子區(qū)甲基化的調(diào)控。而DNA甲基化作為基因啟動(dòng)子區(qū)一種常見的分子調(diào)控模式,能通過抑制轉(zhuǎn)錄過程調(diào)控基因表達(dá)[30]。轉(zhuǎn)錄因子與RNA聚合酶Ⅱ結(jié)合形成轉(zhuǎn)錄起始復(fù)合物參與基因的轉(zhuǎn)錄調(diào)控。本研究對(duì)山羊ATG16L2基因核心啟動(dòng)子和CpG島預(yù)測(cè)發(fā)現(xiàn),在山羊群體中存在4個(gè)甲基化島,且-401 bp處的核心啟動(dòng)子存在于其中一個(gè)CpG島內(nèi),對(duì)該位點(diǎn)附近進(jìn)行轉(zhuǎn)錄因子預(yù)測(cè)發(fā)現(xiàn)了GATA2和YY1轉(zhuǎn)錄因子。GATA結(jié)合蛋白(GATA binding proteins, GATAS)是一類具有2個(gè)保守鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子,因能特異性結(jié)合A/T(GATA)A/G序列而得名[31]。GATA2是GATAs家族成員之一,在胚胎發(fā)育[32]、造血系統(tǒng)[33]、調(diào)節(jié)炎癥反應(yīng)[34]和免疫系統(tǒng)[35]中發(fā)揮重要作用。也有研究發(fā)現(xiàn),GATA2突變導(dǎo)致其DNA結(jié)合能力喪失,可能導(dǎo)致位點(diǎn)的異常甲基化[36]。YY1是一種C2H2鋅指核轉(zhuǎn)錄因子(TF),具有高度進(jìn)化保守性,屬于GLI-Krüppel蛋白家族[37]。在哺乳動(dòng)物細(xì)胞中,YY1通常占據(jù)增強(qiáng)子-啟動(dòng)子相互作用的位點(diǎn),偶爾也占據(jù)絕緣子相互作用的位點(diǎn)[38],且研究發(fā)現(xiàn)大約10%的哺乳動(dòng)物基因受該轉(zhuǎn)錄因子調(diào)控[39]。因此YY1對(duì)基因的調(diào)控具有重要意義。甲基化是否會(huì)影響這兩個(gè)轉(zhuǎn)錄因子對(duì)海南黑山羊ATG16L2的轉(zhuǎn)錄還需進(jìn)一步驗(yàn)證。
4 結(jié) 論
在海南黑山羊ATG16L2基因啟動(dòng)子序列共檢測(cè)到3個(gè)SNPs位點(diǎn),其中,SNP1和SNP2位點(diǎn)在海南黑山羊群體中均表現(xiàn)為中度多態(tài)性,SNP3位點(diǎn)在海南黑山羊群體中表現(xiàn)為低度多態(tài)性,且處于Hardy-Weinberg平衡狀態(tài)。生物信息學(xué)預(yù)測(cè)得到部分SNPs位點(diǎn)可能導(dǎo)致轉(zhuǎn)錄因子以及轉(zhuǎn)錄因子結(jié)合位點(diǎn)的改變,從而導(dǎo)致基因表達(dá)的改變。本研究結(jié)果為進(jìn)一步分析ATG16L2基因表達(dá)調(diào)控奠定基礎(chǔ)。
參考文獻(xiàn)(References):
[1] RIZZOLLO F,MORE S,VANGHELUWE P,et al.The lysosome as a master regulator of iron metabolism[J].Trends Biochem Sci,2021,46(12):960-975.
[2] ALBANO G D,MONTALBANO A M,GAGLIARDO R,et al.Autophagy/mitophagy in airway diseases:impact of oxidative stress on epithelial cells[J].Biomolecules,2023,13(8):1217.
[3] ALULA K M,THEISS A L.Autophagy in Crohn’s disease:converging on dysfunctional innate immunity[J].Cells,2023, 12(13): 1779.
[4] CHEN L,YANG L M,LI Y Y,et al.Autophagy and inflammation:regulatory roles in viral infections[J].Biomolecules,2023, 13(10):1454.
[5] HU J T,ZHAO W,NIU L L,et al.Gene organization and characterization of the complete mitochondrial genome of Hainan black goat (Capra hircus)[J].Mitochondrial DNA A DNA Mapp Seq Anal,2016,27(3):1656-1657.
[6] WANG D F,ZHOU L L,ZHOU H L,et al.Effects of nutrition level of concentrate-based diets on growth performance and carcass characteristics of Hainan black goats[J].Trop Anim Health Prod,2014,46(5):783-788.
[7] SHI L G,ZHANG Y,WU L L,et al.Moderate coconut oil supplement ameliorates growth performance and ruminal fermentation in Hainan black goat kids[J].Front Vet Sci,2020,7:622259.
[8] WANG D Y,YUAN T L,LIU J M,et al.ATG16L2 inhibits NLRP3 inflammasome activation through promoting ATG5-12-16L1 complex assembly and autophagy[J].Eur J Immunol,2022,52(8):1321-1334.
[9] MO Y J,ZHANG W,WEN Q W,et al.Corrigendum to “Genetic association analysis of ATG16L1 rs2241880,rs6758317 and ATG16L2 rs11235604 polymorphisms with rheumatoid arthritis in a Chinese population” [Int. Immunopharmacol. 93 (2021) 107378][J].Int Immunopharmacol,2022,104:108511.
[10] LUU L D W,POPPLE G,TSANG S P W,et al.Genetic variants involved in innate immunity modulate the risk of inflammatory bowel diseases in an understudied Malaysian population[J].J Gastroenterol Hepatol,2022,37(2):342-351.
[11] MA T,WU S,YAN W,et al.A functional variant of ATG16L2 is associated with Crohn’s disease in the Chinese population[J].Colorectal Dis,2016,18(11):O420-O426.
[12] MOLINEROS J E,YANG W L,ZHOU X J,et al.Confirmation of five novel susceptibility loci for systemic lupus erythematosus (SLE) and integrated network analysis of 82 SLE susceptibility loci[J].Hum Mol Genet,2017,26(6): 1205-1216.
[13] ZHONG C H,WANG Y Y,LIU C P,et al.A novel single-nucleotide polymorphism in WNT4 promoter affects its transcription and response to FSH in chicken follicles[J].Genes (Basel),2022,13(10):1774.
[14] LI K Y,LIU Y F,HE X Y,et al.A novel SNP in the promoter region of IGF1 associated with Yunshang black goat kidding number via promoting transcription activity by SP1[J].Front Cell Dev Biol,2022,10:873095.
[15] ZHANG P,F(xiàn)U Y,ZHANG R,et al.Association of KCTD15 gene with fat deposition in pigs[J].J Anim Physiol Anim Nutr (Berl),2022,106(3):537-544.
[16] WANG P,LI W T,LIU Z Y,et al.Analysis of the association of two SNPs in the promoter regions of the PPP2R5C and SLC39A5 genes with litter size in Yunshang black goats[J].Animals (Basel),2022,12(20):2801.
[17] MAN′KOWSKA A,BRYM P,SOBIECH P,et al.Promoter polymorphisms in STK35 and IFT27 genes and their associations with boar sperm freezability[J].Theriogenology,2022,189:199-208.
[18] ROY J,ANAND K,MOHAPATRA S,et al.Single nucleotide polymorphisms in piRNA-pathway genes:an insight into genetic determinants of human diseases[J].Mol Genet Genomics,2020,295(1):1-12.
[19] WORKU D,GOWANE G,VERMA A.Genetic variation in promoter region of the bovine LAP3 gene associated with estimated breeding values of milk production traits and clinical mastitis in dairy cattle[J].PLoS One,2023,18(5):e0277156.
[20] ANJUM K H,NADEEM A,JAVED M,et al.Genomic and computational analysis of novel SNPs in TNP1 gene promoter region of Bos indicus breeding bulls[J].Genet Res (Camb),2022,2022:9452234.
[21] YUAN Z H,GE L,SU P W,et al.NCAPG regulates myogenesis in sheep,and SNPs located in its putative promoter region are associated with growth and development traits[J].Animals (Basel),2023,13(20):3173.
[22] WORKU D,GOWANE G,ALEX R,et al.Inputs for optimizing selection platform for milk production traits of dairy Sahiwal cattle[J].PLoS One,2022,17(5):e0267800.
[23] WORKU D,GOWANE G R,MUKHERJEE A,et al.Associations between polymorphisms of LAP3 and SIRT1 genes with clinical mastitis and milk production traits in Sahiwal and Karan Fries dairy cattle[J].Vet Med Sci,2022,8(6):2593-2604.
[24] HAN Y C,TAN T,LI Z X,et al.Identification of selection signatures and loci associated with important economic traits in Yunan black and Huainan pigs[J].Genes (Basel),2023,14(3):655.
[25] YAO D W,GUO D C,ZHANG Y K,et al.Identification of mutations in porcine STAT5A that contributes to the transcription of CISH[J].Front Vet Sci,2023,9:1090833.
[26] CHEN S,CHAI M L,TIAN C,et al.Genetic variants of fatty acid elongase 6 in Chinese Holstein cow[J].Gene,2018,670: 123-129.
[27] KHOR B,CONWAY K L,OMAR A S,et al.Distinct tissue-specific roles for the disease-associated autophagy genes ATG16L2 and ATG16L1[J].J Immunol,2019,203(7):1820-1829.
[28] ZHU Z J,HE M N,ZHANG T,et al.LSD1 promotes the FSH responsive follicle formation by regulating autophagy and repressing Wt1 in the granulosa cells[J].Sci Bull (Beijing),2024,69(8):1122-1136.
[29] LUO Y B,XU Q,XUE M M,et al.Novel haplotype in the HHEX gene promoter associated with body length in pigs[J]. Genes (Basel),2023,14(2):511.
[30] HATTORI N,LIU Y Y,USHIJIMA T.DNA methylation analysis[J].Methods Mol Biol,2023,2691:165-183.
[31] LENTJES M H,NIESSEN H E,AKIYAMA Y,et al.The emerging role of GATA transcription factors in development and disease[J].Expert Rev Mol Med,2016,18:e3.
[32] SCHANG G,ONGARO L,BRL E,et al.Transcription factor GATA2 may potentiate follicle-stimulating hormone production in mice via induction of the BMP antagonist gremlin in gonadotrope cells[J].J Biol Chem,2022,298(7):102072.
[33] ROBBINS D J,PAVLETICH T S,PATIL A T,et al.Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia[J].Blood Adv,2024,8(1):80-92.
[34] ZHANG J Y,HE L,WANG Z W,et al.Decreasing GDF15 promotes inflammatory signals and neutrophil infiltration in psoriasis models[J].J Invest Dermatol,2023,143(3):419-430.e8.
[35] FABOZZI F,MASTRONUZZI A,CEGLIE G,et al.GATA 2 deficiency:focus on immune system impairment[J].Front Immunol,2022,13:865773.
[36] MARIN-BEJAR O,ROMERO-MOYA D,RODRIGUEZ-UBREVA J,et al.Epigenome profiling reveals aberrant DNA methylation signature in GATA2 deficiency[J].Haematologica,2023,108(9):2551-2557.
[37] SETO E,SHI Y,SHENK T.YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro[J].Nature,1991,354(6350):241-245.
[38] GOPALAKRISHNAN J,TESSNEER K L,F(xiàn)U Y,et al.Variants on the UBE2L3/YDJC autoimmune disease risk haplotype increase UBE2L3 expression by modulating CCCTC-binding factor and YY1 binding[J].Arthritis Rheumatol,2022,74(1): 163-173.
[39] KHACHIGIAN L M.The Yin and Yang of YY1 in tumor growth and suppression[J].Int J Cancer,2018,143(3):460-465.
(編輯 郭云雁)