[摘要]"過敏性鼻炎是上呼吸道慢性炎癥性疾病,鼻黏膜上皮損傷是過敏性鼻炎的重要病理事件,其可加重炎癥等。最新研究強調(diào),炎癥小體在過敏性鼻炎中發(fā)揮關(guān)鍵作用,尤其是核苷酸結(jié)合結(jié)構(gòu)域富含亮氨酸重復(fù)序列和含熱蛋白結(jié)構(gòu)域受體3(nucleotide-binding"domain"leucine-rich"repeat"and"pyrin"domain-containing"receptor"3,NLRP3)/胱天蛋白酶-1(cysteinyl"aspartate"specific"proteinase-1,caspase-1)/白細(xì)胞介素-1β(interleukin-1β,IL-1β)信號通路。本文解析過敏性鼻炎中上皮屏障受損機(jī)制;詳細(xì)闡述NLRP3/caspase-1/IL-1β信號通路的活化和調(diào)控機(jī)制,特別關(guān)注該信號通路在疾病上皮屏障破壞中的作用;并探討其潛在治療策略,旨在促進(jìn)該信號通路在過敏性鼻炎及其他過敏性疾病研究及臨床中的應(yīng)用。
[關(guān)鍵詞]"過敏性鼻炎;鼻黏膜;信號通路;作用機(jī)制;治療
[中圖分類號]"R765.21""""""[文獻(xiàn)標(biāo)識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.35.031
在過敏性氣道疾病中,鼻黏膜上皮是抵御有害病原體和空氣中過敏原入侵的物理屏障,也參與免疫屏障的維持,在抗炎癥反應(yīng)方面發(fā)揮重要作用[1-2]。當(dāng)炎癥作用使鼻黏膜上皮屏障受損后,低下的防御能力將更有利于炎癥介質(zhì)穿透,促進(jìn)炎癥反應(yīng)發(fā)生,導(dǎo)致過敏性鼻炎(allergic"rhinitis,AR)進(jìn)一步惡化[3]。當(dāng)前,即便已有白三烯受體拮抗劑、抗組胺藥物、皮質(zhì)類固醇及其搭配組合療法和過敏原特異性免疫療法,仍未能阻止AR發(fā)病率逐年上升的趨勢[4-5]。
炎癥小體是一類重要的固有免疫受體,可識別細(xì)胞內(nèi)的病原體相關(guān)分子模式、損傷相關(guān)分子模式。其中,核苷酸結(jié)合結(jié)構(gòu)域富含亮氨酸重復(fù)序列和含熱蛋白結(jié)構(gòu)域受體3(nucleotide-binding"domain"leucine-"ich"repeat"and"pyrin"domain-containing"receptor"3,NLRP3)炎癥小體被廣泛研究。在AR中,NLRP3/胱天蛋白酶-1(cysteinyl"aspartate"specific"proteinase-1,caspase-1)/白細(xì)胞介素(interleukin,IL)-1β信號通路的激活與鼻黏膜上皮受損密切相關(guān)。本文總結(jié)NLRP3/caspase-1/IL-1β信號通路在AR發(fā)病機(jī)制中的關(guān)鍵作用,尤其是對鼻黏膜上皮的影響,深入研究AR的發(fā)病機(jī)制,尋找更多AR的治療方法。
1""NLRP3/caspase-1/IL-1β信號通路概述
炎癥小體是一類模式識別受體,可識別細(xì)胞內(nèi)病原體相關(guān)分子模式或損傷相關(guān)分子模式,是固有免疫的重要組成成分。NLRP3與凋亡相關(guān)斑點樣蛋白、caspase-1組成高分子量蛋白復(fù)合體,即NLRP3炎癥小體。NLRP3作為目前研究最廣泛、最明確的一種炎癥小體,其已被發(fā)現(xiàn)可在心血管、胃腸道、肺、肝等機(jī)體部位引發(fā)包括炎癥在內(nèi)的各種效應(yīng),進(jìn)而導(dǎo)致?lián)p傷[6-9]。NLRP3炎癥小體的激活機(jī)制包括離子通量(K+、Ca2+,CL–)[10-12]、線粒體功能障礙[13]、活性氧(reactive"oxygen"species,ROS)超載[14]和自噬[15-16]等。NLRP3激活后與病原體相關(guān)分子模式或損傷相關(guān)分子模式結(jié)合后招募下游凋亡相關(guān)斑點樣蛋白,將無活性的前體caspase-1活化為有生物學(xué)功能的caspase-1。caspase-1可剪切焦孔素D(gasdermin"D,GSDMD),觸發(fā)細(xì)胞焦亡,切割前體IL-1β,誘導(dǎo)IL-1β等相關(guān)炎癥因子的成熟和釋放,進(jìn)而引起一系列炎癥反應(yīng),參與疾病的發(fā)生發(fā)展過程[17]。Yang等[18]在AR患者和健康受試者的鼻腔灌洗液和下鼻甲黏膜樣本中發(fā)現(xiàn),caspase-1、IL-1β的產(chǎn)生在AR患者的鼻黏膜中增加,且NLRP3缺陷可顯著抑制AR進(jìn)展,減少AR小鼠的炎癥反應(yīng)和上皮細(xì)胞焦亡。Zhang等[19]通過構(gòu)建AR"BALB/c小鼠模型證實,選擇性NLRP3抑制劑MCC950可通過抑制NLRP3改善小鼠AR癥狀,并下調(diào)caspase-1、凋亡相關(guān)斑點樣蛋白、IL-1β和IL-18的表達(dá)。
2""NLRP3/caspase-1/IL-1β信號通路引起上皮緊密連接蛋白表達(dá)異常
緊密連接是上皮細(xì)胞之間的連接結(jié)構(gòu),由緊密連接蛋白組成。緊密連接是上皮層具有較高完整性和正常屏障功能的必要保障[20]。NLRP3/caspase-1/IL-1β信號通路被過度激活時,釋放的IL-1β等炎癥因子通過緊密連接蛋白表達(dá)異常,影響上皮細(xì)胞間連接的穩(wěn)定性和生物學(xué)功能。同時,上皮通透性被動增加使得細(xì)菌、病毒、過敏原等有害物質(zhì)更易穿過上皮層,進(jìn)入鼻黏膜下層組織引發(fā)炎癥及其他反應(yīng),加重AR癥狀。因此,通過恢復(fù)緊密連接蛋白的表達(dá),保護(hù)黏膜上皮屏障完整性被認(rèn)為是治療AR的有發(fā)展前途的方法之一[21]。
造成緊密連接蛋白異常表達(dá)的原因主要有3個。一是IL-1β等炎癥因子可通過激活特定信號通路(如核因子κB信號通路),導(dǎo)致緊密連接蛋白表達(dá)下調(diào)或功能異常[22]。二是大量氧自由基和其他氧化物質(zhì)的產(chǎn)生導(dǎo)致氧化應(yīng)激,損傷緊密連接蛋白的結(jié)構(gòu),進(jìn)而影響其生物學(xué)功能[23]。三是包括IL-1β在內(nèi)的某些炎癥介質(zhì)可激活基質(zhì)金屬蛋白酶-7等,降解緊密連接蛋白結(jié)構(gòu),破壞上皮屏障[24]。第二點原因雖然與NLRP3/caspase-1/IL-1β信號通路無直接聯(lián)系,但ROS的產(chǎn)生可顯著激活NLRP3/caspase-1/IL-1β信號通路,增加AR的發(fā)生風(fēng)險[25]。需要注意的是,上述研究實驗材料均不是鼻黏膜上皮,有必要在未來研究中開展更加有針對性的AR相關(guān)研究。
3""NLRP3/caspase-1/IL-1β信號通路引起上皮細(xì)胞表達(dá)異常
3.1""上皮細(xì)胞凋亡減少
正常情況下,鼻黏膜上皮細(xì)胞凋亡可幫助維持組織穩(wěn)態(tài)和修復(fù)。在AR中,由于NLRP3/caspase-1/IL-1β信號通路引起的過度免疫反應(yīng)和炎癥介質(zhì)釋放,鼻黏膜上皮細(xì)胞凋亡減少。研究表明AR患者鼻黏膜上皮細(xì)胞凋亡率較正常人群顯著降低[26]。細(xì)胞凋亡的減少常導(dǎo)致鼻黏膜上皮細(xì)胞異常增殖和過度存活,導(dǎo)致鼻黏膜肥大,從而誘發(fā)鼻塞、腺體分泌過多和其他臨床癥狀[27]。此外,細(xì)胞凋亡的減少還可導(dǎo)致上皮屏障受到破壞,過敏原易于進(jìn)入,進(jìn)一步加劇鼻黏膜的炎癥反應(yīng)。
3.2""上皮細(xì)胞焦亡增加
細(xì)胞焦亡又稱細(xì)胞炎性壞死,是由GSDMD介導(dǎo)的細(xì)胞程序性壞死,屬于一種天然免疫反應(yīng),在機(jī)體抗擊感染中發(fā)揮重要作用。肝炎相關(guān)研究證實NLRP3炎癥小體激活所介導(dǎo)的細(xì)胞焦亡在炎癥反應(yīng)的發(fā)生和惡化中起關(guān)鍵作用[28]。近年來,研究人員開始關(guān)注細(xì)胞焦亡在AR上皮細(xì)胞中的作用。研究人員在AR患者和AR小鼠中均監(jiān)測到NLRP3、caspase-1、GSDMD和IL-1β蛋白的表達(dá)水平顯著升高,其中GSDMD膜孔的形成還是引發(fā)IL-1β過度分泌的關(guān)鍵[29]。細(xì)胞焦亡的發(fā)生與NLRP3/caspase-1/IL-1β信號通路高度相關(guān)。從理論上講,鼻黏膜細(xì)胞受到過敏原刺激后,NLRP3炎癥小體啟動caspase-1介導(dǎo)的焦亡蛋白的裂解激活,大量上皮細(xì)胞發(fā)生焦亡,從而觸發(fā)細(xì)胞膜穿孔,引起細(xì)胞溶解、IL-1β等炎癥因子的釋放及其他物質(zhì)的滲透[30]。這些事件引發(fā)炎癥級聯(lián)擴(kuò)增反應(yīng),促進(jìn)AR的發(fā)生發(fā)展。
4""炎癥介質(zhì)通過NLRP3/caspase-1/IL-1β信號通路破壞上皮屏障
炎癥介質(zhì)除由嗜酸性粒細(xì)胞、巨噬細(xì)胞、單核細(xì)胞等被激活的免疫細(xì)胞釋放,還可在信號通路中被激活產(chǎn)生。在NLRP3/caspase-1/IL-1β信號通路中,下游因子IL-1β的表達(dá)達(dá)到一定水平后可促使上皮細(xì)胞釋放腫瘤壞死因子-α等其他炎癥介質(zhì),正反饋刺激其自身的產(chǎn)生和加工,推進(jìn)炎癥進(jìn)展。然而,IL-1β具體的誘發(fā)和促炎機(jī)制仍不清楚,有待進(jìn)一步研究[31]。此外,NLRP3/caspase-1/IL-1β信號通路中的NLRP3炎癥小體還可使巨噬細(xì)胞發(fā)生焦亡裂解,向局部組織釋放更多的炎癥介質(zhì)[32]。炎癥介質(zhì)破壞上皮屏障的機(jī)制是多方面的,從最基本的引起炎癥、損傷組織,到破壞細(xì)胞間連接、激活蛋白酶損壞保護(hù)屏障、促進(jìn)細(xì)胞程序性死亡等,這些機(jī)制的綜合作用可加重上皮屏障受損,促進(jìn)AR進(jìn)程。
5""靶向NLRP3/caspase-1/IL-1β信號通路的AR治療
NLRP3/caspase-1/IL-1β信號通路存在于多種全身炎癥疾病中。在借鑒其他疾病治療經(jīng)驗的同時,應(yīng)考慮到不同疾病治療的特異性。在AR的治療中,有針對性地干預(yù)NLRP3/caspase-1/IL-1β信號通路,可降低不良反應(yīng)的發(fā)生風(fēng)險。
5.1""針對信號通路上游NLRP3炎癥小體
不同階段的多樣機(jī)制導(dǎo)致NLRP3炎癥小體的多層次激活,因此調(diào)節(jié)其活性對預(yù)防炎癥性疾病和維持免疫穩(wěn)態(tài)至關(guān)重要。2018年Xiao等[33]提出特定的NLRP3炎癥小體抑制劑是過敏性疾病治療的潛在策略。Xu等[34]研究發(fā)現(xiàn)E3泛素連接酶gp78通過抑制NLRP3的寡聚化和亞細(xì)胞易位抑制其活性。MCC950、CY09、CCDC50等是已確認(rèn)的對NLRP3炎癥小體具有特異性作用的化合物,但目前缺乏其安全性和有效性的臨床試驗研究,上述化合物應(yīng)用于臨床治療仍面臨諸多挑戰(zhàn)[35-36]。此外,敲除相關(guān)基因也可抑制NLRP3炎癥小體。caspase-1抑制劑可從多角度有效抑制炎癥,有望改善過敏性反應(yīng)進(jìn)展[37]。
5.2""針對信號通路下游IL-1β炎癥因子
一方面,可通過直接干預(yù)IL-1β抑制其活性。工程融合蛋白rilonacept作為IL-1陷阱,在治療心包炎中取得顯著療效[38]。另一方面,抑制IL-1受體也可抑制其活性。研究表明在支氣管上皮細(xì)胞中應(yīng)用IL-1受體拮抗劑可顯著降低促炎因子的表達(dá)[39]。因此,未來可考慮將類似方法應(yīng)用于鼻黏膜上皮細(xì)胞,減輕炎癥反應(yīng)并維護(hù)上皮屏障的完整性。
6""小結(jié)與展望
深入研究AR的發(fā)病機(jī)制并尋找新的潛在治療靶點始終是該領(lǐng)域的重要科學(xué)問題之一。當(dāng)傳統(tǒng)炎癥反應(yīng)研究和治療方法遇到瓶頸時,可考慮從保護(hù)上皮屏障完整性角度入手。維持上皮屏障的正常功能可在一定程度上抑制炎癥進(jìn)展,進(jìn)而改善AR癥狀。本文聚焦于較新且備受關(guān)注的NLRP3/caspase-1/IL-1β信號通路,明確該信號通路與上皮屏障之間的相關(guān)性。結(jié)合其他相關(guān)疾病已有的研究結(jié)論,認(rèn)為將其作為未來AR治療發(fā)展方向具有較高的可行性。對NLRP3/caspase-1/IL-1β信號通路的探索還有許多潛在可能。未來,還會發(fā)現(xiàn)更多與AR發(fā)病機(jī)制相關(guān)的信號通路,探究更多針對特定病因的潛在靶點,為AR的基礎(chǔ)研究和臨床治療提供廣闊前景。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] HO"J"S"S,"LI"C"H,"WANG"A,"et"al."It"is"no"skin"off"my"nose:"The"relationship"between"the"skin"and"allergic"rhinitis[J]."Ann"Allergy"Asthma"Immunol,"2021,"127(2):"176–182.
[2] BERGOUGNAN"C,"DITTLEIN"D"C,"HüMMER"E,"et"al."Physical"and"immunological"barrier"of"human"primary"nasal"epithelial"cells"from"non-allergic"and"allergic"donors[J]."World"Allergy"Organ"J,"2020,"13(3):"100109.
[3] HELLINGS"P"W,"STEELANT"B."Epithelial"barriers"in"allergy"and"asthma[J]."J"Allergy"Clin"Immunol,"2020,"145(6):"1499–1509.
[4] BOUSQUET"J,"ANTO"J"M,"BACHERT"C,"et"al."Allergic"rhinitis[J]."Nat"Rev"Dis"Primers,"2020,"6(1):"95.
[5] REITSMA"S,"SUBRAMANIAM"S,"FOKKENS"W"W"J,"et"al."Recent"developments"and"highlights"in"rhinitis"and"allergen"immunotherapy[J]."Allergy,"2018,"73(12):"2306–2313.
[6] TONG"Y,"WANG"Z,"CAI"L,"et"al."NLRP3"inflammasome"and"its"central"role"in"the"cardiovascular"diseases[J]."Oxid"Med"Cell"Longev,"2020,"2020:"4293206.
[7] DONOVAN"C,"LIU"G,"SHEN"S,"et"al."The"role"of"the"microbiome"and"the"NLRP3"inflammasome"in"the"gut"and"lung[J]."J"Leukoc"Biol,"2020,"108(3):"925–935.
[8] SHERIF"I"O,"AL-SHAALAN"N"H."Alleviation"of"chemotherapy-induced"acute"lung"injury"via"NLRP3/"ASC/caspase-1"signaling"pathway[J]."Toxicol"Res"(Camb),"2022,"11(3):"417–425.
[9] FRISING"U"C,"RIBO"S,"DOGLIO"M"G,"et"al."NLRP3"inflammasome"activation"in"macrophages"suffices"for"inducing"autoinflammation"in"mice[J]."EMBO"Rep,"2022,"23(7):"e54339.
[10] MU?OZ-PLANILLO"R,"KUFFA"P,"MARTíNEZ-"COLóN"G,"et"al."K?"efflux"is"the"common"trigger"of"NLRP3"inflammasome"activation"by"bacterial"toxins"and"particulate"matter[J]."Immunity,"2013,"38(6):"1142–1153.
[11] LEE"G"S,"SUBRAMANIAN"N,"KIM"A"I,"et"al."The"calcium-sensing"receptor"regulates"the"NLRP3"inflammasome"through"Ca2+"and"cAMP[J]."Nature,"2012,"492(7427):"123–127.
[12] TANG"T,"LANG"X,"XU"C,"et"al."CLICs-dependent"chloride"efflux"is"an"essential"and"proximal"upstream"event"for"NLRP3"inflammasome"activation[J]."Nat"Commun,"2017,"8(1):"202.
[13] SARKAR"S,"MALOVIC"E,"HARISHCHANDRA"D"S,"et"al."Mitochondrial"impairment"in"microglia"amplifies"NLRP3"inflammasome"proinflammatory"signaling"in"cell"culture"and"animal"models"of"Parkinson's"disease[J]."NPJ"Parkinsons"Dis,"2017,"3:"30.
[14] HAN"Y,"XU"X,"TANG"C,"et"al."Reactive"oxygen"species"promote"tubular"injury"in"diabetic"nephropathy:"The"role"of"the"mitochondrial"ROS-TXNIP-NLRP3"biological"axis[J]."Redox"Biol,"2018,"16:"32–46.
[15] LIU"P,"HUANG"G,"WEI"T,"et"al."Sirtuin"3-induced"macrophage"autophagy"in"regulating"NLRP3"inflammasome"activation[J]."Biochim"Biophys"Acta"Mol"Basis"Dis,"2018,"1864(3):"764–777.
[16] HOUTMAN"J,"FREITAG"K,"GIMBER"N,"et"al."Beclin1-driven"autophagy"modulates"the"inflammatory"response"of"microglia"via"NLRP3[J]."EMBO"J,"2019,"38(4):"e99430.
[17] 兀娜,"沈敏."核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3炎性小體抑制劑[J]."中華臨床免疫和變態(tài)反應(yīng)雜志,"2020,"14(1):"60–66.
[18] YANG"Z,"LIANG"C,"WANG"T,"et"al."NLRP3"inflammasome"activation"promotes"the"development"of"allergic"rhinitis"via"epithelium"pyroptosis[J]."Biochem"Biophys"Res"Commun,"2020,"522(1):"61–67.
[19] ZHANG"W,"BA"G,"TANG"R,"et"al."Ameliorative"effect"of"selective"NLRP3"inflammasome"inhibitor"MCC950"in"an"ovalbumin-induced"allergic"rhinitis"murine"model[J]."Int"Immunopharmacol,"2020,"83:"106394.
[20] HEINEMANN"U,"SCHUETZ"A."Structural"features"of"tight-junction"proteins[J]."Int"Jnbsp;Mol"Sci,"2019,"20(23):"6020.
[21] NUR"HUSNA"S"M,"TAN"H"T,"MD"SHUKRI"N,"et"al."Nasal"epithelial"barrier"integrity"and"tight"junctions"disruption"in"allergic"rhinitis:"Overview"and"pathogenic"insights[J]."Front"Immunol,"2021,"12:"663626.
[22] ZHOU"X,"ZHANG"B,"ZHAO"X,"et"al."Chlorogenic"acid"supplementation"ameliorates"hyperuricemia,"relieves"renal"inflammation,"and"modulates"intestinal"homeostasis[J]."Food"Funct,"2021,"12(12):"5637–5649.
[23] 白廣煒,"韓大愚,"楊其運,"等."大鼠精索靜脈曲張氧化應(yīng)激介導(dǎo)附睪上皮緊密連接蛋白ZO-1損傷及對附睪功能的影響[J]."中華男科學(xué)雜志,"2019,"25(4):"302–308.
[24] AL-SADI"R,"ABDULQADIR"R,"MA"T"Y."Editorial:"Role"of"matrix"metalloproteinases"and"other"inflammatory"mediators"in"the"disruption"of"the"intestinal"tight"junction"barrier[J]."Front"Immunol,"2023,"14:"1194827.
[25] LI"Y,"OUYANG"Y,"JIAO"J,"et"al."Exposure"to"environmental"black"carbon"exacerbates"nasal"epithelial"inflammation"via"the"reactive"oxygen"species"(ROS)-"nucleotide-binding,"oligomerization"domain-like"receptor"family,"pyrin"domain"containing"3"(NLRP3)-caspase-1-"interleukin"1β"(IL-1β)"pathway[J]."Int"Forum"Allergy"Rhinol,"2020,"11(4):"773–783.
[26] FAN"Y,"TANG"Z,"SUN"J,"et"al."MicroRNA-29a"promotes"the"proliferation"of"human"nasal"epithelial"cells"and"inhibits"their"apoptosis"and"promotes"the"development"of"allergic"rhinitis"by"down-regulating"FOS"expression[J]."PLoS"One,"2021,"16(8):"e0255480.
[27] LI"Y,"SUN"L,"ZHANG"Y."Programmed"cell"death"in"the"epithelial"cells"of"the"nasal"mucosa"in"allergic"rhinitis[J]."Int"Immunopharmacol,"2022,"112:"109252.
[28] LUAN"J,"CHEN"W,"FAN"J,"et"al."GSDMD"membrane"pore"is"critical"for"IL-1β"release"and"antagonizing"IL-1β"by"hepatocyte-specific"nanobiologics"is"a"promising"therapeutics"for"murine"alcoholic"steatohepatitis[J]."Biomaterials,"2020,"227:"119570.
[29] CHENG"N,"WANG"Y,"GU"Z."Understanding"the"role"of"NLRP3-mediated"pyroptosis"in"allergic"rhinitis:"A"review[J]."Biomed"Pharmacother,"2023,"165:"115203.
[30] BROZ"P,"PELEGRíN"P,"SHAO"F."The"gasdermins,"a"protein"family"executing"cell"death"and"inflammation[J]."Nat"Rev"Immunol,"2020,"20(3):"143–157.
[31] WANG"H"R,"WEI"S"Z,"SONG"X"Y,"et"al."IL-1β"and"allergy:"Focusing"on"its"role"in"allergic"rhinitis[J]."Mediators"Inflamm,"2023,"2023:"1265449.
[32] ZHOU"H,"ZHANG"W,"QIN"D,"et"al."Activation"of"NLRP3"inflammasome"contributes"to"the"inflammatory"response"to"allergic"rhinitis"via"macrophage"pyroptosis[J]."Int"Immunopharmacol,"2022,"110:"109012.
[33] XIAO"Y,"XU"W,"SU"W."NLRP3"inflammasome:"A"likely"target"for"the"treatment"of"allergic"diseases[J]."Clin"Exp"Allergy,"2018,"48(9):"1080–1091.
[34] XU"T,"YU"W,"FANG"H,"et"al."Ubiquitination"of"NLRP3"by"gp78/Insig-1"restrains"NLRP3"inflammasome"activation[J]."Cell"Death"Differ,"2022,"29(8):"1582–1595.
[35] EL-SHARKAWY"L"Y,"BROUGH"D,"FREEMAN"S."Inhibiting"the"NLRP3"inflammasome[J]."Molecules,"2020,"25(23):"5533.
[36] LIN"Y,"LI"Z,"WANG"Y,"et"al."CCDC50"suppresses"NLRP3"inflammasome"activity"by"mediating"autophagic"degradation"of"NLRP3[J]."EMBO"Rep,"2022,"23(5):"e54453.
[37] WU"J,"LAN"Y,"SHI"X,"et"al."Sennoside"A"is"a"novel"inhibitor"targeting"caspase-1[J]."Food"Funct,"2022,"13(19):"9782–9795.
[38] FERNáNDEZ-RUIZ"I."The"IL-1"trap"rilonacept"resolves"and"prevents"recurrent"pericarditis[J]."Nat"Rev"Cardiol,"2021,"18(2):"73.
[39] SCHWORER"S"A,"CHASON"K"D,"CHEN"G,"et"al."IL-1"receptor"antagonist"attenuates"proinflammatory"responses"to"rhinovirus"in"airway"epithelium[J]."J"Allergy"Clin"Immunol,"2023,"151(6):"1577–1584.
(收稿日期:2024–09–07)
(修回日期:2024–10–09)