【摘要】《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》界定的四個(gè)領(lǐng)域是學(xué)生獲得“四基”、發(fā)展“四能”、形成“正確情感態(tài)度價(jià)值觀”的載體.2024年吉林省第23題是以“板凳中的數(shù)學(xué)”為項(xiàng)目的“綜合與實(shí)踐”方面的考題,解決項(xiàng)目式學(xué)習(xí)中的問題可以培養(yǎng)、發(fā)展學(xué)生多種數(shù)學(xué)核心素養(yǎng)表現(xiàn),有助于實(shí)現(xiàn)“三會(huì)”的課程目標(biāo).
【關(guān)鍵詞】核心素養(yǎng);綜合與實(shí)踐;問題解決
《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》(以下簡(jiǎn)稱《課標(biāo)(2022年版)》)把“課程內(nèi)容”分為“數(shù)與代數(shù)”“圖形與幾何”“統(tǒng)計(jì)與概率”“綜合與實(shí)踐”四個(gè)領(lǐng)域.數(shù)學(xué)教育教學(xué)的根本目的就是以這四個(gè)領(lǐng)域的課程內(nèi)容為載體,不斷培養(yǎng)、提高和發(fā)展學(xué)生的數(shù)學(xué)核心素養(yǎng),最終實(shí)現(xiàn)“會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界,會(huì)用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界,會(huì)用數(shù)學(xué)的語言表達(dá)現(xiàn)實(shí)世界”[1]11的課程總目標(biāo).
“綜合與實(shí)踐”是與前三個(gè)領(lǐng)域并列的一個(gè)領(lǐng)域,究竟怎樣開展“綜合與實(shí)踐”領(lǐng)域的學(xué)習(xí)呢?通過對(duì)2024年吉林省第23題的分析為例進(jìn)行探討.
1試題呈現(xiàn)
綜合與實(shí)踐
某班同學(xué)分三個(gè)小組進(jìn)行“板凳中的數(shù)學(xué)”的項(xiàng)目式學(xué)習(xí)研究.第一小組負(fù)責(zé)調(diào)查板凳的歷史及結(jié)構(gòu)特點(diǎn);第二小組負(fù)責(zé)研究板凳中蘊(yùn)含的數(shù)學(xué)知識(shí);第三小組負(fù)責(zé)匯報(bào)和交流.下面是第三小組匯報(bào)的部分內(nèi)容,請(qǐng)你閱讀相關(guān)信息,并解答“建立模型”中的問題.
【背景調(diào)查】圖1(1)中的板凳又叫“四腳八叉凳”,是中國(guó)傳統(tǒng)家具,其榫卯結(jié)構(gòu)體現(xiàn)了古人含蓄內(nèi)斂的審美觀.榫眼的設(shè)計(jì)很有講究,木工一般用鉛筆畫出凳面的對(duì)稱軸,以對(duì)稱軸為基準(zhǔn)向兩邊各取相同的長(zhǎng)度,確定榫眼的位置,如圖1(2)所示.板凳的結(jié)構(gòu)設(shè)計(jì)體現(xiàn)了數(shù)學(xué)的對(duì)稱美.
2解答與簡(jiǎn)評(píng)
2.1簡(jiǎn)解
2.2簡(jiǎn)評(píng)
《課標(biāo)(2022年版)》在“教材編寫建議”中指出“教材素材的選取應(yīng)盡可能的貼近學(xué)生的現(xiàn)實(shí),以利于學(xué)生經(jīng)歷從現(xiàn)實(shí)情境中抽象出數(shù)學(xué)知識(shí)與方法的過程,發(fā)展抽象能力、推理能力等”[1]94.這里強(qiáng)調(diào)的學(xué)生現(xiàn)實(shí),主要包括三個(gè)方面:(1)生活現(xiàn)實(shí);(2)數(shù)學(xué)現(xiàn)實(shí);(3)其他學(xué)科現(xiàn)實(shí).這個(gè)建議也是指導(dǎo)教師在進(jìn)行教學(xué)設(shè)計(jì)時(shí)選擇教學(xué)素材的一個(gè)“原則”.
本考題以“綜合與實(shí)踐”作為“標(biāo)題”,選取了家庭中常見的“板凳”作為背景,立足“生活現(xiàn)實(shí)”,符合《課標(biāo)(2022年版)》提出的“素材選取要貼近學(xué)生的現(xiàn)實(shí)、真實(shí)可信”[1]94的要求.
題目分為“背景調(diào)查—收集數(shù)據(jù)—分析數(shù)據(jù)—建立模型”四個(gè)環(huán)節(jié):第一個(gè)環(huán)節(jié)“調(diào)查背景”中介紹了傳統(tǒng)家具——“四腳八叉凳”.目的是讓學(xué)生“欣賞數(shù)學(xué)美”,進(jìn)一步展示中國(guó)人的“智慧”,對(duì)學(xué)生進(jìn)行了“美育教育”.文[2]把《課標(biāo)(2022年版)》提出的課程“總目標(biāo)”的第三條形成“正確情感態(tài)度價(jià)值觀”的內(nèi)涵分為四個(gè)方面[2],從這個(gè)意義上講,考題的第一個(gè)環(huán)節(jié)有助于落實(shí)這一目標(biāo).
第二個(gè)環(huán)節(jié)“收集數(shù)據(jù)”,記錄的是學(xué)生通過實(shí)際測(cè)量得到的五組數(shù)據(jù).這些數(shù)據(jù)是第三個(gè)環(huán)節(jié)“分析數(shù)據(jù)”和解答第四個(gè)環(huán)節(jié)問題的基礎(chǔ).
在實(shí)際教學(xué)時(shí),可讓學(xué)生自己找個(gè)板凳進(jìn)行測(cè)量,這有助于培養(yǎng)學(xué)生的動(dòng)手操作能力,并積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).第二個(gè)環(huán)節(jié)是一個(gè)完整的統(tǒng)計(jì)過程,經(jīng)歷這樣的過程有助于學(xué)生數(shù)據(jù)觀念的形成與發(fā)展.
第三個(gè)環(huán)節(jié)“分析數(shù)據(jù)”是在直角坐標(biāo)系中描出第二個(gè)環(huán)節(jié)得到的五組數(shù)據(jù)(圖1(3))對(duì)應(yīng)的點(diǎn).
第四個(gè)環(huán)節(jié)“建立模型”提出了兩個(gè)問題,解決問題(1)分為三步:首先判斷出圖1(3)中的各點(diǎn)在同一條直線上;然后假設(shè)函數(shù)表達(dá)式為y=kx+b,并從表格中選取兩組數(shù)據(jù)代入建立方程組;最后解方程組,從而求出函數(shù)表達(dá)式.在解決了問題(1)后,問題(2)也就迎刃而解了.本環(huán)節(jié)是考查學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題的過程,是“綜合與實(shí)踐”活動(dòng)的“落腳點(diǎn)”.
從解答的過程看,本題主要考查學(xué)生利用一次函數(shù)的知識(shí)解決實(shí)際問題的能力,用到的知識(shí)點(diǎn)比較簡(jiǎn)單(一次函數(shù)的應(yīng)用).本題告訴我們,選取“綜合與實(shí)踐”活動(dòng)的素材時(shí),解決“素材”中的數(shù)學(xué)問題不一定要用到過多的知識(shí),解決的過程也不一定很難,否則容易挫傷部分學(xué)生的學(xué)習(xí)積極性.
3素養(yǎng)表現(xiàn)
《課標(biāo)(2022年版)》提出了初中階段的9大核心素養(yǎng)表現(xiàn),分別是抽象能力、運(yùn)算能力、幾何直觀、空間觀念、推理能力、數(shù)據(jù)觀念、模型觀念、應(yīng)用意識(shí)、創(chuàng)新意識(shí)[1]7.解答本考題至少有助于培養(yǎng)與發(fā)展下面幾個(gè)素養(yǎng):
(1)抽象能力
《課標(biāo)(2022年版)》指出“抽象能力主要是通過對(duì)現(xiàn)實(shí)世界中數(shù)量關(guān)系與空間形式的抽象”[1]8.抽象能力是數(shù)學(xué)核心素養(yǎng)的重要表現(xiàn),它是在學(xué)生進(jìn)行抽象活動(dòng)的過程中形成的.數(shù)學(xué)是研究數(shù)量關(guān)系與空間形式的學(xué)科,數(shù)學(xué)中要抽象的是事物在數(shù)量關(guān)系和空間形式方面的共同的、本質(zhì)的屬性[2]68.初中階段的抽象能力主要表現(xiàn)在對(duì)概念、關(guān)系與方法的抽象上,具體包括8個(gè)方面[2]68.
本題中學(xué)生抽象的地方有兩個(gè):一是在解答第(1)個(gè)問題時(shí),需要學(xué)生首先根據(jù)圖1(3)中各個(gè)“孤立”點(diǎn)的“位置”作出表中各點(diǎn)在同一條直線上的判斷,然后抽象出這條直線對(duì)應(yīng)的函數(shù)表達(dá)式為y=kx+b;二是在解答第(2)個(gè)問題時(shí),根據(jù)凳面寬度為213mm,抽象得到方程213=5x+33.
(2)運(yùn)算能力
(3)模型觀念
(4)應(yīng)用意識(shí)
《課標(biāo)(2022年版)》在界定的數(shù)學(xué)核心素養(yǎng)中有兩個(gè)跨學(xué)科的素養(yǎng),其中之一是應(yīng)用意識(shí).應(yīng)用意識(shí)是在應(yīng)用數(shù)學(xué)知識(shí)解決問題的過程中逐漸形成并得到發(fā)展的一個(gè)重要素養(yǎng).
本案例主要在于培養(yǎng)學(xué)生用“一次函數(shù)”“一次方程”解決“板凳”中蘊(yùn)涵的數(shù)學(xué)問題.學(xué)生通過解決本題,“能夠感悟現(xiàn)實(shí)生活中蘊(yùn)含著大量的與數(shù)量和圖形有關(guān)的問題,可以用數(shù)學(xué)的方法予以解決”[1]10,有助于增強(qiáng)學(xué)生的應(yīng)用意識(shí).
4教學(xué)啟發(fā)
4.1綜合與實(shí)踐領(lǐng)域的學(xué)習(xí)應(yīng)與其它三個(gè)領(lǐng)域的內(nèi)容密切配合
關(guān)于初中學(xué)段的“綜合與實(shí)踐”領(lǐng)域,《課標(biāo)(2022年版)》提出了三條具體的課程內(nèi)容.第一條是:在社會(huì)生活和科學(xué)技術(shù)的真實(shí)情境中,結(jié)合方程與不等式、函數(shù)、圖形的變化、圖形與坐標(biāo)、抽樣與數(shù)據(jù)分析等內(nèi)容,經(jīng)歷現(xiàn)實(shí)情境數(shù)學(xué)化,探索數(shù)學(xué)關(guān)系、性質(zhì)與規(guī)律的過程,感悟如何從數(shù)學(xué)的角度發(fā)現(xiàn)問題和提出問題,逐步形成“會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界”的核心素養(yǎng)[1]77.
這三條內(nèi)容恰好對(duì)應(yīng)著《課標(biāo)(2022年版)》提出的“三會(huì)”目標(biāo).可見“綜合與實(shí)踐”領(lǐng)域與前三個(gè)領(lǐng)域的課程內(nèi)容有“交集”,也就是說.綜合與實(shí)踐內(nèi)容包含學(xué)習(xí)數(shù)學(xué)知識(shí),應(yīng)用數(shù)學(xué)知識(shí)、綜合應(yīng)用各學(xué)科知識(shí)(圖2)[2]234.對(duì)這些數(shù)學(xué)知識(shí)的學(xué)習(xí)應(yīng)以實(shí)踐、探究等活動(dòng)方式展開.
《課標(biāo)(2022年版)》下的教材,基本上每?jī)?cè)都設(shè)計(jì)了兩個(gè)“綜合與實(shí)踐”活動(dòng),每個(gè)活動(dòng)設(shè)3課時(shí).筆者認(rèn)為,這種設(shè)計(jì)很“死板”,不利于老師靈活選用.
教師在實(shí)際教學(xué)時(shí),要結(jié)合“數(shù)與代數(shù)”“圖形與幾何”“統(tǒng)計(jì)與概率”領(lǐng)域的課程內(nèi)容,靈活的設(shè)計(jì)“綜合與實(shí)踐”活動(dòng),一個(gè)綜合與實(shí)踐活動(dòng)不一定需要3課時(shí).
在設(shè)計(jì)問題時(shí),不一定要設(shè)計(jì)多么難的“大”問題.一些“小”的問題,同樣可以引導(dǎo)學(xué)生開展綜合與實(shí)踐活動(dòng),在活動(dòng)中提升自己的數(shù)學(xué)素養(yǎng).本考題就是典型的一例.
4.2在確定“綜合與實(shí)踐”活動(dòng)時(shí)正確理解“為主”和“適當(dāng)”的意義
關(guān)于“綜合與實(shí)踐”的課程內(nèi)容,《課標(biāo)(2022年版)》在表述中,提到了“為主”和“適當(dāng)”兩個(gè)要求,我們一定要深刻理解其含義:
(1)“綜合與實(shí)踐”要“以跨學(xué)科主題學(xué)習(xí)為主”[1]16.這里的“為主”告訴我們,“跨學(xué)科”不是綜合與實(shí)踐活動(dòng)的必備要求,設(shè)計(jì)“綜合與實(shí)踐”活動(dòng)也不一定必須有“數(shù)學(xué)學(xué)科”以外的“學(xué)科”參與.
(2)“適當(dāng)采用主題式學(xué)習(xí)和項(xiàng)目式學(xué)習(xí)的方式”[1]16.《課標(biāo)(2022年版)》指出,關(guān)于“綜合與實(shí)踐”活動(dòng),在小學(xué)階段以主題式學(xué)習(xí)為主,初中階段可采用項(xiàng)目式學(xué)習(xí)方式[1]17.項(xiàng)目式學(xué)習(xí)指學(xué)生面對(duì)“真實(shí)”的問題情境,應(yīng)用有關(guān)知識(shí),使用“合適”的策略、方法,在實(shí)踐探究中解決問題的活動(dòng).“適當(dāng)”“可”的意義告訴我們,“綜合與實(shí)踐”可采用項(xiàng)目式學(xué)習(xí),也可以不采用項(xiàng)目式學(xué)習(xí)的方式.
4.3加強(qiáng)問題解決教學(xué)
綜合與實(shí)踐領(lǐng)域的教學(xué)活動(dòng),以解決實(shí)際問題為重點(diǎn)[1]87,這種實(shí)際問題是現(xiàn)實(shí)世界中具有開放性的問題.學(xué)生圍繞問題通過思考、探索、交流等系列活動(dòng),將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題,進(jìn)而用數(shù)學(xué)知識(shí)和方法加以解決.
問題解決教學(xué)至少有三個(gè)方面的功能[3]:一是鞏固和加深理解所學(xué)數(shù)學(xué)基礎(chǔ)知識(shí),熟練掌握數(shù)學(xué)基本技能,進(jìn)一步感悟數(shù)學(xué)基本思想,豐富原有的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).二是培養(yǎng)學(xué)生良好的個(gè)性品質(zhì),引發(fā)學(xué)生對(duì)數(shù)學(xué)的好奇心和求知欲望、獨(dú)立學(xué)習(xí)的能力,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,形成質(zhì)疑問難、自我反思和勇于探索的科學(xué)精神.三是發(fā)展功能,即發(fā)展學(xué)生的思維和掌握智力活動(dòng)的有效手段.
這三個(gè)方面都是學(xué)生數(shù)學(xué)核心素養(yǎng)不可或缺的組成部分.因此,教師在引導(dǎo)學(xué)生主動(dòng)獲取新知識(shí)的同時(shí),要適當(dāng)?shù)母鶕?jù)所學(xué)知識(shí)鼓勵(lì)學(xué)生開展問題解決活動(dòng),這是落實(shí)《課標(biāo)(2022年版)》提出的“總目標(biāo)”的重要舉措.
參考文獻(xiàn)
[1]中華人民共和國(guó)教育部.義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn):2022年版[M].北京:北京師范大學(xué)出版社,2022.
[2]史寧中,曹一鳴.義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)解讀[M].北京:北京師范大學(xué)出版社,2022:92-93.
[3]王恩大.數(shù)學(xué)教育辭典[M].濟(jì)南:山東教育出版社,1991:694.
作者簡(jiǎn)介衣曉蕾(1983—),女,山東棲霞人,博士,高級(jí)教師,朝陽區(qū)骨干教師,朝陽區(qū)創(chuàng)新工作室領(lǐng)軍人;主要研究方向?yàn)槌踔袛?shù)學(xué)教學(xué)方法、課程設(shè)計(jì)與學(xué)科建設(shè).
李樹臣(1962—),男,山東沂南人,正高級(jí)教師;全國(guó)義務(wù)教育初中數(shù)學(xué)教材(青島版)的核心作者、分冊(cè)主編,中國(guó)人民大學(xué)《復(fù)印報(bào)刊資料·初中數(shù)學(xué)教與學(xué)》編委;主要研究初中數(shù)學(xué)課程與教學(xué)問題.