• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WO3/Zn0.5Cd0.5S S 型異質(zhì)結(jié)光催化產(chǎn)氫耦合有機(jī)物轉(zhuǎn)化機(jī)理研究

    2024-07-16 00:00:00曹爽鐘博別傳彪程蓓徐飛燕
    物理化學(xué)學(xué)報(bào) 2024年5期
    關(guān)鍵詞:產(chǎn)氫

    摘要:開發(fā)新型納米材料實(shí)現(xiàn)光催化產(chǎn)氫耦合有機(jī)物轉(zhuǎn)化、提高太陽能到化學(xué)能的轉(zhuǎn)換效率,在解決能源和環(huán)境危機(jī)方面具有巨大潛力。三元金屬硫化物具有可調(diào)控的帶隙和優(yōu)異的可見光響應(yīng),在光催化分解水產(chǎn)氫方面引起了廣泛關(guān)注。其中,Zn0.5Cd0.5S是一種帶隙較窄、導(dǎo)帶位置較高、耐光腐蝕的還原型光催化劑;然而,單一Zn0.5Cd0.5S中光生電子和空穴的復(fù)合率較高,只有少部分光生載流子參與光催化反應(yīng),導(dǎo)致量子效率較低而無法達(dá)到實(shí)際需求。WO3是一種典型的氧化型光催化劑,具有較低的價帶位置和較強(qiáng)的氧化能力,是與Zn0.5Cd0.5S耦合構(gòu)建S型異質(zhì)結(jié)的理想半導(dǎo)體?;诖?, 本文通過靜電紡絲和水熱方法將Zn0.5Cd0.5S納米片垂直生長在WO3納米纖維上, 制備了具有核殼結(jié)構(gòu)的WO3/Zn0.5Cd0.5S異質(zhì)結(jié)。功函數(shù)的差異驅(qū)動Zn0.5Cd0.5S的電子轉(zhuǎn)移到WO3上,在界面處形成內(nèi)建電場并使能帶彎曲。通過原位光照X射線光電子能譜、電子順磁共振和時間分辨熒光光譜分析,發(fā)現(xiàn)在內(nèi)建電場、彎曲能帶和庫侖吸引力的作用下,WO3導(dǎo)帶上的光生電子遷移到Zn0.5Cd0.5S價帶上并與其光生空穴復(fù)合,表明WO3和Zn0.5Cd0.5S之間形成了S型異質(zhì)結(jié),實(shí)現(xiàn)了具有強(qiáng)氧化還原能力的載流子的高效分離。得益于獨(dú)特的S型光催化機(jī)制以及反應(yīng)物在催化劑表面的有效吸附與活化,沒有貴金屬助催化劑的情況下,WO3/Zn0.5Cd0.5S異質(zhì)結(jié)在產(chǎn)氫(715 μmol?g?1?h?1)和乳酸轉(zhuǎn)化為丙酮酸方面表現(xiàn)出增強(qiáng)的光催化活性,實(shí)現(xiàn)了光生電子和空穴的高效利用。原位漫反射傅里葉變換紅外光譜和密度泛函理論計(jì)算揭示了光催化產(chǎn)氫和有機(jī)物轉(zhuǎn)化的反應(yīng)機(jī)理。本工作為設(shè)計(jì)和研究新型S型異質(zhì)結(jié)光催化劑、實(shí)現(xiàn)高效產(chǎn)氫耦合有機(jī)物轉(zhuǎn)化提供了新的見解。

    關(guān)鍵詞:三氧化鎢;S型異質(zhì)結(jié);產(chǎn)氫;有機(jī)物轉(zhuǎn)化;化學(xué)吸附與活化

    中圖分類號:O643

    Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction

    Abstract: Developing novel nanostructures to enhance the efficiency of solar-tochemicalconversion through integrated photocatalytic hydrogen (H2) evolution andorganic transformation holds great promise in addressing pressing energy andenvironmental crises. Ternary metal sulfides have garnered considerable attention inphotocatalytic H2 production due to their tunable bandgap and excellent visible lightresponse. Among them, Zn0.5Cd0.5S stands out as a reduction photocatalyst with anarrow bandgap, a high conduction band level, and excellent resistance tophotocorrosion. However, unitary Zn0.5Cd0.5S suffers from a high recombination rate ofphotogenerated electron/hole pairs, resulting in only a small fraction of charge carriersbeing involved in the photoreactions, leading to a low quantum efficiency that falls shortof practical demand. WO3, a typical oxidation photocatalyst with a lower valence bandposition and strong oxidization ability, is an ideal candidate for constructing an S-scheme heterojunction with Zn0.5Cd0.5S.Herein, a core-shell structured WO3/Zn0.5Cd0.5S heterojunction with Zn0.5Cd0.5S nanosheets vertically growing out of WO3nanofibers is fabricated through electrospinning and hydrothermal methods. The distinct disparity in work functions leadsto the transfer of electrons from Zn0.5Cd0.5S to WO3 upon contact, creating an interfacial electric field (IEF) andsimultaneously bending the energy bands at the interface. As a consequence of IEF, bent energy bands, and coulombattraction, the photogenerated electrons in the conduction band of WO3 migrate to the valence band of Zn0.5Cd0.5S andrecombine with its photoinduced holes, signifying the formation of an S-scheme heterojunction between WO3 andZn0.5Cd0.5S and enabling efficient separation of powerful charge carriers, as evidenced by in situ irradiated X-rayphotoelectron spectroscopy, electron paramagnetic resonance, and time-resolved fluorescence spectroscopy analyses.Benefiting from the unique S-scheme photocatalytic mechanism, along with the effective chemisorption and activation ofreactants on the catalyst, the optimized WO3/Zn0.5Cd0.5S heterostructures exhibit exceptional photocatalytic performancein H2 production (715 μmol?g?1?h?1) and the transformation from lactic acid to pyruvic acid without the need for any noblemetal cocatalyst, achieving the full utilization of photoinduced electrons and holes. In situ diffuse reflectance infraredFourier transform spectroscopy, as well as density functional theory simulations, reveal the photoreaction mechanism ofH2 production and organic transformation. This work offers valuable insights into the design and investigation of themechanism behind novel S-scheme heterojunction photocatalysts, enabling high-performance H2 production andsimultaneous organic transformation.

    Key Words: Tungsten oxide; S-scheme heterojunction; Hydrogen production; Organic transformation;Chemisorption and activation

    1 Introduction

    The overuse of fossil fuels in recent decades has led to theongoing energy and environmental crises, posing a significantthreat to the sustainable development of human society 1–5. Cleanhydrogen (H2) energy has emerged as a compelling alternativedue to its regenerative nature, minimal pollution, and highenergy density 6?11. Solar-driven photocatalytic water splittingoffers a host of advantages, including harnessing inexhaustiblesolar energy, ensuring sustainability, cost-effectiveness, andachieving reasonable solar-to-hydrogen efficiency. It stands outas one of the most promising and economically viableapproaches to reduce fossil fuel consumption and associatedgreenhouse gas emissions 12?15. Currently, significant researchefforts are dedicated to the photocatalytic half-reaction for H2production from water. This involves introducing holescavengers, such as methanol and triethanolamine, into thesystem to extend the lifespan of photogenerated electrons,thereby enhancing H2 production performance 16–20. However,the presence of molecular scavengers hinders the effectiveutilization of energetic holes, resulting in inefficient energydissipation. Additionally, using sacrificial agents for H2production is environmentally unfriendly and increases the costof photocatalytic processes. Thus, making full use ofphotogenerated electrons and holes upon light illumination is anurgent challenge that needs to be addressed 21–26.

    Ternary metal sulfides have attracted considerable attention inphotocatalytic H2 production due to their tunable bandgap andexcellent visible light response. Among them, ZnxCd1?xS standsout as an n-type reduction photocatalyst with a narrow bandgap,a high conduction band (CB) level, and excellent resistance tophotocorrosion 27–31. By adjusting the ratio of Zn2+ and Cd2+ions, photocatalysts with optimal band structures can besynthesized, with Zn0.5Cd0.5S demonstrating the highestphotocatalytic performance. However, similar to othermonocomponent photocatalysts, unitary Zn0.5Cd0.5S suffersfrom a high recombination rate of photoinduced electron/holepairs 32–34. Only a small fraction of electrons and holes areinvolved in the photoreactions, resulting in a low quantumefficiency that falls short of practical demand 35–38. Therefore, itis desirable, yet challenging, to develop Zn0.5Cd0.5S-basedheterojunction photocatalysts with efficient separation ofphotogenerated electron/hole pairs and high quantumefficiency 39–43.

    The construction of S-scheme heterojunctions involvingZn0.5Cd0.5S for integrated photocatalytic H2 production andorganic photosynthesis is acknowledged as a potential solutionto address the aforementioned challenges 44–46. In this process,ineffective photoinduced electrons and holes tend to recombine,while the powerful photoelectrons in the CB of the reductionphotocatalyst and photoholes in the valence band (VB) of the oxidation photocatalyst are preserved to reduce H2O to yield H2and drive the oxidative organic transformation to produce valueaddedchemicals, respectively. Such a strategy enables theefficient separation of charge carriers with strong redox abilitiesand maximizes the utilization of the reactive electrons and holesderived from solar conversion 47–53. Tungsten oxide (WO3), atypical oxidation photocatalyst with a lower VB position andstrong oxidization ability, is an ideal candidate for constructingan S-scheme heterojunction with Zn0.5Cd0.5S 54. Specifically,one-dimensional (1D) WO3 nanofibers, prepared throughelectrospinning, have garnered significant interest owing to theirimproved specific surface areas, reduced charge transport length,inert aggregation and increased active sites, etc. In this work, wesynthesized electrospun WO3 nanofibers and then grewZn0.5Cd0.5S nanosheets on the nanofiber surface via a simplelow-temperature hydrothermal method to constructWO3/Zn0.5Cd0.5S nanostructures for photocatalytic H2production and organic transformation. Density functionaltheory (DFT) calculations, in situ X-ray photoelectronspectroscopy (XPS), electron paramagnetic resonance (EPR),and time-resolved fluorescence spectroscopy (TRPL) analysesconfirmed the formation of an S-scheme heterojunction betweenWO3 nanofibers and Zn0.5Cd0.5S nanosheets, endowing thecomposite with exceptional photocatalytic performance for H2Oreduction and lactic acid (LA) oxidation. This work providesvaluable insights into the design of novel S-schemeheterojunction photocatalysts for high-performance H2production and concurrent organic transformation.

    2 Experimental details

    2.1 Preparation of photocatalysts

    WO3 nanofibers were synthesized via the electrospinningmethod. Firstly, tungsten hexachloride (WCl6, 1.0 g) andpolyacrylonitrile (PAN, 0.5 g) were dissolved in 5 mL of N,Ndimethylformamide(DMF) through magnetic stirring for 12 h atroom temperature. The resulting dark-blue solution was thenloaded into an electrospinning setup using a syringe. Theelectrical potential and solution-feeding rate were set at 20 kVand 0.2 mL?h?1, respectively. Subsequently, the obtained WO3nanofiber precursors were calcinated at 300 °C for 1 h in air,followed by further heating at 500 °C for another 5 h to obtainpale yellow WO3 nanofibers.

    For the synthesis of WO3/Zn0.5Cd0.5S nanohybrids, zincacetate dihydrate (0.8 mmol), cadmium acetate dihydrate (0.8mmol) and thiourea (3.2 mmol) were dissolved in 40 mL ofethanol to form a homogeneous solution. Then, 60 mg of WO3nanofibers were added to the solution. After vigorous stirring for10 min, the resulting suspension was transferred to a Teflonlinedstainless-steel autoclave and heated at 120 °C for 12 h.Upon cooling, the yellow WO3/Zn0.5Cd0.5S product wasseparated by centrifugation, thoroughly washed with water andethanol, and then dried in an oven at 60 °C. For comparison, pureZn0.5Cd0.5S was also prepared under the same conditions without the addition of WO3 nanofibers. The synthesizedWO3/Zn0.5Cd0.5S photocatalysts are denoted as WZCx (x = 20,30, 40), where W and ZC represent WO3 and Zn0.5Cd0.5S,respectively; x indicates the mass percentage of WO3 toZn0.5Cd0.5S.

    2.2 H2O photoreduction integrated with organicphotooxidation

    The performance of the photoreduction of H2O coupled withthe photooxidation of organics was evaluated using a sealed andN2-filled 150 mL three-necked Pyrex flask. Typically, 20 mg ofphotocatalysts were dispersed in 50 mL of an aqueous solutioncontaining LA at a concentration of 0.1 vol% (volume fraction)under magnetic stirring. To maintain an anaerobic condition, thesystem was purged with N2 for 30 min using a multi-channelatmosphere controller (PLA-MAC1005, Beijing Perfectlight,China). Subsequently, the system was irradiated for 1 h using a300 W Xenon arc lamp (PLS-SXE300+, Beijing Perfectlight,China). After the photocatalytic reaction, the generated gas wasanalyzed using a gas chromatograph (GC-14C, Shimadzu,Japan), and the liquid products were detected using highperformanceliquid chromatography equipped with a UV-visiblelight detector (SPD-20A, Shimadzu, Japan), a column oven(CTO-20A, Shimadzu, Japan), a low-pressure gradient unit (LC-20AD, Shimadzu, Japan), and a degasser (DGU-20A5R,Shimadzu, Japan). The mobile phase consisted of a 10 mmol?L?1potassium dihydrogen phosphate solution with a flow rate of 1.0mL?min?1.

    3 Results and discussion

    3.1 Characterization of WO3/Zn0.5Cd0.5S nanostructures

    The field emission scanning electron microscopy (FESEM)image of pristine WO3 unveils a uniform nanofibrousmorphology characterized by diameters ranging from 200 to 300nm and a conspicuously rough surface (Fig. 1a). Subsequent tothe solvothermal process, an abundance of vertically alignedZn0.5Cd0.5S nanosheets emerges from the WO3 nanofibers, asexemplified in Fig. 1b,c. The high-resolution transmissionelectron microscopy (HRTEM) image of the WO3/Zn0.5Cd0.5Snanostructure (inset of Fig. 1c) reveals an interplanar crystalspacing of 0.31 nm, precisely coinciding with the (111) facet ofZn0.5Cd0.5S. No observable lattice spacing of WO3 is detected asit resides within the composite nanofibers. The energy dispersiveX-ray spectroscopy (EDS) elemental mappings (Fig. 1d)demonstrate a homogeneous distribution of W, O, Zn, Cd and Selements, thus validating the successful hybridization of WO3and Zn0.5Cd0.5S.

    The X-ray diffraction (XRD) pattern of pristine WO3nanofibers exhibits characteristic peaks corresponding to themonoclinic phase (JCPDS No.20-1324) (Fig. 1e). The obtainedpure Zn0.5Cd0.5S displays crystal properties associated with thehexagonal wurtzite phase of CdS (JCPDS No.41-1049) 55,56 andZnS (JCPDS No.36-1450) 57, albeit with slight peak shifts. This occurrence arises from the larger atomic radius of Cd comparedto Zn, which induces changes in the lattice constant andinterplanar spacing during the formation of a solid solution (Fig.S1). For the composite WZCx, diffraction peaks of both WO3and Zn0.5Cd0.5S are detected, further confirming the formation ofWO3/Zn0.5Cd0.5S nanohybrids and agreeing well with the aboveanalyses. The optical absorption capabilities of WO3,Zn0.5Cd0.5S, and WO3/Zn0.5Cd0.5S heterojunctions wereinvestigated via ultraviolet-visible diffuse reflectance spectrum(UV-Vis DRS). As shown in Fig. 1f, bare WO3 and Zn0.5Cd0.5Sexhibit intrinsic absorption edges at around 510 and 480 nm,indicating bandgaps (Eg) of 2.40 and 2.62 eV, respectively. Theobtained WZC30 demonstrates enhanced absorption of visiblelight due to the strong light absorption properties of WO3, whichis beneficial for efficient light harvesting to improve thephotocatalytic performance.

    XPS was employed to investigate the chemical states andsurface composition of WO3, Zn0.5Cd0.5S, and theWO3/Zn0.5Cd0.5S heterostructure. Fig. 2a illustrates the presenceof W, O, Zn, Cd, and S elements in WZC30. The high-resolutionXPS spectra of W 4f in Fig. 2b display two pairs of doublets,where the peaks at 35.7 and 37.8 eV are assigned to W6+, whilethe others located at 35.2 and 37.3 eV are attributed to W5+ 28,58.Deconvolution of the O 1s XPS spectra (Fig. 2c) uncoversdistinct peaks corresponding to lattice oxygen (530.5 eV),surface-adsorbed oxygen ( ― OH) (532.1 eV), and vacancyoxygen (533.3 eV) in the samples. Additionally, the detection ofZn 2p, Cd 3d, and S 2p doublets in pure Zn0.5Cd0.5S and WZC30composite (Fig. 2d–f) provides compelling evidence for theexistence of Zn2+, Cd2+, and S2? in both samples. It is worth noting that in the dark, the binding energies (BEs) of W 4f andO 1s in WZC30 shift negatively compared to pure WO3, whilethe peaks of Zn 2p, Cd 3d, and S 2p exhibit positive shifts withrespect to pristine Zn0.5Cd0.5S. Such an interesting phenomenonsuggests the transfer of electrons from Zn0.5Cd0.5S to WO3 uponhybridization.

    3.2 Insights into charge transfer and separationmechanism

    To investigate the mechanism of charge transfer and separationin the WO3/Zn0.5Cd0.5S heterostructures, the band structure ofWO3 and Zn0.5Cd0.5S was initially examined. The VB-XPSspectra (Fig. S2) reveal that the difference between the VBmaximum and the flat band potential (Efb) of WO3 andZn0.5Cd0.5S is determined to be 2.43 and 1.30 eV, respectively.According to the Mott-Schottky plots as depicted in Fig. S3, theEfb values of WO3 and Zn0.5Cd0.5S are derived to be +0.1 and?0.5 V (vs. RHE), respectively. By incorporating the bandgapsdisclosed in the inset of Fig. 1f, the band structure of WO3 andZn0.5Cd0.5S is calculated and illustrated in Fig. S4, where WO3functions as the oxidation photocatalyst and Zn0.5Cd0.5S acts asthe reduction photocatalyst.

    The work function (Φ) plays a crucial role in exploring thepathway of charge transfer. Analysis of the electrostatic potentialprofiles reveals that the Φ values of WO3 (001) and Zn0.5Cd0.5S(100) are determined to be 6.8 and 5.1 eV, respectively,suggesting a lower Fermi level (EF) of WO3 compared toZn0.5Cd0.5S (Fig. 3a,b). Furthermore, the results obtained fromultraviolet photoelectron spectroscopy (UPS) estimate the EFvalues of WO3 and Zn0.5Cd0.5S to be ?4.22 and ?1.02 eV,respectively, relative to the vacuum level (Fig. S5), which alignswith the above DFT simulation. As a consequence of thedifference in work function and Fermi level, electrons will migrate from Zn0.5Cd0.5S to WO3 upon their contact untilequilibrium is reached at the interface. Such charge transferresults in the formation of an internal electric field (IEF) directedfrom Zn0.5Cd0.5S to WO3, and meanwhile bends their energybands at the nanostructure interfaces (Fig. 3c), corroborating theabove XPS analysis.

    Under light irradiation, electrons in both WO3 and Zn0.5Cd0.5Sare initially excited from the VB to the CB. Driven by the IEF,band bending, and coulomb interactions, the photogeneratedelectrons in the WO3 CB preferentially transfer to the Zn0.5Cd0.5SVB and recombine with its photoexcited holes, therebypreserving powerful photoelectrons in the Zn0.5Cd0.5S CB andphotoholes in the WO3 VB to participate in the photoreactions.This distinctive charge transfer and separation mechanism signify the formation of an S-scheme heterojunction betweenWO3 and Zn0.5Cd0.5S, enabling efficient separation ofphotogenerated carriers and imparting the heterojunction withexceptional redox ability (Fig. 3c). In situ irradiated XPS spectrareveal that the BEs of W 4f and O 1s in WZC30 exhibit positiveshifts, while the peaks of Zn 2p, Cd 3d and S 2p shift towardslower binding energy with reference to those recorded in the dark(Fig. 2b–f). These intriguing findings demonstrate the transportof photoelectrons from WO3 to Zn0.5Cd0.5S, reaffirming the Sschemephotocatalytic mechanism 59–61.

    EPR measurements were conducted using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trapping agent to elucidatethe charge transfer pathway within the WO3/Zn0.5Cd0.5Sheterostructure. As depicted in Fig. 3d, the mono-componentWO3 and Zn0.5Cd0.5S exhibit relatively weaker DMPO-·O2? andDMPO-·OH signals, which can be attributed to their bandstructures and the rapid recombination of charge carriers. Incontrast, the WZC30 composite displays stronger DMPO-·O2?and DMPO-·OH signals, indicating the effective separation andpreservation of highly energetic electrons in the Zn0.5Cd0.5S CBand holes in the WO3 VB, providing further compelling evidencefor the S-scheme charge separation mechanism. The deeperinsights into the charge separation efficiency and charge transferdynamics of S-scheme heterojunctions were further investigatedvia TRPL. According to the steady-state photoluminescencespectra of pure WO3 and Zn0.5Cd0.5S (Fig. S6), TRPL spectrawere recorded at an emission wavelength of 630 nm, where thefluorescence signal is predominantly contributed by Zn0.5Cd0.5S.As depicted in Fig. 3e, the heterostructure WZC30 exhibitslonger lifetimes compared to pristine Zn0.5Cd0.5S, indicating themigration of photogenerated electrons from the WO3 CB to theZn0.5Cd0.5S VB, where they recombine with holes.Consequently, a greater accumulation of photoelectrons occursin the Zn0.5Cd0.5S CB, extending the lifetime and furtheraffirming the S-scheme charge transfer route within theWO3/Zn0.5Cd0.5S heterojunctions. Notably, the introduction oflactic acid (LA) to the system significantly reduces the averagelifetime of WZC30, indicating the efficient photoreduction ofH2O integrated with the photooxidation of LA, thereby leavingfew photocarriers available for the recombination. Furthermore,the photoelectrochemical results (Fig. S7) demonstrate thatWZC30 exhibits a higher photocurrent density and smallerradius of Nyquist plots with respect to pure WO3 andZn0.5Cd0.5S, testifying the enhanced charge separation efficiencyand reduced charge transfer resistance in the WO3/Zn0.5Cd0.5Sheterojunction. These analyses suggest that the formation of anS-scheme heterojunction between WO3 nanofibers andZn0.5Cd0.5S nanosheets promotes efficient charge transfer andenables effective separation of powerful electrons and holes,thereby boosting the photocatalytic performance.

    3.3 Photocatalytic performance towards H2Oreductionand LA-oxidation

    The adsorption and activation of reactants on catalysts play a molecule exhibits strong chemical adsorption on the Zn0.5Cd0.5Ssurface, characterized by an adsorption energy (Eads) of ?1.65eV, along with charge transfer as revealed in the charge densitydifference (Fig. S8a). The integrated crystal orbital Hamiltonpopulation (ICOHP) value of O-H pairs in free H2O is predictedto be ?7.39 eV (Fig. S8b). Upon adsorption on the Zn0.5Cd0.5Ssurface, the ICOHP value increases to ?7.01 eV, and new O-Cdspecies are formed with an ICOHP value of ?0.50 eV (Fig. S8c),providing further evidence of the activation of the H2O moleculeon the Zn0.5Cd0.5S surface. Furthermore, when the LA moleculeadsorbs onto the WO3 surface, LA donates 0.15 electrons toWO3 with an Eads of ?1.91 eV (Fig. S9), indicating a strongchemisorption interaction between LA and WO3. These DFTresults suggest that Zn0.5Cd0.5S and WO3 are the preferred activesites for H2O photoreduction and LA photooxidation,respectively.

    The photocatalytic performance of all the samples in H2Oreduction and LA oxidation was evaluated through experimentsin which water was split in a 0.1 vol% LA solution under UVvisiblelight irradiation. Control experiments were carried out toverify that no products were detectable in the absence ofphotocatalysts or light irradiation. Fig. 4a illustrates that theWO3/Zn0.5Cd0.5S S-scheme heterojunctions exhibit significantlyenhanced H2 production performance compared to pure WO3and Zn0.5Cd0.5S, achieving a maximum production rate of 14.3μmol?h?1 (715 μmol?g?1?h?1 at 20 mg of photocatalysts) overWZC30 with an apparent quantum efficiency (AQE) of 8.3% at420 nm. Further analysis of the liquid products unveils a gradualoxidation of LA to pyruvic acid (PA) accompanied by thegeneration of H2 (Fig. 4b). The conversion of LA and theselectivity of PA over WO3, WZCx, and Zn0.5Cd0.5S after a sixhourirradiation demonstrate that the composite WZC30 exhibitsthe highest LA conversion and PA production, with a PAselectivityof ~82% (Fig. 4c,d). Such outstanding performancetowards H2O reduction and LA oxidation of theWO3/Zn0.5Cd0.5S nanohybrids aligns with our expectation and ismainly attributed to the efficient activation of reactants on thecatalyst surface, as well as the unique S-scheme chargeseparation mechanism.

    Gibbs free energy calculations and in situ diffuse reflectanceinfrared Fourier transform spectroscopy (DRIFTS) wereemployed to investigate the reaction mechanism of H2Ophotoreduction and LA photooxidation. The Gibbs free energyof H* (ΔGH*) was first analyzed to assess the efficiency ofphotocatalytic H2 production. A ΔGH* value approaching zeroindicates a more favorable condition for H* adsorption, therebyenhancing the evolution of H2. Fig. 4e demonstrates that activeH* exhibits a preference for adsorption on S sites, with a ΔGH*value of 0.91 eV, compared to Zn and Cd (instability) sites,suggesting that S serves as the active site for H2Ophotoreduction.

    In situ DRIFTS spectra (Fig. 4f) reveal that after introducing H2O and LA into the system in the dark, the detectedcharacteristic peaks assigned to the out-of-plane bendingvibration of ―OH (675 cm?1), the deformation vibration ofmethylene (1300 cm?1), the symmetric bending of ―CH3 (1360cm?1), the stretching vibration of ―COOH (1550 cm?1), thestretching vibration of the carbonyl group (1730 cm?1), thestretching vibration of hypomethyl (3000 cm?1), the stretchingvibration of ―OH (3200 cm?1), and the H2O signal (3500 cm?1)strongly support the chemisorption of reactants on the WZC30surface. Upon light irradiation, the peaks at 1300, 3000, 3200,and 3500 cm?1 diminish, while a new signal corresponding topyruvate emerges at 1210 cm?1, suggesting continuousconsumption of the adsorbed H2O and LA, leading to thegeneration of H2 and PA. Furthermore, Gibbs free energy change(ΔG) calculations were performed to investigate the elementaryreactions involved in the conversion of LA to PA. As depicted in Figs. 4g and S10, the rate-limiting step for both WO3 as thecatalyst and the reaction without a catalyst is thedehydrogenation of the adsorbed LA. Notably, WO3 has a lowerΔG value compared to the reaction with no catalyst (0.71 vs. 1.73eV), highlighting the feasibility of LA photooxidation over theWO3 surface.

    A cyclic H2 production test was conducted to investigate thephotostability of the nanohybrids. As revealed in Fig. S11, theWO3/Zn0.5Cd0.5S heterojunction (WZC30) shows a negligibledecrease in H2 production after four cycles, indicating thesatisfactory stability of the composite. The XRD pattern andFESEM image (Fig. S12) of the spent WZC30 demonstrate nosignificant alterations in phase and morphology when comparedto the fresh one, reaffirming the photostability ofWO3/Zn0.5Cd0.5S heterostructures. Comparing the XPS spectraof WZC30 before and after photoreaction (Fig. S13), it can beobserved that the BEs of S 2p and O 1s shift negatively andpositively, respectively, which is attributed to the weakened IEFfollowing the photoreaction. The chemical states of all elementsreveal negligible change, underscoring the satisfying stability ofthe WO3/Zn0.5Cd0.5S heterojunction photocatalyst. Generally,the severe photocorrosion of sulfides mainly results from theoxidation of S2? ions by photogenerated holes. However, in theWO3/Zn0.5Cd0.5S heterojunction, the S-scheme charge transfermechanism enables the photogenerated electrons in the WO3 CBto effectively recombine with the holes in the Zn0.5Cd0.5S VB,thereby preventing the oxidation of S2? in Zn0.5Cd0.5S and thusmitigating the issue of photocorrosion to improve thephotostability.

    4 Conclusion

    In conclusion, unique WO3/Zn0.5Cd0.5S S-schemeheterojunction photocatalysts were synthesized usingelectrospinning and low-temperature hydrothermal methods.DFT calculations and UPS results demonstrated that the Fermilevel of WO3 was lower than that of Zn0.5Cd0.5S, resulting inelectron transfer from Zn0.5Cd0.5S to WO3 upon contact, therebygenerating an IEF and bending the energy bands at the interface.Under light irradiation, the photogenerated electrons migratedfrom the WO3 CB to the Zn0.5Cd0.5S VB driven by the IEF, bentenergy bands and coulomb attraction, as supported by in situXPS and TRPL analysis. Such charge transfer mechanismresulted in the formation of an S-scheme heterojunction betweenWO3 and Zn0.5Cd0.5S, facilitating efficient separation ofphotoinduced charge carriers with high redox capabilities.Thanks to this unique S-scheme photocatalytic mechanism,combined with the effective chemisorption and activation ofreactants on the catalyst surface, the resulting WO3/Zn0.5Cd0.5SS-scheme heterostructures exhibited outstanding photocatalyticperformance in H2O reduction and LA oxidation, without theneed for any noble metal cocatalysts, thus fully utilizingphotogenerated electrons and holes. In situ DRIFTS, togetherwith DFT simulations, provided insights into the photoreaction mechanism involved in the production of H2 and PA. This studypresents a fresh perspective on the design and fabrication ofnovel S-scheme heterojunction photocatalysts, enabling theenhancement of solar-to-chemical conversion efficiency throughthe integration of H2 evolution with value-added chemicalsproduction.

    Author Contribution: S.C. and F.X. conceived anddesigned the experiments. S.C. conducted material synthesis andphotocatalytic test, and wrote the draft. S.C., B.Z., C.B., B.C.and F.X. contributed to data analysis. F.X. supervised theproject, performed DFT calculations, and revised themanuscript. All authors discussed the results and commented onthe manuscript.

    References

    (1) Domaschke, M.; Zhou, X.; Wergen, L.; Romeis, S.; Miehlich, M. E.;Meyer, K.; Peukert, W.; Schmuki, P. ACS Catal. 2019, 9, 3627.doi: 10.1021/acscatal.9b00578

    (2) Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu,H.; Li, H.; Li, Y.; et al. Appl. Catal. B 2019, 248, 84.doi: 10.1016/j.apcatb.2019.02.020

    (3) Tuna Gen?, M.; Sarilmaz, A.; Dogan, S.; Aksoy ?ekceo?lu, ?.; Ozen,A.; Aslan, E.; Saner Okan, B.; Jaafar, J.; Ozel, F.; Ersoz, M.; et al. Int.J. Hydrog. Energy 2023, 38, 253.doi: 10.1016/j.ijhydene.2023.04.185

    (4) Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.;Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7, 19087.doi: 10.1039/c9ta06219j

    (5) Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci.Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016

    (6) Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42,15. doi: 10.1016/s1872-2067(20)63614-2

    (7) Lei, Y.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Hoong Ng, K.; Lai, Y.Chem. Eng. J. 2021, 425, 131478. doi: 10.1016/j.cej.2021.131478

    (8) Liu, Y.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2021, 409, 128250.doi: 10.1016/j.cej.2020.128250

    (9) Wageh, S.; Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Alotaibi, M. F.;Wang, L. Chin. J. Catal. 2022, 43, 586.doi: 10.1016/s1872-2067(21)63925-6

    (10) Wageh, S.; Al-Ghamdi, A. A.; Xu, Q. Acta Phys. -Chim. Sin. 2022,38, 2202001. [Wageh, S., Al-Ghamdi, A. A., 徐全龍. 物理化學(xué)學(xué)報(bào), 2022, 38, 2202001.] doi: 10.3866/PKU.WHXB202202001

    (11) Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q.Chin. J. Catal. 2022, 43, 2720.doi: 10.1016/S1872-2067(22)64133-0

    (12) Lin, S.; Zhang, N.; Wang, F.; Lei, J.; Zhou, L.; Liu, Y.; Zhang, J. ACSSustain. Chem. Eng. 2020, 9, 481.doi: 10.1021/acssuschemeng.0c07753

    (13) Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci.Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034

    (14) Zhen, W.; Ning, X.; Yang, B.; Wu, Y.; Li, Z.; Lu, G. Appl. Catal. B2018, 221, 243. doi: 10.1016/j.apcatb.2017.09.024

    (15) Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022,34, 2108475. doi: 10.1002/adma.202108475

    (16) Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi,J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174.doi: 10.1039/d2ta05181h

    (17) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater.2021, 33, 2100317. doi: 10.1002/adma.202100317

    (18) Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J.Angew. Chem. Int. Ed. 2023, 62, e202304559.doi: 10.1002/anie.202304559

    (19) Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim.Sin. 2022, 38, 2108028. [黃悅, 梅飛飛, 張金鋒, 代凱, Dawson, G.物理化學(xué)學(xué)報(bào), 2022, 38, 2108028.]doi: 10.3866/PKU.WHXB202108028

    (20) Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022,38, 2110049. [雷卓楠, 馬心怡, 胡曉云, 樊君, 劉恩周. 物理化學(xué)學(xué)報(bào), 2022, 38, 2110049.] doi: 10.3866/PKU.WHXB202110049

    (21) Liu, K.; Peng, L.; Zhen, P.; Chen, L.; Song, S.; Garcia, H.; Sun, C.J. Phys. Chem. C 2021, 125, 14656.doi: 10.1021/acs.jpcc.1c03535

    (22) Wang, K.; Li, S.; Wang, G.; Li, Y.; Li, Y.; Jin, Z. Int. J. Energy Res.2022, 46, 19508. doi: 10.1002/er.8522

    (23) Zou, Y.; Guo, C.; Cao, X.; Chen, T.; Kou, Y.; Zhang, L.; Wang, T.;Akram, N.; Wang, J. Int. J. Hydrog. Energy 2022, 47, 25289.doi: 10.1016/j.ijhydene.2022.05.251

    (24) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew.Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688

    (25) Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023,19, 2301928. doi: 10.1002/smll.202301928

    (26) Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121.doi: 10.1016/j.jmst.2022.11.001

    (27) Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. J. ColloidInterface Sci. 2022, 605, 311. doi: 10.1016/j.jcis.2021.07.113

    (28) He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41,9. doi: 10.1016/s1872-2067(19)63382-6

    (29) Huang, D.; Wen, M.; Zhou, C.; Li, Z.; Cheng, M.; Chen, S.; Xue, W.;Lei, L.; Yang, Y.; Xiong, W.; Wang, W. Appl. Catal. B 2020, 267,118651. doi: 10.1016/j.apcatb.2020.118651

    (30) Li, H.; Hao, X.; Liu, Y.; Li, Y.; Jin, Z. J. Colloid Interface Sci. 2020,572, 62. doi: 10.1016/j.jcis.2020.03.052

    (31) Ye, H.-F.; Shi, R.; Yang, X.; Fu, W.-F.; Chen, Y. Appl. Catal. B 2018,233, 70. doi: 10.1016/j.apcatb.2018.03.060

    (32) Cai, M.; Liu, Y.; Dong, K.; Wang, C.; Li, S. J. Colloid Interface Sci.2023, 629, 276. doi: 10.1016/j.jcis.2022.08.136

    (33) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci.Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009

    (34) Cai, M.; Wang, C.; Liu, Y.; Yan, R.; Li, S. Sep. Purif. Technol. 2022,300, 121892. doi: 10.1016/j.seppur.2022.121892

    (35) Dai, D.; Xu, H.; Ge, L.; Han, C.; Gao, Y.; Li, S.; Lu, Y. Appl. Catal. B2017, 217, 429. doi: 10.1016/j.apcatb.2017.06.014

    (36) Shao, Z.; He, Y.; Zeng, T.; Yang, Y.; Pu, X.; Ge, B.; Dou, J. J. Alloy.Compd. 2018, 769, 889. doi: 10.1016/j.jallcom.2018.08.064

    (37) Wang, P.; Zhan, S.; Wang, H.; Xia, Y.; Hou, Q.; Zhou, Q.; Li, Y.;Kumar, R. R. Appl. Catal. B 2018, 230, 210.doi: 10.1016/j.apcatb.2018.02.043

    (38) Zhang, L.; Zhang, F.; Xue, H.; Gao, J.; Peng, Y.; Song, W.; Ge, L.Chin. J. Catal. 2021, 42, 1677.doi: 10.1016/S1872-2067(21)63791-9

    (39) Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem.Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488

    (40) Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Chem.Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587

    (41) Wang, Y.; Ying, M.; Zhang, M.; Ren, X.; Kim, I. S. Macromol. Mater.Eng. 2021, 306, 2100587. doi: 10.1002/mame.202100587

    (42) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668.doi: 10.1002/adma.202107668

    (43) Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015

    (44) Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. Chem. Eng. J. 2021, 415,129002. doi: 10.1016/j.cej.2021.129002

    (45) Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol.2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016

    (46) Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. Chin. J.Catal. 2023, 46, 167. doi: 10.1016/S1872-2067(22)64201-3

    (47) Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol.2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014

    (48) Kumar, A.; Khosla, A.; Kumar Sharma, S.; Dhiman, P.; Sharma, G.;Gnanasekaran, L.; Naushad, M.; Stadler, F. J. Fuel 2023, 333,126267. doi: 10.1016/j.fuel.2022.126267

    (49) Wang, L.; Bie, C.; Yu, J. Trends in Chem. 2022, 4, 973.doi: 10.1016/j.trechm.2022.08.008

    (50) Xi, Y.; Chen, W.; Dong, W.; Fan, Z.; Wang, K.; Shen, Y.; Tu, G.;Zhong, S.; Bai, S. ACS Appl. Mater. Interfaces 2021, 13, 39491.doi: 10.1021/acsami.1c11233

    (51) Zhang, B.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2021, 42, 1519.doi: 10.1016/S1872-2067(20)63765-2

    (52) Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.;Bai, X.; Low, J. Appl. Mater. Today 2022, 29, 101609.doi: 10.1016/j.apmt.2022.101609

    (53) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal.2022, 43, 2652. doi: 10.1016/s1872-2067(22)64106-8

    (54) Dutta, V.; Sharma, S.; Raizada, P.; Thakur, V. K.; Khan, A. A. P.;Saini, V.; Asiri, A. M.; Singh, P. J. Environ. Chem. Eng. 2021, 9,105018. doi: 10.1016/j.jece.2020.105018

    (55) Xiang, X.; Zhu, B.; Zhang, J.; Jiang, C.; Chen, T.; Yu, H.; Yu, J.;Wang, L. Appl. Catal. B 2023, 324, 122301.doi: 10.1016/j.apcatb.2022.122301

    (56) Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.;Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006.doi: 10.14102/j.cnki.0254-5861.2022-0124

    (57) Jiang, J.; Wang, G.; Shao, Y.; Wang, J.; Zhou, S.; Su, Y. Chin. J.Catal. 2022, 43, 329. doi: 10.1016/S1872-2067(21)63889-5

    (58) Wei, Y.; Zhang, Q.; Zhou, Y.; Ma, X.; Wang, L.; Wang, Y.; Sa, R.;Long, J.; Fu, X.; Yuan, R. Chin. J. Catal. 2022, 43, 2665.doi: 10.1016/S1872-2067(22)64124-X

    (59) Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13,8462. doi: 10.1021/acs.jpclett.2c02125

    (60) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater.2022, 34, 2203225. doi: 10.1002/adma.202203225

    (61) Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023,39, 2212009. [孫濤, 李晨曦, 鮑鈺鵬, 樊君, 劉恩周. 物理化學(xué)學(xué)報(bào), 2023, 39, 2212009.] doi: 10.3866/PKU.WHXB202212009

    國家重點(diǎn)研究與發(fā)展計(jì)劃(2022YFB3803600, 2022YFE0115900), 國家自然科學(xué)基金(52003213, 22238009, 22261142666, 52073223, 22278324, 51932007)以及湖北省自然科學(xué)基金(2022CFA001)資助

    猜你喜歡
    產(chǎn)氫
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進(jìn)光催化產(chǎn)氫
    底物濃度對光合產(chǎn)氫過程動力學(xué)的影響
    鈷氮共摻雜多孔碳材料的制備及電催化產(chǎn)氫性能研究
    變壓吸附制氫解吸氣壓縮機(jī)選型方案探討
    光合細(xì)菌利用秸稈解聚液制氫的優(yōu)化研究
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    復(fù)合催化劑NiS/g-C3N4的制備及光催化產(chǎn)氫性能
    “表面光化學(xué)動力學(xué)研究”2013年度報(bào)告
    有機(jī)廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    十六烷基三甲基溴化銨強(qiáng)化產(chǎn)氫發(fā)酵
    avwww免费| 成年人黄色毛片网站| 精品一区二区三卡| 免费在线观看影片大全网站| 欧美激情久久久久久爽电影 | 美国免费a级毛片| 一级毛片精品| 9191精品国产免费久久| 国产成人免费无遮挡视频| 久久青草综合色| 国产人伦9x9x在线观看| 大片电影免费在线观看免费| 免费在线观看黄色视频的| 视频在线观看一区二区三区| 亚洲第一av免费看| 人人妻,人人澡人人爽秒播| 亚洲伊人色综图| av电影中文网址| 制服人妻中文乱码| 国产欧美日韩综合在线一区二区| 一级片免费观看大全| 成年美女黄网站色视频大全免费| 女人久久www免费人成看片| 国产免费av片在线观看野外av| 美女午夜性视频免费| 精品亚洲成国产av| 国产真人三级小视频在线观看| 国产深夜福利视频在线观看| 国产成人欧美| 老司机靠b影院| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一出视频| 亚洲自偷自拍图片 自拍| 欧美久久黑人一区二区| 成人影院久久| 精品少妇久久久久久888优播| 黑人猛操日本美女一级片| 亚洲成国产人片在线观看| 欧美日韩福利视频一区二区| 国产一区二区三区av在线| 亚洲七黄色美女视频| 国产有黄有色有爽视频| 90打野战视频偷拍视频| 国产精品九九99| 大香蕉久久网| 久久久水蜜桃国产精品网| 十八禁网站网址无遮挡| 亚洲精品一二三| avwww免费| 精品人妻在线不人妻| 精品视频人人做人人爽| 久久精品aⅴ一区二区三区四区| 国产真人三级小视频在线观看| av天堂在线播放| 丰满人妻熟妇乱又伦精品不卡| 精品熟女少妇八av免费久了| 嫁个100分男人电影在线观看| 啪啪无遮挡十八禁网站| 一个人免费在线观看的高清视频 | 俄罗斯特黄特色一大片| 一本一本久久a久久精品综合妖精| 少妇被粗大的猛进出69影院| 国产av一区二区精品久久| 久久亚洲精品不卡| 日韩精品免费视频一区二区三区| 在线观看人妻少妇| 日韩电影二区| 欧美黑人精品巨大| 日韩 欧美 亚洲 中文字幕| 精品视频人人做人人爽| 两个人免费观看高清视频| 久久国产精品男人的天堂亚洲| 深夜精品福利| 国产精品一区二区在线观看99| 亚洲七黄色美女视频| cao死你这个sao货| 午夜福利在线观看吧| 91国产中文字幕| 国产黄频视频在线观看| 中国美女看黄片| 免费人妻精品一区二区三区视频| 亚洲人成电影观看| 国产精品偷伦视频观看了| 免费观看a级毛片全部| 老司机午夜十八禁免费视频| 欧美一级毛片孕妇| 亚洲情色 制服丝袜| 正在播放国产对白刺激| 精品少妇久久久久久888优播| 国产亚洲精品一区二区www | 少妇裸体淫交视频免费看高清 | 这个男人来自地球电影免费观看| 高清av免费在线| 99久久精品国产亚洲精品| 国产成人免费观看mmmm| 成人国语在线视频| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 亚洲avbb在线观看| 2018国产大陆天天弄谢| 精品一区在线观看国产| 中国国产av一级| 亚洲精品久久午夜乱码| 91精品伊人久久大香线蕉| 美女福利国产在线| 免费在线观看视频国产中文字幕亚洲 | 欧美在线一区亚洲| 一级,二级,三级黄色视频| 两性夫妻黄色片| 女人精品久久久久毛片| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看 | 一本色道久久久久久精品综合| 久久久久久亚洲精品国产蜜桃av| 免费不卡黄色视频| 亚洲成国产人片在线观看| 男女国产视频网站| 一级毛片精品| 久久久久网色| 婷婷色av中文字幕| 女人高潮潮喷娇喘18禁视频| 啦啦啦免费观看视频1| 午夜福利一区二区在线看| 男女床上黄色一级片免费看| 亚洲人成77777在线视频| 中文字幕人妻丝袜制服| 纵有疾风起免费观看全集完整版| 亚洲七黄色美女视频| 免费人妻精品一区二区三区视频| 久久这里只有精品19| 婷婷丁香在线五月| 亚洲情色 制服丝袜| 久久精品国产综合久久久| av免费在线观看网站| 亚洲成人免费电影在线观看| 日韩欧美国产一区二区入口| 青春草视频在线免费观看| 午夜福利,免费看| 久久女婷五月综合色啪小说| 亚洲欧美一区二区三区黑人| 国产成人一区二区三区免费视频网站| 如日韩欧美国产精品一区二区三区| 欧美日韩视频精品一区| 99热网站在线观看| 国产精品 欧美亚洲| 制服人妻中文乱码| 在线观看舔阴道视频| 99热全是精品| 老熟妇仑乱视频hdxx| 国产精品久久久av美女十八| 宅男免费午夜| 性色av乱码一区二区三区2| 中文字幕另类日韩欧美亚洲嫩草| 欧美日本中文国产一区发布| 99国产综合亚洲精品| 又大又爽又粗| 久久久精品国产亚洲av高清涩受| 高清av免费在线| 看免费av毛片| 超碰成人久久| 777久久人妻少妇嫩草av网站| 天天躁日日躁夜夜躁夜夜| 动漫黄色视频在线观看| 久久狼人影院| 亚洲av电影在线进入| 电影成人av| 精品久久久久久电影网| 美女扒开内裤让男人捅视频| 久久人人爽av亚洲精品天堂| 丝袜美足系列| 日韩一区二区三区影片| 啦啦啦免费观看视频1| 女性生殖器流出的白浆| 久久性视频一级片| 在线av久久热| 国产av国产精品国产| 五月天丁香电影| 天堂俺去俺来也www色官网| 亚洲国产看品久久| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区黑人| 日韩有码中文字幕| 亚洲情色 制服丝袜| 丝袜脚勾引网站| 男女午夜视频在线观看| 精品人妻熟女毛片av久久网站| 免费观看人在逋| 一区在线观看完整版| 熟女少妇亚洲综合色aaa.| 又黄又粗又硬又大视频| 午夜视频精品福利| 久久精品国产亚洲av香蕉五月 | av国产精品久久久久影院| 久久精品亚洲熟妇少妇任你| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜一区二区| 男女之事视频高清在线观看| 欧美日韩福利视频一区二区| 我的亚洲天堂| 下体分泌物呈黄色| 国产精品久久久av美女十八| 90打野战视频偷拍视频| 最黄视频免费看| 国产高清videossex| 免费日韩欧美在线观看| 亚洲伊人色综图| 99精品欧美一区二区三区四区| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 黄色怎么调成土黄色| 不卡一级毛片| 国产欧美日韩一区二区三 | e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 久久国产精品影院| 国产一区有黄有色的免费视频| 国产一区二区激情短视频 | 国产日韩一区二区三区精品不卡| 人妻人人澡人人爽人人| 超碰97精品在线观看| 亚洲欧美激情在线| 狠狠精品人妻久久久久久综合| 秋霞在线观看毛片| 欧美日韩黄片免| 久久狼人影院| 国产一区二区激情短视频 | 午夜日韩欧美国产| 一二三四在线观看免费中文在| videos熟女内射| 亚洲国产精品999| 人成视频在线观看免费观看| 亚洲美女黄色视频免费看| 亚洲成国产人片在线观看| 精品国内亚洲2022精品成人 | 男男h啪啪无遮挡| 日日摸夜夜添夜夜添小说| 性色av一级| 国产一区有黄有色的免费视频| 视频区欧美日本亚洲| 国产欧美日韩一区二区精品| 老司机午夜福利在线观看视频 | 人成视频在线观看免费观看| 日本wwww免费看| 伦理电影免费视频| 欧美日韩国产mv在线观看视频| 国产成人欧美| 久久精品aⅴ一区二区三区四区| 国产av精品麻豆| bbb黄色大片| 午夜久久久在线观看| 色综合欧美亚洲国产小说| 免费在线观看日本一区| 黄色视频在线播放观看不卡| 亚洲av成人不卡在线观看播放网 | 青草久久国产| 色婷婷av一区二区三区视频| 亚洲精品国产色婷婷电影| 色播在线永久视频| 啦啦啦啦在线视频资源| 久久av网站| 久久天躁狠狠躁夜夜2o2o| 午夜激情av网站| av在线app专区| 十八禁网站免费在线| 久久天躁狠狠躁夜夜2o2o| 操美女的视频在线观看| 高清在线国产一区| 黄色毛片三级朝国网站| 亚洲中文字幕日韩| 波多野结衣av一区二区av| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区| 国产高清国产精品国产三级| 久久久久国产精品人妻一区二区| 久久人人97超碰香蕉20202| 亚洲av美国av| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 国产成+人综合+亚洲专区| 亚洲国产毛片av蜜桃av| 成人免费观看视频高清| 一区在线观看完整版| 国产日韩一区二区三区精品不卡| a级毛片黄视频| 男女午夜视频在线观看| 天天添夜夜摸| 一进一出抽搐动态| xxxhd国产人妻xxx| 精品少妇一区二区三区视频日本电影| 精品一区二区三卡| 欧美激情高清一区二区三区| 久久精品久久久久久噜噜老黄| 午夜福利视频精品| 亚洲全国av大片| 国产精品二区激情视频| 国产男女内射视频| 欧美精品av麻豆av| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av香蕉五月 | 欧美激情久久久久久爽电影 | av网站免费在线观看视频| 国产欧美日韩一区二区三区在线| 国产亚洲精品久久久久5区| 久久国产亚洲av麻豆专区| 久久狼人影院| 热re99久久精品国产66热6| 搡老岳熟女国产| 亚洲精华国产精华精| av天堂久久9| 丝袜在线中文字幕| 久久久水蜜桃国产精品网| 日韩制服骚丝袜av| 91九色精品人成在线观看| 亚洲国产毛片av蜜桃av| 国产伦人伦偷精品视频| 91麻豆av在线| 九色亚洲精品在线播放| 国产一卡二卡三卡精品| 一区二区三区精品91| av国产精品久久久久影院| 日韩欧美国产一区二区入口| 久久中文字幕一级| 老司机福利观看| 黄色视频在线播放观看不卡| 久久av网站| 99香蕉大伊视频| 91九色精品人成在线观看| 午夜免费观看性视频| 亚洲av国产av综合av卡| 久久青草综合色| 一个人免费看片子| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 18禁观看日本| videosex国产| 精品午夜福利视频在线观看一区| 在线观看免费视频日本深夜| 国产成年人精品一区二区| 欧美色视频一区免费| 久久精品国产综合久久久| 巨乳人妻的诱惑在线观看| 久久精品成人免费网站| 看免费av毛片| 日韩欧美国产一区二区入口| 18禁美女被吸乳视频| svipshipincom国产片| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 正在播放国产对白刺激| 一进一出抽搐gif免费好疼| 久久中文字幕人妻熟女| 国产精品久久电影中文字幕| 国产精品99久久99久久久不卡| 亚洲18禁久久av| 国产区一区二久久| av免费在线观看网站| av有码第一页| 国产视频内射| 少妇熟女aⅴ在线视频| 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 亚洲午夜精品一区,二区,三区| 亚洲av美国av| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av美国av| 香蕉国产在线看| 亚洲精品av麻豆狂野| 亚洲乱码一区二区免费版| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 久久久国产精品麻豆| 欧美极品一区二区三区四区| 久久久久久免费高清国产稀缺| 中文字幕熟女人妻在线| 亚洲精品国产一区二区精华液| 99久久久亚洲精品蜜臀av| 俄罗斯特黄特色一大片| 国产久久久一区二区三区| 日本黄大片高清| videosex国产| 欧美另类亚洲清纯唯美| 妹子高潮喷水视频| 90打野战视频偷拍视频| 亚洲av电影不卡..在线观看| 亚洲人成网站在线播放欧美日韩| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 国产精品亚洲一级av第二区| 亚洲av日韩精品久久久久久密| 色av中文字幕| 亚洲 欧美 日韩 在线 免费| or卡值多少钱| 久久伊人香网站| 国产高清视频在线播放一区| 日韩欧美免费精品| 国产又黄又爽又无遮挡在线| 18禁观看日本| 国产精品 国内视频| 亚洲av成人一区二区三| 久久99热这里只有精品18| 国产真实乱freesex| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 女警被强在线播放| 成人永久免费在线观看视频| 亚洲成人国产一区在线观看| 一进一出抽搐动态| 国产精品1区2区在线观看.| 久久香蕉国产精品| 老司机午夜福利在线观看视频| 妹子高潮喷水视频| 18禁美女被吸乳视频| 丁香六月欧美| 国产不卡一卡二| 好男人在线观看高清免费视频| 欧美乱色亚洲激情| 天堂动漫精品| 校园春色视频在线观看| 日本免费一区二区三区高清不卡| 亚洲七黄色美女视频| 脱女人内裤的视频| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰成人久久| 欧美午夜高清在线| 女人被狂操c到高潮| 亚洲国产高清在线一区二区三| 国产伦人伦偷精品视频| 99热这里只有是精品50| 成人国产一区最新在线观看| www.www免费av| 免费在线观看视频国产中文字幕亚洲| 波多野结衣高清作品| 久久久久国产一级毛片高清牌| 777久久人妻少妇嫩草av网站| 国产精品爽爽va在线观看网站| 国产成人啪精品午夜网站| 国产亚洲精品第一综合不卡| 1024手机看黄色片| 色老头精品视频在线观看| 亚洲中文av在线| 亚洲国产精品久久男人天堂| 久久精品人妻少妇| 亚洲一码二码三码区别大吗| 色综合欧美亚洲国产小说| 国产午夜福利久久久久久| 亚洲精品国产精品久久久不卡| 久久午夜亚洲精品久久| 国产免费男女视频| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 日本成人三级电影网站| 90打野战视频偷拍视频| 精品久久久久久久久久免费视频| 午夜a级毛片| 国产视频内射| 亚洲成人久久性| 免费看十八禁软件| 老司机深夜福利视频在线观看| 国产精品九九99| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 国产伦一二天堂av在线观看| 床上黄色一级片| 九色国产91popny在线| 少妇被粗大的猛进出69影院| 欧美3d第一页| 亚洲全国av大片| 禁无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲狠狠婷婷综合久久图片| 欧美一级a爱片免费观看看 | 99热6这里只有精品| 免费在线观看影片大全网站| 久久久久九九精品影院| av福利片在线观看| 国产黄色小视频在线观看| 成人精品一区二区免费| 亚洲精品美女久久久久99蜜臀| 国产aⅴ精品一区二区三区波| 国产精品香港三级国产av潘金莲| x7x7x7水蜜桃| ponron亚洲| 最近在线观看免费完整版| 午夜两性在线视频| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 午夜免费观看网址| 成人亚洲精品av一区二区| 在线视频色国产色| 国产成人欧美在线观看| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 老汉色∧v一级毛片| 国产精华一区二区三区| 精品少妇一区二区三区视频日本电影| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 国产区一区二久久| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 欧美一区二区精品小视频在线| 成人手机av| 亚洲 欧美 日韩 在线 免费| 18禁裸乳无遮挡免费网站照片| 女同久久另类99精品国产91| 又大又爽又粗| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影| 日本熟妇午夜| 国产成人精品久久二区二区91| 日本熟妇午夜| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 成人午夜高清在线视频| 婷婷亚洲欧美| 欧美黑人巨大hd| 麻豆成人av在线观看| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三| 亚洲五月婷婷丁香| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 日本黄大片高清| 亚洲色图 男人天堂 中文字幕| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 午夜福利高清视频| 久久久精品国产亚洲av高清涩受| 此物有八面人人有两片| 午夜激情福利司机影院| 国产三级中文精品| 日本撒尿小便嘘嘘汇集6| 午夜免费成人在线视频| 亚洲人成伊人成综合网2020| 男人舔奶头视频| e午夜精品久久久久久久| 国产野战对白在线观看| 国产区一区二久久| 日韩成人在线观看一区二区三区| 国产69精品久久久久777片 | av中文乱码字幕在线| 国产亚洲欧美98| 成人三级黄色视频| 国产激情久久老熟女| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 19禁男女啪啪无遮挡网站| 久久久久久久久中文| 久久久精品欧美日韩精品| 老司机深夜福利视频在线观看| 岛国在线免费视频观看| 精品福利观看| 久久久久国内视频| 亚洲精品中文字幕在线视频| 欧美人与性动交α欧美精品济南到| 日本免费一区二区三区高清不卡| 久99久视频精品免费| 久久精品人妻少妇| 国产视频内射| 美女午夜性视频免费| 丰满人妻熟妇乱又伦精品不卡| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 国产精品一区二区三区四区久久| 国产1区2区3区精品| 天天添夜夜摸| 亚洲最大成人中文| 欧美成人一区二区免费高清观看 | 在线观看www视频免费| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 热99re8久久精品国产| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 两个人免费观看高清视频| 亚洲天堂国产精品一区在线| 国产av不卡久久| 91在线观看av| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 禁无遮挡网站| 亚洲专区中文字幕在线| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| svipshipincom国产片| 亚洲男人天堂网一区| 怎么达到女性高潮| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 老熟妇仑乱视频hdxx| av片东京热男人的天堂| 一级a爱片免费观看的视频| 国产片内射在线| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美网|