• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同層數(shù)石墨烯的光熱顯微成像

    2024-07-16 00:00:00都安邦王源璠魏志弘張東旭李理楊煒青孫千璐趙麗麗徐偉高田玉璽
    物理化學(xué)學(xué)報(bào) 2024年5期
    關(guān)鍵詞:石墨烯光吸收

    摘要:二維層狀材料(石墨烯、二維過渡金屬硫族化合物等)因具有獨(dú)特的物理性質(zhì),引起了研究學(xué)者們的廣泛關(guān)注,極大促進(jìn)了化學(xué)、材料科學(xué)和凝聚態(tài)物理學(xué)的發(fā)展。開發(fā)能夠探究層狀材料中層數(shù)依賴的光學(xué)、電學(xué)、力學(xué)和熱學(xué)特性的新技術(shù)一直是二維材料領(lǐng)域最活躍的研究方向之一。光熱顯微鏡利用光激發(fā)后非輻射躍遷產(chǎn)生的熱效應(yīng),可實(shí)現(xiàn)在單個(gè)顆?;騿畏肿铀缴铣上衽c檢測(cè),并實(shí)時(shí)捕捉微觀尺度熱弛豫和熱傳輸過程。本文對(duì)比研究了石墨烯薄片在不同光熱介質(zhì)(空氣、甘油)中隨厚度變化的光熱特性,發(fā)現(xiàn)了在兩種介質(zhì)中光熱信號(hào)強(qiáng)度與樣品厚度之間均存在非線性依賴關(guān)系。相比于空氣介質(zhì),甘油介質(zhì)中光熱信號(hào)強(qiáng)度具有更高的對(duì)比度,且隨著厚度增加表現(xiàn)出非單調(diào)變化。該研究提供了不同介質(zhì)環(huán)境中不同層數(shù)石墨烯光吸收和熱弛豫特征的細(xì)節(jié)信息,相關(guān)研究結(jié)論將為層狀材料及其異質(zhì)結(jié)的熱學(xué)性質(zhì)研究提供依據(jù)。

    關(guān)鍵詞:石墨烯;光熱顯微成像;層數(shù)依賴;光吸收;非輻射弛豫

    中圖分類號(hào):O642

    Photothermal Microscopy of Graphene Flakes with Different Thicknesses

    Abstract: Two-dimensional (2D) layered materials have attracted widespreadresearch interest and have significantly promoted the development of chemistry,material science, and condensed matter physics. Since the emergence ofgraphene, 2D materials with unique mechanical, thermal, optical, and electricalproperties have been developed. In the case of graphene, its extraordinarymechanical strength, carrier mobility, thermal conductivity, and light-absorptionover the whole spectral range in UV-Vis and near infrared guarantee a wide rangeof prospective applications. The electronic structure and properties of grapheneflakes are dominated by their thickness, twist angle, and dielectric environment.Tailoring the interlayer interactions of graphene layers can provide additionalopportunities for developing optical and electrical nanodevices, resulting inpioneering outcomes, such as the magic-angle graphene. Over the past decade,one of the most active research directions in the field of 2D materials has been the development of novel techniques thatcan probe the thickness-dependent physical properties of layered materials. In contrast with the intensively studiedmechanical, electrical, and optical properties, microscopic investigations of the thermal characteristics of graphene flakesremain to be explored. Photothermal (PT) microscopy is a new all-optical microscopic imaging technique that has gainedsubstantial attention and undergone long-term development in recent years, especially in the fields of nanomaterials andlife sciences. The fundamental principle of PT microscopy is to heat the target sample based on the absorption of a heatingbeam and use a probe beam to indirectly capture information on microscale heat generation and transport. Inspired byseveral pioneering studies, we conducted a comparative study of the thickness-dependent PT properties of mechanicallyexfoliated graphene flakes in two different PT media, i.e., air and glycerol. Whereas a nonlinear relationship between thePT intensity and sample thickness was observed in both media, the PT intensities from the two media were distinct. A highcontrastand non-monotonic PT response was observed in glycerol. The PT intensity of monolayer graphene was higherthan that of bilayer graphene, and the PT intensities of graphene flakes with 2–4 layers exhibited a good linear relationshipwith the thickness. We also analyzed the relationship between the PT intensity and heating or probe power, demonstratingthat the PT intensity as well as the absorption cross-section of graphene derived from the PT signal vary linearly with thepower of both laser beams. Our study provides insights into light absorption and thermal relaxation features of grapheneflakes of different thicknesses, which can guide future studies on the thermal properties of layered materials and theirheterostructures.

    Key Words: Graphene; Photothermal microscopy; Thickness-dependence; Optical absorption;Nonradiative relaxation

    1 Introduction

    The rise of graphene 1 and other monolayer materials 2–6 hasopened up a new 2D world for exploring thickness-dependentphysical phenomena on the atomic scale 7,8. Taking graphite asan example, the variations in the number of layers affect theelectronic structure and its optical and thermal properties 9. Tobe consistent with most literature, here we use graphene flakesto represent monolayer to few-layer graphene flakes. Monolayergraphene has an amazing energy band structure with zero gap,and one of its most important properties is that its charge carriersbehave as massless relativistic particles or Dirac fermions 10. Forbilayer graphene, the band gap can be modulated by applying avertical electric field 11,12. Meanwhile, bilayer graphene ortwisted bilayer graphene exhibits abundant exotic strongcorrelation and topological effects, such as superconductivity,correlated insulating states, and quantum anomalous Hall effect,etc., which significantly contribute to the development ofcondensed matter physics 13–17. In addition, multilayer grapheneoffers unique opportunities whose importance has grown rapidlyin the past few years 18–20. On the other hand, transition metaldichalcogenides (TMDs) from bulk material to monolayer yieldan indirect-to-direct band gap evolution, which opens upabundant research interest in optoelectronics and valleytronics 21–24.

    The above examples show layer-dependent electrical andoptical properties of layered materials, and some exoticcharacteristics at the 2D limit are now being seriously consideredfor applications in optoelectronic devices. After photonabsorption, there are multiple relaxation pathways for anexcited-state electron to go back to the ground state, typical processes including fluorescence/phosphorescence emission andnonradiative pathways, such as thermal relaxation 25, carriertransport 26, graphene plasmonics 27,28, photo-acousticgeneration 29, and photochemical processes 30. Among all theabove pathways, thermal relaxation is the most basic one whichexists in almost all cases. Thus, understanding and control ofthermal relaxation is essential in a wide range of optoelectronicapplications including sensing, energy harvesting, and lighting.Recently, there are also pioneering progresses on the thermalproperties of layered materials 31,32 and their heterostructures 33.Kim’s work reported that by stacking atomically thin layers ofMoS2 randomly, the heat transfer capacity of layered materialswould vary greatly in different directions 31. Zhang et al.achieved electrical and thermal rectification simultaneously in aMoSe2/WS2 lateral heterojunction 33. However, a systematicstudy on the layer-dependent thermal relaxation properties oflayered materials is still lacking. In this regard, a technique forprecisely capturing and imaging the layer-number-dependentthermal properties of nanomaterials is essential for acceleratingthe study and exploration of graphene and related materials 34,35.

    Photothermal (PT) microscopy is a new optical microscopicimaging technique that has gained extensive attention and longtermdevelopment in recent years, especially in nanomaterialsand life sciences 36,37. The principle of PT microscopy is basedon the thermal lens effect 36,38, which detects the small additionaldivergence of the probe beam by heating-induced thermal lenses,i.e., the refractive index gradient around the heated analytes(Fig. 1, right inset). Thus, PT imaging is actually an indirectdetection of absorption, thermal relaxation, and transport for materials with neglectable fluorescence quantum yield. In thiswork, we utilized PT microscopy to gain substantial insights intothe thickness-dependent thermal properties of mechanicallyexfoliated graphene flakes. Effects on different PT media, andexcitation power have been investigated and discussed. The PTintensity shows a monotonically increasing but nonlinearrelationship with thickness in the air media, while in the glycerolmedia we found a non-monotonic PT response. This study offersinsights into the thermal relaxation characteristics of grapheneflakes with different thicknesses. Moreover, since opticalemission and thermal relaxation are two competing processes,our work will also benefit future research related to absorption,emission, and thermal generation in layered materials and theirheterostructures.

    2 Experimental

    2.1 Sample preparation

    Kish graphite crystals were purchased from CovalentMaterials Corp, Japan. We prepared mono- and multi-layergraphene flakes on glass coverslips (Fisherbrand) by a PDMSassisted(Titan) dry transfer method after mechanical exfoliation1,39,40. The coverslips were cleaned with Milli-Q water (type 1),special wash solution in turn for 40 min, blown with nitrogen (≥99.999%), and exposed to plasma for 2 min not only for highercleanliness but also for higher transferability from PDMS to thecoverslip.

    2.2 Micro-area Raman and transmittance spectroscopy

    Raman spectra and absorption spectra were measured by aconfocal micro-Raman spectrometer (HORIBA Scientific,Horiba HR Evolution, Japan). To collect the Raman spectra ofmono- and multi-layer graphene flakes, a 633 nm continuous wave laser was used as the excitation source (~5 mW whenarriving at the sample), and a 600 lines per millimeter gratingwas used to get a suitable resolution (~1 cm?1). For theabsorption spectra, we measured the micro-area transmittance ofthe sample. A 50× objective (Olympus, NA = 0.5) was appliedto excite the sample, and a 100× objective (Olympus, NA = 0.9)was used to collect the signal. We used a near-infrared light(Thorlabs, SLS201L (/M), the United States) ranging from 360nm to 2600 nm as the excitation source and a 100 lines permillimeter grating was used to obtain sufficient intensity. Thetransmittance spectra of a sample (T) and coverslip substrate (T0)were collected, and then the final micro-area transmittancespectra were obtained according to T/T0. All spectra wereprocessed in Labspec6 software.

    2.3 Optical contrast analysis

    To identify the number of layers of graphene flakes, wemeasured the greyscale values of the samples. Color opticalimages (RGB format) of few-layer graphene were converted togreyscale images. Then, we measured the greyscale values ofdifferent domains in the graphene flakes. Above data processingwas completed with ImageJ.

    2.4 Photothermal microscopy

    A schematic diagram of the optical setup and workingmechanism is shown in Fig. 1, similar to the previous work 41,42.Briefly, the PT signal arises from a slight change in the refractiveindex of the PT medium (air or glycerol) due to the thermalrelaxation after absorption of the heating beam. The refractiveindex change is measured with another probe beam with adifferent wavelength. In this work, a 532 nm laser was used asthe excitation source (heating beam), and a 1064 nm laser wasused as the probe beam. The heating beam was modulated usingan AOM (AA Opto Electronic, MT80-A1,5-VIS, France) at a repetition frequency of 5 kHz. The probe beam overlapped withthe heating beam on the sample through a high NA objective(UPlanFLN, NA = 0.6–1.3, Japan). Then, the backscattered lightof the probe beam was collected by the same objective lens anddetected by a photodiode (PD) (Femto, OE-300-IN-01-FC,Germany). The PT signal was extracted from the modulation ofthe scattered light by a lock-in amplifier at the same frequencyas the heating beam. Optical transmission images can becollected by an optical camera (Mshot, MS23). PT imagescovering a whole sample area can be obtained by scanning thesample with a motorized positioning stage (TANGO 2 Desktop,Germany).

    3 Results and discussion

    To systematically study the layer-dependent PT properties ofgraphite, graphene flakes with different thicknesses wereprepared using the mechanical exfoliation method 1. Fig. 2ashows the optical image of the few-layer graphene flakes on aglass slide substrate, where the opacity increases with increasingthickness. To confirm the number of layers of graphene, we alsoconducted a contrast profile analysis. Two greyscale valueprofiles of cross-section over the sample are shown in Fig. 2b.The substrate shows a greyscale value of ~207, the first step ismonolayer graphene, and the greyscale values exhibit a linearincrease as the number of layers increases 43. In addition, wecharacterized graphene flakes by both Raman and transmissionspectroscopy (Fig. 2c,d). Fig. 2c shows typical Raman spectra ofgraphene with 1–4 layers acquired under the same conditions.Two main peaks at ~1580 and ~2690 cm?1 are the G-band and2D-band, respectively. As we used high-quality Kish graphitecrystal for mechanical exfoliation, no D-band is observed. Theintensity of the G-band increases with the increase of graphenethickness. Meanwhile, the full width at half maximum of the 2Dpeaks gradually increases and the peak-center blue shifts as thenumber of graphene layers increases, which is in goodagreement with the Raman spectra of few-layer graphenereported in the literature 44–46. According to the transmissionspectra (Fig. 2d), the absorbance of the monolayer graphene is~2.0%, and the absorbance of graphene flake increases almostlinearly with the number of layers exhibiting the typical featuresof graphite with different thicknesses 47,48. All of the aboveresults accurately confirm the number of layers of our samples.

    Fig. 3a shows an optical microscopic image of the grapheneflake on a glass slide substrate with a weak optical contrast. Fig.3b shows a PT image of graphene in the air with a scanning areaof 40 μm × 40 μm. The PT signal has a uniform distributionwithin sample areas with the same thickness. It should be notedthat the graphene has absorption at 1064 nm which may affectthe results. To exclude the effect of the probe beam, weperformed the PT measurement without excitation of the heatingbeam and no PT signal was observed (Fig. S1, SupportingInformation). A statistical analysis of the PT intensity formonolayer, bilayer and trilayer graphene is shown in Fig. 3c. ThePT intensity is about 0.018 mV for monolayer, 0.028 mV forbilayer and 0.029 mV for trilayer, indicating a nonlinearrelationship between PT intensity and thickness differing from the absorption of graphene 49. This may be due to the limitedcapability of air as a PT medium to induce temporal and spatiallyvarying refractive index changes and hence prevent theidentification of small differences in the bilayer and trilayersamples 50.

    In this technique, a frequency-modulated heating beamexcites the absorber, which releases heat to the surroundingmedium via nonradiative relaxation pathways 51. The heat bringsabout a temperature increase in the region around the absorber,which induces a temporally and spatially modulated refractiveindex change. To enhance PT sensitivity, we further choseglycerol as the medium to conduct PT measurements. Fig. 4adisplays a PT image of the few-layer graphene flakes in theglycerol. The statistics of the PT intensity for 1–4 layers ofgraphene flakes are shown in Fig. 4b. The PT intensity is about2.2 × 10?3 mV for the monolayer, 7.6 × 10?4 mV for the bilayer,8.5 × 10?3 mV for the trilayer and 1.7 × 10?2 mV for the fourlayer.The signal to noise ratio (SNR) of graphene in differentPT media was calculated to be 8.1, 13.5, 13.9 and 14.9 for 1–4layers graphene in the air and 9.2, 3.2, 36.4 and 74.2 in theglycerol, respectively. Except for the bilayer graphene, the SNRin the glycerol is significantly higher than that in the air.Comparatively, the PT intensity in the glycerol has a nonlinearand non-monotonic relationship with thickness. If we comparethese values with the PT intensity of monolayer graphene, wecan see that the PT intensity of monolayer graphene is higherthan that of bilayer graphene. In addition, the PT intensity of 2–4 layers shows a good linear relationship with thickness. Thereason for the unusually high PT intensity of monolayergraphene could be the extremely high thermal conductivity 52,53,which eases the delivery of heat to glycerol and causes a higherPT signal as compared to bilayer graphene. In contrast, the PTintensity of bilayer graphene is lower than expected, although itshows a good linear relationship with the trilayer and four-layergraphene. It is known that the thermal conductivity can bemodulated by varying the geometric structures or foldingprocess, and the thermal conductivity of folded graphene can besignificantly decreased of its counterpart due to the phononUmklapp and normal scattering enhancement 54,55. Thus, wealso investigated the effects of folding on the PT intensity ofgraphene both in the air and glycerol (Fig. S2). Similar to fewlayergraphene flakes, the PT intensity of the folded plane regionin the air is two times that of the monolayer graphene, while theintensity of folded plane region in the glycerol is about half thatof monolayer graphene, which is consistent with the bilayergraphene.

    Then, we comprehensively analyzed the relationship betweenthe PT intensity and heating or probe power. Graphene andgraphite absorb light in a wide wavelength range, but in ourplatform, the PT response is a differential signal between theheating light on and off, so it can be assumed that the PT signalmainly originates from the absorption of the heating beam by thesample. To avoid damaging the sample, we controlled the powerof the heating and probe light within 200 and 3000 μW,respectively. The PT intensity as a function of the powers of thetwo laser beams is shown in Fig. 4c,d. The PT intensity showeda good linear power dependence for both laser beams. In detail,the slopes of the PT intensity of monolayer, bilayer, trilayer andfour-layer to the heating power are 1.1 × 10?5, 3.7 × 10?6, 4.9 ×10?5, and 10.3 × 10?5 mV?μW?1, and to the probe power are 4.5× 10?7, 2.9 × 10?7, 2.9 × 10?6 and 6.3 × 10?6 mV?μW?1,respectively.

    The PT signal comes from the heat generated by theabsorption of light. Due to the extremely low fluorescencequantum yield of graphene, almost all the absorbed light isconverted to heat. Thus the absorption cross-section can becalculated directly from the PT intensity because PT intensity isproportional to the absorption cross-section as discussed in thesupporting information. Here we used 20 nm gold nanoparticles(Zhongkeleiming Daojin Technology Co., Ltd.) as referenceswhich also have extremely low fluorescence quantum yield. Theabsorption cross-section of graphene at 532 nm is calculated tobe σabs (532 nm) ≈ 1.6 × 10?18 cm2 per C atom, as described inthe Supporting Information. This result is very close to the valueof 5 × 10?18 cm2 per C atom calculated based on the 2.3%absorption of graphene.

    4 Conclusions

    In conclusion, we have systematically investigated thethermal properties of graphene flakes with different thicknesses.We found a nonlinear relationship between PT intensity andthickness in both air and glycerol as PT media. The PT intensityof the monolayer graphene in both air and glycerol is significantly different from that of few-layer graphene flakes. Amuch clearer PT contrast and a non-monotonic PT response wereobserved in the glycerol medium. Then, we analyzed therelationship between the PT intensity and heating or probepower, demonstrating that the PT intensity exhibits a good linearrelationship with the power of both laser beams. In addition, wealso calculated the absorption cross-section of graphene by thePT signal. This study provides insights into the light absorptionand thermal relaxation features of graphene flakes with differentthicknesses, and provides a possible method to recognize thethickness by PT signals. Thanks to the various unique propertiesand new applications of few-layer graphene and moirésuperlattices, PT microscopy will provide broader informationfor both future fundamental research and practical applications.

    Author Contributions: Conceptualization, Y.T., W.X. andZ.W.; Sample Preparation, D.Z.; Methodology, W.Y. and Z.W.;Formal Analysis, Z.W., A.D., Y.W., Q.S., L.L. and Y.W.; DataCuration, A.D., Z.W. and Y.W.; Data Curation andVisualization, A.D., Y.W. and Z.W.; Writing – Original DraftPreparation, A.D., Y.W. and Z.W.; Writing – Review amp; Editing,A.D., Y.W., Z.W., Q.S. and L. Z.; Visualization andSupervision, Y.T., W.X. and Z.W.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,666. doi: 10.1126/science.1102896

    (2) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli,G.; Wang, F. Nano Lett. 2010, 10, 1271. doi: 10.1021/nl903868w

    (3) Wang, X.; Du, K.; Liu, Y. Y. F.; Hu, P.; Zhang, J.; Zhang, Q.; Owen,M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P.; et al. 2D Mater. 2016, 3,031009. doi: 10.1088/2053-1583/3/3/031009

    (4) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.;Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden,D. H.; et al. Nature 2017, 546, 270. doi: 10.1038/nature22391

    (5) Li, L. K.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi,Z.; Chen, L.; Zhang, Z.; Yang, F.; et al. Nat. Nanotechnol. 2017, 12,21. doi: 10.1038/nnano.2016.171

    (6) Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.;Liang, J.; Zhang, Z.; Zhang, Z.; et al. Nature 2019, 570, 91.doi: 10.1038/s41586-019-1226-z

    (7) Fang, S.; Duan, S.; Wang, X.; Chen, S.; Li, L.; Li, H.; Jiang, B.; Liu,C.; Wang, N.; Zhang, L.; et al. Nat. Photon. 2023, 17, 531.doi: 10.1038/s41566-023-01181-5

    (8) Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.;Fan, H.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37,2108017. [常誠(chéng), 陳偉, 陳也, 陳永華, 陳雨, 丁峰, 樊春海, 范紅金, 范戰(zhàn)西, 龔成等. 物理化學(xué)學(xué)報(bào), 2021, 37, 2108017.]doi: 10.3866/PKU.WHXB202108017

    (9) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.doi: 10.1038/nmat1849

    (10) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.doi: 10.1038/nature04235

    (11) Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.;Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.doi: 10.1038/nature08105

    (12) Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.;Rana, F.; Park, J.; Hone, J.; Wang, F.; et al. Science 2017, 358, 907.doi: 10.1126/science.aam9175

    (13) Cai, L.; Yu, G. Adv. Mater. 2021, 33, 2004974.doi: 10.1002/adma.202004974

    (14) Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.;Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nature 2020, 583,821. doi: 10.1038/s41586-020-2393-7

    (15) Lin, M.; Feng, M.; Wu, J.; Ran, F.; Chen, T.; Luo, W.; Wu, H.; Han,W.; Zhang, X.; Liu, X.; et al. Research 2022, 2022, 9819373.doi: 10.34133/2022/9819373

    (16) Liu, M.; Wang, L.; Yu, G. Adv. Sci. 2022, 9, 2103170.doi: 10.1002/advs.202103170

    (17) Xiao, Y.; Liu, J.; Fu, L. Matter 2020, 3, 1142.doi: 10.1016/j.matt.2020.07.001

    (18) Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev,R. Nat. Mater. 2012, 11, 764. doi: 10.1038/Nmat3386

    (19) No, Y. S.; Choi, H. K.; Kim, J. S.; Kim, H.; Yu, Y. J.; Choi, C. G.;Choi, J. S. Sci. Rep. 2018, 8, 571. doi: 10.1038/s41598-017-19084-1

    (20) Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, T.; Horn, K.;Rotenberg, E. Phys. Rev. Lett. 2007, 98, 206802.doi: 10.1103/PhysRevLett.98.206802

    (21) Lu, X.; Chen, X.; Dubey, S.; Yao, Q.; Li, W.; Wang, X.; Xiong, Q.;Srivastava, A. Nat. Nanotechnol. 2019, 14, 426.doi: 10.1038/s41565-019-0394-1

    (22) Seyler, K. L.; Rivera, P.; Yu, H.; Wilson, N. P.; Ray, E. L.; Mandrus,D. G.; Yan, J.; Yao, W.; Xu, X. Nature 2019, 567, 66.doi: 10.1038/s41586-019-0957-1

    (23) Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.;Taniguchi, T.; Kis, A. Nat. Nanotechnol. 2019, 14, 1104.doi: 10.1038/s41565-019-0559-y

    (24) Yu, H.; Wang, Y.; Tong, Q.; Xu, X.; Yao, W. Phys. Rev. Lett. 2015,115, 187002. doi: 10.1103/PhysRevLett.115.187002

    (25) Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022,38, 2101020. [陳清, 趙健, 程虎虎, 曲良體. 物理化學(xué)學(xué)報(bào), 2022,38, 2101020.] doi: 10.3866/PKU.WHXB202101020

    (26) Chen, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2020, 36, 1904025. [陳堯,陳政. 物理化學(xué)學(xué)報(bào), 2020, 36, 1904025.]doi: 10.3866/PKU.WHXB201904025

    (27) Bandurin, D. A.; Monch, E.; Kapralov, K.; Phinney, I. Y.; Lindner, K.;Liu, S.; Edgar, J. H.; Dmitriev, I. A.; Jarillo-Herrero, P.; Svintsov, D.;et al. Nat. Phys. 2022, 18, 462. doi: 10.1038/s41567-021-01494-8

    (28) Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod,A. S.; Liu, M. K.; Keilmann, F.; Ozyilmaz, B.; Neto, A. H. C.; et al.Nat. Photon. 2016, 10, 244. doi: 10.1038/Nphoton.2016.45

    (29) Tian, Y.; Tian, H.; Wu, Y. L.; Zhu, L. L.; Tao, L. Q.; Zhang, W.; Shu,Y.; Xie, D.; Yang, Y.; Wei, Z. Y.; et al. Sci. Rep. 2015, 5, 10582.doi: 10.1038/srep10582

    (30) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H.Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589

    (31) Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray,A.; Park, C.; Fransson, E.; Zhong, Y.; et al. Nature 2021, 597, 660.doi: 10.1038/s41586-021-03867-8

    (32) Kong, Y.; Li, X.; Wang, L.; Zhang, Z.; Feng, X.; Liu, J.; Chen, C.;Tong, L.; Zhang, J. ACS Nano 2022, 16, 11338.doi: 10.1021/acsnano.2c04984

    (33) Zhang, Y.; Lv, Q.; Wang, H.; Zhao, S.; Xiong, Q.; Lv, R.; Zhang, X.Science 2022, 378, 169. doi: 10.1126/science.abq0883

    (34) Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H.S.; Jeong, H. Y.; Chhowalla, M. Nature 2022, 610, 61.doi: 10.1038/s41586-022-05134-w

    (35) Ergoktas, M. S.; Soleymani, S.; Kakenov, N.; Wang, K. Y.; Smith, T.B.; Bakan, G.; Balci, S.; Principi, A.; Novoselov, K. S.; Ozdemir, S.K.; et al. Science 2022, 376, 184. doi: 10.1126/science.abn6528

    (36) Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M. D.; Khatua, S.; Orrit, M.ACS Nano 2020, 14, 16414. doi: 10.1021/acsnano.0c07638

    (37) Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Science 2010,330, 353. doi: 10.1126/science.1195475

    (38) Yang, W.; Wei, Z.; Nie, Y.; Tian, Y. J. Phys. Chem. Lett. 2022, 13,9618. doi: 10.1021/acs.jpclett.2c02228

    (39) Xu, W.; Liu, W.; Schmidt, J. F.; Zhao, W.; Lu, X.; Raab, T.;Diederichs, C.; Gao, W.; Seletskiy, D. V.; Xiong, Q. Nature 2017,541, 62. doi: 10.1038/nature20601

    (40) Li, H.; Li, H.; Wang, X.; Nie, Y.; Liu, C.; Dai, Y.; Ling, J.; Ding, M.;Ling, X.; Xie, D.; et al. Nano Lett. 2021, 21, 6773.doi: 10.1021/acs.nanolett.1c01356

    (41) Yang, W.; Li, M.; Xie, M.; Nie, Y.; Du, A.; Tian, Y. Rev. Sci. Instrum.2021, 92, 083701. doi: 10.1063/5.0048239

    (42) Yang, W.; Li, M.; Xie, M.; Tian, Y. J. Phys. Chem. Lett. 2023, 14,3506. doi: 10.1021/acs.jpclett.3c00491

    (43) Li, H.; Wu, J. M. T.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Zhang, Q.H.; Zhang, H. ACS Nano 2013, 7, 10344. doi: 10.1021/nn4047474

    (44) Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold,C.; Wirtz, L. Nano Lett. 2007, 7, 238. doi: 10.1021/nl061702a

    (45) Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.;Shen, Z.; Thong, J. T. L. Small 2010, 6, 195.doi: 10.1002/smll.200901173

    (46) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.;Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al.Phys. Rev. Lett. 2006, 97, 187401.doi: 10.1103/PhysRevLett.97.187401

    (47) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010,4, 611. doi: 10.1038/Nphoton.2010.186

    (48) Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Walker, A.R. H.; Gundlach, D. J.; Nguyen, N. V. Carbon 2016, 99, 348.doi: 10.1016/j.carbon.2015.12.007

    (49) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T.J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.doi: 10.1126/science.1156965

    (50) Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Chem. Sci. 2010,1, 343. doi: 10.1039/c0sc00210k

    (51) Ding, T.; Hou, L.; Meer, H. V. D.; Alivisatos, A. P.; Orrit, M. J. Phys.Chem. Lett. 2016, 7, 2524. doi: 10.1021/acs.jpclett.6b00964

    (52) Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C.N.; Balandin, A. A. Nat. Mater. 2010, 9, 555. doi: 10.1038/Nmat2753

    (53) Li, H.; Ying, H.; Chen, X.; Nika, D. L.; Cocemasov, A. I.; Cai, W.;Balandin, A. A.; Chen, S. Nanoscale 2014, 6, 13402.doi: 10.1039/c4nr04455j

    (54) Gao, J.; Si, C.; Yang, Y. R.; Cao, B. Y.; Wang, X. D. ECS J. SolidState Sci. Technol. 2020, 9, 093005. doi: 10.1149/2162-8777/aba7fb

    (55) Ouyang, T.; Chen, Y.; Xie, Y.; Stocks, G. M.; Zhong, J. Appl. Phys.Lett. 2011, 99, 233101. doi: 10.1063/1.3665184

    國(guó)家自然科學(xué)基金(22073046, 22173044, 62011530133), 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFA0406104), 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(020514380256,020514380278), 生命科學(xué)分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(SKLACL2217), 江蘇省自然科學(xué)基金(BK20220121)及江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃(KYCX22_0096)資助項(xiàng)目

    猜你喜歡
    石墨烯光吸收
    基于量子點(diǎn)太陽(yáng)電池的高效光學(xué)利用策略
    微光在大氣中的傳輸特性研究
    氧化石墨烯在純棉織物上的抗菌應(yīng)用
    石墨烯負(fù)載納米銀復(fù)合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對(duì)石墨烯散熱效果的影響
    綜合化學(xué)實(shí)驗(yàn)設(shè)計(jì):RGO/MnO復(fù)合材料的合成及其電化學(xué)性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    鋰離子電池石墨烯復(fù)合電極材料專利分析
    單一窄波段光吸收涂層的制備及性能研究*
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    石墨烯量子電容的理論研究
    科技視界(2015年25期)2015-09-01 17:59:32
    久久人人爽av亚洲精品天堂| 日本五十路高清| 91麻豆av在线| 久久精品成人免费网站| 亚洲av成人av| 日韩免费av在线播放| 一本综合久久免费| 男女高潮啪啪啪动态图| 91国产中文字幕| 淫秽高清视频在线观看| 国产xxxxx性猛交| 在线观看www视频免费| 亚洲国产欧美网| 欧美成人免费av一区二区三区| 在线观看午夜福利视频| 啦啦啦 在线观看视频| 日韩成人在线观看一区二区三区| 国产精品久久久久成人av| 女人被狂操c到高潮| 极品人妻少妇av视频| 性少妇av在线| 欧美日韩一级在线毛片| 亚洲人成电影观看| 男人舔女人下体高潮全视频| 免费一级毛片在线播放高清视频 | 久久久水蜜桃国产精品网| 少妇粗大呻吟视频| 国产熟女xx| 夫妻午夜视频| a在线观看视频网站| 大型av网站在线播放| 欧美黄色片欧美黄色片| 女人被躁到高潮嗷嗷叫费观| 天堂俺去俺来也www色官网| 变态另类成人亚洲欧美熟女 | 满18在线观看网站| 一级a爱片免费观看的视频| 黄色成人免费大全| 成人精品一区二区免费| 久久久久久亚洲精品国产蜜桃av| 免费看十八禁软件| 久热这里只有精品99| 亚洲成人免费电影在线观看| 国产高清国产精品国产三级| 18禁裸乳无遮挡免费网站照片 | 男女床上黄色一级片免费看| 超碰成人久久| aaaaa片日本免费| 免费高清在线观看日韩| 久久久久久免费高清国产稀缺| 亚洲av片天天在线观看| 中出人妻视频一区二区| 大型av网站在线播放| 19禁男女啪啪无遮挡网站| 女人被躁到高潮嗷嗷叫费观| 美国免费a级毛片| 高清av免费在线| 欧美成狂野欧美在线观看| 日本免费a在线| 亚洲av美国av| 美女大奶头视频| 亚洲中文字幕日韩| 中文字幕高清在线视频| 搡老乐熟女国产| 一区在线观看完整版| 国产免费av片在线观看野外av| 亚洲欧美日韩另类电影网站| 中文字幕高清在线视频| 亚洲欧美日韩高清在线视频| 性色av乱码一区二区三区2| 久久人人97超碰香蕉20202| 欧美日韩av久久| 在线观看免费高清a一片| 国内久久婷婷六月综合欲色啪| 成人国语在线视频| 久久精品影院6| 一区福利在线观看| 自线自在国产av| 精品一区二区三区视频在线观看免费 | 亚洲精华国产精华精| 成在线人永久免费视频| 99热只有精品国产| 亚洲自拍偷在线| www.自偷自拍.com| 一边摸一边做爽爽视频免费| 欧美国产精品va在线观看不卡| 国产精品电影一区二区三区| 欧美另类亚洲清纯唯美| 夜夜夜夜夜久久久久| 欧美成狂野欧美在线观看| 久久亚洲真实| 亚洲精品中文字幕一二三四区| 五月开心婷婷网| 国产成年人精品一区二区 | 欧美中文日本在线观看视频| 欧美日韩一级在线毛片| 中文欧美无线码| 1024视频免费在线观看| 久久精品国产亚洲av高清一级| 99国产精品免费福利视频| 巨乳人妻的诱惑在线观看| 久久欧美精品欧美久久欧美| 欧美一区二区精品小视频在线| 欧美+亚洲+日韩+国产| 天天躁夜夜躁狠狠躁躁| 丝袜在线中文字幕| 麻豆久久精品国产亚洲av | 国产免费av片在线观看野外av| 88av欧美| 亚洲熟女毛片儿| 人人妻人人添人人爽欧美一区卜| 欧美成人免费av一区二区三区| 日本一区二区免费在线视频| 中文字幕人妻丝袜制服| 国产精品av久久久久免费| 日韩欧美一区二区三区在线观看| 欧美av亚洲av综合av国产av| 黄色女人牲交| 另类亚洲欧美激情| 天天影视国产精品| 国产三级在线视频| 天天躁夜夜躁狠狠躁躁| 999精品在线视频| 夜夜看夜夜爽夜夜摸 | 国产在线观看jvid| 久久人人精品亚洲av| 婷婷精品国产亚洲av在线| 91字幕亚洲| 老熟妇仑乱视频hdxx| 亚洲精品国产区一区二| 侵犯人妻中文字幕一二三四区| 九色亚洲精品在线播放| 亚洲va日本ⅴa欧美va伊人久久| 午夜91福利影院| 亚洲av成人一区二区三| 中文字幕高清在线视频| 99国产精品99久久久久| 国产精品野战在线观看 | 久久中文看片网| 欧美老熟妇乱子伦牲交| 亚洲视频免费观看视频| 久久天堂一区二区三区四区| 欧美午夜高清在线| 精品国产美女av久久久久小说| 80岁老熟妇乱子伦牲交| 少妇被粗大的猛进出69影院| 一区二区日韩欧美中文字幕| 啦啦啦免费观看视频1| 美女午夜性视频免费| 国产真人三级小视频在线观看| 精品久久久久久,| 最好的美女福利视频网| 无遮挡黄片免费观看| 成人三级黄色视频| 中文字幕人妻丝袜一区二区| 成人亚洲精品一区在线观看| 露出奶头的视频| 国产av精品麻豆| 久久精品人人爽人人爽视色| 国产成人精品在线电影| 久久久国产精品麻豆| 国产av精品麻豆| 香蕉丝袜av| 在线看a的网站| 高清黄色对白视频在线免费看| 男女下面插进去视频免费观看| 国产成人精品无人区| 久久久国产欧美日韩av| 亚洲人成网站在线播放欧美日韩| 中文亚洲av片在线观看爽| 黄网站色视频无遮挡免费观看| 中文亚洲av片在线观看爽| 国产99白浆流出| 每晚都被弄得嗷嗷叫到高潮| 国产精品综合久久久久久久免费 | 91精品国产国语对白视频| 人妻丰满熟妇av一区二区三区| 亚洲色图综合在线观看| 日日摸夜夜添夜夜添小说| 午夜日韩欧美国产| 久久精品亚洲精品国产色婷小说| www日本在线高清视频| 成年版毛片免费区| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区mp4| 国产无遮挡羞羞视频在线观看| 黄网站色视频无遮挡免费观看| 12—13女人毛片做爰片一| 好男人电影高清在线观看| 亚洲精品一区av在线观看| 久久国产精品男人的天堂亚洲| 99精品欧美一区二区三区四区| 91成年电影在线观看| 国产精品久久视频播放| 18禁黄网站禁片午夜丰满| 成人国语在线视频| 欧美日韩亚洲国产一区二区在线观看| 成人18禁在线播放| 夜夜躁狠狠躁天天躁| 国产亚洲精品综合一区在线观看 | 成人特级黄色片久久久久久久| 纯流量卡能插随身wifi吗| 精品人妻1区二区| 日韩精品免费视频一区二区三区| 黄片小视频在线播放| 亚洲精品国产精品久久久不卡| 香蕉丝袜av| 中国美女看黄片| 中文字幕人妻熟女乱码| 桃色一区二区三区在线观看| 欧美中文综合在线视频| 国产成人av激情在线播放| 亚洲欧美一区二区三区久久| 亚洲色图av天堂| 99久久久亚洲精品蜜臀av| 免费看a级黄色片| 琪琪午夜伦伦电影理论片6080| 国产成人影院久久av| 99精品久久久久人妻精品| 国产单亲对白刺激| 制服人妻中文乱码| 男男h啪啪无遮挡| 曰老女人黄片| 久久婷婷成人综合色麻豆| 精品人妻1区二区| 两个人免费观看高清视频| 天堂动漫精品| avwww免费| 久久国产精品男人的天堂亚洲| 日本精品一区二区三区蜜桃| 啪啪无遮挡十八禁网站| 欧美中文日本在线观看视频| xxxhd国产人妻xxx| 亚洲精品久久午夜乱码| 又黄又粗又硬又大视频| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区三| 露出奶头的视频| 久久精品亚洲av国产电影网| 久久精品亚洲av国产电影网| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频| svipshipincom国产片| 国产99久久九九免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人av| 一个人免费在线观看的高清视频| 色精品久久人妻99蜜桃| 99香蕉大伊视频| 狂野欧美激情性xxxx| av天堂久久9| 国产亚洲精品综合一区在线观看 | 久久精品亚洲熟妇少妇任你| 777久久人妻少妇嫩草av网站| 999久久久精品免费观看国产| 麻豆久久精品国产亚洲av | 国产av精品麻豆| 日韩人妻精品一区2区三区| 十八禁人妻一区二区| 亚洲欧美一区二区三区黑人| 亚洲九九香蕉| 久久久久久久久久久久大奶| 桃红色精品国产亚洲av| 久久这里只有精品19| 国产精品1区2区在线观看.| 久久精品91蜜桃| 亚洲欧美激情在线| 国产亚洲精品久久久久久毛片| 亚洲全国av大片| 色在线成人网| 免费av毛片视频| 国产精品爽爽va在线观看网站 | 日韩精品青青久久久久久| 少妇粗大呻吟视频| 波多野结衣高清无吗| 日韩成人在线观看一区二区三区| 搡老岳熟女国产| 国产又色又爽无遮挡免费看| 亚洲激情在线av| 日本黄色日本黄色录像| 久久中文字幕一级| 国产精品偷伦视频观看了| 国产精品美女特级片免费视频播放器 | 国产精品 欧美亚洲| 级片在线观看| 国产成人av激情在线播放| 精品久久久精品久久久| 国产精品乱码一区二三区的特点 | 人人妻人人澡人人看| 99久久国产精品久久久| 老司机午夜福利在线观看视频| 国产精品久久电影中文字幕| 国产在线精品亚洲第一网站| 黄色a级毛片大全视频| 丝袜美足系列| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 黄色 视频免费看| 欧美精品亚洲一区二区| 侵犯人妻中文字幕一二三四区| 中文字幕av电影在线播放| 不卡av一区二区三区| 亚洲精品成人av观看孕妇| 色哟哟哟哟哟哟| 国产高清视频在线播放一区| 午夜影院日韩av| 国产亚洲欧美在线一区二区| 99香蕉大伊视频| 黑人猛操日本美女一级片| 美国免费a级毛片| 国产99白浆流出| 国产免费av片在线观看野外av| 免费女性裸体啪啪无遮挡网站| 美女 人体艺术 gogo| 性少妇av在线| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 一个人免费在线观看的高清视频| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看| 欧美大码av| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| 久99久视频精品免费| 亚洲国产欧美网| 新久久久久国产一级毛片| 久久99一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久香蕉精品热| 欧美激情极品国产一区二区三区| 日本撒尿小便嘘嘘汇集6| 岛国在线观看网站| 国产欧美日韩一区二区三| 欧美人与性动交α欧美精品济南到| 久久精品国产综合久久久| 亚洲国产看品久久| 久久久久九九精品影院| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 51午夜福利影视在线观看| 老司机福利观看| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 在线av久久热| 日韩精品中文字幕看吧| 亚洲激情在线av| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 国产亚洲av高清不卡| 国产黄a三级三级三级人| 欧美丝袜亚洲另类 | 亚洲一区二区三区色噜噜 | 高清黄色对白视频在线免费看| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 国产无遮挡羞羞视频在线观看| 欧美一区二区精品小视频在线| 国产一区二区三区在线臀色熟女 | 亚洲专区中文字幕在线| 国产精品日韩av在线免费观看 | 欧美日韩一级在线毛片| 黄色毛片三级朝国网站| 韩国精品一区二区三区| 久久久久久大精品| 中文字幕人妻熟女乱码| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 精品久久久久久,| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | 一a级毛片在线观看| 又大又爽又粗| 99精品在免费线老司机午夜| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 国产极品粉嫩免费观看在线| 一级毛片高清免费大全| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 精品熟女少妇八av免费久了| 丁香六月欧美| 亚洲精品一区av在线观看| 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 午夜激情av网站| 一进一出好大好爽视频| 亚洲一区二区三区欧美精品| 国产片内射在线| 色哟哟哟哟哟哟| 90打野战视频偷拍视频| 精品无人区乱码1区二区| x7x7x7水蜜桃| 日韩精品中文字幕看吧| 午夜免费观看网址| 免费在线观看黄色视频的| 欧美乱色亚洲激情| 久久国产精品男人的天堂亚洲| 极品教师在线免费播放| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 纯流量卡能插随身wifi吗| 亚洲视频免费观看视频| 久久精品成人免费网站| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 国产三级黄色录像| 欧美黄色淫秽网站| 曰老女人黄片| 亚洲国产看品久久| 国产av又大| 中文字幕精品免费在线观看视频| 欧美老熟妇乱子伦牲交| 精品无人区乱码1区二区| 中文字幕精品免费在线观看视频| 美女午夜性视频免费| 男人的好看免费观看在线视频 | 国产色视频综合| 国产人伦9x9x在线观看| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 色老头精品视频在线观看| 十八禁网站免费在线| 中文字幕色久视频| 成人特级黄色片久久久久久久| 国产精品自产拍在线观看55亚洲| 国产片内射在线| 亚洲精品一区av在线观看| 大香蕉久久成人网| 久久精品国产综合久久久| 亚洲成人免费av在线播放| 91av网站免费观看| 免费av中文字幕在线| 久久婷婷成人综合色麻豆| 免费观看人在逋| 国产高清videossex| 三上悠亚av全集在线观看| 国产有黄有色有爽视频| 国产成人av激情在线播放| 久久青草综合色| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 欧美不卡视频在线免费观看 | 女性生殖器流出的白浆| 精品欧美一区二区三区在线| 身体一侧抽搐| 狠狠狠狠99中文字幕| 国产成人精品久久二区二区免费| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 午夜激情av网站| 欧美日韩亚洲综合一区二区三区_| 黑人欧美特级aaaaaa片| 纯流量卡能插随身wifi吗| 深夜精品福利| 国产片内射在线| 国产高清视频在线播放一区| 在线观看一区二区三区| a在线观看视频网站| 91大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 最好的美女福利视频网| 一个人观看的视频www高清免费观看 | 亚洲精品国产精品久久久不卡| 久9热在线精品视频| 黄色怎么调成土黄色| 精品人妻1区二区| 亚洲激情在线av| 国产成人欧美在线观看| 欧美国产精品va在线观看不卡| 日本一区二区免费在线视频| √禁漫天堂资源中文www| 老熟妇乱子伦视频在线观看| 国产三级黄色录像| 成年人黄色毛片网站| 怎么达到女性高潮| 日本黄色视频三级网站网址| www.999成人在线观看| 国产精品秋霞免费鲁丝片| 欧美久久黑人一区二区| 动漫黄色视频在线观看| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 97超级碰碰碰精品色视频在线观看| 水蜜桃什么品种好| 国产高清激情床上av| 亚洲黑人精品在线| 黄色丝袜av网址大全| 身体一侧抽搐| 国产精品日韩av在线免费观看 | 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 搡老乐熟女国产| 国产高清视频在线播放一区| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 久久久久亚洲av毛片大全| 久久久久久久午夜电影 | 丝袜美足系列| 波多野结衣高清无吗| 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 搡老岳熟女国产| 久久久久国内视频| 一级毛片精品| 男女做爰动态图高潮gif福利片 | 日日夜夜操网爽| 美女大奶头视频| 免费在线观看亚洲国产| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 三级毛片av免费| 水蜜桃什么品种好| 亚洲激情在线av| 美女扒开内裤让男人捅视频| 变态另类成人亚洲欧美熟女 | 超碰成人久久| 淫秽高清视频在线观看| 国产成人av教育| 免费日韩欧美在线观看| 老司机在亚洲福利影院| 女人高潮潮喷娇喘18禁视频| 日韩高清综合在线| 女人爽到高潮嗷嗷叫在线视频| avwww免费| 高清毛片免费观看视频网站 | 一级毛片高清免费大全| 巨乳人妻的诱惑在线观看| 精品欧美一区二区三区在线| 午夜两性在线视频| av有码第一页| 国产亚洲精品综合一区在线观看 | 91老司机精品| 少妇被粗大的猛进出69影院| 久久这里只有精品19| 久久欧美精品欧美久久欧美| 99riav亚洲国产免费| 亚洲 欧美 日韩 在线 免费| 国产精品香港三级国产av潘金莲| av福利片在线| 在线观看舔阴道视频| 精品国产美女av久久久久小说| 一边摸一边抽搐一进一小说| 色尼玛亚洲综合影院| 亚洲国产中文字幕在线视频| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 国产亚洲欧美在线一区二区| 国产真人三级小视频在线观看| 一边摸一边做爽爽视频免费| 国产深夜福利视频在线观看| 久久精品aⅴ一区二区三区四区| 一个人观看的视频www高清免费观看 | 国产99久久九九免费精品| 波多野结衣av一区二区av| 婷婷丁香在线五月| 老司机靠b影院| 欧美色视频一区免费| 超碰成人久久| 免费av毛片视频| 久久热在线av| 午夜福利一区二区在线看| 亚洲欧洲精品一区二区精品久久久| 国产深夜福利视频在线观看| 国产欧美日韩综合在线一区二区| 午夜两性在线视频| 成在线人永久免费视频| 成人影院久久| 欧美日本亚洲视频在线播放| 欧美黄色淫秽网站| 精品电影一区二区在线| 亚洲一区高清亚洲精品| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区av网在线观看| 精品国产美女av久久久久小说| 夫妻午夜视频| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 脱女人内裤的视频| 一区二区日韩欧美中文字幕| 国产高清国产精品国产三级| 精品国产一区二区三区四区第35| 多毛熟女@视频| 涩涩av久久男人的天堂| 一进一出抽搐动态| 1024香蕉在线观看| 欧美精品啪啪一区二区三区| 免费高清视频大片| 老司机在亚洲福利影院| 桃色一区二区三区在线观看| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 嫁个100分男人电影在线观看| 欧美在线黄色| 两个人看的免费小视频| 亚洲精品中文字幕一二三四区| 美女福利国产在线| 男女之事视频高清在线观看| 窝窝影院91人妻| 亚洲精品一二三| 亚洲欧美日韩高清在线视频| 欧美激情 高清一区二区三区| 夫妻午夜视频| 亚洲精品一二三| 99久久综合精品五月天人人|