• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫取代氮增強g-C3N4 光催化產(chǎn)氫性能

    2024-07-16 00:00:00王海濤余良浪江吉周Arramel鄒菁
    物理化學學報 2024年5期
    關(guān)鍵詞:產(chǎn)氫光催化

    摘要:利用取之不盡的太陽能資源進行光催化水裂解制氫是緩解全球能源危機、實現(xiàn)碳中和戰(zhàn)略的一項有前景的技術(shù)。石墨相氮化碳(g-C3N4)因成本低且穩(wěn)定性高在光催化產(chǎn)氫領(lǐng)域備受關(guān)注。然而,純g-C3N4存在表面積小、電子轉(zhuǎn)移慢、光生載流子復(fù)合快等缺陷,產(chǎn)氫性能通常不佳。本研究通過直接熱解硫酸銨和三聚氰胺混合物,成功實現(xiàn)硫物種對g-C3N4氮位點的原位取代,開發(fā)出一種高效的硫摻雜g-C3N4 (S-g-CN)光催化劑。系列結(jié)構(gòu)和光譜表征證實硫的成功摻雜。密度泛函理論的第一性原理計算表明S活性位對氫的吸附吉布斯自由能近乎為零(~0.26 eV),揭示S摻雜在優(yōu)化H活性中間體吸附和解吸過程中起著重要作用。透射電子顯微鏡和原子力顯微鏡測試結(jié)果表明,S-g-CN具有超薄的納米片狀結(jié)構(gòu),其片層厚度約為2.5 nm。隨后的氮氣吸脫附等溫線和光電化學性質(zhì)測試結(jié)果表明,S摻雜不僅可顯著增大g-C3N4比表面積,而且還能有效提高其光生電子-空穴對的轉(zhuǎn)移、分離和氧化還原能力。得益于材料良好的結(jié)構(gòu)特性,S-g-CN的光催化產(chǎn)氫速率高達4923 μmol?g?1?h?1,是原始g-C3N4的28倍,超越諸多最近報道的其它S摻雜g-C3N4光催化劑。而且,S-g-CN的表觀量子效率高達3.64%。本研究除了開發(fā)一種高效的光催化劑,還將為高性能g-C3N4基催化劑的設(shè)計提供有益借鑒。

    關(guān)鍵詞:理論預(yù)測;硫摻雜;g-C3N4;產(chǎn)氫;光催化

    中圖分類號:O649;O644

    S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity

    Abstract: The use of solar energy as an inexhaustible resource to conductphotocatalytic water splitting in hydrogen (H2) production can alleviate theworldwide energy crisis and achieve carbon neutrality. However, research inphotocatalytic H2 evolution reaction (HER) is extremely challenging in terms ofexploring the current development of an active and durable graphitic carbon nitride(g-C3N4)-based photocatalyst. Several parameters of pristine g-C3N4 requirestructural, physical, and chemical improvements, such as optimization of thesurface area, electron transfer, and photo-generated carrier recombination, torender the g-C3N4 suitable for photocatalysis. In this study, the development of anefficient and robust S-doped g-C3N4 (S-g-CN) catalyst was pursued that involvesdoping nitrogen (N) active sites of g-C3N4 with sulfur (S) dopants via one-stepcalcination of the sulphate and melamine precursors. A combination of structural and spectroscopic fingerprints wasestablished to distinctly determine the realization of S-doping onto the g-C3N4 structure. We obtained the optimum Gibbsfree energy of adsorbed hydrogen (ΔGH*) for S-g-CN at the S active sites, which is nearly zero (~0.26 eV), suggesting thatthe filled S dopants play an essential role in optimizing the adsorption and desorption processes of H-active intermediates.The results of atomic force and transmission electron microscopies (AFM and TEM) demonstrated that the produced S-g-CN catalyst has an ultrathin nanosheet structure with a lamellar thickness of approximately 2.5 nm. A subsequent N2sorption isotherms test revealed a substantial increase in the specific surface area after the integration of S dopants intothe g-C3N4 nanoskeleton. Moreover, the incorporation of S atoms into the g-C3N4 significantly increased the carrierconcentrations, improving the transfer, separation, as well as the oxidation and reduction abilities of the photo-generatedelectron-hole pairs. Leveraging the favorable material characteristics of the S-doped two-dimensional nanostructures, theresulting S-g-CN achieved a high H2 evolution rate of 4923 μmol·g?1·h?1, which is 28 times higher than that of the pristineg-C3N4. Additionally, the developed S-g-CN possessed a high apparent quantum efficiency (3.64%) at visible-lightirradiation. When compared to the recently reported S-doped g-C3N4-based photocatalysts, our optimal S-g-CN catalyst(S-CN1.0) showed one of the best HER catalytic activities. Our rational design is based on an effective strategy that notonly explored a promising HER photocatalyst but also aimed to pave the way for the development of other highperformanceg-C3N4 based catalysts.

    Key Words: Theoretical prediction; S-doping; g-C3N4; Hydrogen evolution; Photocatalysis

    1 Introduction

    The excessive fossil fuels consumption as the primarynonrenewable energy resources has triggered imminentenvironmental crisis that become alarming issues. Theseinevitable challenges require serious attentions towardsustainable and efficient energy sources 1,2. Hydrogen (H2) withthe remarkable characteristics of high calorific value, zeroemission and renewable, has been considered to be a promisingenergy source in the 21st century, capable of poweringequipment from portable electronic devices to vehicles 3. Todate, the conventional H2 production is mainly produced via thechemical conversion of natural gas/coal method, which is limitedby the fossil energy consumption and moreover this route has ledto severe environmental contaminations 4. Based on theseintriguing backgrounds, we believe a reliable method is urgentlyrequired to produce environmentally-friendly, inexpensive, andsustainable H2 gas.

    Photocatalysis technology, which takes advantage ofinexhaustible solar energy resources, is a promising option for astrategy to mitigate the global energy crisis and eventuallyachieve zero carbon emissions 5,6. Therefore, photocatalyticwater splitting for hydrogen production has attracted extensiveattention from researchers in the field of hydrogen energy 7–9.Prior to the photocatalytic process of H2 evolution reaction(HER), a suitable catalyst must be designed to provide an efficient H2 gas production 10,11. Although many usefulsemiconductors, including metal (oxy) sulfides, metal oxides,and metal (oxy) nitrides, are constructed as photocatalysts foroverall water splitting, the high-cost, complicated synthesisprocess, and mediocre photocatalytic performance all restricttheir applications 12–14.

    Graphitic carbon nitride (g-C3N4) has drawn considerablecenter of interest as a candidate of metal-free photocatalysttowards hydrogen production, due to its wide band gap, robustchemical stability and tunable composition 15,16. However, thephoto-induced carriers of pristine g-C3N4 are strictly confined inthe triazine unit based on the theoretical calculations. This ismainly governed by the excited electrons that are not capable ofbridging N atoms, nor being transferred from one heptazine(C6N7) unit to an adjoining unit 17–19. Furthermore, the relativelow surface area, rapid electron-hole pair recombination, andinadequate light absorption of pristine g-C3N4, results inunsatisfactory photocatalytic HER performance 20,21.

    To overcome the aforementioned issues, several approachesare introduced in this research area such as an attempt to performthe shape and size manipulation, element doping, heterojunctionstructure, and composites, etc. Amongst, non-metal elementdoping in g-C3N4, especially sulfur (S) element, has beengenerally considered to be an effective candidate to regulate itsband gap that plays crucial role for the light harvesting and photocatalytic process under visible light region 22–26. Forexample, Wang et al. have fabricated S-doped g-C3N4nanosheets by self-assembling melamine and tri-thiocyanuricacid to study its photocatalytic activity for hydrogen evolution 27.The H2 evolution rate of g-C3N4 after S doping is 11 times higherthan that of g-C3N4. Li et al. verified the outcome of S-doped g-C3N4 can cause the modification of intrinsic electron structureand specific surface area, thus enhancing visible lightabsorption, reactive sites and catalytic properties 28. However,the above previous reports focused almost exclusively on thesynthesis, characterization and catalytic performance of S-dopedg-C3N4. In addition, the chemical nature of S dopants into the g-C3N4 remains elusive. Moreover, the deterministic spatiallocation of S-dopants in the g-C3N4 molecular structure isrequired to identify its specific contribution to the photocatalyticHER performance.

    In this work, density functional theory (DFT) calculationsof g-C3N4 are simulated to introduce S dopants into the Nsites,and resulting S-doped g-C3N4 (S-g-CN) can serve as anefficient and robust HER photocatalyst. To confirm theproposed structural model, several experimental results areunambiguously demonstrated that the filling of S-dopants intothe N-sites of g-C3N4 significantly enhance specific surfacearea, regulate carrier concentrations, and improve transfer,separation as well as oxidation and reduction ability of photogeneratedelectron-hole pairs. Based on DFT calculations, itturns out that the filled S-dopants contribute significantly inthe photocatalytic enhancement of HER activity byoptimizing the Gibbs free energy of adsorbed hydrogen(ΔGH*). Therefore, we present an optimum S-g-CN catalystthat demonstrates an excellent photocatalytic HER activity of4923 μmol?g?1?h?1 compared to its pristine counterparts.Moreover, we achieve the apparent quantum efficiency (AQE)is even up to 3.64% (λ = 420 nm).

    2 Experimental section

    2.1 Chemicals

    Ammonium sulfate (NH4)2SO4 (AR, ≥ 99.0%), ammoniumcarbonate (NH4)2CO3 (AR, ≥ 99.0%) and melamine (AR, ≥99.0%) were obtained from Sinopharm Chemical Reagent Co.Ltd.

    2.2 Synthesis of S-doped g-C3N4 (S-g-CN)

    Typically, different amount of (NH4)2SO4 (0.5, 0.75, 1.0, 1.25,and 1.5 g) and 1 g melamine (MA) were grinded to non-granularpowder, respectively. The resulting mixtures were then annealeddirectly at 550 °C for 4 h under air atmosphere to prepare a seriesof S-g-CNx materials. According to the dosage of (NH4)2SO4, thesamples were respectively named S-g-CN0.5, S-g-CN0.75, S-g-CN1.0, S-g-CN1.25, and S-g-CN1.5. The g-C3N4 was prepared in asimilar way without the addition of (NH4)2SO4 that intended fora comparative material. For comparison, the g-C3N4-(NH4)2CO3control sample was also fabricated through a similar way with(NH4)2CO3 instead of (NH4)2SO4.

    3 Results and discussions

    The optimized atomic configurations of g-C3N4 and S-g-CNare simulated initially by first-principle DFT calculations asexhibited in Fig. 1a,c. Subsequently, the values of ΔGH* for g-CN, and S-g-CN samples are also calculated to evaluate theirintrinsic HER catalytic activity. We carefully optimized H*active intermediate that adsorbed onto different active sites (Nor S sites) of g-CN and S-g-CN. For g-C3N4, the H* adsorptionmodel is established at N active sites (Fig. 1b). Meanwhile, weconsider three H* adsorption models are constructed at N and Ssites (Fig. 1d–f), corresponding to S-g-CNN1, S-g-CNN2 and Sg-CNS, respectively. The targeted ΔGH* value should be close to0 eV, which represents the optimum H* adsorption/desorptionprocesses over an efficient HER catalyst 29–31. According to thecalculation, the value of ΔGH* for g-C3N4 and S-g-CN at N activesites are found to be ?1.92 eV (g-C3N4), ?1.59 eV (S-g-CNN1),and ?1.55 eV (S-g-CNN2). Notably, the optimum value of ΔGH*for S-g-CN at the S active sites (S-g-CNS) is calculated to be?0.26 eV, which is approximately close to zero in comparison tothe ΔGH* of g-C3N4 and S-g-CN at N sites (Fig. 1g). The aboveDFT results confirm the significant role of filling S-dopants intothe N-sites in promoting the HER catalytic activity of g-C3N4.

    Guided by theoretical predictions, a versatile and eco-friendly fabrication strategy is employed to prepare S-g-CN by using(NH4)2SO4 as a non-toxic S doping source, while g-C3N4 sampleis also prepared via a typical thermal polycondensation processof MA molecules (Fig. 2a,b). The sample morphologies of g-C3N4 and S-g-CN are determined by transmission electronmicroscopy (TEM) technique. Fig. 2c displays the TEM imageof g-C3N4 displays a well-defined layered structure. On the otherhands, The TEM observation in Fig. 2d displays the retainedlamellar framework of S-g-CN upon S-doping. We note that thestructural difference in the S-g-CN possess an ultrathinnanosheet structure compared to its counterparts. To confirm thenanosheet thickness of the S-g-CN, the cross-sectional analysisusing atomic force microscope (AFM) is demonstrated as theevidence for the formation of free-standing nanosheets,indicating the lamellar thickness (~2.5 nm) associated to the Sg-CN shown in Fig. 3a. This result corresponds to the thicknessas thin as four layers of g-C3N4 is formed after filling S-dopants 32.

    The electron spin-resonance spectroscopy (ESR) is employedto study the evolution of substitution N sites by S dopants in g-C3N4 (Fig. 3b). Obviously, the intensity of ESR for S-g-CN ismuch higher than that of g-C3N4, inferring the C3N4 matrix hasmore defects with poorer crystallinity upon S-doping. Fig. 3cdisplays the X-ray diffraction (XRD) results of g-C3N4, and S-g-CN obtained at different dosage of (NH4)2SO4, in which thepeaks centered at ~13° and 27° are assigned to the (100) and(002) reflection planes of g-C3N4, which correspond to in-planeand inter-planar stacking of aromatic units, respectively 33,34.Both reflection planes remain at the similar positions after g-C3N4 phase is converted by the S dopants. The gradual reductionof (100) diffraction peak intensity of S-g-CN demonstrates that it s framework rigidity is reduced, which is consistent to thereduced layer thickness after introducing S dopants as discussedabove 35.

    To obtain the porosity textural features of g-C3N4 and serial Sg-CN samples, we further analyzed the N2 sorption isothermsprofile as displayed in Fig. 3d. Noteworthy, the specific surface areas of all S-g-CN samples are generally larger than that oforiginal g-C3N4, which could be assigned to the stripping effectof the gas generated by the decomposition of (NH4)2SO4 duringsample preparation process. Particularly, the S-g-CN1.0 samplepossesses the highest specific surface area of 216.23 m2?g?1 thatprovide many catalytic active sites for the interface reaction(Table S1), thus expecting to become an excellent photocatalysttowards HER 36,37.

    X-ray photoelectron spectroscopy (XPS) technique isemployed to investigate the influence of filling S-dopants intothe N-sites of g-C3N4 (Table S2). The prominent peaks observedin Fig. 4a are assigned to C 1s and N 1s. A distinct feature was collected compared to the XPS spectra of g-C3N4, here wemeasured that the chemical states corresponding to thecharacteristic of S 2p state at 165.4 eV peak has emerged in theXPS spectra of S-g-CN1.0, suggesting the S-doping formation.Furthermore, the atomic ratios of C : N in S-g-CN (0.806) ishigher than that of g-C3N4 (0.727), revealing that some N activesites are replaced by S dopants. The spectral characteristic of C1s and N 1s in these samples are similar in their lineshapes andbinding energies. To outline their chemical states, the C 1s, N 1sand S 2p spectra for the g-C3N4 and S-g-CN1.0 are studiedsystematically. The C 1s core level spectra are deconvoluted intothree major peaks located at 284.4, 287.2, and 287.8 eV,corresponding to the C―C, C―NH2, and N―C=N in triazineskeleton rings of g-C3N4 38,39, respectively (Fig. 4b). For the Sg-CN1.0, the peak intensity of N―C=N is decreased relative tothat of g-C3N4, implying the successful S doping into g-C3N4.Both the spectral features recorded in the g-C3N4 and S-g-CN1.0showed the analogous N 1s XPS profiles (Fig. 4c) in which thecorresponding peaks at 398.0, 398.6, and 400.3 eV can beascribed to C―N=C, N―(C)3 and C―NH2, respectively 40,41.We note that the peak intensity of C―N=C for S-g-CN1.0 islesser than that of g-C3N4, suggesting several of sp2 hybridizedN atoms are substituted by the S atoms 42. Fig. 4d depicts theS 2p spectra of S-g-CN1.0, where the peaks at 165.4 eV suggestthe presence of C―S―C bond 43. The chemical states of C―S―C have shown that S atom is successfully incorporated intothe N-sites of g-C3N4 structural unit.

    The photocatalytic HER performance of as-fabricatedcatalysts is assessed in a triethanolamine solutions the visiblelight irradiation (≥ 420 nm, Experimental detail, SupportingInformation). As expected, pristine g-C3N4 can only release atrace amount of H2 (Fig. 5a,b), while the significantly enhancedH2 generation efficiency is reached over all g-CNx catalyst,which indicates the significant role of S-doping in improving thephotocatalytic activity. Particularly, the optimized catalyst of SCN1.0achieved the champion H2 production rate of 4923μmol?h?1?g?1, which is about 28 times larger than that of g-C3N4(173 μmol?h?1?g?1). Moreover, the S-CN1.0 catalyst holds one ofthe best catalytic activity compared to other S-doped C3N4-basedphotocatalysts reported recently (Table 1) 44–54. Fig. S1 displayedthe specific surface area and photocatalytic HER activity of theg-C3N4-(NH4)2CO3. Notably, the g-C3N4-(NH4)2CO3 alsopossesses a large specific surface area (186.37 m2?g?1), but itscatalytic activity is much lower than that of S-g-CN (Fig. 5a).We believe that the incremental changes of surface area upon Sdopingcould be the turnover factor to improve the photocatalyticHER activity of g-C3N4. Therefore, we used g-C3N4-(NH4)2CO3as the comparative sample via direct pyrolysis of melamine with(NH4)2CO3. According to these results, we suggest that S-dopingis the promising route to achieve the highly-efficient reaction of photocatalytic HER activity of g-C3N4 rather than the increaseof specific surface area.

    Additionally, the apparent quantum efficiency (AQE) of S-g-CN1.0 is measured as a function of different incident illuminationwavelengths by using band-pass filters. One should considerAQE is an indispensable indicator to measure the photocatalyticefficiency of a catalyst. The larger AQE indicates a prominentaccess to identify the separation efficiency that influences thephoto-induced charge pairs, thus achieving superior HERphotocatalytic activity. We present Fig. 5c to outline theimplication of incident light wavelength on HER catalyticactivity, which suggests that the HER photocatalysis is mainlydriven by the incident photons. Impressively, the AQE of S-g-CN1.0 reaches to 3.64% at 420 nm, and even at 550 nm, the AQEis still 0.37. Apart from the ideal photocatalytic activity, the longtermstability is a deterministic feature of the catalyst that mightbe another major concern to consider 55. Therefore, the durabilityof S-g-CN1.0 is also studied by comparing the activity attenuationafter six catalytic cycles. As exhibited in Fig. 5d, the H2generation rates of S-g-CN1.0 remains unperturbed after sixcycles, demonstrating their robust photocatalytic durability.

    To explore further insight of the photocatalytic activityenhancement upon the filling S-dopants into the N-sites of g-C3N4, we systematically investigate the carrier concentration, thetransfer, and the recombination ability of photo-induced carriersby recording the Mott-Schottky (M-S) plots, electrochemicalimpedance spectra (EIS), photoluminescence (PL) andphotocurrent (PC) responses. Fig. 6a exhibits the M-S plots of g-C3N4 and serial S-g-CNx materials, where the present positiveslopes indicate the typical n-type semiconductors feature 56.Among them, S-g-CN1.0 delivers the smallest slope,demonstrating the abundant carrier concentration and low photogeneratedelectron/hole pair recombination, which is anindispensable reason for its superior catalytic activity 57.Meanwhile, the typical Nyquist plots of g-C3N4 and serial S-g-CNx materials are exhibited in Fig. 6b. Obviously, the interfacialcharge transfer resistance (the diameter of the semicircle in theEIS spectra) of the S-g-CN1.0 is significantly smaller than thoseof g-C3N4, verifying the fastest charge transport after filling Sdopantsinto the N-sites of g-C3N4 58. Such an effective chargetransfer capacity of developed S-g-CN1.0 can also be furthersupported by the smaller overpotential (Fig. 6c) and Tafel slopetowards electrocatalytic HER in comparison to those of g-C3N4(Fig. S2). In addition, PL and spectra analyses are carried out toinvestigate the effect of filling S-dopants on the recombinationefficiency of photo-excited carriers. Generally, strong PL peakintensity reveals the rapid recombination of photo-excitedcarriers 59. The PL spectra of g-C3N4 and serial S-g-CNx catalystsall show the emission peak in the range from 415–530 nm at theexcitation wavelength of 275 nm (Fig. 6d). As expected, the Sg-CN1.0 possesses the lowest PL emission peak, which indicatesthat suitable filling S-dopants in g-C3N4 can effectively preventthe recombination of photo-generated electron-hole pairs, thusendowing superior catalytic HER activity. The separation abilityof electron-hole pairs of g-C3N4 and S-g-CN1.0 are evaluated byrecording their PC curves. As shown in Fig. 6e, the PC responseof S-g-CN1.0 is much stronger than that of g-C3N4, indicating theenhanced separation efficiency of photon-generated carriersafter S doping. In addition, the energy gap changes of g-C3N4after S-doping is disclose on the basis of M-S plots. Fig. 6fdepicts the estimated band gaps energy (Eg) of g-C3N4 and S-g-CNx, which can be calculated from the corresponding UV-Visdiffuse reflectance spectra (UV-Vis DRS, Fig. S3). Obviously,the S-g-CN1.0 possesses the largest Eg value of is determined tobe 2.74 eV, revealing the enhanced oxidation and reductioncapacity of photo-generated holes and charges after filling Sdopantsinto g-C3N4 structural unit 60,61, which is essential for thepromotion of HER photocatalytic activity. According to theabove discussions, the integration of S dopants not onlyenhances the carrier concentration profile, but also improves thecharge carrier transfer and their splitting event as well asoxidation and reduction ability of photo-generated electron-hole pairs, thereby strengthening photocatalytic H2 evolutionperformance.

    4 Conclusion

    In summary, guided by the theoretical predictions, we havepresented experimentally a direct demonstration of S-dopantsfilling into the N-sites of g-C3N4 under multitude spectroscopictechniques. Here the rational chemical design of S-g-CN impliesthat the one-step calcining the mixture of sulphate and melaminewithout the usage of toxic agent is a promising route toward itsphotocatalytic response. Owing to the typical lamellarnanostructures with large specific surface area, moderateintegrating S dopants, abundant carrier concentration, as well aseffective carrier separation and transfer efficiency, thedeveloped S-g-CN presents a conspicuously improved HERphotocatalytic activity and durability relative to g-C3N4. Asdisclosed by the DFT calculations, the ΔGH* of S-g-CN at thefilled S active sites is approximately close to zero (?0.26 eV),strongly confirms the significant role of filling S-dopants intothe N-sites in enhancing the HER catalytic activity. Importantly,filling N-sites of g-C3N4 with S-dopants may open a new avenueto design high-performance photocatalyst for hydrogenproduction and other photo(electro)chemical conversionprogress.

    Author Contributions: H.W. and J.J. designed the proposaland wrote the manuscript. H.W. and L.Y. performed thesynthesis, characterization and the catalytic measurements.H.W., J.J., Arramel, and J.Z., contributed to revising themanuscript. All authors discussed the results and reviewed themanuscript.

    Supporting Information: Supplementary data associatedwith this article is available free of charge via the internet athttp://www.whxb.pku.edu.cn., including: Physical characterizations,photoelectrochemical measurements, photocatalytic hydrogenevolution tests, details of theoretical calculations, N2 sorptionisotherms, XPS results, Tafel plots, UV-Vis DRS spectra.

    References

    (1) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C.Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    (2) Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim.Sin. 2021, 37, 2009030. [李云鋒, 張敏, 周亮, 楊思佳, 武占省,馬玉花. 物理化學學報, 2021, 37, 2009030.]doi: 10.3866/PKU.WHXB202009030

    (3) Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X.Green Chem. 2023, 25, 32. doi: 10.1039/D2GC03160D

    (4) Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Nat.Commun. 2021, 12, 4112.doi: 10.21203/rs.3.rs-208751/v1

    (5) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41,2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108

    (6) Liu, T.; Li, Y. F.; Sun, H. J.; Zhang, M.; Xia, Z. L.; Yang, Q. Chin. J.Struct. Chem. 2022, 41, 2206055.doi: 10.14102/j.cnki.0254-5861.2022-0152

    (7) Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng,F(xiàn). Acta Phys. -Chim. Sin. 2021, 37, 2010030. [李喜寶, 劉積有, 黃軍同, 何朝政, 馮志軍, 陳智, 萬里鷹, 鄧芳. 物理化學學報,2021, 37, 2010030.] doi: 10.3866/PKU.WHXB202010030

    (8) Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci.Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030

    (9) Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y.; Zhang, P.; Li, X. Sci.China Mater. 2022, 63, 2153. doi: 10.1007/s40843-020-1456-x

    (10) Zhang, S.; Dong, H.; An, C.; Li, Z.; Xu, D.; Xu, K.; Wu, Z.; Shen, J.;Chen, X.; Zhang, S. J. Mater. Sci. Technol. 2021, 75, 59.doi: 10.1016/j.jmst.2020.10.030

    (11) Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu,P.; Hsu, J. P. Nano Res. 2023, 16, 127.doi: 10.1007/s12274-022-4799-z

    (12) Liu, S; Wang, K; Yang, M; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38,2109023. [劉珊池, 王凱, 楊夢雪, 靳治良. 物理化學學報, 2022,38, 2109023.] doi: 10.3866/PKU.WHXB202109023

    (13) Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater.Chem. A 2021, 9, 24195. doi: 10.1039/d1ta07332j

    (14) Jiang, J.; Xiong, Z.; Wang, H.; Xiang, K.; Wu, P.; Zou, J. Sci. ChinaTechnol. Sc. 2022, 65, 3020. doi: 10.1007/s11431-022-2192-6

    (15) Tao, S. R.; Wan, S. J.; Huang, Q. Y.; Li, C. M.; Yu, J. G.; Cao, S. W.Chin. J. Struct. Chem. 2022, 41, 2206048.doi: 10.14102/j.cnki.0254-5861.2022-0068

    (16) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43,2111. doi: 10.1016/s1872-2067(22)64096-8

    (17) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7,2100498. doi: 10.1002/adsu.202100498

    (18) Li, Y.; He, Z.; Liu, L.; Jiang, Y.; Ong, W.; Duan, Y.; Ho, W.; Dong, F.Nano Energy 2023, 105, 108032. doi: 10.1016/j.nanoen.2022.108032

    (19) Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J. P.; Jiang, J.J. Alloy. Compd. 2022, 911, 165020.doi: 10.1016/j.jallcom.2022.165020

    (20) Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.;Zhang, P.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2201025.doi: 10.14102/j.cnki.0254-5861.2021-0039

    (21) Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B Environ. 2019,243, 556. doi: 10.1016/j.apcatb.2018.11.011

    (22) Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014. [沈榮晨, 郝磊, 陳晴, 鄭巧清, 張鵬,李鑫. 物理化學學報, 2022, 38, 2110014.]doi: 10.3866/PKU.WHXB202110014

    (23) Liu, Y.; Zheng, Y.; Zhang, W.; Peng, Z.; Xie, H.; Wang, Y.; Guo, X.;Zhang, M.; Li, R.; Huang, Y. J. Mater. Sci. Technol. 2021, 95, 127.doi: 10.1016/j.jmst.2021.03.025

    (24) Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021,42, 56. doi: 10.1016/s1872-2067(20)63634-8

    (25) Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye,L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2020.126498

    (26) Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.;Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15.doi: 10.1016/j.jmst.2021.12.018

    (27) Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Appl. Catal. B Environ.2018, 238, 592. doi: 10.1016/j.apcatb.2018.07.023

    (28) Zhou, Y.; Lv, W.; Zhu, B.; Tong, F.; Pan, J.; Bai, J.; Zhou, Q.; Qin, H.ACS Sustain. Chem. Eng. 2019, 7, 5801.doi: 10.1021/acssuschemeng.8b05374

    (29) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu,S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4

    (30) Liu, D.; Xu, G.; Yang, H.; Wang, H.; Xia, B. Y. Adv. Funct. Mater.2023, 33, 2208358. doi: 10.1002/adfm.202208358

    (31) Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang,K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977.doi: 10.1007/s12274-022-4276-8

    (32) Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37,2005027. [秦祖贈, 吳靖, 李斌, 蘇通明, 紀紅兵. 物理化學學報,2021, 37, 2005027.] doi: 10.3866/PKU.WHXB202005027

    (33) Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.;Jiang, J. Carbon 2018, 130, 652. doi: 10.1016/j.carbon.2018.01.008

    (34) Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.;Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539.doi: 10.1016/j.apcatb.2020.119539

    (35) Deng, Y.; Zhou, Z.; Zeng, H.; Tang, R.; Li, L.; Wang, J.; Feng, C.;Gong, D.; Tang, L.; Huang, Y. Appl. Catal. B Environ. 2022, 320,121942. doi: 10.1016/j.apcatb.2022.121942

    (36) Wang, H.; Qiu, X.; Peng, Z.; Wang, W.; Wang, J.; Zhang, T.; Jiang,L.; Liu, H. J. Colloid Interface Sci. 2020, 561, 829.doi: 10.1016/j.jcis.2019.11.065

    (37) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci.Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    (38) Jiang, J.; Lei, O. Y.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H.Carbon 2014, 80, 213. doi: 10.1016/j.carbon.2014.08.059

    (39) Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.;Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138.doi: 10.1039/c9nr00168a

    (40) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen,Z.; Huang, J.; Zengi, F.; et al. Chin. J. Struct. Chem. 2022, 41,2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103

    (41) Wu, M.; Yan, J.; Tang, X.; Zhao, M.; Jiang, Q. ChemSusChem 2014,7, 2654. doi: 10.1002/cssc.201402180

    (42) Lin, Y. R.; Dizon, G. V. C.; Yamada, K.; Liu, C. Y.; Venault, A.; Lin,H. Y.; Yoshida, M.; Hu, C. J. Colloid Interface Sci. 2020, 567, 202.doi: 10.1016/j.jcis.2020.02.017

    (43) Wang, H.; Qiu, X.; Wang, W.; Jiang, L.; Liu, H. Front. Chem. 2019,7, 855. doi: 10.3389/fchem.2019.00855

    (44) Bai, J.; Zhou, P.; Xu, P.; Deng, Y.; Zhou, Q. Ceram. Int. 2021, 47,4043. doi: 10.1016/j.ceramint.2020.09.275

    (45) Jiao, Y.; Liu, M.; Qin, J.; Li, Y.; Wang, J.; He, Z.; Li, Z. J. ColloidInterface Sci. 2022, 608, 1432. doi: 10.1016/j.jcis.2021.10.084

    (46) Fei, T.; Qin, C.; Zhang, Y.; Dong, G.; Wang, Y.; Zhou, Y. Int. J.Hydrog. Energy 2021, 46, 20481. doi: 10.1016/j.ijhydene.2021.03.148

    (47) Li, J.; Liu, X.; Liu, C.; Che, H.; Li, C. J. Taiwan. Inst. Chem. E 2020,117, 93. doi: 10.1016/j.jtice.2020.12.001

    (48) Zhang, T.; Cai, X.; Lin, X.; Jiang, Z.; Jin, H.; Huang, Z.; Gan, T.; Hu,H.; Zhang, Y. Sep. Purif. Technol. 2023, 314, 123618.doi: 10.1016/j.seppur.2023.123618

    (49) Niu, L.; Du, J.; Tian, X.; Jiang, D.; Gu, L.; Yuan, Y. Mater. Lett. 2021,300, 130120. doi: 10.1016/j.matlet.2021.130120

    (50) Fang, K.; Chen, Z.; Wei, Y.; Fang, S.; Dong, Z.; Zhang, Y.; Li, W.;Wang, L. J. Alloy. Compd. 2022, 925, 166257.doi: 10.1016/j.jallcom.2022.166257

    (51) Long, D.; Wang, L.; Cai, H.; Rao, X.; Zhang, Y. Catal. Lett. 2020,150, 2487. doi: 10.1007/s10562-020-03156-5

    (52) Ahmad, K.; Khan, M. Q.; Alsalme, A.; Kim, H. Synth. Met. 2022,288, 117100. doi: 10.1016/j.synthmet.2022.117100

    (53) Zhou, P.; Meng, X.; Li, L.; Sun, T. J. Alloy. Compd. 2020, 827,154259. doi: 10.1016/j.jallcom.2020.154259

    (54) Feng, C.; Tang, L.; Deng, Y, Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.;Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539.doi: 10.1016/j.apcatb.2020.119539

    (55) Zou, J.; Zou, Y.; Wang, H.; Wang, W.; Wu, P.; Arramel; Jiang, J.; Li,X. Chin. Chem. Lett. 2023, 34, 107378.doi: 10.1016/j.cclet.2022.03.101

    (56) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci.Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046

    (57) Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.;Liu, Q.; Liu, J.; Hu, F.; et al. J. Am. Chem. Soc. 2017, 139, 3021.doi: 10.1021/jacs.6b11878

    (58) Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.;Yu, J.; Chen, X. Adv. Mater. 2019, 31, 1806596.doi: 10.1002/adma.201806596

    (59) Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.;Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35, 2209141.doi: 10.1002/adma.202209141

    (60) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew.Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012

    (61) Wang, H.; Jiang, J.; Yu, L.; Peng, J.; Song, Z.; Xiong, Z.; Li, N.;Xiang, K.; Zou, J.; Hsu, J.-P.; et al. Small 2023,doi: 10.1002/smll.202301116

    國家自然科學基金(62004143), 湖北省重點研發(fā)計劃(2022BAA084), 湖北省自然科學基金(2021CFB133), 國家重點研發(fā)計劃 (2022YFC3902703), 磷資源開發(fā)利用教育部工程研究中心創(chuàng)新項目(LCX2021003),能量轉(zhuǎn)換與存儲材料化學教育部重點實驗室開放基金(2021JYBKF05)資助

    猜你喜歡
    產(chǎn)氫光催化
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進光催化產(chǎn)氫
    變壓吸附制氫解吸氣壓縮機選型方案探討
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    陶瓷學報(2019年5期)2019-01-12 09:17:34
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    復(fù)合催化劑NiS/g-C3N4的制備及光催化產(chǎn)氫性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    有機廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    爆轟法合成納米TiO2及其光催化性能
    可見光光催化降解在有機污染防治中的應(yīng)用
    WO3/ZnO的制備及其光催化降解甲基橙研究
    啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 日本熟妇午夜| 亚洲在线自拍视频| 国产在视频线在精品| 夜夜夜夜夜久久久久| 青春草国产在线视频 | 中文字幕熟女人妻在线| 我的女老师完整版在线观看| 亚洲成人久久性| 久久久久国产网址| 亚洲人成网站在线观看播放| 亚洲av不卡在线观看| 一进一出抽搐动态| 18禁裸乳无遮挡免费网站照片| 我要搜黄色片| 99在线人妻在线中文字幕| 国产精品久久久久久精品电影| 国产午夜精品久久久久久一区二区三区| 国产高潮美女av| 12—13女人毛片做爰片一| 天堂中文最新版在线下载 | 欧美极品一区二区三区四区| 人妻少妇偷人精品九色| 夜夜爽天天搞| 超碰av人人做人人爽久久| 精品久久久久久久久av| 国产男人的电影天堂91| 菩萨蛮人人尽说江南好唐韦庄 | 18+在线观看网站| 在线播放国产精品三级| 日韩欧美国产在线观看| 高清毛片免费看| 特大巨黑吊av在线直播| 麻豆乱淫一区二区| 国产片特级美女逼逼视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩高清在线视频| 国产片特级美女逼逼视频| 亚洲电影在线观看av| 亚洲国产精品久久男人天堂| 欧美另类亚洲清纯唯美| 亚洲第一电影网av| 午夜久久久久精精品| 色尼玛亚洲综合影院| 一卡2卡三卡四卡精品乱码亚洲| 午夜精品国产一区二区电影 | 乱系列少妇在线播放| 亚洲国产色片| 中文字幕精品亚洲无线码一区| 99久久精品国产国产毛片| 禁无遮挡网站| 亚洲婷婷狠狠爱综合网| 少妇裸体淫交视频免费看高清| 久久这里只有精品中国| 国内少妇人妻偷人精品xxx网站| 日本黄大片高清| 国产成人精品久久久久久| 国产熟女欧美一区二区| 美女脱内裤让男人舔精品视频 | 国产蜜桃级精品一区二区三区| 国产伦精品一区二区三区视频9| 婷婷六月久久综合丁香| 国产成人91sexporn| 国产精品免费一区二区三区在线| 日日撸夜夜添| 亚州av有码| 国产男人的电影天堂91| 国产精品一及| 国产一区亚洲一区在线观看| 九色成人免费人妻av| 欧美性猛交黑人性爽| 欧美日韩乱码在线| 国产黄片视频在线免费观看| 少妇裸体淫交视频免费看高清| 欧美性感艳星| 97在线视频观看| 国产私拍福利视频在线观看| 波多野结衣高清作品| 亚洲av男天堂| 26uuu在线亚洲综合色| 九九久久精品国产亚洲av麻豆| 午夜a级毛片| 色吧在线观看| 麻豆国产97在线/欧美| 嫩草影院精品99| 99九九线精品视频在线观看视频| 男女边吃奶边做爰视频| 成人特级av手机在线观看| 九九热线精品视视频播放| 国产精品精品国产色婷婷| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜爱| 亚洲欧美日韩卡通动漫| 天天躁日日操中文字幕| 毛片一级片免费看久久久久| 美女cb高潮喷水在线观看| 在线观看午夜福利视频| 乱系列少妇在线播放| 欧美丝袜亚洲另类| 天天躁日日操中文字幕| 欧美zozozo另类| 性插视频无遮挡在线免费观看| 一级二级三级毛片免费看| 真实男女啪啪啪动态图| 最近的中文字幕免费完整| 又爽又黄无遮挡网站| 如何舔出高潮| 久久久久久久亚洲中文字幕| 成人一区二区视频在线观看| 国产成人a区在线观看| 免费人成在线观看视频色| 中国美白少妇内射xxxbb| 国产伦在线观看视频一区| 国产午夜精品论理片| 亚洲,欧美,日韩| 黄色配什么色好看| 成人亚洲欧美一区二区av| 亚洲欧美精品自产自拍| 亚洲精品日韩在线中文字幕 | 国产精品久久久久久精品电影小说 | 最近手机中文字幕大全| 亚洲精品影视一区二区三区av| 国产精品久久视频播放| 国产精华一区二区三区| 久久久久网色| 夜夜夜夜夜久久久久| 高清在线视频一区二区三区 | 午夜精品在线福利| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久久丰满| 色播亚洲综合网| 免费大片18禁| 狠狠狠狠99中文字幕| 99riav亚洲国产免费| 日韩一区二区三区影片| 欧美另类亚洲清纯唯美| 日韩一区二区视频免费看| av在线亚洲专区| 夫妻性生交免费视频一级片| 大型黄色视频在线免费观看| 97人妻精品一区二区三区麻豆| 我的女老师完整版在线观看| 久久久久久大精品| 色播亚洲综合网| 一本一本综合久久| 蜜桃亚洲精品一区二区三区| 级片在线观看| 99热精品在线国产| 成人高潮视频无遮挡免费网站| 中文亚洲av片在线观看爽| 天堂中文最新版在线下载 | 国产精品一区二区三区四区免费观看| 九九在线视频观看精品| 亚洲精品亚洲一区二区| av国产免费在线观看| 变态另类丝袜制服| 女人十人毛片免费观看3o分钟| 免费观看的影片在线观看| 色视频www国产| 亚洲三级黄色毛片| 亚洲,欧美,日韩| 一区二区三区高清视频在线| 26uuu在线亚洲综合色| 色哟哟·www| 日韩av在线大香蕉| 国产精品久久久久久精品电影小说 | 国产视频内射| 精品99又大又爽又粗少妇毛片| 又黄又爽又刺激的免费视频.| av在线亚洲专区| 三级国产精品欧美在线观看| 97人妻精品一区二区三区麻豆| av又黄又爽大尺度在线免费看 | 欧美又色又爽又黄视频| 深夜a级毛片| 免费av毛片视频| 国产精品女同一区二区软件| 久久午夜亚洲精品久久| 少妇熟女欧美另类| 中文字幕人妻熟人妻熟丝袜美| 欧美高清成人免费视频www| av.在线天堂| 精华霜和精华液先用哪个| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 人妻少妇偷人精品九色| 亚洲国产色片| 中文字幕精品亚洲无线码一区| 国产又黄又爽又无遮挡在线| 欧美+日韩+精品| 精品熟女少妇av免费看| 国产真实伦视频高清在线观看| 国产精品国产三级国产av玫瑰| 69人妻影院| 最近的中文字幕免费完整| 亚洲人成网站高清观看| 少妇熟女aⅴ在线视频| 99久久久亚洲精品蜜臀av| 五月伊人婷婷丁香| 色哟哟·www| 最后的刺客免费高清国语| a级毛色黄片| 十八禁国产超污无遮挡网站| 国产欧美日韩精品一区二区| 九草在线视频观看| 久久99精品国语久久久| 哪个播放器可以免费观看大片| 色综合站精品国产| 插阴视频在线观看视频| 欧美另类亚洲清纯唯美| kizo精华| 国产精品综合久久久久久久免费| 久久精品国产亚洲av香蕉五月| 我要搜黄色片| 午夜免费激情av| 亚洲av不卡在线观看| 免费一级毛片在线播放高清视频| 久久久久国产网址| 午夜福利高清视频| 国产精品免费一区二区三区在线| 久久韩国三级中文字幕| a级毛色黄片| 可以在线观看毛片的网站| av福利片在线观看| 日韩一本色道免费dvd| 一边亲一边摸免费视频| 日韩av在线大香蕉| 麻豆av噜噜一区二区三区| 综合色丁香网| 一级毛片久久久久久久久女| 精品欧美国产一区二区三| 精品久久久久久久久久久久久| 国产伦精品一区二区三区四那| 夫妻性生交免费视频一级片| 精品人妻视频免费看| 欧美高清性xxxxhd video| 日韩视频在线欧美| .国产精品久久| 97人妻精品一区二区三区麻豆| 色综合站精品国产| 午夜免费激情av| 欧洲精品卡2卡3卡4卡5卡区| 尾随美女入室| 两个人的视频大全免费| 久久中文看片网| 国产精品久久视频播放| 特大巨黑吊av在线直播| 国产伦理片在线播放av一区 | av免费在线看不卡| 综合色av麻豆| 能在线免费观看的黄片| 老师上课跳d突然被开到最大视频| 国产精品.久久久| 黄片wwwwww| av在线天堂中文字幕| 久99久视频精品免费| 日本一本二区三区精品| 国语自产精品视频在线第100页| 男的添女的下面高潮视频| 亚洲精品色激情综合| 卡戴珊不雅视频在线播放| 秋霞在线观看毛片| 久久这里有精品视频免费| 亚洲最大成人中文| 在线国产一区二区在线| 两个人的视频大全免费| 日韩欧美三级三区| 亚洲欧美日韩卡通动漫| 日本黄色片子视频| 亚洲精华国产精华液的使用体验 | 日日干狠狠操夜夜爽| 久久人人爽人人片av| 久久这里有精品视频免费| 欧美精品一区二区大全| 国产精品国产三级国产av玫瑰| 国产成人影院久久av| 九九爱精品视频在线观看| 黄色一级大片看看| 欧美日韩在线观看h| 国国产精品蜜臀av免费| 国产精品嫩草影院av在线观看| 免费黄网站久久成人精品| 国产精品一区二区三区四区免费观看| 亚洲精品久久久久久婷婷小说 | 你懂的网址亚洲精品在线观看 | 亚洲av.av天堂| 国产精品久久视频播放| 久久精品国产亚洲av天美| 婷婷亚洲欧美| 国产av在哪里看| 亚洲av.av天堂| 欧美成人一区二区免费高清观看| 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区 | 日产精品乱码卡一卡2卡三| 国产视频首页在线观看| 成人鲁丝片一二三区免费| 久久久欧美国产精品| 一区二区三区高清视频在线| 久久精品夜夜夜夜夜久久蜜豆| 少妇裸体淫交视频免费看高清| 色视频www国产| 国产探花极品一区二区| 久久人人精品亚洲av| 嫩草影院精品99| 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 国产精品野战在线观看| 国产精品乱码一区二三区的特点| 日本五十路高清| 超碰av人人做人人爽久久| 久久99热6这里只有精品| 特级一级黄色大片| 精华霜和精华液先用哪个| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 赤兔流量卡办理| 欧美一区二区精品小视频在线| 日韩强制内射视频| 成年免费大片在线观看| 精品久久久久久久人妻蜜臀av| 国产成人精品久久久久久| 国产成人91sexporn| 国产精华一区二区三区| 又爽又黄a免费视频| 在线天堂最新版资源| 亚洲国产欧美在线一区| 国产亚洲av嫩草精品影院| 联通29元200g的流量卡| 欧美日韩综合久久久久久| 亚洲av.av天堂| 久久国内精品自在自线图片| 99久久精品一区二区三区| 久久欧美精品欧美久久欧美| 乱人视频在线观看| 女的被弄到高潮叫床怎么办| 夫妻性生交免费视频一级片| 深夜精品福利| 简卡轻食公司| 日韩一区二区视频免费看| 午夜福利在线在线| 欧美性感艳星| 国内久久婷婷六月综合欲色啪| 国产午夜福利久久久久久| 亚洲国产欧美在线一区| 国产黄色视频一区二区在线观看 | 午夜视频国产福利| 精品人妻视频免费看| 六月丁香七月| 啦啦啦韩国在线观看视频| 欧美又色又爽又黄视频| 狠狠狠狠99中文字幕| 尤物成人国产欧美一区二区三区| 精品一区二区三区人妻视频| 亚洲av成人av| 亚洲四区av| 国产精品不卡视频一区二区| 26uuu在线亚洲综合色| 春色校园在线视频观看| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 青春草亚洲视频在线观看| 中文字幕免费在线视频6| 中文亚洲av片在线观看爽| 99在线人妻在线中文字幕| 又爽又黄无遮挡网站| 女同久久另类99精品国产91| 少妇的逼好多水| 国产精品伦人一区二区| 亚洲人成网站在线播放欧美日韩| 久久中文看片网| 秋霞在线观看毛片| 看免费成人av毛片| 亚洲av男天堂| 国产麻豆成人av免费视频| 成人高潮视频无遮挡免费网站| 国产精品免费一区二区三区在线| 成人av在线播放网站| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区视频9| 亚洲国产色片| av在线老鸭窝| 久久精品91蜜桃| 国国产精品蜜臀av免费| 给我免费播放毛片高清在线观看| 中文在线观看免费www的网站| 神马国产精品三级电影在线观看| av在线播放精品| 久久人妻av系列| 三级国产精品欧美在线观看| 亚洲欧洲国产日韩| 久久久色成人| 熟妇人妻久久中文字幕3abv| 丰满的人妻完整版| 少妇熟女欧美另类| 国产精品一区二区在线观看99 | 国产人妻一区二区三区在| 日日摸夜夜添夜夜添av毛片| 草草在线视频免费看| 亚洲成人久久爱视频| 老熟妇乱子伦视频在线观看| 国产亚洲91精品色在线| 国产一级毛片在线| 国产极品精品免费视频能看的| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| av在线蜜桃| 成人午夜高清在线视频| 国产探花在线观看一区二区| 最新中文字幕久久久久| 亚洲人与动物交配视频| 色综合色国产| 九色成人免费人妻av| 校园春色视频在线观看| 一进一出抽搐gif免费好疼| av在线播放精品| 精品久久久噜噜| 国产一区二区在线观看日韩| 三级毛片av免费| 婷婷亚洲欧美| 国产视频首页在线观看| 尤物成人国产欧美一区二区三区| 又粗又爽又猛毛片免费看| 国产精品久久久久久av不卡| 成人综合一区亚洲| 美女大奶头视频| 麻豆成人午夜福利视频| 久久久久国产网址| av又黄又爽大尺度在线免费看 | 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 免费av毛片视频| 精品人妻熟女av久视频| 黄色一级大片看看| 99在线人妻在线中文字幕| 精品日产1卡2卡| 精品人妻偷拍中文字幕| 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 国产成年人精品一区二区| 欧美3d第一页| 在线观看66精品国产| 舔av片在线| 国产又黄又爽又无遮挡在线| 国产麻豆成人av免费视频| 国产亚洲欧美98| 欧美人与善性xxx| 中文欧美无线码| 亚洲精品影视一区二区三区av| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看 | 非洲黑人性xxxx精品又粗又长| 小说图片视频综合网站| 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 久久久久久久久中文| 99热精品在线国产| av在线亚洲专区| 看十八女毛片水多多多| 亚洲人成网站在线观看播放| 国产成人freesex在线| 看十八女毛片水多多多| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 亚洲人成网站在线播放欧美日韩| 青青草视频在线视频观看| 久久久久久久亚洲中文字幕| 久久精品国产自在天天线| 毛片女人毛片| 少妇高潮的动态图| 波多野结衣高清作品| 人妻久久中文字幕网| 久久久午夜欧美精品| 一本一本综合久久| 九草在线视频观看| 青春草亚洲视频在线观看| 偷拍熟女少妇极品色| 亚洲天堂国产精品一区在线| 哪个播放器可以免费观看大片| 国产人妻一区二区三区在| 看免费成人av毛片| 一级毛片电影观看 | 99riav亚洲国产免费| 亚洲欧美日韩东京热| 久久精品综合一区二区三区| 色尼玛亚洲综合影院| 国产 一区精品| 精品人妻熟女av久视频| 亚洲av二区三区四区| 免费大片18禁| 国产激情偷乱视频一区二区| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 大型黄色视频在线免费观看| 日本一二三区视频观看| 国产精品国产高清国产av| 一级毛片电影观看 | 一本一本综合久久| 亚洲色图av天堂| 一级毛片久久久久久久久女| 国产伦精品一区二区三区四那| 色吧在线观看| 午夜精品国产一区二区电影 | .国产精品久久| 日本免费a在线| 啦啦啦观看免费观看视频高清| 久久婷婷人人爽人人干人人爱| 又爽又黄无遮挡网站| av天堂在线播放| 国产成人aa在线观看| 永久网站在线| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 国产视频首页在线观看| 青春草视频在线免费观看| 国产精品久久久久久精品电影| 精品日产1卡2卡| 亚洲自拍偷在线| 秋霞在线观看毛片| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| av卡一久久| 婷婷亚洲欧美| 天美传媒精品一区二区| 国产午夜精品论理片| 国产精品日韩av在线免费观看| 十八禁国产超污无遮挡网站| av免费观看日本| 久久精品国产99精品国产亚洲性色| 欧美+亚洲+日韩+国产| 乱系列少妇在线播放| 99久久久亚洲精品蜜臀av| 97热精品久久久久久| av福利片在线观看| 欧美成人a在线观看| 大香蕉久久网| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 亚洲最大成人av| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| 免费人成在线观看视频色| 亚洲自偷自拍三级| 99久久人妻综合| 午夜a级毛片| 精品久久久久久成人av| 久久精品久久久久久噜噜老黄 | 欧美色欧美亚洲另类二区| 中文字幕av成人在线电影| 国产片特级美女逼逼视频| 永久网站在线| 一本一本综合久久| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 你懂的网址亚洲精品在线观看 | av卡一久久| 国语自产精品视频在线第100页| 岛国在线免费视频观看| 九草在线视频观看| 久久6这里有精品| 色综合色国产| 亚洲高清免费不卡视频| 一级黄色大片毛片| 最后的刺客免费高清国语| 美女脱内裤让男人舔精品视频 | 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 欧美+亚洲+日韩+国产| 国产美女午夜福利| 国产精品综合久久久久久久免费| 亚洲欧美中文字幕日韩二区| 日本免费一区二区三区高清不卡| 亚洲国产色片| 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 婷婷色av中文字幕| eeuss影院久久| 亚洲不卡免费看| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 日韩欧美一区二区三区在线观看| 天堂影院成人在线观看| 亚洲av免费在线观看| 99精品在免费线老司机午夜| 亚洲精品粉嫩美女一区| 美女被艹到高潮喷水动态| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 久久久精品欧美日韩精品| 欧美日本视频| 在线观看美女被高潮喷水网站| 成人永久免费在线观看视频| 国产黄片视频在线免费观看| 少妇高潮的动态图| 18禁在线无遮挡免费观看视频| 全区人妻精品视频| av女优亚洲男人天堂| 男人舔奶头视频| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆| 国产精品一及| 免费观看精品视频网站| 亚洲最大成人av| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放| 国语自产精品视频在线第100页| 亚洲精品国产av成人精品| 人妻夜夜爽99麻豆av| 午夜爱爱视频在线播放|