• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    耦合甘油高選擇性轉(zhuǎn)化為甲酸鹽與制氫的酸堿雙電解液流動電解器

    2024-07-16 00:00:00馮辛郭可鑫賈春光劉博次素琴陳俊翔溫珍海
    物理化學(xué)學(xué)報 2024年5期
    關(guān)鍵詞:電催化制氫

    摘要:氫氣因其高能量密度、可持續(xù)性和燃燒后無污染等優(yōu)點,被認(rèn)為是取代傳統(tǒng)化石燃料的最具前途的新興能源載體之一。其中,電解水制氫技術(shù)因為其高效和綠色的特性而備受關(guān)注。然而電解水制氫過程通常受到陽極析氧反應(yīng)(OxygenEvolution Reaction,OER)的限制,因此這種方法的大規(guī)模應(yīng)用面臨重大挑戰(zhàn)??朔@一難題的一個有前途的解決方法是在陽極上使用電催化甘油氧化反應(yīng)(Glycerol Oxidation Reaction,GOR)代替OER,這種替代反應(yīng)可以實現(xiàn)節(jié)能降耗的同時提高電解水制氫的效率,進(jìn)一步推動氫氣作為清潔能源的發(fā)展。然而,這一目標(biāo)的實現(xiàn)需要高效、低成本且高選擇性的GOR電催化劑。在這篇文章中,我們報告了一種新型的酸堿雙電解質(zhì)流電解器(AADEF-electrolyzer),用于在堿性陽極GOR耦合酸性陰極析氫反應(yīng)(Hydrogen Evolution Reaction,HER)。我們通過一種簡單的水熱煅燒方法制備了一種在鎳泡沫(NF)上原位生長的自支撐的NiCo2O4納米針電極材料(NiCo2O4/NF)。該電極在GOR中表現(xiàn)出優(yōu)異的電催化性能,在低電位下實現(xiàn)了高的電解電流密度,對甲酸鹽的生產(chǎn)表現(xiàn)出優(yōu)異的選擇性,法拉第效率超過85%。密度泛函理論計算表明,NiCo2O4對GOR具有較低的反應(yīng)能壘,Ni的存在有利于降低Co的電子態(tài)密度,從而實現(xiàn)NiCo2O4與中間體的高效解離,促進(jìn)甲酸的生成?;贜iCo2O4/NF出色的GOR性能和電化學(xué)中和能(ENE)理論,我們構(gòu)建了一個新型的AADEF-electrolyzer,利用NiCo2O4/NF作為GOR的陽極,配合酸性陰極進(jìn)行析氫反應(yīng)(HER)。實驗結(jié)果表明,AADEFelectrolyzer對GOR具有低過電位和高選擇性產(chǎn)甲酸的優(yōu)異性能,僅需0.36 V的電壓即可實現(xiàn)10 mA?cm?2的電流密度,平均產(chǎn)甲酸的法拉第效率為85%。同時該電解槽表現(xiàn)出良好的長期穩(wěn)定性和輔助產(chǎn)氫性能,陰極產(chǎn)氫的法拉第效率接近100%。這種低成本、易于制備的自支撐電極材料和新型酸堿雙電解質(zhì)流動電解器為促進(jìn)化學(xué)品的增值轉(zhuǎn)化和開發(fā)新型混合電解系統(tǒng)或其他相關(guān)電化學(xué)反應(yīng)的混合電解裝置提供了創(chuàng)新策略。

    關(guān)鍵詞:制氫;甘油氧化;電催化;電解器

    中圖分類號:O646

    Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer

    Abstract: Owing to its high energy density, sustainability, and pollutionfreecombustion, hydrogen is considered one of the most promisingemerging energy carriers to replace conventional fossil fuels. Among thevarious hydrogen production technologies, electrolytic water splitting hasgained significant attention thanks to its high efficiency and environmentallyfriendly characteristics. However, the large-scale application of electrolyticwater splitting is often hindered by the limitations imposed by the anodicoxygen evolution reaction (OER). To overcome this challenge, a promisingalternative approach is to replace the OER with the electrocatalytic glyceroloxidation reaction (GOR) at the anode. This substitution can lead to energysavings and enhanced efficiency of electrolytic water splitting for hydrogen production, thereby further promoting thedevelopment of hydrogen as a clean energy source. However, the application of the GOR at anode requires efficient, costeffective,and highly selective electrocatalysts. To this end, we report the development of a novel acid-alkaline dualelectrolyteflow electrolyzer (AADEF-electrolyzer) by coupling the GOR at the alkaline anode with the hydrogen evolutionreaction (HER) at the acidic cathode. A self-supported NiCo2O4 nanoneedle electrode material (NiCo2O4/NF) has been insitu grown on nickel foam (NF) using a simple hydrothermal-calcination method. The electrode demonstrates excellentelectrocatalytic performance for the GOR, achieving high electrolysis current density at low potentials and exhibiting highselectivity for formate production, with the Faraday efficiency exceeding 85%. Density functional theory (DFT) calculationsimply that NiCo2O4 has a lower energy barrier for the reaction and that the presence of Ni facilitates the reduction of theCo state density, thereby promoting the GOR. An innovative AADEF-electrolyzer was constructed by utilizing NiCo2O4/NFas the anode for the GOR and an acidic cathode for the HER. Experimental results indicate that the AADEF-electrolyzerexhibits excellent GOR performance with a low overpotential and high selectivity toward formate production. It requires avoltage of only 0.36 V to achieve a current density of 10 mA·cm?2 and long-term stability with a Faraday efficiency close to100% for hydrogen production. The low-cost and easily fabricated self-supported electrode material, together with theacid–alkaline dual-electrolyte flow electrolyzer, provide an innovative strategy for developing hybrid electrolysis systems.

    Key Words: Hydrogen production; Glycerol oxidation; Electrocatalysis; Electrolyzer

    1 Introduction

    The global energy shortage and climate crisis, caused mainlyby the overuse of fossil fuels, have motivated an extensivepursuit of alternative and sustainable energy sources as well asnew energy storage and conversion systems. With its remarkableenergy density, renewability, and zero-emission combustionproperties, hydrogen has been considered as a highly promisingenergy carrier to replace fossil fuels 1–3. Nonetheless, hydrogenproduction still mainly relies on fossil fuel-derived gasreforming processes, which consume substantial amounts ofenergy and emit large quantities of carbon dioxide into theatmosphere 4–6. Despite the significant advantages ofelectrochemical hydrogen production via water splitting, whichis recognized as a highly efficient and green technology, thelarge-scale application of this approach faces major challengesdue to the costly nature of electrocatalysts and the slow kineticsof the anodic oxygen evolution reaction (OER) 7–11.

    Recent studies have indicated that using organic molecularoxidation in place of OER in the electrocatalytic anode is aneffective means of lowering the voltage required forelectrolyzing water. For instance, the oxidation of glucose,methanol, glycerol and 5-hydroxymethylfurfural can effectively reduce the potential required for the reaction and yield productswith greater added value compared to oxygen 12–22. Glycerol, anabundant and inexpensive resource 23,24, has a substantiallylower theoretical oxidation potential (0.003 V vs. RHE)compared to that of OER (1.23 V vs. RHE) 25,26. Moreover, theliquid-phase oxidation products of glycerol have higher addedvalue than oxygen 26–32. Therefore, using the glycerol oxidationreaction (GOR) in place of the OER not only reduces energyconsumption in hydrogen production systems but also facilitatesthe efficient collection of clean hydrogen while yielding liquidproducts with higher added value. Although the approachmentioned above has shown considerable success, it remainschallenging to use low-cost catalysts to simultaneously lower thepotential required for the reaction and produce value-addedproducts with high selectivity.

    To date, a majority of the electrocatalysts used have beenprecious metals. However, their high cost and limitedavailability have hindered their widespread practicalapplication 33–36. To address this issue, researchers have beenfocused on using abundant transition metal oxide catalysts toconstruct more economical and efficient hydrogen productionsystems through electrolytic water. Cobalt-based oxides have received significant attention as potential catalysts due to theirrelative abundance and lower cost, as well as their rich redoxchemical properties 37–39. Additionally, cobalt oxide can exist invarious oxidation states, facilitating rapid redox charge transferand exhibiting excellent electrocatalytic activity 39–41. However,the low inherent conductivity of bare transition metal oxides canlimit their practical application. Recent research suggests that theconductivity of bimetal NiCo2O4 is at least twice as high as thatof single metals Co3O4 and NiO, indicating a potentialsynergistic effect between nickel and cobalt ions 42–45. It has beenobserved that adding Ni to Co3O4 can enhance its catalyticactivity by creating more active sites 44,46. In addition, theelectrolyzer system is also a critical factor affecting GORassistedwater electrolysis.

    The concept of electrochemical neutralization energy (ENE)has provided a novel idea and method for a distinct class ofhydrogen production systems through electrolytic water 47. Arange of innovative electrolyzers based on ENE was built withthe cathode (pH = 0) and anode (pH = 14), and the pH gradientbetween the dual chambers can generate a considerable voltage(0.059 × ΔpH), which can significantly reduce the energyconsumption for electrolytic water cracking 25,48–51. Thisapproach provides an excellent solution for expanding the use ofelectrocatalysts and enriching the selection of electrolytes.

    This study investigates the use of a self-supported NiCo2O4nanoneedle electrode on a nickel foam substrate as a catalyst forGOR in a novel hydrogen production system for waterelectrolysis. The NiCo2O4/NF electrode shows high catalyticactivity and selective formate production in a broad voltagerange. The acid-alkaline dual-electrolyte flow electrolyzer(AADEF-electrolyzer) is developed using NiCo2O4/NF as analkaline anode for the GOR, while Pt/C/CC (Carbon Cloth)serves as an acid cathode for the HER. At a voltage as low as0.36 V, the AADEF-electrolyzer can attain an electrolyticcurrent density of 10 mA?cm?2, exhibiting remarkable stability,high auxiliary hydrogen production, and efficient formateproduction.

    2 Experimental section

    2.1 Reagents and chemicals

    Nickel nitrate hexahydrate (Ni(NO3)2?6H2O), Cobaltousnitrate hexahydrate (Co(NO3)2?6H2O), ammonium fluoride(NH4F), and potassium hydroxide (KOH) were procured fromMacklin. Ethanol (C2H5OH) and urea (CH4N2O) were obtainedfrom Shanghai Titan Technology Co., Ltd. hydrochloric acid(HCl) and Pt/C (20 wt%) were purchased from SinopharmChemical Reagent Co., Ltd. (Shanghai, China), while glycerol(C3H8O3) was sourced from Xilong Chemical Co., Ltd. Thedeionized water (DI water) utilized in the experiment wasproduced in-house within the laboratory. The nickel foamutilized in this study was acquired from Suzhou Taili FoamMetal Factory. All chemicals are of analytical purity and can beused without further purification.

    2.2 Preparation of catalyst

    The NiCo2O4 nanoneedle self-supported electrode grown insitu on nickel foam (NF) was obtained via a facile hydrothermalcalcinationmethod. Prior to synthesis, a piece of 2 cm × 3 cmNF underwent pretreatment consisting of ultrasonic cleaningwith 3 mol?L?1 HCl, ethanol, and DI water for 10 min each.Subsequently, the NF was dried in a vacuum drying oven andserved as the base material for the next steps. A solution wasprepared by dissolving Co(NO3)2?6H2O (2 mmol) andNi(NO3)2?6H2O (1 mmol) in 30 mL of DI water containing 6mmol of urea and 3 mmol of NH4F. The resulting solution wasthen stirred for 2 h. The pre-treated nickel foam was placed intoa 50 mL PTFE-lined stainless steel autoclave, and the mixedsolution was added. The reaction was conducted at 120 °C for 6h, followed by natural cooling to normal temperature. Theresulting NiCo-pre/NF was washed three times with DI waterand ethanol, then dried under vacuum at 60 °C for 12 h. Finally,the NiCo-pre/NF was heated at a rate of 2 °C?min?1 in a furnaceuntil it reached 350 °C and held for 2 h to form NiCo2O4/NF.Additionally, Co3O4/NF and NiOx/NF were also synthesized viaa similar process.

    2.3 Materials characterization

    The structure and crystal morphology of the material werecharacterized by X-ray diffraction (XRD) using an X-raydiffractometer (Cu Kα) (D8ADVANCE-A25, Bruker, Germany).Using a Nova NanoSEM 450 (FEI, USA), scanning electronmicroscope (SEM) pictures were taken. The images werecaptured on a Talos F200X (FEI, USA) using transmissionelectron microscopy (TEM) and energy-dispersive X-rayspectroscopy (EDS). X-ray photoelectron spectroscopy (XPS)was used to determine the surface compositions of the catalystsby an ESCALAB 250Xi (Thermo Scientific, USA).Additionally, superconducting nuclear magnetic resonancespectroscopy (NMR) on an AVANCE 400 (Jobin Yvon, France)was used to characterize the products of electrocatalytic glyceroloxidation.

    2.4 Reagents and chemicals

    The electrochemical measurements were conducted using athree-electrode system with a CHI 760E ElectrochemicalWorkstation in 1.0 mol?L?1 potassium hydroxide (KOH)electrolyte. To minimize the influence of dissolved oxygen onthe results, the electrolyte was purged with nitrogen for 30 minuntil it reached saturation before the test. The working electrodescomprised as-made nanofiber-based (NF-based) compositeswith dimensions of 1 cm × 1 cm. A carbon rod served as thecounter electrode, and Hg/HgO (1 mol?L?1 KOH) was used asthe reference electrode. The measured potentials were calibratedto the reversible hydrogen electrode (RHE) using the equation:E(RHE) = E(Hg/HgO) + 0.05916 × pH + 0.098. Prior to linearsweep voltammetry (LSV), cyclic voltammetry (CV)measurements were conducted several times to activate thesystem until the cycle stabilized. Both LSV and CV werescanned at a rate of 5 mV?s?1 without iR-compensation.Electrochemical impedance spectroscopy (EIS) was carried outwith the working electrode at a potential of 0.5 V vs. Hg/HgO,while the frequency was swept from 10 kHz to 0.1 Hz with asinusoidal voltage amplitude of 5 mV. To determine theelectrochemical double layer capacitance (Cdl) of the material,CV measurements were performed at various scan rates (20, 40,60, 80, 100 and 120 mV?s?1) in the non-Faraday reaction interval(?0.3 to ?0.2 V vs. Hg/HgO). The Cdl value was calculated fromthe slope of the current density difference (Δj = ja ? jc, where jcand ja are the cathodic and anodic current densities, respectively)plotted against the scan rate. The Cdl data were used to determinethe electrochemically active surface area (ECSA).

    2.5 Assembly and tests of the AADEF-electrolyzer

    An AADEF-electrolyzer was assembled using a NF compositematerial as the anode, 1 mol?L?1 KOH solution as the anolyte, aplatinum-carbon catalyst loaded on carbon cloth (Pt/C/CC) as thecathode, and 0.5 mol?L?1 H2SO4 as the catholyte. To preparePt/C/CC electrodes, Pt/C ink was prepared by dispersing 5.0 mgof 20 wt% Pt/C catalyst into a mixture of 50 μL Nafion, 50 μLethanol and 400 μL deionized water and sonicating for 15 min. 50μL of Pt/C ink was then applied to 1 cm?2 of CC and dried naturallyat normal temperature to obtain a Pt/C/CC electrode with a loadingof approximately 2 mg?cm?2. The anode and cathode chamberswere separated by a cation exchange membrane (CEM), with theelectrolyte circulated by a flow pump (Approx. 16.5 mL?min?1,NKCP-B08B, Kamoer). The electrochemical performance of theelectrolyzer was assessed by LSV with a scan rate of 5 mV?s?1.Additionally, the stability of the electrolyzer was assessed throughchronopotentiometry (CP).

    2.6 Product analysis

    The liquid products obtained by glycerol oxidation wereanalyzed through nuclear magnetic resonance (NMR) using theAVANCE 400 system manufactured by Jobin Yvon in France.The internal standard technique was implemented for everysolution analyzed, utilizing dimethyl sulfoxide (DMSO) servingas the internal standard. To be specific, a 2 mL sample of theelectrolyte to be tested was combined with 400 μL of D2O and3.4 μL of DMSO for NMR analysis.

    Moreover, the standard solution of glycerol and formate was subjected to the same conditions.

    The Faraday efficiency (FE) for the production of formate and hydrogen can be calculated by utilizing Eqs. (1) and (2):

    FE(formate yield) =N(fomate yield)/Q1/(z1 × F)× 100% (1)

    FE(H2 Production) =N(H2 Production)/Q2/(z2 × F)× 100% (2)

    where Q1 and Q2 are the total charges passed through theelectrodes, Z1 = 8/3 represents the number of electrons requiredto form a mole of formate, Z2 = 2 represents the number ofelectrons required to produce a molecule of H2, and F is theFaraday constant (96, 485 C?mol?1) 18,52,53.

    2.7 Reagents and chemicals

    The calculations were performed using PWSCF codes included in the Quantum ESPRESSO distribution 54. Weemployed spin-polarized density functional theory (DFT)calculations to compute periodic supercells using the Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradientapproximation (GGA) for exchange-correlation and ultrasoftpseudopotentials for both nuclei and core electrons. The Kohn-Sham orbitals were expanded using a plane-wave basis set witha kinetic energy cutoff of 30 Ry and a charge-density cutoff of300 Ry. To account for Fermi-surface effects, we employed theMethfessel and Paxton smearing technique with a smearingparameter of 0.02 Ry. For NiCo2O4 (001), a 2 × 2 supercell andfour-layer slab are utilized. For Co3O4 (100), a 2 × 1 supercelland four-layer slab are utilized. The bottom layer is fixed tomodel NiCo2O4 and Co3O4 bulk. To eliminate the interaction ofadjacent atomic slabs in the z direction, a vacuum layer ofapproximately 15 ? was utilized. During the geometricoptimization process, every atom, including the adsorbates,underwent relaxation until the Cartesian force components oneach atom fell below 10?3 Ry/Bohr and the total energyconverged to within 10?5 Ry. The Brillouin zones were sampledusing 1 × 1 × 1 k-point mesh.

    To calculate the Gibbs free energy differences, the adsorption free energy of the adsorbates was determined using Eq. (3):

    GA = EA + ZPE ? TS + ∫CpdT (3)

    where EA is the total energy of a particular molecule or adsorbateA*. If A represents a molecule, the total energies can becalculated directly. However, if A represents an adsorbate, it iscalculated as the difference between the DFT-basedsubstrate with (EA*DFT) and without adsorbate A (E*DFT), asshown in Eq. (4):

    EA = EA*DFT ? E*DFT (4)

    The corrections from zero-point energy, entropy, and heat capacity are denoted as ZPE, TS and ∫CpdT, respectively.

    3 Results and discussion

    3.1 Material characterization

    The superior catalytic oxidation characteristics of Ni and Co,as well as their synergistic influence on electrochemicalprocesses, have been widely recognized. Based on thisknowledge, our research focused on the development of a selfsupportedNiCo2O4 electrode grown in situ on a nickel foam(NF) substrate (NiCo2O4/NF). Fig. S1 (Supporting Information)demonstrates the procedure of synthesizing the electrodematerials. Initially, the precursor material (NiCo-pre/NF) (Fig.S2) was synthesized via an in situ hydrothermal growth method,utilizing a pretreated NF substrate (Fig. 1a) possessing a smoothsurface, followed by hydrothermal calcination to produce theself-supported NiCo2O4/NF electrode (Fig. 1b,c). It is noteworthythat the surface of the NF after hydrothermal calcination exhibitsa dense and uniform nanoneedle morphology, which is moreuniform than that of the precursor material (Fig. S2). The surfacecolor of the NF after calcination changes from brown to black, asshown in the digital photo (Fig. S3).

    Transmission electron microscopy (TEM) images ofNiCo2O4/NF (Fig. 1d) confirm the presence of the nanoneedlestructure. Furthermore, the lattice stripes at a lattice distance of0.245 nm, shown in Fig. 1e, correspond to the (311) crystal planeof NiCo2O4, as observed by high-resolution TEM (HRTEM)imaging. The uniform distribution of the three elementsthroughout the nanoneedles is demonstrated by the energydispersion spectroscopy (EDS) element mapping analysis, aspresented in Fig. 1f.

    The crystal structure of NiCo2O4/NF was thoroughlyexamined using X-ray diffraction (XRD) analysis. As presentedin Fig. 2a, the primary diffraction peaks observed in the XRDpattern perfectly match those of NiCo2O4 (JCPDS No. 20-0781)and Ni (JCPDS No. 04-0850), suggesting that the primaryconstituent of NF composite is composed of the NiCo2O4 phaseand Ni phase. In addition to the diffraction peaks at 44.5°, 51.8°and 76.4° of the NF substrate, diffraction peaks at 18.9°, 31.1°,36.7°, 59.1°, and 65.0° are ascribed to the (111), (220), (311),(511), and (440) crystal planes of NiCo2O4 (JCPDS No. 20-0718). XRD analysis also was conducted to determine the crystalstructures of the NiCo-pre/NF, Co3O4/NF, and NiOx/NFmaterials prepared using the same experimental approach (Fig.S4). The results indicate that the Co3O4/NF material exhibiteddistinct diffraction peaks of Co3O4 and Ni. On the other hand,both NiCo-pre/NF and NiOx/NF show only a single metal Nipeak due to the strong peak of nickel.

    X-ray photoelectron spectroscopy (XPS) measurements wereused to analyze the surface elemental composition ofNiCo2O4/NF. The presence of Ni, Co, and O elements inNiCo2O4/NF is confirmed by the XPS spectra (Fig. 2b), with thevalence states of these elements examined in further detail.Therefore, further analysis of Ni 2p, Co 2p, and O 1s spectra wascarried out. The Ni 2p spectrum (Fig. 2c) exhibits two satellitepeaks and two spin-orbit peaks, with binding energies of 854.2and 871.8 eV. The fitting peaks of 855 and 871.8 eV are assignedto Ni2+ 55. The Co 2p spectrum (Fig. 2d) shows two satellitepeaks and two spin-orbit peaks with binding energies of 779.5and 795 eV, which are attributed to Co3+. Additionally, two otherfitting peaks at 780.5 and 796.4 eV are assigned to Co2+ 56,57.Finally, The O 1s profile (Fig. 2e) reveals the contributions ofthree types of oxygen: O1 (529.9 eV), O2 (531.5 eV), and O3(533.4 eV), which are associated with metal-oxygen bonds,hydroxyl groups, and chemically adsorbed water, respectively 43.The appearance of C 1s in the spectra (Fig. 2f) is attributed to thepresence of ubiquitous carbon. The surface elementalcomposition of Co3O4/NF and NiOx/NF are also measured andanalyzed using XPS. (Figs. S5–6).

    3.2 Electrocatalytic performance of glycerol oxidationreaction

    To investigate the catalytic activity of the NiCo2O4/NFelectrode towards anodic electrocatalytic oxidation of glycerol,electrochemical tests were conducted in a three-electrodesystem. Fig. 3a demonstrates the LSV curves of the NiCo2O4/NFelectrode at OER and GOR. The LSV curves (Figs. 3a and S7)indicate that the NiCo2O4/NF electrode displays thedistinguished catalytic activity for GOR. In the absence ofglycerol, the NiCo2O4/NF electrode displays normal OERcatalytic activity, the catalytic current density of 10 mA?cm?2 canonly be achieved at a high potential of 1.51 V vs. RHE. It is worthnoting that with the mixing of 0.5 mol?L?1 glycerol in 1.0mol?L?1 KOH, the NiCo2O4/NF electrode requires only 1.15 Vvs. RHE to reach 10 mA?cm?2, indicating its superior GORcatalytic activity. Furthermore, Tafel slope derived from the LSVcurve shows that GOR has a slope of 128.9 mV?dec?1 comparedwith OER’s 145.7 mV?dec?1, suggesting faster catalytic reactionkinetics for GOR (Fig. 3b). Notably, the GOR activity of theNiCo2O4/NF electrode outperform those of Co3O4/NF, NiOx/NF,NiCo-pre/NF, and bare NF (Figs. 3c and S8), this may be relatedto the fact that NiCo2O4/NF has a higher ECSA and lowerimpedance. In addition, the influence of glycerol concentrationin the electrolyte on GOR catalytic activity was studied, and theoptimal glycerol concentration was found to be 0.5 mol?L?1 (Fig.S9). The results of EIS indicate that the NiCo2O4/NF electrodehas a lower charge transfer resistance than the other electrodesand a fast charge transfer rate (Fig. S10). The NiCo2O4/NFelectrode’s ECSA was determined through the calculation of double-layer capacitance (Cdl) from the CV curve of the non-Faraday interval. The Cdl value of NiCo2O4/NF (49.34 mF?cm?2)is found to be considerably higher than that of Co3O4/NF (33.42mF?cm?2) and NiOx/NF (1.08 mF?cm?2) (Fig. S11). Thesefindings suggest that the NiCo2O4/NF electrode has the largestECSA and exposes more active sites, further confirming itsexcellent GOR catalytic activity.

    By 1H NMR analysis of the oxidation products of glycerol onthe NiCo2O4/NF electrode, we added 0.5 mol?L?1 glycerol toa 1 mol?L?1 KOH electrolyte and carried out a 2 hchronoamperometry (i–t) test at various potentials (1.2–1.5 V vs.RHE) (Fig. S12). The results show that the NiCo2O4/NFelectrode is capable of producing formate with exceptionalselectivity across a broad range of potential (1.2 to 1.5 V vs.RHE), with an FE exceeding 85%. Moreover, the highestformate yield (91.2%) is achieved at 1.4 V vs. RHE (Figs. 3d andS13). The calculated FE for formate production was less than100%, presumably due to the generation of gaseous byproductssuch as CO2 and O2 during the electrolysis process. Notably,during electrolysis at a constant current density of 10 mA?cm?2,the NiCo2O4/NF electrode remains active for 12 h without anysignificant changes in the LSV curves before and after thestability test (Figs. 3e and S14) and also that SEM testing of thematerial after the stability test shows no significant change in thematerial (Fig. S15). Qualitative and quantitative analysis of theelectrolyte before and after the stability test using 1H NMRrevealed that only formate was present as the anodic glycerolelectrolytic product (Fig. 3f).

    3.3 Theoretical computation

    In order to elucidate the differences between Co3O4 andNiCo2O4 in GOR, we employed DFT calculations. Specifically,the computational hydrogen electrode (CHE) method was utilized to investigate the activities 58. The structures of NiCo2O4and Co3O4 are presented in Fig. 4a,b, with the corresponding freeenergy diagram (FED) plotted in Fig. 4c (see calculation detailsin Sections 1–2, Supporting Information). Our results suggestthat the reaction energy barrier of NiCo2O4 is less than that ofCo3O4, suggesting that it possesses superior catalytic activitytoward GOR. Furthermore, we calculated the projected densityof states of Co atoms on the surface of Co3O4 and NiCo2O4 to be?1.50 and ?1.65 eV, respectively (Fig. 4d,e). According to the dbandcenter theory, this indicates a decrease in the antibondingenergy state, which weakens the interaction between theintermediate and surface 59. The different positions of theNiCo2O4(001) cut surfaces are shown in Fig. S16. The freeenergy calculations for the Co surface and the Co/Ni surface areshown in Fig. S17. Their calculated structures are shown in Figs.S18–20. The results show that the Co surface of NiCo2O4(001)has a smaller decision speed step (RDS), which is morefavourable for the GOR reaction. The Ni/Co surface of NiCo2O4(001) has a better Co as active centre compared to Ni. Takentogether, these findings indicate that intermediates adsorbed onthe surface of NiCo2O4 are more likely to desorb, resulting in theproduction of formic acid, which is consistent with ourexperimental results (Fig. 3c).

    3.4 Performance of the AADEF-electrolyzer

    Considering the favorable electrochemical catalytic activityexhibited by the NiCo2O4/NF electrode and the underlyingprinciples of electrochemical neutralization energy (ENE)theory, we have designed an AADEF-electrolyzer, as illustratedin Figs. 5a and S21. In this electrolyzer, the anode was composedof NiCo2O4/NF, while the anode electrolyte comprises 0.5mol?L?1 glycerol and 1.0 mol?L?1 KOH. To separate the anodeand cathode chambers, a cation exchange membrane (CEM) was utilized, with the cathode comprising Pt/C and 0.5 mol?L?1H2SO4. The anodic oxidation of glycerol generated electrons,which then passed through the external circuit to the cathode,where H+ ions received these electrons and underwent reductionto form H2, while K+ ions migrated through the CEM into thecathode chamber to form a complete circuit. In the absence ofglycerol in the anode solution, a significant voltage (0.059 ×ΔpH) can be produced by the pH gradient between the anodechamber (pH = 14) and the cathode chamber (pH = 0) due to thepresence of ENE. As such, an AADEF-electrolyzer can generatea current density of 10 mA?cm?2 when the applied voltage was0.54 V (Fig. 5b), which was significantly lower than thetheoretical voltage required for hydrolysis (1.23 V). As expected,the introduction of 0.5 mol?L?1 glycerol resulted in a markedreduction in the required applied voltage for 10 mA?cm-2, with avalue of 0.36 V observed. This is notably lower than what istypically observed in traditional alkaline electrolytic cells (Figs.5b and S22). Moreover, bare NF was also examined as the anodeof the electrolyzer, further highlighting the modification andelectrocatalysis of NF by NiCo2O4 (Fig. S23). Subsequentexamination of the electrolyte products following the anodicreaction revealed the presence of exclusively liquid formateproducts, exhibiting an average Faradaic efficiency ofapproximately 85%. Meanwhile, the cathodic HER resulted inthe highly efficient production of hydrogen with nearly 100%Faraday efficiency, as depicted in Fig. 5c. Furthermore, thechronopotentiometry technique was employed to assess theenduring stability of the AADEF-electrolyzer at a constantcurrent density of 50 mA?cm?2. The results demonstrated that theAADEF-electrolyzer exhibited exceptional stability,maintaining steady electrolysis for 150 h with some minorpotential fluctuations (Fig. 5d). Replenishing the electrolyte canreverse the rise in potential induced by electrolysis, which canbe attributed to the depletion of H+, OH?, and glycerol in theelectrolyte.

    4 Conclusions

    In summary, we develop a self-supported NiCo2O4/NFelectrode through a simple hydrothermal-calcination method,which shows excellent electrocatalytic performance for GOR.The electrode achieves a high current density at low potentialsand displays remarkable selectivity towards formate production,with a Faraday efficiency over 85%. DFT calculations indicatethat the lower GOR reaction energy barrier of NiCo2O4/NFenhances its catalytic activity. We also develop an AADEFelectrolyzerthat is capable of producing hydrogen from water ata voltage as low as 0.36 V, while exhibiting excellent stability,high-efficiency formate production, and auxiliary hydrogenproduction performance. Our work offers a novel approach todesigning electrocatalysts with exceptional performance tofacilitate the value-added conversion of chemicals and thedevelopment of novel hybrid electrolytic systems or devices forrelated electrochemical reactions.

    Author Contributions: Xin Feng: Ideas, Conceptualization,Methodology, Data collection and curation, Data analysis andinterpretation, Writing-original draft. Kexin Guo: Graphicanalysis, Writing, Revision. Chunguang Jia: Theoreticalcalculations, Graphic analysis. Bowen Liu: Discussion, Graphicanalysis. Suqin Ci: Supervision, Editing, discussion andResources. Junxiang Chen: Guide Theoretical calculations,Revision. Zhenhai Wen: Writing: Review amp; Editing,Supervision.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Su, H.; Jiang, J.; Song, S.; An, B.; Li, N.; Gao, Y.; Ge, L. Chin. J.Catal. 2023, 44, 7. doi: 10.1016/s1872-2067(22)64149-4

    (2) Chen, H.; Chen, J.; He, H.; Chen, X.; Jia, C.; Chen, D.; Liang, J.; Yu,D.; Yao, X.; Qin, L.; et al. Appl. Catal. B 2023, 323, 122187. doi:10.1016/j.apcatb.2022.122187

    (3) Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys. -Chim. Sin. 2023, 39 (11),2212062. [殷方鑫, 秦品權(quán), 許景三, 曹少文. 物理化學(xué)學(xué)報,2023, 39 (11), 2212062.] doi: 10.3866/PKU.WHXB202212062

    (4) Moreira, R.; Bimbela, F.; Gandía, L. M.; Ferreira, A.; Sánchez, J. L.;Portugal, A. Renew. Sust. Energ. Rev. 2021, 148, 111299.doi: 10.1016/j.rser.2021.111299

    (5) Li, X.; Hao, X.; Abudula, A.; Guan, G. J. Mater. Chem. A 2016, 4(31), 11973. doi: 10.1039/c6ta02334g

    (6) Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45 (9), 2603.doi: 10.1039/c5cs00838g

    (7) Sun, L.; Dai, Z.; Zhong, L.; Zhao, Y.; Cheng, Y.; Chong, S.; Chen, G.;Yan, C.; Zhang, X.; Tan, H.; et al. Appl. Catal. B 2021, 297, 120477.doi: 10.1016/j.apcatb.2021.120477

    (8) Yang, S.; Du, R.; Yu, Y.; Zhang, Z.; Wang, F. Nano Energy 2020, 77,105057. doi: 10.1016/j.nanoen.2020.105057

    (9) Ding, M.; Chen, J.; Jiang, M.; Zhang, X.; Wang, G. J. Mater. Chem. A2019, 7 (23), 14163. doi: 10.1039/c9ta00708c

    (10) Liu, Y.; Wang, Y.; Liu, B.; Amer, M.; Yan, K. Acta Phys. -Chim. Sin.2023, 39 (2), 2205028. [劉瑤鈺, 王宇辰, 劉碧瑩, Mahmoud Amer,嚴(yán)凱. 物理化學(xué)學(xué)報, 2023, 39 (2), 2205028.]doi: 10.3866/PKU.WHXB202205028

    (11) Lü, L.; Zhang, L.; He, X.; Yuan, H.; Ouyang, S.; Zhang, T. ActaPhys. -Chim. Sin. 2021, 37 (7), 2007079. [呂琳, 張立陽, 何雪冰,原弘, 歐陽述昕, 張鐵銳. 物理化學(xué)學(xué)報, 2021, 37 (7), 2007079.]doi: 10.3866/PKU.WHXB202007079

    (12) Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue,X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179.doi: 10.1016/j.jechem.2021.02.026

    (13) Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M.Appl. Catal. B 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400

    (14) Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G. Adv. Funct. Mater. 2021, 31(34), 2102886. doi: 10.1002/adfm.202102886

    (15) Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.;Yang, Y.; Cabot, A.; Cui, C. Angew. Chem. Int. Ed. 2020, 59 (47),20826. doi: 10.1002/anie.202004301

    (16) Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu,Y.; Liu, J.; Wang, Y.;et al. Angew. Chem. Int. Ed. 2021, 60 (42),22908. doi: 10.1002/anie.202109211

    (17) Zheng, D.; Li, J.; Ci, S.; Cai, P.; Ding, Y.; Zhang, M.; Wen, Z. Appl.Catal. B 2020, 277, 119178. doi: 10.1016/j.apcatb.2020.119178

    (18) Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo,J. L.; Fu, X. Z. Adv. Funct. Mater. 2020, 30 (10), 1909610.doi: 10.1002/adfm.201909610

    (19) Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.;Wang, W. K.; Zhao, G. H.; Jin, S.; et al. Nat. Commun. 2020, 11 (1),265. doi: 10.1038/s41467-019-14157-3

    (20) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.;Jin, S. ACS Catal. 2020, 10 (12), 6741. doi: 10.1021/acscatal.0c01498

    (21) Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723.doi: 10.1016/j.apcatb.2021.120723

    (22) Talebian-Kiakalaieh, A.; Amin, N. A. S.; Rajaei, K.; Tarighi, S. Appl.Energy 2018, 230, 1347. doi: 10.1016/j.apenergy.2018.09.006

    (23) Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A. H.; Al-Hinai, M. A; Baawain,M.; Rashid, U.; Ahmad, M. N. M. Rev. Chem. Eng. 2018, 34 (2), 267.doi: 10.1515/revce-2016-0026

    (24) Deng, C.-Q.; Deng, J.; Fu, Y. Green Chem. 2022, 24 (21), 8477.doi: 10.1039/d2gc03235j

    (25) Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am.Chem. Soc. 2022, 144 (16), 7224. doi: 10.1021/jacs.1c13740

    (26) Fan, L.; Liu, B.; Liu, X.; Senthilkumar, N.; Wang, G.; Wen, Z. EnergyTechnol. 2020, 9 (2), 2000804. doi: 10.1002/ente.202000804

    (27) Duan, Y.; Liu, Z.; Zhao, B.; Liu, J. RSC Adv. 2020, 10 (27), 15769.doi: 10.1039/d0ra00564a

    (28) Bai, J.; Huang, H.; Li, F.-M.; Zhao, Y.; Chen, P.; Jin, P.-J.; Li, S.-N.;Yao, H.-C.; Zeng, J.-H.; Chen, Y. J. Mater. Chem. A 2019, 7 (37),21149. doi: 10.1039/c9ta08806g

    (29) Brix, A. C.; Morales, D. M.; Braun, M.; Jambrec, D.; Junqueira, J. R.;Cychy, S.; Seisel, S.; Masa, J.; Muhler, M.; Andronescu, C.; et al.ChemElectroChem 2021, 8 (12), 2336. doi: 10.1002/celc.202100739

    (30) Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.;Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain Chem.Eng. 2017, 5 (8), 6626. doi: 10.1021/acssuschemeng.7b00868

    (31) Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8 (7),6301. doi: 10.1021/acscatal.8b01317

    (32) Alaba, P. A.; Lee, C. S.; Abnisa, F.; Aroua, M. K.; Cognet, P.; Pérès,Y.; Wan Daud, W. M. A. Rev. Chem. Eng. 2021, 37 (7), 779.doi: 10.1515/revce-2019-0013

    (33) Yang, F.; Ye, J.; Yuan, Q.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.;Gu, L.; Wang, X. Adv. Funct. Mater. 2020, 30 (11), 1908235.doi: 10.1002/adfm.201908235

    (34) Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017,19 (8), 1958. doi: 10.1039/c7gc00371d

    (35) Lee, S.; Kim, H. J.; Lim, E. J.; Kim, Y.; Noh, Y.; Huber, G. W.; Kim,W. B. Green Chem. 2016, 18 (9), 2877. doi: 10.1039/c5gc02865e

    (36) De Souza, M. B.; Vicente, R. A.; Yukuhiro, V. Y.; Pires, C. T.;Cheuquepán, W.; Bott-Neto, J. L.; Solla-Gullón, J.; Fernández, P. S.ACS Catal. 2019, 9 (6), 5104. doi: 10.1021/acscatal.9b00190

    (37) Zhou, Z.; Chen, C.; Gao, M.; Xia, B.; Zhang, J. Green Chem. 2019,21 (24), 6699. doi: 10.1039/c9gc02880c

    (38) Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.;Zhou, B.; Zou, Y.; Wang, S. Adv. Mater. 2022, 34 (2), e2107185.doi: 10.1002/adma.202107185

    (39) Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.;Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12432.doi: 10.1021/acscatal.2c03162

    (40) Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang,X.; Wang, G. ACS Catal. 2021, 14338.doi: 10.1021/acscatal.1c03960

    (41) Zhou, H.; Zheng, M.; Pang, H. Chem. Eng. J. 2020, 38, 127884.doi: 10.1016/j.cej.2020.127884

    (42) Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C.C. Adv. Mater.2010, 22 (3), 347. doi: 10.1002/adma.200902175

    (43) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wang, Y.; Zhang, L.; Yue, L.;Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18 (13), e2106961.doi: 10.1002/smll.202106961

    (44) Jo, H. J.; Shit, A.; Jhon, H. S.; Park, S. Y. J. Ind. Eng. Chem. 2020,89, 485. doi: 10.1016/j.jiec.2020.06.028

    (45) Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Adv. Funct. Mater. 2012,22 (5), 998. doi: 10.1002/adfm.201102155

    (46) Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Chem. Rev. 2017, 117 (15),10121. doi: 10.1021/acs.chemrev.7b00051

    (47) Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50 (3), 1495.doi: 10.1039/d0cs01239d

    (48) Zhang, C.; Ci, S.; Peng, X.; Huang, J.; Cai, P.; Ding, Y.; Wen, Z.J. Energy Chem. 2021, 54, 30. doi: 10.1016/j.jechem.2020.04.073

    (49) Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. J. Mater. Chem. A 2018,6 (36), 17763. doi: 10.1039/c8ta06827e

    (50) Zhang, M.; Chen, J.; Li, H.; Cai, P.; Li, Y.; Wen, Z. Nano Energy2019, 61, 576. doi: 10.1016/j.nanoen.2019.04.050

    (51) Liu, B.; Wang, G.; Feng, X.; Dai, L.; Wen, Z.; Ci, S. Nanoscale 2022,14, 12841. doi: 10.1039/d2nr02689a

    (52) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10 (1),5335. doi: 10.1038/s41467-019-13375-z

    (53) Xu, Y.; Liu, M.; Wang, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.;Wang, L.; Wang, H. Appl. Catal. B 2021, 298, 120493.doi: 10.1016/j.apcatb.2021.120493

    (54) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.;Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo,I.; et al. J. Phys. Condens. Matter 2009, 21 (39), 395502.doi: 10.1088/0953-8984/21/39/395502

    (55) Yan, X.; Zhang, W.-D.; Hu, Q.-T.; Liu, J.; Li, T.; Liu, Y.; Gu, Z.-G.Int. J. Hydrogen Energy 2019, 44 (51), 27664.doi: 10.1016/j.ijhydene.2019.09.004

    (56) Sun, B.; Miao, F.; Tao, B.; Wang, Y.; Zang, Y.; Chu, P. K. J. Phys.Chem. Solids 2021, 158, 110255. doi: 10.1016/j.jpcs.2021.110255

    (57) Qian, L.; Luo, S.; Wu, L.; Hu, X.; Chen, W.; Wang, X. Appl. Surf. Sci.2020, 503, 144306. doi: 10.1016/j.apsusc.2019.144306

    (58) Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108 (46), 17886.doi: 10.1021/jp047349j

    (59) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat.Chem. 2009, 1 (1), 37. doi: 10.1038/nchem.121

    國家自然科學(xué)基金(22168025)和江西省自然科學(xué)基金(20192BAB203013, 20202ACBL203003)資助項目

    猜你喜歡
    電催化制氫
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    贏創(chuàng)全新膜技術(shù)有望降低電解水制氫的成本
    上海建材(2020年12期)2020-04-13 05:57:52
    TP347制氫轉(zhuǎn)油線焊縫裂紋返修
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    電催化氧化法處理抗生素制藥廢水的實驗研究
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    制氫工藝技術(shù)比較
    電催化氧化技術(shù)深度處理染料廢水研究
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    電解制氫設(shè)備開發(fā)入選“863”
    低溫與特氣(2014年4期)2014-03-20 13:36:50
    国产一区二区三区av在线| 久久精品熟女亚洲av麻豆精品 | 日韩欧美精品v在线| 亚洲av福利一区| 一区二区三区乱码不卡18| 欧美极品一区二区三区四区| 久久久久国产网址| 亚洲精品成人久久久久久| 我要看日韩黄色一级片| 建设人人有责人人尽责人人享有的 | 国产精品福利在线免费观看| 最近视频中文字幕2019在线8| 亚洲成人久久爱视频| 中文字幕久久专区| 97超碰精品成人国产| 亚洲最大成人中文| 99re6热这里在线精品视频| 国产亚洲精品av在线| 97超碰精品成人国产| 免费大片黄手机在线观看| 美女脱内裤让男人舔精品视频| 午夜福利网站1000一区二区三区| 日本与韩国留学比较| 国内揄拍国产精品人妻在线| 97超视频在线观看视频| 最近视频中文字幕2019在线8| 色播亚洲综合网| 精品人妻熟女av久视频| 成人亚洲精品av一区二区| 欧美一级a爱片免费观看看| 国产成人一区二区在线| 国产真实伦视频高清在线观看| or卡值多少钱| 嘟嘟电影网在线观看| 欧美激情国产日韩精品一区| 亚洲精品成人久久久久久| 亚洲av一区综合| 人妻系列 视频| 国产精品人妻久久久久久| 亚洲精品亚洲一区二区| 青青草视频在线视频观看| 秋霞在线观看毛片| 亚洲性久久影院| 国产精品福利在线免费观看| 国精品久久久久久国模美| 如何舔出高潮| 国产精品1区2区在线观看.| 久久精品夜夜夜夜夜久久蜜豆| 国产高清有码在线观看视频| 亚洲精品一区蜜桃| 亚洲第一区二区三区不卡| 97超视频在线观看视频| 精品一区二区三区视频在线| 免费av观看视频| 国产黄色免费在线视频| 观看美女的网站| 女人被狂操c到高潮| 伦精品一区二区三区| 久久99蜜桃精品久久| 免费大片18禁| 内地一区二区视频在线| 国产熟女欧美一区二区| 国产av不卡久久| 亚洲国产精品成人久久小说| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 亚洲精品影视一区二区三区av| 亚洲av电影不卡..在线观看| 国产白丝娇喘喷水9色精品| 男女下面进入的视频免费午夜| 天天一区二区日本电影三级| 精品国产三级普通话版| 亚洲av免费高清在线观看| 成人综合一区亚洲| 日韩欧美 国产精品| 九色成人免费人妻av| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 日韩人妻高清精品专区| 天美传媒精品一区二区| 亚洲图色成人| 精品国产露脸久久av麻豆 | 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 亚洲欧美成人综合另类久久久| 少妇猛男粗大的猛烈进出视频 | 精品国产一区二区三区久久久樱花 | 日韩欧美一区视频在线观看 | 久久精品国产鲁丝片午夜精品| 大陆偷拍与自拍| 亚洲自偷自拍三级| 一级黄片播放器| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 六月丁香七月| 成年女人在线观看亚洲视频 | 丰满乱子伦码专区| 蜜桃亚洲精品一区二区三区| av在线亚洲专区| 欧美三级亚洲精品| 精品久久久久久久久av| 精品久久久久久久末码| 国产高清三级在线| 日韩av不卡免费在线播放| 亚洲av电影在线观看一区二区三区 | 久久久久久久久久久丰满| 人体艺术视频欧美日本| 亚洲国产欧美人成| 欧美日韩亚洲高清精品| av在线蜜桃| 国产亚洲最大av| 婷婷色av中文字幕| 国产精品.久久久| 国产精品久久久久久精品电影| 久久精品久久精品一区二区三区| 麻豆乱淫一区二区| 成人美女网站在线观看视频| 一个人看视频在线观看www免费| 国产永久视频网站| 亚洲一级一片aⅴ在线观看| 国产免费视频播放在线视频 | 国产黄频视频在线观看| 午夜激情久久久久久久| 毛片一级片免费看久久久久| 国产乱来视频区| 精品一区二区三卡| 熟女电影av网| 免费播放大片免费观看视频在线观看| 18禁在线播放成人免费| 精品人妻熟女av久视频| 观看免费一级毛片| 最近中文字幕2019免费版| 亚洲美女视频黄频| 精品欧美国产一区二区三| 天堂av国产一区二区熟女人妻| 自拍偷自拍亚洲精品老妇| 一夜夜www| 少妇人妻精品综合一区二区| 精品久久久久久成人av| av专区在线播放| 人人妻人人澡人人爽人人夜夜 | 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 蜜桃久久精品国产亚洲av| 亚洲精品一二三| 男的添女的下面高潮视频| 丰满人妻一区二区三区视频av| 日韩av在线大香蕉| 超碰97精品在线观看| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 午夜老司机福利剧场| 亚洲久久久久久中文字幕| 永久网站在线| 国精品久久久久久国模美| av在线老鸭窝| 亚洲av国产av综合av卡| 亚洲精品影视一区二区三区av| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 青春草国产在线视频| 成人亚洲精品一区在线观看 | 日韩精品青青久久久久久| 国产av国产精品国产| 丝袜喷水一区| 亚洲欧美精品自产自拍| 日韩欧美三级三区| 18禁在线无遮挡免费观看视频| 成人鲁丝片一二三区免费| 国产精品人妻久久久久久| 两个人的视频大全免费| 丰满人妻一区二区三区视频av| 亚洲精品影视一区二区三区av| 久久久久久久大尺度免费视频| 国产淫语在线视频| 天堂中文最新版在线下载 | 午夜福利在线在线| av一本久久久久| 乱系列少妇在线播放| 美女被艹到高潮喷水动态| 免费观看在线日韩| 国产精品一区二区三区四区久久| 高清欧美精品videossex| 又黄又爽又刺激的免费视频.| 成年女人看的毛片在线观看| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 久久精品久久精品一区二区三区| 成人一区二区视频在线观看| 亚洲av男天堂| 男人狂女人下面高潮的视频| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 搞女人的毛片| 男女国产视频网站| 亚洲人成网站高清观看| 看非洲黑人一级黄片| 亚洲国产精品成人久久小说| 国产老妇女一区| 中国国产av一级| 午夜久久久久精精品| 亚洲av国产av综合av卡| 毛片女人毛片| 国产精品.久久久| 久久久久久国产a免费观看| 免费黄网站久久成人精品| 午夜福利网站1000一区二区三区| 最近中文字幕高清免费大全6| 天堂网av新在线| av国产免费在线观看| 国产老妇伦熟女老妇高清| 国内精品一区二区在线观看| 国产精品爽爽va在线观看网站| 高清在线视频一区二区三区| 亚洲欧美日韩无卡精品| 精品人妻熟女av久视频| 国产有黄有色有爽视频| 日韩av在线大香蕉| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 亚洲真实伦在线观看| 高清欧美精品videossex| 久久精品国产亚洲av涩爱| 久久久久久久久久黄片| 嘟嘟电影网在线观看| 午夜福利网站1000一区二区三区| 在线观看免费高清a一片| 看黄色毛片网站| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类| 日本黄大片高清| 丝袜美腿在线中文| 91精品一卡2卡3卡4卡| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 亚洲国产精品sss在线观看| 国产老妇伦熟女老妇高清| 国产精品.久久久| 亚洲精品国产成人久久av| av黄色大香蕉| 在线观看一区二区三区| 国产69精品久久久久777片| 国内精品美女久久久久久| 91久久精品国产一区二区成人| 午夜视频国产福利| 少妇的逼好多水| 色尼玛亚洲综合影院| freevideosex欧美| 亚洲成人久久爱视频| 欧美区成人在线视频| 国产黄色小视频在线观看| 成人欧美大片| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 免费观看的影片在线观看| 黄色一级大片看看| 午夜亚洲福利在线播放| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 九九爱精品视频在线观看| 国产亚洲5aaaaa淫片| 男女视频在线观看网站免费| 18禁动态无遮挡网站| 午夜激情福利司机影院| 99久久精品一区二区三区| 日韩欧美 国产精品| 97超视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 综合色av麻豆| 嘟嘟电影网在线观看| 国产男女超爽视频在线观看| 亚洲av成人av| a级毛色黄片| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 欧美xxxx性猛交bbbb| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 精品欧美国产一区二区三| 人人妻人人看人人澡| 少妇丰满av| 99久国产av精品国产电影| 国产精品人妻久久久久久| 男女下面进入的视频免费午夜| 国产精品熟女久久久久浪| 99热这里只有是精品50| 午夜视频国产福利| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 听说在线观看完整版免费高清| 亚洲av不卡在线观看| av.在线天堂| 成人漫画全彩无遮挡| 直男gayav资源| 纵有疾风起免费观看全集完整版 | 免费观看无遮挡的男女| 久久久久久久亚洲中文字幕| 日韩精品青青久久久久久| 欧美激情在线99| 夜夜爽夜夜爽视频| 亚洲自拍偷在线| 一级毛片我不卡| 中文字幕av在线有码专区| 亚洲欧美成人综合另类久久久| 麻豆成人午夜福利视频| 日韩国内少妇激情av| 一级毛片 在线播放| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 国产av在哪里看| 欧美精品国产亚洲| 99久国产av精品国产电影| 看黄色毛片网站| 丰满人妻一区二区三区视频av| 欧美丝袜亚洲另类| 国产av码专区亚洲av| 99九九线精品视频在线观看视频| 亚洲精品国产av蜜桃| 日韩av不卡免费在线播放| 成人无遮挡网站| 天堂av国产一区二区熟女人妻| 久久这里只有精品中国| 韩国高清视频一区二区三区| 欧美区成人在线视频| 我要看日韩黄色一级片| 老师上课跳d突然被开到最大视频| 国产精品国产三级专区第一集| 成人无遮挡网站| 91狼人影院| xxx大片免费视频| 日本黄色片子视频| .国产精品久久| 精品久久久久久久久av| 日韩伦理黄色片| 搡老妇女老女人老熟妇| 亚洲精品一区蜜桃| 我的老师免费观看完整版| 乱人视频在线观看| 精品亚洲乱码少妇综合久久| 久久精品久久久久久久性| 大陆偷拍与自拍| 舔av片在线| 国产 一区 欧美 日韩| 亚洲乱码一区二区免费版| 一本久久精品| 高清视频免费观看一区二区 | 国产精品一二三区在线看| 国产有黄有色有爽视频| 18禁在线播放成人免费| 久久久久久久亚洲中文字幕| 哪个播放器可以免费观看大片| 男人和女人高潮做爰伦理| 91狼人影院| av又黄又爽大尺度在线免费看| 国产单亲对白刺激| 深夜a级毛片| 欧美3d第一页| 国产精品无大码| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄| 中文字幕制服av| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆| 日本wwww免费看| 久久久久久久久久久丰满| 久久久成人免费电影| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 国产综合懂色| 久久久久久伊人网av| 国产 一区 欧美 日韩| 久久久久久久久久黄片| 亚洲丝袜综合中文字幕| 久久久精品欧美日韩精品| 中国美白少妇内射xxxbb| 偷拍熟女少妇极品色| 搞女人的毛片| 嫩草影院入口| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 人妻系列 视频| 日本与韩国留学比较| 亚洲精品中文字幕在线视频 | 日韩欧美三级三区| 91精品国产九色| 精品一区二区三区人妻视频| 欧美成人a在线观看| av天堂中文字幕网| 免费观看的影片在线观看| 国产精品一区二区性色av| 精品一区二区三区视频在线| 亚洲精品久久久久久婷婷小说| 日本黄色片子视频| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲一区高清亚洲精品| 国产女主播在线喷水免费视频网站 | 男人和女人高潮做爰伦理| 免费av观看视频| 国产精品一及| 亚洲精品456在线播放app| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 99re6热这里在线精品视频| 高清av免费在线| 亚洲国产精品国产精品| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 狠狠精品人妻久久久久久综合| 国产三级在线视频| 成人性生交大片免费视频hd| 高清午夜精品一区二区三区| 国产成人a∨麻豆精品| 日日摸夜夜添夜夜添av毛片| 久久久精品94久久精品| 日本一本二区三区精品| 少妇被粗大猛烈的视频| 久99久视频精品免费| 国产精品久久久久久久电影| 91精品伊人久久大香线蕉| 18+在线观看网站| 免费电影在线观看免费观看| 亚洲国产成人一精品久久久| 国产精品国产三级专区第一集| 在线免费十八禁| 高清午夜精品一区二区三区| 女人十人毛片免费观看3o分钟| 中文资源天堂在线| 狂野欧美激情性xxxx在线观看| 亚洲在线观看片| 国产成人免费观看mmmm| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 少妇熟女欧美另类| 男的添女的下面高潮视频| 99久久精品国产国产毛片| 国产老妇女一区| av卡一久久| 黄色配什么色好看| 亚洲av一区综合| 在线播放无遮挡| 欧美另类一区| 日韩电影二区| av又黄又爽大尺度在线免费看| 尤物成人国产欧美一区二区三区| 精品国产三级普通话版| 亚洲国产成人一精品久久久| 蜜桃亚洲精品一区二区三区| 欧美丝袜亚洲另类| 精品一区二区三区人妻视频| 一区二区三区乱码不卡18| 网址你懂的国产日韩在线| 一夜夜www| 国产精品99久久久久久久久| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 麻豆国产97在线/欧美| 亚洲在线观看片| 国产成年人精品一区二区| 内地一区二区视频在线| 午夜激情久久久久久久| 搞女人的毛片| 高清欧美精品videossex| 日韩精品青青久久久久久| 亚洲国产成人一精品久久久| xxx大片免费视频| 尾随美女入室| 成人无遮挡网站| 国产乱人视频| 内地一区二区视频在线| 有码 亚洲区| 日本熟妇午夜| 男人和女人高潮做爰伦理| 人人妻人人澡欧美一区二区| 尤物成人国产欧美一区二区三区| 久久久精品94久久精品| 国产白丝娇喘喷水9色精品| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| 又爽又黄a免费视频| 色综合站精品国产| 国产黄片美女视频| 国产成人aa在线观看| eeuss影院久久| 亚洲在线观看片| 超碰av人人做人人爽久久| 最近中文字幕2019免费版| 免费黄色在线免费观看| 日本wwww免费看| 日韩欧美一区视频在线观看 | 欧美日本视频| av国产久精品久网站免费入址| 精品人妻偷拍中文字幕| 蜜桃久久精品国产亚洲av| 床上黄色一级片| 亚洲最大成人中文| 国产片特级美女逼逼视频| 欧美日韩在线观看h| 在线观看人妻少妇| 18禁在线播放成人免费| 夜夜看夜夜爽夜夜摸| 国产视频内射| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 伦精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 久久久午夜欧美精品| 日本三级黄在线观看| 久久久a久久爽久久v久久| av一本久久久久| 欧美最新免费一区二区三区| 在线免费观看不下载黄p国产| 亚洲av成人精品一二三区| 天堂av国产一区二区熟女人妻| 亚洲国产精品成人综合色| 久久久久久九九精品二区国产| 欧美极品一区二区三区四区| 国产亚洲午夜精品一区二区久久 | 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 国产精品av视频在线免费观看| 毛片女人毛片| 男女那种视频在线观看| 色吧在线观看| 国产精品麻豆人妻色哟哟久久 | 少妇人妻精品综合一区二区| 久久久久久九九精品二区国产| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 美女高潮的动态| av国产免费在线观看| 99热这里只有精品一区| 精品久久久久久电影网| 日韩欧美国产在线观看| 国产一区亚洲一区在线观看| 国产色婷婷99| 日韩强制内射视频| 91狼人影院| 亚洲国产精品成人综合色| 国产老妇女一区| 精品欧美国产一区二区三| 国产爱豆传媒在线观看| a级毛色黄片| eeuss影院久久| 日韩欧美国产在线观看| 亚洲av成人av| 97超碰精品成人国产| 日本av手机在线免费观看| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 国产免费一级a男人的天堂| 水蜜桃什么品种好| 日韩精品有码人妻一区| 免费看不卡的av| 春色校园在线视频观看| 精华霜和精华液先用哪个| 午夜免费观看性视频| 午夜福利在线观看吧| av播播在线观看一区| 精品一区二区三卡| 欧美成人a在线观看| 国产亚洲5aaaaa淫片| 亚洲av成人精品一区久久| 国产av国产精品国产| 91午夜精品亚洲一区二区三区| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 国产高潮美女av| 国产在线一区二区三区精| 成人漫画全彩无遮挡| av在线蜜桃| 别揉我奶头 嗯啊视频| 18禁在线播放成人免费| 1000部很黄的大片| 亚洲精品一区蜜桃| 日本免费a在线| av网站免费在线观看视频 | 日本午夜av视频| 赤兔流量卡办理| 美女cb高潮喷水在线观看| 欧美bdsm另类| 97超碰精品成人国产| 久久久色成人| 日韩制服骚丝袜av| 内射极品少妇av片p| 国产黄色视频一区二区在线观看| 色吧在线观看| 国内精品一区二区在线观看| 国产中年淑女户外野战色| 国产精品一区二区三区四区久久| 亚洲经典国产精华液单| 亚洲成人一二三区av| 国国产精品蜜臀av免费| av.在线天堂| 内地一区二区视频在线| 欧美一区二区亚洲| ponron亚洲| 国产色爽女视频免费观看| 色播亚洲综合网| 黄片无遮挡物在线观看|