• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同長(zhǎng)徑比的具有固定寬度金納米棒的合成

    2024-07-16 00:00:00賀鴻鵬張萌萌郝夢(mèng)嬌杜偉夏海兵
    物理化學(xué)學(xué)報(bào) 2024年5期

    摘要:金納米棒在光學(xué)、電學(xué)、信息學(xué)和生物醫(yī)學(xué)等領(lǐng)域具有廣泛的應(yīng)用。然而,一些具有特殊要求的金納米棒還不能通過(guò)常規(guī)的方法制備。在本研究中,我們創(chuàng)新地將十二醇(LA)分子引入到傳統(tǒng)種子生長(zhǎng)方法中,成功實(shí)現(xiàn)了具有固定寬度的不同長(zhǎng)徑比(AR)金納米棒(FW-Au NR)的按需制備。此外,通過(guò)合理地選擇相應(yīng)的反應(yīng)條件(如氯金酸和硝酸銀的濃度),可以在130–38.4,109–26.4和16–46 nm范圍之間分別調(diào)節(jié)FW23-Au NRs,F(xiàn)W14-Au NRs和FW6.5-Au NRs (右上角的標(biāo)注數(shù)字表示金納米棒的寬度)的長(zhǎng)度。即,可在一個(gè)較大的長(zhǎng)度范圍內(nèi)調(diào)節(jié)具有固定寬度的金納米棒的長(zhǎng)徑比。并且,在合適濃度的十二醇,0.24–0.30 mmol?L?1范圍內(nèi)調(diào)節(jié)硝酸銀濃度,可以使這些金納米棒的寬度固定在6.5–23 nm之間。另外,實(shí)現(xiàn)FW-Au NRs制備的關(guān)鍵是銀離子和十二醇分子對(duì)分布在金種子晶面上的CTA-Br-Ag+化合物的密度的協(xié)同影響。

    關(guān)鍵詞:金納米棒;十二醇;固定的寬度;對(duì)稱性打破效率;有效顆粒數(shù)

    中圖分類號(hào):O648

    Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods

    Abstract: Gold nanorods (Au NRs) have beenwidely used in the optics, electricity, informatics,and biomedical fields in recent years. However, AuNRs with specialized requirements cannot beprepared by conventional methods. For instance, inphotothermal therapy, Au NRs with high aspectratios (ARs) are desirable for increasing tissuepenetration and reducing the burning of human skinduring treatment. However, when their ARs wereadjusted to match the laser used in second nearinfraredwindows (NIR-II), the length and width ofthe Au NRs simultaneously increased. This increase in width reduces its photothermal conversion efficiency. Unfortunately,tuning the ARs of Au NRs at a fixed width requires complex procedures. In this study, we developed a new seeded-growthmethod to synthesize different ARs of fixed width Au NRs (FW-Au NRs). To the best of our knowledge, this is the first studyto adjust the length of FW-Au NRs by introducing lauryl alcohol (LA) molecules into the traditional seeded growth method.Moreover, the length span of FW23-Au, FW14-Au, and FW6.5-Au NRs (the superscript numbers denote the width of Au NRsin nm) was adjusted between 130 and 38.4 nm, 109 and 26.4 nm, and 16 and 46 nm, respectively, by judiciously selectingthe corresponding reaction conditions. Notably, the lengths of the Au NRs can be readily achieved at a fixed width over awide range. In addition, their ARs were tuned at a fixed width by adjusting only their length, instead of simultaneouslyvarying their length and width. In addition, their widths were maintained between 6.5 and 23 nm by adjusting [AgNO3]between 0.24 and 0.30 mmol?L?1 in the presence of LA. Furthermore, the synergetic effect of Ag+ and LA on the density ofthe cetyltrimethylammonium (CTA)-Br-Ag+ complexes distributed on the facets of added Au-NP seeds, which can impacttheir symmetry-breaking efficiency (SBE) and the particle number of Au-NP seeds that grow into final Au NRs, is key to thesynthesis of FW-Au NRs. The results of this study offer a flexible and reliable method to tune the length of Au NRs with afixed width and pave the way for achieving an on-demand synthesis of Au NRs, especially for cancer photothermal therapy.

    Key Words: Gold nanorods; Lauryl alcohol; Fixed width; Symmetry-breaking efficiency; Effective particle number

    1 Introduction

    Gold nanorods (Au NRs) have been widely studied in thebiomedical applications such as photothermal therapy ofcancer 1–4, biomedical imaging 5–7 and drug delivery 1,8, in therecent years due to their tunable plasmonic properties,biocompatibility, inherent low toxicity, and diverse surfacemodification. Moreover, the dimension (length width) andaspect ratio (AR) of Au NRs are essential for their performancein general 1,2,9–12. For instance, to improve their photothermalconversion efficiency in the application of photothermal therapyof cancer 13, Au NRs with higher absorption cross-sections arerequired, which is highly depended on their dimension 10,14–16.That is, it is better to prepare Au NRs with a width as small aspossible. On the other hand, near-infrared (NIR) laser inwindow-II (900–1400 nm) is better to increase the tissuepenetration and reduce the burning to skin of human during thetherapeutic treatment 17–19. That is, the position of thelongitudinal plasmon resonance peak (LSPR) of the desired AuNRs have to be well matched with the wavelength of the usedlaser 4,17, which is determined by their ARs. However, when theARs of Au NRs increase to match NIR laser in window-II, boththe length and width of Au NRs simultaneously increase 20,21,which would be disadvantage for photothermal conversionefficiency. In other words, the length of Au NRs cannot becontinuously tuned but remains their width unchanged byadjusting one experimental parameter solely in the traditionalseeded growth method.

    For instance, Murphy group achieved the synthesis of Au NRswith approximately the same width (lt; 10 nm) and differentlengths (19–93 nm) by simultaneously changing of reducingagent, modifying the concentration of cetyltrimethylammoniumbromide (CTAB), AgNO3, Au-NP seeds, and pH values of the growth solution accordingly 22. However, it is still tough toachieve the synthesis of Au NRs with different lengths but withthe same width of bigger than 10 nm. Accordingly, it is still agreat challenge to tune the ARs of fixed width Au NRs by asimple way.

    In the traditional seeded growth method used for synthesis ofnormal Au NRs, both their length and width are simultaneouslyincreased (black curve in Fig. 1a) with the decreasingconcentration of Au-NP seeds ([Au-NP seeds]) at a fixedconcentration of AgNO3 ([AgNO3]) 20,21. Accordingly, ARs offixed width Au NRs (red curve in Fig. 1a) cannot be achievedby adjusting the [Au-NP seed]. Moreover, silver ions also canaffect the growth rate of the length and width of Au NRs (Fig.1b,c) 23–27. For instance, when the [AgNO3] is in the range of0.27 to 0.45 mmol?L?1, the widths of the Au NR can keep almostunchanged at the fixed of other reaction conditions (Fig. 1b).However, their lengths turn to decrease (Figs. 1c and S1(Supporting Information)) 24,28–31,21,32. Therefore, ARs of fixedwidth Au NRs just can slightly be tuned only by adjusting the[AgNO3].

    Fortunately, it is recently found that the [AgNO3] in thegrowth solution can determine the symmetry-breaking of theAu-NP seeds and particle number of Au-NP seeds that grow intofinal Au NRs (Neffective) 23,33–35. In the previous work 23,36,37, it hasbeen demonstrated that the Neffective is determined by thesymmetry-breaking efficiency (SBE) of the Au-NP seeds, whichis impacted by the density of CTA-Br-Ag+ complex distributedon the facets of added Au-NP seeds. Thus, it is possible thatwhen typical reaction conditions for synthesis of Au NRs ([Au-NP seeds], [AgNO3] and [CTAB], [HAuCl4], etc.) are all fixed,the ARs of fixed width Au NRs can be tuned by controllingNeffective at the [AgNO3] of 0.27 mmol?L?1 according to the relationship between the [Au-NP seeds] and the size of finalparticles in conventional seeded growth method. As expected, inour previous work 37, it is found that the introduction of fattyalcohols with alkyl chains from 7 to 10 carbon as co-surfactantsall can help silver ions improve the SBE of added Au-NP seedsand further alter Neffective. Moreover, the dimensions of highquality Au NRs are greatly increased, especially at width. Therole of fatty alcohols with alkyl chains from 7 to 10 carbon in thesynthesis of Au NRs with big dimensions is similar to thatreported in literature 36,38. However, when fatty alcohols withalkyl chains bigger than 10 carbons (undecanol or lauryl alcohol)were introduced as co-surfactants, the dimension of Au NRs canbe poorly modulated. This is because the introduction of fattyalcohols with alkyl chains bigger than 10 carbons can result inthe increasing compactness of the CTAB/alcohol mixed micellesled by the strong hydrophobic interactions among them andCTAB molecule, instead of the decreasing compactness of theCTAB/alcohol mixed micelles led by fatty alcohols with alkylchains from 7 to 10 carbons.

    Herein, the introduction of lauryl alcohol (LA) molecules intoCTAB are expected to control the compactness of CTABmolecules in the micelles (Scheme 1 and Scheme S1 (SupportingInformation)) 39–41. This is because LA molecules would deeplypenetrate into the micelle core (hydrophobic layers) of theCTAB micelles and reduce the distance between the alkyl chainsof CTAB molecules due to their strong hydrophobic interactionbetween the alkyl chains of them 39–41. In addition, thecompactness of CTAB molecules in CTAB micelles can beadjusted by increasing the concentration of added LA molecules([LA]) (Scheme 1b–d). Build on that, the density of CTA-Br-Ag+ complexes distributed on the facets of added Au-NP seedscan be finely increased by increasing [LA], thus resulting in theincrease in the SBE of added Au-NP seeds and Neffective, andfurther tuning the length of fixed width Au NRs.

    In this work, Au NR with tunable length at fixed width of 14nm (defined as FW14-Au NRs) were firstly synthesized underdifferent [LA] at the fixed of other conditions. Next, how the[LA] impact the Neffective are analyzed in detail. Then, Au NRswith tunable length at other fixed width (FW23-Au NRs andFW6.5-Au NRs) were synthesized by changing the [LA] andparticle number concentration of added Au-NP seeds ([Au-NPseeds]) based on the analysis results. Finally, the length span ofAu NRs with the fixed width (6.5, 14 and 23 nm) were furtherbroadened by judiciously altering the [HAuCl4] and [AgNO3] aswell as [HQ].

    2 Experimental section

    Typically, an aqueous solution of CTAB (0.10 mol?L?1, 5.0mL) and a trace amount of LA (0.015 mL) were sequentiallyadded into a 10 mL glass at room temperature to obtain thegrowth solution under stirring of about 100 min. Then, four typesof aqueous solutions of HAuCl4 (25 mmol?L?1, 0.10 mL), HNO3(100 mol?L?1, 0.080 mL), AgNO3 (10 mmol?L?1, 0.15 mL), andHQ (100 mol?L?1, 0.25 mL) were sequentially added into theresulting growth solution. Finally, 0.060 mL of as-prepared Au-NP seed solution (See more details in Supporting Information)was added to the resulting growth solution. After thoroughlymixing of 2 min, the whole reaction mixture was placed in a water bath for aging at 28 °C. After the aging of 12 h, FW14-AuNRs were separated from the reaction mixture with the aid ofcentrifugation (8000 rcf (relative centrifugal field) × 10 min).These FW14-Au NR were redispersed into water and centrifugedtwo more times to remove the excess reactants.

    Similarly, other types of FW-Au NRs (FW6.5-Au NRs andFW23-Au NRs) with different lengths and widths can be preparedby the same procedure by properly adjusting the concentrationof silver ions, LA, HAuCl4, HQ, and Au-NP seeds were adjusted,respectively (Table S1 (Supporting Information)).

    3 Results and discussion

    3.1 Synthesis of FW14-Au NRs by adjusting the [LA]

    First of all, the optimal [AgNO3] used for growth of fixedwidth Au NRs (FW-Au NR) with a largest range of length in thepresence of LA is determined to be 0.27 mmol?L?1 when the [Au-NP seeds] in the growth solution is 8.4 × 1012 particles?mL?1(Fig. S2). In the absence of LA, the length and width of Au NRsare about 109 nm and 14 nm (Fig. 2a), respectively, which isnearly the same to those obtained in the presence of LA with aconcentration below 8.3 mmol?L?1 (Fig. S3a).

    When the [LA] in the growth solution was increased from 0to 8.3, 12.5, and 14.1 mmol?L?1, the length of the resulting AuNRs decreased from 109 to 97, 79 and 69 nm while their widthcan remain at about 14 nm (Fig. 2a to 2d). Accordingly, theircorresponding ARs can gradually decrease from 8.1 to 7.2, 5.8and 5.0 (Table 1), which is also in good consistent with thevariation in their extinction spectra (Fig. S4). Note that sphericalnanoparticles as the by-products would be formed when the [LA]was bigger than 14.1 mmol?L?1 (Fig. S3b). These results indicatethat the addition of LA into the CTAB growth solution indeedcan impact the length of the Au NRs and keep their width hardlychanged. That is, FW-Au NR can be successfully achieved bysolely varying the [LA] at the fixed other conditions. It is foundthat when [AgNO3] was fixed at 0.06 mmol?L?1 (lower thanoptimal value of 0.27 mmol?L?1) with the [LA] increasing from0 to 8.3, 12.5, and 14.1 mmol?L?1, the length of the Au NRsdecreased from 54 to 44, 39, and 36 nm, while their widthgradually decreased from 31 to 30, 27, and 26 nm, respectively.These results indicate that when [AgNO3] is fixed at 0.06mmol?L?1, FW14-Au NR cannot be achieved by solely varyingthe [LA] at the fixed other conditions. (Fig. S5)

    3.2 Role of the LA in synthesis of FW-Au NRs

    When the [LA] and other factors (including [HAuCl4],[AgNO3], [HQ], and [Au-NP seeds]) in the growth solution werefixed, both the length and the width of Au NRs can also increasewith the [CTAB] increasing (Fig. S6). It is self-evident that therelative content of LA in CTAB micelles is decreased when the[CTAB] is increased at the fixed [LA]. These results indicate thatthe compactness of CTAB micellles indeed can impact thesynthesis of FW-Au NRs. As mentioned above, the added LA(including alcohol hydroxyl groups) are expected to deeplylocated in the micelle core (hydrophobic layers) of the CTABmicelles because of the strong hydrophobic interaction betweenthe alkyl chains of LA and CTAB molecules 41. Such interactionswould shorten not only the distance between the alkyl chains, butalso the distance between polar head groups (CTA+) of CTABmolecules in the mixed CTAB-LA micelles. In word, the compactness of the whole CTAB micelles is improved by theintroduction of LA molecules, especially between those polarhead groups (CTA+). Since CTA+ ions are always complexedwith Br? and Ag+ ions to form CTA-Br-Ag+ complexes, thedensity of CTA-Br-Ag+ complexes in the mixed CTAB-LAmicelles would be higher than that in the pure CTAB micelles.Accordingly, when Au-NP seeds were added into the growthsolution, they would be also stabilized by the mixed CTAB-LAmicelles. And the density of CTA-Br-Ag+ complexes on theirsurfaces would be higher, compared with that in the pure CTABmicelles. Thus, the function of AgUPD on the certain facets ofadded Au-NP seeds would become stronger and the Neffectivewould be increased due to the improved symmetry breakingefficiency (SBE) 23–25.

    Accordingly, η (Neffective/Nadded), which is defined as the ratioof the particle number of Au-NP seeds that grow into Au NRs(Neffective) to the particle number of added Au-NP seeds (Nadded),would increase accordingly with the [LA] increasing. Asexpected, η indeed increases with the increasing [LA] at thefixed other experimental conditions (Table 1). For instance,when the [LA] was increased from 0 to 8.3, 12.5 and 14.1mmol?L?1 at the fixed [Au-NP seeds] of 8.4 × 1012particles?mL?1, the η increased from 3.3% to 3.6%, 4.5% and4.9% (Table 1) according to the calculated method reported inour previous work 37. The low η value indicate that only a smallproportion of the added Au NP seed (lt; 10%) would grow intothe final Au NRs. It is known that the formed Au NRs can be“shortened” by adding Au3+ ions into their solution 42. Therefore,it is possible that most of the added Au NP seed (gt; 90%) aredissolved in the growth solution because the relative highconcentration of Au3+ ions can react with and the active Au NPseeds during the initial growth stage (Au3+ + 2Au = 3Au+). Theresults indicate that when [AgNO3] (say, up to 0.27 mmol?L?1)can maximally achieve underpotential deposition of Ag (AgUPD)on the side facets of Au NRs during the growth stage 23,37 (Moredetails in Supporting Information), the SBE of added Au-NPseeds and the corresponding Neffective indeed can be controlled bythe density of CTA-Br-Ag+ complexes led by the introduction ofLA into CTAB micelles. Therefore, the synthesis of FW-Au NRswith varied lengths can be achieved by solely varying the [LA]at the fixed other conditions.

    In addition, when other conditions (including [LA], [AgNO3]and [CTAB]) are all fixed, the variation in the [Au-NP seeds]would lead to the variation in the density of CTA-Br-Ag+complexes on each Au-NP seed, which would result in thedecrease in the SBE and Neffective. As such, η would also varyaccordingly (Table S2). For instance, when the [Au-NP seeds]was increased from 2.8 × 1012 to 4.2 × 1012, 8.4 × 1012 and 1.4 ×1013 particles?mL?1 (at the fixed [LA] of 12.5 mmol?L?1), the ηdecreased from 6.0% to 5.2%, 4.5% and 3.6%, (Table S2)accordingly. Therefore, these results further confirm that theadded LA indeed can achieve the synthesis of FW-Au NRs byfinely affecting the SBE of added Au-NP seeds in the presence of high [AgNO3]. Moreover, the variation in the length of FWAuNRs in the presence of LA is also related to the function ofAgUPD on facets at two ends and sides of the growing Au NRs. Itis known that the order of the deposition of silver ions on eachfacet of Au NRs is as follows: {110} gt; {100} gt; {111} 23–25. Thatis, AgUPD prefers to occur on {110} or higher-index facets ratherthan others 23. Therefore, the function of AgUPD on the side facetsof the Au NRs (mainly enclosed by {110} and {100}) is close tothe maximum under the high [AgNO3] in the growth solutionwhile that on the facets of two ends of Au NRs (mainly enclosedby {111} and {100}) is relatively weak. Therefore, after thecompactness of the mixed CTAB-LA micelles is improved, thefunction of AgUPD on the facets of two ends of Au NRs would bemore obvious because of the loose packing of CTAB moleculesat two ends of pure CTAB micelles while that on their side facetswould remain hardly unchanged (or slight increase).Accordingly, the growth rate in the length of Au NRs wouldbecome relatively slower while that in the width of Au NRswould remain unchanged (slightly decrease). As a result, thelength of FW-Au NRs can be tuned by solely varying the [LA]at the fixed other condition. Furthermore, the length of FW-AuNRs may be impacted if the utilization of HAuCl4 in the growthsolution varied after the addition of the LA. It is known thatwhen AA was used as the reducing agent 21,43, only about 15%of the added HAuCl4 become into Au NRs. Therefore, an excessamount of HQ was used in this work to guarantee the 100%utilization of HAuCl4. On the basis of results of ICP tests andcontrol experiments (Fig. S7), the utilization of HAuCl4 is stillclose to 100%, which are not impacted.

    Briefly, the main function of the added LA is to improve thecompactness of CTAB micelles and enhance the density ofCTA-Br-Ag+ complexes distributed on the facets of added Au-NP seed. Accordingly, AgUPD on the certain facets of added Au-NP seeds is impacted, which then improve their SBEs and altergrowth rate of facets at two ends and sides of the growing AuNRs.

    3.3 Synthesis of FW23-Au NRs and FW6.5-Au NRs byadjusting the Neffective

    In the traditional seeded growth method for synthesis ofnormal Au NRs, the length and width of the Au NRs is usuallyimpacted by the [Au-NP seeds] in the growth solution 22,28,29,31.After a series of control experiments, the [Au-NP seeds] that isappropriate for synthesis of uniform Au NRs in the presence ofLA is determined to be in the range of 2.8 × 1012 to 5.6 × 1013particles?mL?1 (Fig. S8). In current case, other FW-Au NRs canbe further tuned just by adjusting the [LA] to control Neffective atthe fixed [Au-NP seeds] ranging from 2.8 × 1012 to 5.6 × 1013particles?mL?1. For simplicity, two types of FW-Au NRs weresynthesized by adjusting [LA] at the fixed [Au-NP seeds] of2.8 × 1012 and 5.6 × 1013 particles?mL?1, which can achieve thetuning in the length of FW-Au NRs with a maximal (23 nm) andminimal fixed width (6.5 nm), respectively (Fig. 3).

    The relationship between the [AgNO3] and width of Au NRs has been shown in Fig. 1. Accordingly, the [AgNO3] used forFW23-Au NRs and FW6.5-Au NRs were adjusted to 0.24 and 0.30mmol?L?1, respectively, which is necessary to control SBE ofadded Au-NP seeds in the presence of LA. As shown in Fig. 3A,F(xiàn)W23-Au NRs with different lengths (widthmaximal = 23 nm) weresynthesized by selecting the [Au-NP seeds] as 2.8 × 1012particles?mL?1 and [AgNO3] as 0.24 mmol?L?1, respectively.With the [LA] increasing from 0 to 8.3, 12.5 and 14.1 mmol?L?1,the lengths of FW23-Au NRs gradually decreased from 130 to110, 99 and 75 nm. Accordingly, their ARs gradually decreasedfrom 5.7 to 4.9, 4.4 and 3.4 (Table S3). In addition, the positionsof the maximal SPR peaks in their extinction spectra alsogradually blue shift from 970 to 879, 840 and 775 nm (Fig. S9).Moreover, FW6.5-Au NRs with different lengths (widthminimal =6.5 nm) were prepared by selecting the [Au-NP seeds] as 5.6 ×1013 particles?mL?1 and [AgNO3] as 0.30 mmol?L?1, respectively.Similarly, the lengths of FW6.5-Au NRs gradually decreasedfrom 35 to 30, 27 and 23 nm (Fig. 3B) when the [LA] wasincreased from 0 to 8.3, 12.5 and 14.1 mmol?L?1. In addition,their ARs gradually decreased from 5.2 to 4.6, 4.1 and 3.6accordingly (Table S4), and the position of the maximal SPRpeaks in their extinction spectra also gradually blue shift from910 to 860, 834 and 788 nm (Fig. S10). The successfulpreparation of FW23-Au NRs and FW6.5-Au NRs indicates thatFW-Au NRs with a fixed width between 6.5 and 23 nm can beprepared. Moreover, the role of the added LA in theimprovement of the SBE of added Au-NP seeds and Neffective isfurther confirmed by the calculated η value with the increasing[LA] at different [Au-NP seeds] (Tables S3 and S4).Furthermore, the appropriate [AgNO3] for synthesis of FW-AuNRs in the presence of LA is determined to be in the range of0.24 to 0.30 mmol?L?1 (Figs. S11 and S12). When the [AgNO3]was higher or lower than the contration range, FW-Au NRscannot be prepared just by adjusting the [LA] (Figs. S11 andS12). The results further confirm that the synergric effect ofAgNO3 and LA on the density of CTA-Br-Ag+ complexesdistributed on the facets of added Au-NP seeds impact their SBEand Neffective.

    3.4 Extending the length span of FW-Au NRs byadjusting [HAuCl4]

    As mentioned above, the width of FW-Au NRs can besuccessfully fixed in the range of 6.5 to 23 nm. However, itseems that the span of their length is still limited. It is known thatthe final size of seeds is proportional to the amount of precursorsin the seeded growth method. On the basis of the recipesmentioned above, the length spans of FW-Au NRs were furtherextended by adjusting [HAuCl4] (Figs. 4 and 5, Table S1). Notethat the [AgNO3] was also varied to remain the fixed widthaccordingly because the ratio of [HAuCl4]-to-[AgNO3] also canimpact the growth rate in the length and width of Au NRs duringtheir anisotropic growth 37.

    As expected, when the [HAuCl4] was decreased from 0.46 to0.23 and 0.14 mmol?L?1, the length of FW23-Au NRs decreasedfrom 75 to 55 and 38.4 nm (Figs. 3A-d, 4a and 4b), respectively.Accordingly, their ARs decreased from 3.4 to 2.5 and 1.7(Table S1) while the position of the maximal SPR peaks in theirextinction spectra also gradually blue shift (Fig. S13). Similarly,with the [HAuCl4] decreasing from 0.46 to 0.23, 0.18 and 0.14mmol?L?1, the length of FW14-Au NRs decreased from 69 to 53,41 and 26.4 nm (Fig. 4c,d,e), respectively. Accordingly, theirARs decreased from 5.0 to 3.8, 3.0 and 1.9 (Table S1) while theposition of the maximal SPR peaks in their extinction spectraalso gradually blue shift (Fig. S14). However, when the[HAuCl4] was increased from 0.46 to 0.58 and 0.69 mmol?L?1,the length of FW14-Au NRs remained fixed at 79 nm, while theirwidths gradually increased from 14 to 16 and 20 nm (Fig. S15).Therefore, the length span of FW23-Au NRs and FW14-AuNRs can be adjusted between 130–38.4 nm and 109–26.4 nm (Figs. 2, 3A, 4 and Table S1), respectively by judiciouslyselecting reaction conditions.

    Furthermore, when the [HAuCl4] was decreased from 0.46 to0.23 and 0.18 mmol?L?1, the length of FW6.5-Au NRs candecrease from 23 nm to 19 and 16 nm (Figs. 3B-d, and 5a,b),respectively. Accordingly, their ARs decrease from 3.6 to 3.0and 2.5 while the position of the maximal SPR peaks in theirextinction spectra also gradually blue shift (Fig. S16A).Fortunately, the [HAuCl4] used for synthesis of FW6.5-Au NRscan be higher than that used for syntheses of FW23-Au NRs andFW14-Au NRs. This is because the ratio of gold atoms (NAu) tothe Neffective in the growth solution of FW6.5-Au NRs is rathersmaller than that in the growth solution of FW14-Au NRs andFW23-Au NRs. Thus, the length of FW6.5-Au NRs also canincrease from 30 to 40 and 46 nm (Figs. 3B-b and 5c,d) whenthe [HAuCl4] was increased from 0.46 to 0.58 and 0.69mmol?L?1. As expected, their ARs can increase from 4.6 to 6.0and 7.2 while the position of the maximal SPR peaks in theirextinction spectra also gradually red shift (Fig. S16B).Therefore, the length span of FW6.5-Au NRs can be adjustedbetween 16 and 46 nm (Figs. 3B, 5 and Table S1) by judiciouslyselecting reaction conditions.

    4 Conclusions

    In summary, we have successfully synthesized a series of FWAuNRs with a fixed width between 6.5 and 23 nm byintroducing LA in the traditional seeded growth method for thefirst time, to the best of our knowledge. That is, we can tune theARs of fixed width Au NRs by changing their length, instead ofthe simultaneous variation in their length and width. In addition,the [AgNO3] that is appropriate for synthesis of FW-Au NRs isin the range from 0.24 to 0.30 mmol?L?1 just by adjusting the[LA] for controlling the length and width of FW-Au NRs.Moreover, the synergetic effect of Ag+ and LA on the density ofCTA-Br-Ag+ complexes distributed on the facets of added Au-NP seeds can impact their SBE and the final Neffective for synthesisof Au NRs, which is also confirmed by the calculated η valueswith the increasing [LA] at different [Au-NP seeds].Furthermore, the length span of FW23-Au NRs, FW14-Au NRsand FW6.5-Au NRs can be adjusted between 130 and 38.4 nm,between 109 and 26.4 nm, and between 16 and 46 nm,respectively, by judiciously selecting reaction conditions (suchas [HAuCl4], [AgNO3], etc.). Therefore, our work offers aflexible and reliable method to tune the length of Au NR with afixed width and pave the way to achieve on-demand synthesis ofAu NRs.

    Author Contribution: Conceptualization, Haibing Xia;Methodology, Haibing Xia; Validation, Hongpeng He,Mengmeng Zhang, and Mengjiao Hao; Investigation, HongpengHe; Data Curation, Hongpeng He and Wei Du; Writing –Original Draft Preparation, Hongpeng He; Writing – Review amp;Editing, Haibing Xia; Visualization, Hongpeng He; Supervision,Haibing Xia and Wei Du; Funding Acquisition, Haibing Xia.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Ye, J. M.; Wen, Q.; Wu, Y.; Fu, Q. R.; Zhang, X.; Wang, J. M.; Gao,S.; Song, J. B. Nano Res. 2022, 15 (7), 6372.doi: 10.1007/s12274-022-4191-z

    (2) Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R.; Shao, L.;Wang, J. F. Chem. Rev. 2021, 121 (21), 13342.doi: 10.1021/acs.chemrev.1c00422

    (3) Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.;Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P.;et al. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (15), E3110.doi: 10.1073/pnas.1619302114

    (4) Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng,Y.-S.; Su, C.-H.; Yeh, C.-S. ACS Nano 2013, 7 (6), 5330.doi: 10.1021/nn401187c

    (5) Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.;Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. ACS Nano 2017, 11 (12),12732. doi: 10.1021/acsnano.7b07486

    (6) Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.;Kuang, H. Adv. Funct. Mater. 2018, 28 (48), 1805320.doi: 10.1002/adfm.201805320

    (7) Fu, Q. R.; Ye, J. M.; Wang, J. J.; Liao, N. S.; Feng, H. J.; Su, L. C.;Ge, X. G.; Yang, H. H.; Song, J. B. Small 2021, 17 (26), 2008061.doi: 10.1002/smll.202008061

    (8) Dong, Q.; Wang, X.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.;Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z.; et al. Angew. Chem. Int.Ed. 2018, 57 (1), 177. doi: 10.1002/anie.201709648

    (9) González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.;Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M.; et al. Science 2020, 368 (6498), 1472.doi: 10.1126/science.aba0980

    (10) Ni, W. H.; Kou, X. S.; Yang, Z.; Wang, J. F. ACS Nano 2008, 2 (4),677. doi: 10.1021/nn7003603

    (11) Xiao, J. Y.; Qi, L. M. Acta Phys. -Chim. Sin. 2020, 36 (10), 1910001.[肖軍燕, 齊利民. 物理化學(xué)學(xué)報(bào), 2020, 36 (10), 1910001.]doi: 10.3866/PKU.WHXB201910001

    (12) Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N.-N.; Gomes, W. R.;Ramesar, N. S.; Liu, S.; Hu, Z.; Sun, T.; de Moura, A. F.; et al.Science 2021, 371 (6536), 1368. doi: 10.1126/science.abd8576

    (13) Huang, X. H.; Neretina, S.; El-Sayed, M. A. Adv. Mater. 2009, 21(48), 4880. doi: 10.1002/adma.200802789

    (14) Song, J. B.; Yang, X. Y.; Jacobson, O.; Huang, P.; Sun, X. L.; Lin, L.S.; Yan, X. F.; Niu, G.; Ma, Q. J.; Chen, X. T. Adv. Mater. 2015, 27(33), 4910. doi: 10.1002/adma.201502486

    (15) Park, K.; Biswas, S.; Kanel, S.; Nepal, D.; Vaia, R. A. J. Phys. Chem.C 2014, 118 (11), 5918. doi: 10.1021/jp5013279

    (16) Jia, H. L.; Fang, C. H.; Zhu, X.-M.; Ruan, Q. F.; Wang, Y.-X. J.;Wang, J. F. Langmuir 2015, 31 (26), 7418.doi: 10.1021/acs.langmuir.5b01444

    (17) Park, J.-E.; Kim, M.; Hwang, J.-H.; Nam, J.-M. Small Methods 2017,1 (3), 1600032. doi: 10.1002/smtd.201600032

    (18) Tang, H. L; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.;Pan, H. M.; Li, D.; Ping, Y. Adv. Mater. 2021, 33 (12), 2006003.doi: 10.1002/adma.202006003

    (19) Yang, H.; He, H. P.; Tong, Z. R.; Xia, H. B.; Mao, Z. W.; Gao, C. Y.J. Colloid Interface Sci. 2020, 565, 186.doi: 10.1016/j.jcis.2020.01.026

    (20) Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.;Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; et al. ACSNano 2012, 6 (3), 2804. doi: 10.1021/nn300315j

    (21) Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25 (8), 1450.doi: 10.1021/cm303661d

    (22) Chang, H.-H.; Murphy, C. J. Chem. Mater. 2018, 30 (4), 1427.doi: 10.1021/acs.chemmater.7b05310

    (23) Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge,J.; Funston, A. M. Acc. Chem. Res. 2017, 50 (12), 2925.doi: 10.1021/acs.accounts.7b00313

    (24) Tong, W.; Walsh, M. J.; Mulvaney, P.; Etheridge, J.; Funston, A. M.J. Phys. Chem. C 2017, 121 (6), 3549. doi: 10.1021/acs.jpcc.6b10343

    (25) Walsh, M. J.; Barrow, S. J.; Tong, W.; Funston, A. M.; Etheridge, J.ACS Nano 2015, 9 (1), 715. doi: 10.1021/nn506155r

    (26) Song, Y. H.; Zhang, M. M.; Fang, H. T.; Xia, H. B. ChemPhysMater2023, 2 (2), 97. doi: 10.1016/j.chphma.2022.04.006

    (27) Zhu, J.; Lennox, R. B. ACS Appl. Nano Mater. 2021, 4 (4), 3790.doi: 10.1021/acsanm.1c00230

    (28) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20 (15), 6414.doi: 10.1021/la049463z

    (29) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15 (10), 1957.doi: 10.1021/cm020732l

    (30) Lohse, S. E.; Murphy, C. J. Chem. Mater. 2013, 25 (8), 1250.doi: 10.1021/cm303708p

    (31) Burrows, N. D.; Harvey, S.; Idesis, F. A.; Murphy, C. J. Langmuir2017, 33 (8), 1891. doi: 10.1021/acs.langmuir.6b03606

    (32) Zhang, X.; Tran, N.; Egan, T.; Sharma, B.; Chen, G. J. Phys. Chem. C2021, 125 (24), 13350. doi: 10.1021/acs.jpcc.1c01375

    (33) González-Rubio, G.; Scarabelli, L.; Guerrero-Martínez, A.;Liz-Marzán, L. M. ChemNanoMat 2020, 6 (5), 698.doi: 10.1002/cnma.201900754

    (34) Meena, S. K.; Sulpizi, M. Angew. Chem. Int. Ed. 2016, 55 (39),11960. doi: 10.1002/anie.201604594

    (35) Seibt, S.; Zhang, H.; Mudie, S.; F?rster, S.; Mulvaney, P. J. Phys.Chem. C 2021, 125 (36), 19947. doi: 10.1021/acs.jpcc.1c06778

    (36) González-Rubio, G.; Kumar, V.; Llombart, P.; Díaz-Nú?ez, P.; Bladt,E.; Altantzis, T.; Bals, S.; Pe?a-Rodríguez, O.; Noya, E. G.;MacDowell, L. G.; et al. ACS Nano 2019,13 (4), 4424. doi: 10.1021/acsnano.8b09658

    (37) He, H. P.; Wu, C. S.; Bi, C. X.; Song, Y. H.; Wang, D. Y.; Xia, H. B.Chem. Eur. J. 2021, 27 (27), 7549. doi: 10.1002/chem.202005422

    (38) Llombart, P.; Palafox, M. A.; MacDowell, L. G.; Noya, E. G. ColloidsSurf. A-Physicochem. Eng. Aspects 2019, 580, 123730.doi: 10.1016/j.colsurfa.2019.123730

    (39) Kim, W.-J.; Yang, S.-M.; Kim, M. J. Colloid Interface Sci. 1997, 194(1), 108. doi: 10.1006/jcis.1997.5093

    (40) Dubey, N. J. Mol. Liq. 2013, 184, 60.doi: 10.1016/j.molliq.2013.04.022

    (41) Karayil, J.; Kumar, S.; Hassan, P. A.; Talmon, Y.; Sreejith, L. RSCAdv. 2015, 5 (16), 12434. doi: 10.1039/C4RA10052B

    (42) Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán,L. M. J. Phys. Chem. B 2005, 109 (30), 14257.doi: 10.1021/jp052516g

    (43) Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.;Shawver, N.; Tran, N.; Beazley, M.; Chen, G. Nano Res. 2021,14 (4), 1167. doi: 10.1007/s12274-020-3167-0

    國(guó)家自然科學(xué)基金(22072076, 21773142), 山東省泰山學(xué)者(tstp20221106)及山東大學(xué)基礎(chǔ)研究基金資助項(xiàng)目

    国产欧美另类精品又又久久亚洲欧美| 久久久国产精品麻豆| 国产亚洲一区二区精品| 精品国产国语对白av| 国产av国产精品国产| 黄片播放在线免费| √禁漫天堂资源中文www| 日本猛色少妇xxxxx猛交久久| 一区二区av电影网| 国产黄色免费在线视频| 亚洲精品自拍成人| 午夜日本视频在线| 免费观看av网站的网址| 午夜福利在线观看免费完整高清在| 寂寞人妻少妇视频99o| 高清黄色对白视频在线免费看| 高清黄色对白视频在线免费看| 日本黄大片高清| 人成视频在线观看免费观看| 香蕉丝袜av| 90打野战视频偷拍视频| 18禁国产床啪视频网站| 18禁国产床啪视频网站| 午夜福利,免费看| 国产成人一区二区在线| 色5月婷婷丁香| 欧美人与善性xxx| 亚洲精品美女久久av网站| av在线老鸭窝| 国产乱人偷精品视频| 免费黄频网站在线观看国产| 亚洲精品456在线播放app| 青春草国产在线视频| 免费黄色在线免费观看| 中国国产av一级| 各种免费的搞黄视频| 亚洲精品视频女| 亚洲精品久久久久久婷婷小说| 国产精品国产三级专区第一集| a级毛片在线看网站| 满18在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 精品国产一区二区三区久久久樱花| 亚洲精品美女久久av网站| 亚洲久久久国产精品| 日韩,欧美,国产一区二区三区| 成人亚洲精品一区在线观看| 九草在线视频观看| 国产一区二区激情短视频 | 精品久久久久久电影网| 免费播放大片免费观看视频在线观看| 极品人妻少妇av视频| 一级毛片 在线播放| 免费久久久久久久精品成人欧美视频 | 日日啪夜夜爽| 亚洲第一av免费看| 亚洲三级黄色毛片| 80岁老熟妇乱子伦牲交| 伦精品一区二区三区| 捣出白浆h1v1| 国产探花极品一区二区| 亚洲精品一二三| 91精品三级在线观看| 国产免费又黄又爽又色| 人人妻人人爽人人添夜夜欢视频| 久久久久精品人妻al黑| 亚洲经典国产精华液单| 成人亚洲欧美一区二区av| 亚洲一码二码三码区别大吗| 欧美日韩成人在线一区二区| 日韩制服骚丝袜av| 2018国产大陆天天弄谢| 免费观看a级毛片全部| 免费高清在线观看视频在线观看| 最黄视频免费看| 欧美bdsm另类| 国产成人免费观看mmmm| 黑人高潮一二区| 国产男女内射视频| 日本猛色少妇xxxxx猛交久久| 国产成人av激情在线播放| 中文字幕av电影在线播放| 久久午夜福利片| 国产精品嫩草影院av在线观看| 亚洲五月色婷婷综合| 欧美成人精品欧美一级黄| 免费黄网站久久成人精品| 国产精品麻豆人妻色哟哟久久| 国产精品麻豆人妻色哟哟久久| 免费看不卡的av| 免费看光身美女| 国产白丝娇喘喷水9色精品| 永久网站在线| 久久久久久久久久久久大奶| 91午夜精品亚洲一区二区三区| av福利片在线| 亚洲美女视频黄频| 国产国拍精品亚洲av在线观看| 天美传媒精品一区二区| 精品久久久精品久久久| 精品一区二区三区视频在线| 18禁动态无遮挡网站| 免费黄网站久久成人精品| 精品视频人人做人人爽| 日本黄色日本黄色录像| 夫妻性生交免费视频一级片| 永久免费av网站大全| 一级,二级,三级黄色视频| 日本与韩国留学比较| 亚洲av男天堂| 国产亚洲午夜精品一区二区久久| 天美传媒精品一区二区| 春色校园在线视频观看| 国产黄色视频一区二区在线观看| 国产亚洲一区二区精品| 久久精品国产亚洲av天美| 男人舔女人的私密视频| 美女中出高潮动态图| www.av在线官网国产| 国产精品一区二区在线观看99| 国产女主播在线喷水免费视频网站| 2022亚洲国产成人精品| 精品一区二区三区四区五区乱码 | 22中文网久久字幕| 18在线观看网站| 美女主播在线视频| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂| 美女福利国产在线| 美女国产高潮福利片在线看| 欧美亚洲日本最大视频资源| 精品亚洲成国产av| 亚洲丝袜综合中文字幕| 欧美激情极品国产一区二区三区 | 日韩免费高清中文字幕av| 热re99久久精品国产66热6| 久热久热在线精品观看| av黄色大香蕉| 久久av网站| 亚洲第一区二区三区不卡| 大香蕉久久成人网| 婷婷色综合大香蕉| 一边亲一边摸免费视频| xxxhd国产人妻xxx| 国产亚洲精品久久久com| 精品一区二区三区视频在线| 欧美xxxx性猛交bbbb| 黄色 视频免费看| 老熟女久久久| 午夜免费观看性视频| 亚洲国产日韩一区二区| 国产有黄有色有爽视频| 亚洲精品视频女| 最黄视频免费看| 女人精品久久久久毛片| 多毛熟女@视频| 黄色毛片三级朝国网站| 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 日韩制服丝袜自拍偷拍| 精品视频人人做人人爽| 女人久久www免费人成看片| 老司机影院毛片| 母亲3免费完整高清在线观看 | 日韩欧美一区视频在线观看| 午夜福利视频在线观看免费| 国产又色又爽无遮挡免| 精品少妇黑人巨大在线播放| 九九在线视频观看精品| 91午夜精品亚洲一区二区三区| 日韩精品有码人妻一区| 亚洲综合色网址| 国产成人免费无遮挡视频| 一区二区三区乱码不卡18| 99热全是精品| 亚洲av在线观看美女高潮| 丁香六月天网| 成人午夜精彩视频在线观看| 亚洲国产日韩一区二区| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 欧美激情国产日韩精品一区| 亚洲av国产av综合av卡| √禁漫天堂资源中文www| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲 | 91精品伊人久久大香线蕉| 中文字幕制服av| 久久久久精品人妻al黑| 如日韩欧美国产精品一区二区三区| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡 | 亚洲成人手机| 久久精品aⅴ一区二区三区四区 | 2018国产大陆天天弄谢| 日韩制服丝袜自拍偷拍| freevideosex欧美| 丰满迷人的少妇在线观看| 亚洲成人一二三区av| 国产在线免费精品| av福利片在线| 亚洲国产色片| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 韩国精品一区二区三区 | 久久久久久人人人人人| 一级,二级,三级黄色视频| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 久久人人爽人人爽人人片va| 成年av动漫网址| 天天操日日干夜夜撸| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 国产精品不卡视频一区二区| 国产成人aa在线观看| 欧美精品高潮呻吟av久久| 伦精品一区二区三区| 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 成人亚洲欧美一区二区av| 七月丁香在线播放| 亚洲精品国产av成人精品| 又黄又爽又刺激的免费视频.| 制服丝袜香蕉在线| 亚洲精品国产色婷婷电影| 九九爱精品视频在线观看| 精品福利永久在线观看| 精品一区在线观看国产| 蜜桃国产av成人99| 久久这里有精品视频免费| 人体艺术视频欧美日本| 大香蕉久久成人网| 国产男女内射视频| 曰老女人黄片| av视频免费观看在线观看| 午夜日本视频在线| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 极品人妻少妇av视频| 午夜91福利影院| 国产又爽黄色视频| 日韩av在线免费看完整版不卡| 成人影院久久| 久久精品久久久久久久性| 黄色配什么色好看| 精品国产一区二区久久| 久久午夜福利片| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 最后的刺客免费高清国语| 欧美人与善性xxx| 日韩中文字幕视频在线看片| 国产日韩欧美亚洲二区| 久久这里只有精品19| 丰满饥渴人妻一区二区三| 亚洲国产精品一区二区三区在线| av电影中文网址| 不卡视频在线观看欧美| 黑人欧美特级aaaaaa片| 宅男免费午夜| 黑人猛操日本美女一级片| av在线app专区| 亚洲天堂av无毛| a 毛片基地| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 精品人妻在线不人妻| av片东京热男人的天堂| 久久久久久人妻| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 男女免费视频国产| 大香蕉97超碰在线| 人体艺术视频欧美日本| videossex国产| 精品人妻熟女毛片av久久网站| 一边亲一边摸免费视频| 国产免费又黄又爽又色| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| 另类精品久久| 亚洲美女黄色视频免费看| 国产成人aa在线观看| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 久久久久久久久久成人| 久久人人爽av亚洲精品天堂| 中国美白少妇内射xxxbb| 大片电影免费在线观看免费| 巨乳人妻的诱惑在线观看| 少妇人妻久久综合中文| 久久久久久人人人人人| av福利片在线| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 丝袜在线中文字幕| 国产熟女午夜一区二区三区| 亚洲国产欧美日韩在线播放| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 少妇高潮的动态图| 日韩成人av中文字幕在线观看| 国产成人午夜福利电影在线观看| √禁漫天堂资源中文www| 一级爰片在线观看| 免费不卡的大黄色大毛片视频在线观看| 九九爱精品视频在线观看| 欧美日韩视频精品一区| 另类精品久久| 男人操女人黄网站| 晚上一个人看的免费电影| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站| 满18在线观看网站| 亚洲国产色片| 欧美精品一区二区大全| 国产精品嫩草影院av在线观看| 精品国产露脸久久av麻豆| 中文字幕av电影在线播放| 99re6热这里在线精品视频| 制服人妻中文乱码| 久久久欧美国产精品| 亚洲内射少妇av| 伦精品一区二区三区| www.熟女人妻精品国产 | 久久99一区二区三区| videossex国产| 伦理电影大哥的女人| 国产成人av激情在线播放| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| h视频一区二区三区| 久久人人爽人人爽人人片va| 丝袜喷水一区| 亚洲国产欧美在线一区| 国产成人精品一,二区| av片东京热男人的天堂| tube8黄色片| www.色视频.com| 内地一区二区视频在线| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 日本午夜av视频| 亚洲精品456在线播放app| 视频在线观看一区二区三区| 日韩一区二区三区影片| 欧美精品一区二区免费开放| 欧美 日韩 精品 国产| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 国产国语露脸激情在线看| 亚洲国产成人一精品久久久| 亚洲av成人精品一二三区| 精品99又大又爽又粗少妇毛片| 美女主播在线视频| 久久精品国产亚洲av天美| 精品国产一区二区久久| 国产亚洲精品第一综合不卡 | 久久毛片免费看一区二区三区| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 久久久久久久精品精品| 少妇高潮的动态图| 成人无遮挡网站| 免费av不卡在线播放| 好男人视频免费观看在线| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 久久精品人人爽人人爽视色| av电影中文网址| 国产精品久久久久久久电影| www日本在线高清视频| 免费观看在线日韩| 亚洲国产色片| 丝袜人妻中文字幕| 超碰97精品在线观看| 2022亚洲国产成人精品| 999精品在线视频| 婷婷色综合大香蕉| 国产在线一区二区三区精| 亚洲av男天堂| 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 午夜福利乱码中文字幕| 国产精品欧美亚洲77777| 亚洲人成网站在线观看播放| 在线观看国产h片| 18+在线观看网站| 国产高清国产精品国产三级| 欧美人与善性xxx| 看免费av毛片| 夫妻性生交免费视频一级片| 亚洲四区av| 边亲边吃奶的免费视频| 欧美成人午夜精品| 中文字幕人妻熟女乱码| av在线app专区| 亚洲精品色激情综合| 男女无遮挡免费网站观看| 97在线视频观看| kizo精华| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 高清欧美精品videossex| 最近最新中文字幕大全免费视频 | 成人黄色视频免费在线看| 久久久久久人人人人人| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区 | 又黄又爽又刺激的免费视频.| 国产男人的电影天堂91| 国产不卡av网站在线观看| 亚洲av电影在线观看一区二区三区| 久久久久久久久久成人| 美女内射精品一级片tv| 在线看a的网站| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 99久久人妻综合| 桃花免费在线播放| 日韩欧美一区视频在线观看| 色视频在线一区二区三区| 国产成人精品福利久久| 又黄又粗又硬又大视频| 日韩人妻精品一区2区三区| 亚洲欧美日韩另类电影网站| 五月伊人婷婷丁香| 久久久a久久爽久久v久久| 一边亲一边摸免费视频| 伦精品一区二区三区| 久久国产亚洲av麻豆专区| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 久久99精品国语久久久| 男人舔女人的私密视频| 亚洲国产欧美在线一区| 亚洲欧美成人精品一区二区| 卡戴珊不雅视频在线播放| 亚洲av电影在线进入| 大香蕉97超碰在线| 精品人妻偷拍中文字幕| 久久精品久久久久久久性| av免费观看日本| 九九爱精品视频在线观看| 久久久久视频综合| 18+在线观看网站| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 少妇 在线观看| 亚洲熟女精品中文字幕| 国产亚洲精品第一综合不卡 | 日韩,欧美,国产一区二区三区| 精品卡一卡二卡四卡免费| 午夜福利在线观看免费完整高清在| 亚洲欧美一区二区三区国产| 欧美人与性动交α欧美精品济南到 | 亚洲成人手机| 男女下面插进去视频免费观看 | 亚洲伊人久久精品综合| 欧美97在线视频| 青春草亚洲视频在线观看| av有码第一页| 亚洲精品日本国产第一区| av在线观看视频网站免费| 午夜精品国产一区二区电影| 777米奇影视久久| 日韩成人伦理影院| 9191精品国产免费久久| a级毛片在线看网站| 美女视频免费永久观看网站| 国产精品国产三级国产av玫瑰| 午夜视频国产福利| 高清不卡的av网站| 亚洲欧美精品自产自拍| 丰满饥渴人妻一区二区三| 日本wwww免费看| 免费人成在线观看视频色| 国产综合精华液| 大陆偷拍与自拍| 人妻少妇偷人精品九色| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 亚洲国产精品一区三区| 色网站视频免费| 日韩 亚洲 欧美在线| 美女主播在线视频| 久久国产精品男人的天堂亚洲 | 国产av精品麻豆| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 亚洲欧美色中文字幕在线| 中国国产av一级| 欧美最新免费一区二区三区| 97人妻天天添夜夜摸| 欧美日韩精品成人综合77777| 亚洲国产毛片av蜜桃av| 久久综合国产亚洲精品| 国产精品久久久久久久电影| a级毛色黄片| 日本色播在线视频| 熟妇人妻不卡中文字幕| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 日韩伦理黄色片| 久久人人97超碰香蕉20202| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 男女国产视频网站| 国产一区二区激情短视频 | 成年女人在线观看亚洲视频| av国产精品久久久久影院| 国产成人精品久久久久久| 欧美3d第一页| 国产精品人妻久久久影院| 亚洲av电影在线进入| 下体分泌物呈黄色| 久久久久精品久久久久真实原创| 在线观看免费视频网站a站| 亚洲欧美日韩卡通动漫| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| 日韩av免费高清视频| 久久精品国产亚洲av涩爱| 美女内射精品一级片tv| 视频在线观看一区二区三区| 乱人伦中国视频| 精品一区在线观看国产| 欧美最新免费一区二区三区| 99热全是精品| 一级毛片 在线播放| 欧美激情 高清一区二区三区| 美女内射精品一级片tv| 最新的欧美精品一区二区| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 国产熟女欧美一区二区| 最近的中文字幕免费完整| 精品国产一区二区久久| 国产又色又爽无遮挡免| 国语对白做爰xxxⅹ性视频网站| 婷婷色麻豆天堂久久| 久久精品国产亚洲av天美| av一本久久久久| 国产在线免费精品| 日韩 亚洲 欧美在线| 一区二区av电影网| 18+在线观看网站| 一区二区三区乱码不卡18| 国产黄频视频在线观看| 天天影视国产精品| 高清不卡的av网站| 久久久亚洲精品成人影院| 老熟女久久久| 搡老乐熟女国产| 欧美日韩一区二区视频在线观看视频在线| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美在线一区| 九草在线视频观看| 51国产日韩欧美| 日日撸夜夜添| 尾随美女入室| 老司机亚洲免费影院| 日韩伦理黄色片| 亚洲人成网站在线观看播放| 性色avwww在线观看| 制服诱惑二区| 久久国产精品男人的天堂亚洲 | 寂寞人妻少妇视频99o| 中文字幕亚洲精品专区| 黑人猛操日本美女一级片| 成人亚洲欧美一区二区av| 国产69精品久久久久777片| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品福利久久| 97精品久久久久久久久久精品| 国产成人免费观看mmmm| 亚洲精品美女久久久久99蜜臀 | 午夜av观看不卡| 久久婷婷青草| 欧美日韩国产mv在线观看视频| 街头女战士在线观看网站| 亚洲三级黄色毛片| 大片免费播放器 马上看| 一区二区三区精品91| 夜夜爽夜夜爽视频| 国产成人a∨麻豆精品| 欧美日韩成人在线一区二区| 国产又爽黄色视频| 毛片一级片免费看久久久久| 只有这里有精品99| 国产淫语在线视频| 精品少妇内射三级| 久久99蜜桃精品久久| 免费人成在线观看视频色| 9191精品国产免费久久| 国产精品一国产av| 久久婷婷青草| 一区二区三区乱码不卡18| 婷婷色综合大香蕉| 久久久欧美国产精品| 亚洲av免费高清在线观看| 日韩不卡一区二区三区视频在线| 亚洲国产精品999| 亚洲国产精品成人久久小说| 日本vs欧美在线观看视频| 亚洲国产精品999| 久久久久精品性色| 桃花免费在线播放|