孫美玲 閔凌峰
[摘要]?目的?通過生物信息學(xué)方法對肺腺癌患者的基因表達譜芯片進行分析,研究影響肺腺癌的發(fā)展機制,探索肺腺癌新的治療靶點。方法?從癌癥基因圖譜數(shù)據(jù)庫下載mRNA和miRNA表達數(shù)據(jù),通過R語言和生存分析篩選關(guān)鍵基因并通過數(shù)據(jù)庫生存模塊進行驗證,對預(yù)后相關(guān)基因進行高表達通路富集分析。最后進行關(guān)鍵基因與免疫細胞相關(guān)性分析。結(jié)果?經(jīng)篩選確定關(guān)鍵雙硫死亡基因SLC3A2和關(guān)鍵核激活miRNA(hsa-miR-1293),SLC3A2與hsa-miR-1293表達呈正相關(guān),其表達越高,肺腺癌患者預(yù)后越差。與SLC3A2最顯著相關(guān)的富集通路為氨酰基轉(zhuǎn)移RNA生物合成。SLC3A2與4種差異免疫細胞呈正相關(guān),與4種差異免疫細胞呈負相關(guān)。結(jié)論?hsa-miR-1293正向調(diào)控雙硫死亡基因SLC3A2表達促進肺腺癌的發(fā)生發(fā)展,可為肺腺癌開發(fā)新的治療靶點提供思路。
[關(guān)鍵詞]?肺腺癌;差異表達基因;免疫細胞浸潤;生物信息學(xué)
[中圖分類號]?R734.2??????[文獻標識碼]?A??????[DOI]?10.3969/j.issn.1673-9701.2024.16.019
Hsa-miR-1293?positively?regulates?SLC3A2,?a?disulfide?death?gene?and?promotes?the?development?of?lung?adenocarcinoma
SUN?Meiling,?MIN?Lingfeng
Department?of?Respiratory?and?Critical?Care?Medicine,?North?Jiangsu?Peoples?Hospital?Affiliated?to?Yangzhou?University,?Yangzhou?225001,?Jiangsu,?China
[Abstract]?Objective?To?analyse?the?gene?expression?profile?microarrays?of?lung?adenocarcinoma?patients?by?bioinformatics?methods,?to?study?the?mechanisms?affecting?the?development?of?lung?adenocarcinoma,?and?to?explore?new?therapeutic?targets?for?lung?adenocarcinoma.?Methods?The?mRNA?and?miRNA?expression?data?were?downloaded?from?The?Cancer?Genome?Atlas?database,?key?genes?were?screened?by?R?language?and?survival?analysis?and?verified?by?the?survival?module?of?the?database,?and?high-expression?pathway?enrichment?analysis?was?performed?for?prognostic?related?genes.?Finally,?the?correlation?between?key?genes?and?immune?cells?was?analyzed.?Results?The?key?disulfide?death?gene?SLC3A2?and?key?nuclear?activation?miRNA?(hsa-miR-1293)?were?identified?by?screening.?SLC3A2?was?positively?correlated?with?hsa-miR-1293,?and?the?higher?the?expression,?the?worse?the?prognosis?of?lung?adenocarcinoma?patients.?The?most?relevant?enrichment?pathway?for?SLC3A2?is?aminoacyl?transfer?RNA?biosynthesis.?SLC3A2?was?positively?correlated?with?4?kinds?of?differential?immune?cells?and?negatively?correlated?with?4?kinds?of?differential?immune?cells.?Conclusion?Hsa-miR-1293?positively?regulates?the?expression?of?SLC3A2,?a?disulfide?death?gene,?to?promote?the?occurrence?and?development?of?lung?adenocarcinoma,?which?may?provide?ideas?for?developing?new?therapeutic?targets?for?lung?adenocarcinoma.
[Key?words]?Lung?adenocarcinoma;?Differentially?expressed?gene;?Immune?cell?infiltration;?Bioinformatics
2020年全球癌癥統(tǒng)計報告數(shù)據(jù)顯示,肺癌發(fā)病率居全部惡性腫瘤的第2位,死亡率高居首位[1]。根據(jù)世界衛(wèi)生組織報道,2020年新發(fā)肺癌患者221萬例,因肺癌死亡180萬例,且2019—2028年中國居民肺癌死亡率時間序列預(yù)測模型預(yù)測未來中國肺癌粗死亡率呈上升趨勢[2-4]。癌癥源于正常細胞轉(zhuǎn)化為異質(zhì)癌細胞,即細胞身份的喪失。增強子是調(diào)節(jié)基因特異性表達的關(guān)鍵順式調(diào)節(jié)元件,增強子轉(zhuǎn)換可誘發(fā)細胞身份喪失,然而活性增強子區(qū)域內(nèi)有微RNA(microRNA,miRNA)基因位點的重疊,這些重疊的miRNA被稱作核激活miRNA(nuclear?activating?microRNA,NamiRNA),并具有觸發(fā)激活增強子的功能。因此,研究NamiRNA與癌癥之間的作用機制具有重要意義。已有研究表明通過NamiRNA網(wǎng)絡(luò)的增強子轉(zhuǎn)換可重新激活乳腺癌中的腫瘤抑制因子[5-6]。雙硫死亡是新近發(fā)現(xiàn)的一種新型細胞死亡方式,在葡萄糖饑餓下,腎癌細胞溶質(zhì)載體家族7成員11(solute?carrier?family?7?member?11,SLC7A11)介導(dǎo)半胱氨酸攝取,導(dǎo)致細胞質(zhì)中還原型煙酰胺腺嘌呤二核苷酸磷酸耗竭,使對細胞有毒的二硫化物積累,進一步誘導(dǎo)肌動細胞骨架蛋白之間二硫鍵的形成和肌動蛋白絲網(wǎng)絡(luò)的崩潰,最終導(dǎo)致二硫鍵積累引發(fā)死亡。因此,本研究探討NamiRNA如何調(diào)控雙硫死亡相關(guān)基因表達從而影響肺腺癌患者的預(yù)后。
1??資料與方法
1.1??一般資料
從癌癥基因圖譜(The?Cancer?Genome?Atlas,TCGA)數(shù)據(jù)庫下載mRNA表達數(shù)據(jù)(FPKM格式),包括肺腺癌組織樣本541例,癌旁組織樣本59例,同時下載其相關(guān)臨床資料(包括年齡、性別、生存時間和生存狀態(tài)等);然后下載成熟miRNA表達數(shù)據(jù),包括肺腺癌組織樣本521例,癌旁組織樣本46例。查閱文獻收集雙硫死亡相關(guān)基因23個[7-8]。
1.2??數(shù)據(jù)處理及關(guān)鍵差異表達基因篩選
通過R語言limma、edgeR軟件包,以錯誤發(fā)現(xiàn)率(false?discovery?rate,F(xiàn)DR)<0.05和差異倍數(shù)(|log2?fold?change|,|log2FC|)≥1.7為閾值,篩選出差異表達基因(differentially?expressed?gene,DEG),通過pheatmap軟件包繪制熱圖和火山圖。通過R語言survival軟件包,對DEG進行Kaplan-Meier(K-M)生存分析,進一步篩選出關(guān)鍵基因。通過R語言car、stats軟件包分析關(guān)鍵基因在33種泛癌中的表達情況。通過GEPIA(Gene?Expression?Profiling?Interactive?Analysis)數(shù)據(jù)庫生存模塊進行驗證。
1.3??單樣本基因集富集分析
對關(guān)鍵DEG進行基因集富集分析(gene?set?enrichment?analysis,GSEA),以P<0.05、FDR<0.25為顯著富集,選取前10個高表達基因富集通路進行單樣本基因集富集分析(single?sample?gene?set?enrichment?analysis,ssGSEA)。
1.4??關(guān)鍵差異NamiRNA篩選
通過R進行差異分析,以FDR<0.05和|log2FC|≥1為閾值,篩選出差異表達NamiRNA(differentially?expressed?NamiRNA,DNR)。對DNR進行單因素Cox回歸分析,與上調(diào)DNR取交集,隨后將交集基因進行K-M生存分析和單因素Cox回歸分析,篩選預(yù)后相關(guān)DNR。分析DEG和DNR的相關(guān)性,得到關(guān)鍵DNR。通過ENCORI數(shù)據(jù)庫(https://rnasysu.com/?encori/panCancer.php)的表達及生存模塊進行驗證。
1.5??關(guān)鍵DEG免疫相關(guān)性分析
通過CIBERSORT計算22種免疫細胞的浸潤程度,并通過R語言barplot軟件包可視化。最后進行關(guān)鍵DEG與免疫細胞浸潤相關(guān)性分析,P<0.05為顯著相關(guān),并繪制棒棒糖圖。
1.6??統(tǒng)計學(xué)方法
采用R語言4.2.3版本進行統(tǒng)計分析和生物信息學(xué)分析,并使用Pearson、Wilcoxon?rank?sum?test探索相關(guān)性。P<0.05為差異有統(tǒng)計學(xué)意義。
2??結(jié)果
2.1??關(guān)鍵DEG的篩選及驗證
差異表達分析共獲得13個DEG,其中10個上調(diào),3個下調(diào),見圖1A。13個DEG?K-M生存分析顯示僅SLC3A2基因具有統(tǒng)計學(xué)意義(P<0.05),SLC3A2基因表達越高,預(yù)后越差,并通過GEPIA數(shù)據(jù)庫驗證,見圖1B、C、D。同時,SLC3A2在14種癌癥中均高表達,見圖1E。
2.2??SLC3A2高表達通路富集分析
根據(jù)GSEA和ssGSEA富集分析,選取相關(guān)性前10的高表達基因富集通路,見圖2。
2.3??DNR篩選
通過差異表達分析,獲得426個DNR,其中293個上調(diào),133個下調(diào),見圖3A。同時進行單因素Cox回歸分析,獲得251個DNR,與上調(diào)的DNR取交集,獲得47個關(guān)鍵上調(diào)的DNR,見圖3B。
2.4??DNR生存分析及與SLC3A2的相關(guān)性分析
47個DNR進行K-M生存分析,其中14個DNR有統(tǒng)計學(xué)意義(P<0.05),隨后與SLC3A2進行Spearman相關(guān)性分析,最終經(jīng)K-M生存分析、單因素Cox分析和Spearman相關(guān)性分析取交集得到3個基因,即hsa-miR-548f-3p、hsa-miR-1293、hsa-?miR-5001-3p,見表1。結(jié)合這3個NamiRNA在肺腺癌中的表達水平及在ENCORI數(shù)據(jù)庫的表達與生存模塊驗證,確定hsa-miR-1293為關(guān)鍵NamiRNA,見圖4。
2.5??免疫細胞浸潤及與SLC3A2的相關(guān)性分析
通過CIBERSORT計算22種免疫細胞在肺腺癌樣本中的浸潤程度,其中初始CD4+T細胞在所有樣本中無表達,可見每個樣本中免疫細胞含量有差異,見圖5A;隨后進行免疫細胞的差異分析,獲得9種差異免疫細胞,見圖5C。然后將SLC3A2與其余21種免疫細胞進行相關(guān)性分析,SLC3A2與5個免疫細胞呈正相關(guān)(P<0.05),與5個免疫細胞呈負相關(guān)(P<0.05),見圖5B。將9種差異免疫細胞和10種與SLC3A2相關(guān)的免疫細胞取交集,最后得到8種與SLC3A2相關(guān)的差異免疫細胞,它們分別是記憶B細胞、漿細胞、靜息記憶CD4+T細胞、濾泡輔助性T細胞、調(diào)節(jié)性T細胞、巨噬細胞M0、靜息樹突狀細胞、靜息肥大細胞。
3??討論
肺癌是全球死亡率居首位的惡性腫瘤,也是中國發(fā)病率和死亡率最高的腫瘤,給社會帶來沉重負擔(dān)。盡管針對肺腺癌的治療方式較多,如放療、化療、免疫治療和靶向治療等,但肺腺癌患者的死亡率仍較高,迫使人們不斷探索新的藥物和治療靶點。雙硫死亡是新發(fā)現(xiàn)的一種細胞死亡方式,研究證明活化T細胞核因子介導(dǎo)的SLC7A11上調(diào)在破骨細胞分化過程中誘導(dǎo)對TXNRD1抑制劑的靶向代謝敏感度[9]。本研究主要通過生物信息學(xué)技術(shù),收集并整理肺腺癌組織樣本及癌旁組織樣本雙硫死亡相關(guān)基因表達數(shù)據(jù),以獲得可能的新治療靶點,進而預(yù)測相關(guān)分子在肺腺癌的生理病理機制。
本研究發(fā)現(xiàn)10個上調(diào)DEG(CD2AP、LRPPRC、SLC7A11、RPN1、GYS1、NCKAP1、NDUFS1、SLC3A2、NUBPL、NDUFA11),只有SLC3A2表達越高,肺腺癌患者預(yù)后越差。SLC3A2是高溶質(zhì)載體家族成員,在多種腫瘤中高表達,體內(nèi)外實驗表明敲低SLC3A2可減少雌激素受體陽性乳腺癌細胞的增殖,并增加乳腺癌細胞對他莫昔芬的敏感度[10-11]。
腫瘤相關(guān)巨噬細胞是腫瘤微環(huán)境中最豐富的免疫抑制細胞之一,敲低SLC3A2可改變肺癌腫瘤微環(huán)境中的花生四烯酸,從而影響肺癌細胞代謝,抑制肺癌進展[12]。SLC3A2輕鏈抗體(人源化單克隆抗體IGN523)已在多種實體腫瘤(包括非小細胞肺癌)中表現(xiàn)出臨床前抗腫瘤活性。Nachef等[13]提出上調(diào)SLC1A5、SLC3A2和SLC7A5轉(zhuǎn)運蛋白可促進免疫細胞增殖和效應(yīng)功能,增強自然殺傷細胞和T細胞的代謝適應(yīng)性,成為新的免疫治療方向。因此,本研究進行SLC3A2與免疫細胞相關(guān)性分析,發(fā)現(xiàn)SLC3A2與巨噬細胞M0、濾泡輔助性T細胞、漿細胞、調(diào)節(jié)性T細胞均呈正相關(guān),而與肺腺癌患者預(yù)后呈負相關(guān),這些免疫細胞表達越高,患者預(yù)后越差;與靜息肥大細胞、記憶B細胞、靜息樹突狀細胞、靜息記憶CD4+T細胞呈負相關(guān),這些免疫細胞表達越高,預(yù)后越好。
ssGSEA分析發(fā)現(xiàn)與SLC3A2最相關(guān)的基因富集通路為氨?;D(zhuǎn)移RNA生物合成,其關(guān)鍵酶為氨?;D(zhuǎn)移RNA合成酶,可借特定氨基酸與其同源轉(zhuǎn)移RNA匹配,并共價連接供蛋白質(zhì)合成。目前已知氨?;D(zhuǎn)移RNA合成酶參與腫瘤的發(fā)生、血管生成和免疫反應(yīng)等病理生理過程[14-17]。本研究提出SLC3A2可通過氨?;D(zhuǎn)移RNA生物合成,與肺腺癌的發(fā)生發(fā)展密切相關(guān)。關(guān)鍵NamiRNA(hsa-miR-1293)在肺腺癌樣本中表達上調(diào),與SLC3A2呈正相關(guān),表達越高,患者預(yù)后越差。基于數(shù)據(jù)庫挖掘分析,hsa-miR-1293被確定為腎細胞癌的潛在生物標志物,已構(gòu)建多種hsa-miR-1293相關(guān)預(yù)后模型,用于預(yù)測肺腺癌患者的預(yù)后[18-21]。研究證明hsa-miR-1293可通過直接抑制DNA修復(fù)基因APEX1、RPA1和POLD4抑制DNA修復(fù)途徑,同時抑制BRD4協(xié)同抑制體內(nèi)外腫瘤細胞生長,這可能是一個有希望的治療靶點[22]。
綜上所述,hsa-miR-1293正向調(diào)控雙硫死亡基因SLC3A2表達促進肺腺癌的發(fā)生發(fā)展,可為肺腺癌開發(fā)新的治療靶點提供思路。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] SUNG?H,?Ferlay?J,?Siegel?R?L,?et?al.?Global?cancer?statistics?2020:?GLOBOCAN?estimates?of?incidence?and?mortality?worldwide?for?36?cancers?in?185?countries[J].?CA?Cancer?J?Clin,?2021,?71(3):?209–249.
[2] Xia?C,?Dong?X,?Li?H,?et?al.?Cancer?statistics?in?China?and?United?States,?2022:?profiles,?trends,?and?determinants[J].?Chin?Med?J?(Engl),?2022,?135(5):?584–590.
[3] 劉慧敏,?周乾宇,?賈善群,?等.?2004-2018年中國肺癌死亡趨勢分析及預(yù)測[J].?中國預(yù)防醫(yī)學(xué)雜志,?2021,?22(12):?913–919.
[4] Schabath?M?B,?Cote?M?L.?Cancer?progress?and?priorities:?Lung?cancer[J].?Cancer?Epidemiol?Biomarkers?Prev,?2019,?28(10):?1563–1579.
[5] Liang?Y,?Lu?Q,?Li?W,?et?al.?Reactivation?of?tumour?suppressor?in?breast?cancer?by?enhancer?switching?through?NamiRNA?network[J].?Nucleic?Acids?Res,?2021,?49(15):?8556–8572.
[6] Liang?Y,?Xu?P,?Zou?Q,?et?al.An?epigenetic?perspective?on?tumorigenesis:?Loss?of?cell?identity,?enhancer?switching,?and?NamiRNA?network[J].?Semin?Cancer?Biol,?2019,?57:?596–604.
[7] Liu?X,?Nie?L,?Zhang?Y,?et?al.?Actin?cytoskeleton?vulnerability?to?disulfide?stress?mediates?disulfidptosis[J].?Nat?Cell?Biol,?2023,?25(3):?404–414.
[8] Zheng?P,?Zhou?C,?Ding?Y,?et?al.?Disulfidptosis:?A?new?target?for?metabolic?cancer?therapy[J].?J?Exp?Clin?Cancer?Res,?2023,?42(1):?103.
[9] Zhong?Z,?Zhang?C,?Ni?S,?et?al.?NFATc1-mediated?expression?of?SLC7A11?drives?sensitivity?toTXNRD1?inhibitors?in?osteoclast?precursors[J].?Redox?Biol,?2023,?63:?102711.
[10] El?Ansari?R,?Craze?M?L,?Diez-Rodriguez?M,?et?al.?The?multifunctional?solute?carrier?3A2?(SLC3A2)?confers?a?poor?prognosis?in?the?highly?proliferative?breast?cancer?subtypes[J].?BrJ?Cancer,?2018,?118(8):?1115–1122.
[11] ALFARSI?L?H,?EL-ANSARI?R,?CRAZE?M?L,?et?al.?Co-expression?effect?of?SLC7A5/SLC3A2?to?predict?response?to?endocrine?therapy?in?oestrogen-receptor-?positive?breast?cancer[J].?Int?J?Mol?Sci,?2020,?21(4):?1407.
[12] Li?Z,?Chen?S,?He?X,?et?al.?SLC3A2?promotes?tumor-?associated?macrophage?polarization?through?metabolic?reprogramming?in?lung?cancer[J].?Cancer?Sci,?2023,?114(6):?2306–2317.
[13] Nachef?M,?Ali?A?K,?Almutairi?S?M,?et?al.?Targeting?SLC1A5?and?SLC3A2/SLC7A5?as?a?potential?strategy?to?strengthen?anti-tumor?immunity?in?the?tumor?microenvironment[J].?Front?Immunol,?2021,?12:?624324.
[14] Mirando?A?C,?Abdi?K,?Wo?P,?et?al.?Assessing?the?effects?of?threonyl-tRNA?synthetase?on?angiogenesis-?related?responses[J].?Methods,?2017,?113:?132–138.
[15] Gao?X,?Guo?R,?Li?Y,?et?al.?Contribution?of?upregulated?aminoacyl-tRNA?biosynthesis?to?metabolic?dysregulation?in?gastric?cancer[J].?J?Gastroenterol?Hepatol,?2021,?36(11):?3113–3126.
[16] Sung?Y,?Yoon?I,?Han?J?M,?et?al.?Functional?and?pathologic?association?of?aminoacyl-tRNA?synthetases?with?cancer[J].?Exp?Mol?Med,?2022,?54(5):?553–566.
[17] Wusiman?W,?Zhang?Z,?Ding?Q,?et?al.?The?pathophyiological?role?of?aminoacyl-tRNA?synthetases?in?digestive?system?diseases[J].?Front?Physiol,?2022,?13:?935576.
[18] Dias?F,?Teixeira?A?L,?Nogueira?I,?et?al.?Extracellular?vesicles?enriched?in?hsa-miR-301a-3p?and?hsa-miR-1293?dynamics?in?clear?cell?renal?cell?carcinoma?patients:?Potential?biomarkers?of?metastatic?disease[J].?Cancers?(Basel),?2020,?12(6):?1450.
[19] Luo?W,?Wang?L,?Luo?M?H,?et?al.?Hsa-miR-3199-2?and?hsa-miR-1293?as?novel?prognostic?biomarkers?of?papillary?renal?cell?carcinoma?by?COX?ratio?risk?regression?model?screening[J].?J?Cell?Biochem,?2017,?118(10):?3488–3494.
[20] Ma?Y,?Zou?H.?Identification?of?the?circRNA-miRNA-?mRNA?prognostic?regulatory?network?in?lung?adeno-?carcinoma[J].?Genes?(Basel),?2022,?13(5):?885.
[21] Li?J,?Gu?X,?Gao?C,?et?al.?Six?microRNA?prognostic?models?for?overall?survival?of?lung?adenocarcinoma[J].?Genet?Res?(Camb),?2022,?2022:?5955052.
[22] Takagawa?Y,?Gen?Y,?Muramatsu?T,?et?al.?miR-1293,?a?candidate?for?miRNA-based?cancer?therapeutics,?simultaneously?targets?BRD4?and?the?DNA?repair?pathway[J].?Mol?Ther,?2020,?28(6):?1494–1505.
(收稿日期:2023–10–10)
(修回日期:2024–05–17)