李紫微 張津銘 于牧鑫 劉瀟鈺 沈海燕 季霞
[摘要]?幽門螺桿菌(Helicobacter?pylori,HP)定植于胃上皮黏膜后,可經(jīng)非萎縮性胃炎、慢性萎縮性胃炎、腸上皮化生和異型增生最終發(fā)展為胃癌,而巨噬細胞在此過程中發(fā)揮重要作用。HP中的多種毒性物質可通過巨噬細胞表面受體、改變胃內(nèi)微環(huán)境、激活其他免疫細胞等多種途徑使巨噬細胞發(fā)生極化失衡,導致慢性炎癥和免疫抑制,從而促進胃癌的發(fā)生。巨噬細胞在胃炎和胃癌中的作用使其成為個體化治療的新靶點。本文對巨噬細胞極化失衡在HP相關胃炎及胃癌中作用的研究進展予以綜述。
[關鍵詞]?巨噬細胞;極化;幽門螺桿菌;胃炎;胃癌
[中圖分類號]?R735.2;R573.3??????[文獻標識碼]?A??????[DOI]?10.3969/j.issn.1673-9701.2024.16.030
胃癌的發(fā)病率和死亡率均較高,居全球癌癥致死原因的第3位,占癌癥致死總數(shù)的7.7%[1]。慢性炎癥、免疫抑制與腫瘤的發(fā)生密切相關。幽門螺桿菌(Helicobacter?pylori,HP)定植于胃黏膜上皮后,產(chǎn)生細胞毒素相關基因A(cytotoxin-associated?gene?A,CagA)和空泡毒素A(vacuolating?cytotoxin?A,VacA)等物質,激活胃黏膜固有免疫,導致胃黏膜慢性炎癥[2]。巨噬細胞是固有免疫反應的參與者,在腫瘤相關炎癥中發(fā)揮主導作用,巨噬細胞發(fā)揮作用的關鍵步驟之一是極化[3]。巨噬細胞極化是在變化的微環(huán)境中改變其表型,向M1型或M2型轉化,并發(fā)揮不同作用。M1型巨噬細胞具有抗腫瘤和殺滅微生物的功能,可引起組織損傷,抑制組織再生;M2型巨噬細胞可修復組織損傷;M1型和M2型巨噬細胞的動態(tài)平衡可確保機體的免疫功能適當,并避免組織損傷[4]。
HP誘導的巨噬細胞極化失衡在胃炎和胃癌中起重要作用。M1型巨噬細胞合成并分泌促炎細胞因子,產(chǎn)生炎癥反應,在非萎縮性胃炎(non-atrophic?gastritis,NAG)和慢性萎縮性胃炎(chronic?atrophic?gastritis,CAG)階段發(fā)揮主要作用[5];而M2型巨噬細胞通過合成并分泌免疫相關細胞因子促進腫瘤進展,在腸上皮化生(intestinal?metaplasia,IM)、異型增生(dysplasia,Dys)和胃癌階段發(fā)揮作用[6-7]。HP誘導巨噬細胞極化失衡在胃炎至胃癌動態(tài)變化中的作用機制仍未得到充分闡述。本文對HP誘導巨噬細胞極化的機制及兩種類型巨噬細胞在胃炎和胃癌進展中的作用進行綜述,旨在為胃炎和胃癌的臨床治療提供新思路。
1??HP誘導巨噬細胞極化失衡
1.1??HP誘導巨噬細胞向M1型極化
HP是Ⅰ類致癌因子,可誘導巨噬細胞極化失衡,在慢性胃炎向胃癌的發(fā)展過程中發(fā)揮重要作用。在HP感染胃黏膜早期,機體固有免疫系統(tǒng)被激活,趨化因子配體2、巨噬細胞集落刺激因子(macrophage?colony?stimulating?factor,MCSF)等趨化因子將巨噬細胞聚集至感染部位并產(chǎn)生多種效應殺滅HP。但HP產(chǎn)生的多種毒性物質可作用于巨噬細胞并改變其作用機制,導致感染持續(xù),形成慢性炎癥,經(jīng)NAG、CAG、IM和Dys,最終發(fā)展為胃癌。巨噬細胞與病原體在局部微環(huán)境中分泌的毒性物質結合,產(chǎn)生促炎信號并通過級聯(lián)反應使巨噬細胞向M1型分化;同時,巨噬細胞也可在MCSF、γ干擾素(interferon-γ,IFN-γ)等細胞因子刺激下向M1型分化。M1型巨噬細胞的生物標志物有CD68、CD86和主要組織相容性復合體Ⅱ類共刺激分子[8]。概括而言,HP可通過以下途徑誘導巨噬細胞發(fā)生M1型極化。
巨噬細胞表面受體與HP產(chǎn)生的毒性物質結合,通過多條信號通路使巨噬細胞向M1型極化。多項研究表明幽門螺桿菌中性粒細胞激活蛋白(Helicobacter?pylori?neutrophil-activating?protein,HP-NAP)、CagA、VacA可與Toll樣受體(toll-like?receptor,TLR)結合,激活核因子κB(nuclear?factor-κB,NF-κB)、信號轉導及轉錄活化因子(signal?transducer?and?activator?of?transcription,STAT)1和STAT6信號通路[9-12];脂多糖與TLR4結合,激活炎癥小體NLRP3/胱天蛋白酶(cysteinyl?aspartate?specific?proteinase,caspase)-1信號通路[13-14];HP感染可降低微RNA(microRNA,miR)-4270的表達,激活免疫受體CD300E,誘導巨噬細胞向M1型極化[15]。研究證實腫瘤壞死因子-α(tumor?necrosis?factor-α,TNF-α)還可通過激活表皮生長因子受體(epidermal?growth?factor?receptor,EGFR)信號通路促進M1型巨噬細胞極化[16]。
另外,HP感染可導致炎癥因子增多,促進氧化反應,導致活性氧(reactive?oxygen,ROS)水平升高,改變胃內(nèi)微環(huán)境,從而使M1型巨噬細胞占比升高。CagA由Ⅳ型分泌系統(tǒng)轉運至胃黏膜上皮細胞,提高微環(huán)境中白細胞介素(interleukin,IL)-6、IL-8和IL-18的水平,介導巨噬細胞向M1型極化[17]。HP的持續(xù)感染可造成炎癥小體的慢性活化,經(jīng)多條信號通路發(fā)生M1型巨噬細胞極化,從而引發(fā)胃黏膜萎縮,如重組TNF-α誘導蛋白(TNF-α-inducing?protein,Tipα)可激活NF-κB/NLRP3/caspase-1信號通路[18];缺氧誘導因子-α、ROS可激活NLRP3/蛋白激酶B(protein?kinase?B,PKB,又稱Akt)/哺乳動物雷帕霉素靶蛋白(mammalian?target?of?rapamycin,mTOR)信號通路[8]。TLR4亦可通過激活NLRP3介導巨噬細胞的M1型極化,但具體機制有待探究。HP感染可激活胃黏膜細胞的氧化反應,使胃內(nèi)微環(huán)境中ROS增多,通過Akt/mTOR途徑促進巨噬細胞的M1型極化[19]。HP還可通過酶類物質改變局部微環(huán)境,如HP相關性胃炎中乙酰肝素酶的活化可通過p38絲裂原活化蛋白激酶(mitogen-activated?protein?kinase,MAPK)和NF-κB信號通路介導巨噬細胞向M1型極化[20-21]。HP通過分解尿素、中和胃酸促進胃泌素的釋放,胃泌素可通過激活Hedgehog信號通路將巨噬細胞招募到感染部位并于此微環(huán)境中成熟極化[22]。HP可通過誘導其他免疫細胞的活化促進巨噬細胞向M1型極化。HP感染還可增加微環(huán)境中巨噬細胞移動抑制因子(macrophage?migration?inhibitory?factor,MIF)的表達,MIF促進T細胞增殖進而分泌TNF-α等細胞因子介導巨噬細胞向M1型極化[23];HP-NAP通過促進輔助性T細胞1的免疫反應促進IL-6、IL-8和TNF-α表達,形成巨噬細胞向M1型極化的微環(huán)境[12]。
1.2??HP誘導巨噬細胞向M2型極化
炎癥的持續(xù)進展可加重胃黏膜損傷,使胃內(nèi)微環(huán)境發(fā)生改變而不適合HP定植。在這種情況下,HP與胃內(nèi)微環(huán)境共同作用促使巨噬細胞向M2型極化。M2型巨噬細胞可在輔助性T細胞2型細胞因子(IL-4、IL-5)的刺激下誘導分化。M2型巨噬細胞的生物標志物有CD206、CD163共刺激分子及CD200R膜糖蛋白等。
HP及其毒性產(chǎn)物可與多種受體結合使巨噬細胞向M2型極化。CagA可與巨噬細胞表面的EGFR結合,激活NF-κB信號通路[24];尿素酶B(urease?B,UreB)可與TLR2結合使巨噬細胞由M1型向M2型轉化[25];脂多糖與TLR4結合可激活NF-κB和STAT3信號通路,并調節(jié)B細胞淋巴瘤2(B-cell?lymphoma?2,Bcl-2)的轉錄和表達,介導巨噬細胞發(fā)生M2型極化[26];Tipα是HP特有的致癌因子,其可與胃黏膜上皮細胞表達的核仁素受體結合,并通過IL-6/?STAT3信號通路介導巨噬細胞發(fā)生M2型極化[27]。綜上,相同巨噬細胞受體與不同的HP毒性產(chǎn)物結合時可向不同方向極化。巨噬細胞的主要表型在胃炎至胃癌進展過程中發(fā)生改變,HP在不同感染階段釋放的毒性產(chǎn)物是否也發(fā)生變化仍需進一步研究。
胃內(nèi)微環(huán)境的變化也可促進M2型巨噬細胞極化。前列腺素E2(prostaglandin?E2,PGE2)的表達水平與M2型巨噬細胞水平呈正相關,并使M2型巨噬細胞高表達趨化因子配體2,進一步誘導其他免疫細胞的聚集。HP-NAP使葡萄糖轉運體的生成增加,通過多種酶的作用促進微環(huán)境中乳酸和還原型煙酰胺腺嘌呤二核苷酸磷酸的產(chǎn)生,使巨噬細胞向M2型極化[28]。HP感染通過增強巨噬細胞內(nèi)蛋氨酸循環(huán)的活性上調蛋氨酸腺苷轉移酶的表達水平,使巨噬細胞中組蛋白發(fā)生甲基化并增加受體相互作用蛋白的表達,從而介導巨噬細胞向M2型極化[29]。
2??巨噬細胞極化失衡在胃炎和胃癌中的作用
在胃炎至胃癌的進展過程中,M1與M2型巨噬細胞的水平是動態(tài)變化的。在NAG和CAG階段,巨噬細胞向M1型極化,通過合成并分泌趨化因子和促炎因子導致炎癥慢性化;在炎癥和IM階段,巨噬細胞由M1型向M2型轉化,此時M1型與M2型巨噬細胞同時存在于胃內(nèi)微環(huán)境中;在Dys和胃癌階段,M2型巨噬細胞占據(jù)優(yōu)勢,通過合成并分泌免疫抑制相關因子,促進腫瘤細胞的產(chǎn)生。
2.1??M1型巨噬細胞與NAG和萎縮性胃炎
M1型巨噬細胞可通過吞噬作用清除病原體,介導炎癥反應,保護宿主。巨噬細胞的過度聚集和炎癥反應可對宿主造成不良影響,如傷口不愈合、組織無法再生等。胃黏膜感染初期形成急性胃炎,后進展為慢性胃炎。在此過程中,M1型巨噬細胞極化顯著增強,其產(chǎn)生并分泌大量炎癥性趨化因子和促炎細胞因子。
IL-1β與ROS對胃黏膜上皮細胞有損傷作用。M1型巨噬細胞可通過分泌NLRP3活化caspase-1,促進IL-1β和ROS的分泌,造成細胞凋亡,加速胃黏膜萎縮[30]。IL-1β作為胃酸分泌的抑制劑,可引起胃黏膜萎縮,為IM和胃癌的發(fā)展提供條件。Shigematsu等[31]研究發(fā)現(xiàn),過表達IL-1β的轉基因小鼠中,CAG至胃癌的發(fā)展速度更快。IL-1β可通過多條信號通路導致胃黏膜上皮細胞DNA發(fā)生甲基化,從而導致胃癌。IL-1β還可通過激活NF-κB信號通路,釋放大量一氧化氮,從而造成DNA損傷[32]。IL-1β和TNF-α通過NF-κB途徑依賴方式促進胃黏膜上皮細胞重組人E26轉錄因子1的表達,導致慢性炎癥的發(fā)生[33]。ROS對胃黏膜上皮細胞有致癌作用[34]。
此外,M1型巨噬細胞分泌的TNF-α、外泌體miRNA等在炎癥過程中發(fā)揮重要作用,且與早期胃癌的發(fā)生密切相關。如IL-8、IL-18和TNF-α等可激活細胞外信號調節(jié)激酶(extracellular?signal-regulated?kinase,ERK)1/2造成胃黏膜上皮細胞損傷[35];IL-22可誘導產(chǎn)生與IFN-γ有關的T細胞反應,從而加劇胃部炎癥[36]。M1型巨噬細胞通過分泌miR-155促進多種免疫細胞產(chǎn)生TNF-α、IL-23、IL-6,作用于胃黏膜上皮細胞導致胃黏膜萎縮[37]。
2.2??M2型巨噬細胞與IM、Dys和胃癌
在慢性胃炎早期,M1型巨噬細胞發(fā)揮主要作用,通過釋放炎癥細胞因子促進炎癥反應,適量的炎癥細胞因子對宿主是有利的,但隨著M1型巨噬細胞的不斷增多,炎癥因子過度釋放會損害胃黏膜。此后,胃內(nèi)微環(huán)境中M2型巨噬細胞的比例增加,通過釋放抗炎因子修復過量的炎癥因子所致?lián)p傷。巨噬細胞的極化平衡可修復損傷,若極化失衡則導致疾病朝著胃癌方向進展。在Dys、胃癌進展過程中,M1型巨噬細胞的比例逐漸減少,胃內(nèi)炎癥反應減弱,而M2型巨噬細胞的過度形成使胃黏膜上皮細胞損傷加重,從而導致胃癌的發(fā)生。
M2型巨噬細胞釋放的細胞因子可通過多條信號通路促進胃癌的發(fā)生。Tipα可激活Wnt/β-連環(huán)蛋白信號通路,導致癌基因的異常表達[17]。IL-6可激活STAT3信號通路,促進細胞分裂,導致胃癌細胞的增殖和遷移[38]。轉化生長因子-β(Transforming?growth?factor-β,TGF-β)可誘導神經(jīng)元再生相關蛋白的表達,促進上皮間質轉化[39]。缺氧環(huán)境中產(chǎn)生的血管內(nèi)皮生長因子、血小板衍生生長因子、纖維母細胞生長因子等可通過MAPK和ERK等信號通路促進胃癌的發(fā)生。此外,腫瘤細胞通過分泌人白細胞抗原復合體18、長鏈非編碼RNA介導巨噬細胞發(fā)生M2型極化,進一步加快胃癌進展[40]。
2.3??M2型巨噬細胞與進展期胃癌
已有研究證明,胃癌微環(huán)境中M2型巨噬細胞的富集與胃癌的預后呈負相關,主要原因是M2型巨噬細胞表達的IL-10、TGF-β、表皮生長因子等可促進腫瘤細胞的增殖和存活,并促進血管生成;M2型巨噬細胞的浸潤程度與胃癌細胞的增殖和轉移密切相關。
M2型巨噬細胞分泌的IL-10和TGF-β可通過NF-κB和STAT3信號通路調節(jié)相關基因的轉錄和表達,如與細胞增殖和凋亡相關的Bcl-2[41]?;|金屬蛋白酶(matrix?metalloproteinase,MMP)在細胞生長發(fā)育、疾病的病理破壞中發(fā)揮作用。M2型巨噬細胞表達殼多糖酶3樣蛋白1,通過IL-13Rα2的激活及ERK1/2和c-Jun氨基末端激酶的磷酸化促進MMP的表達,有利于胃癌細胞的轉移[42]。此外,血管內(nèi)皮生長因子、IL-10、雙調蛋白和MMP-1可直接或間接消耗CD8+T細胞,促進腫瘤細胞的侵襲和增殖[43]。miR-487a可下調胃癌細胞中T細胞內(nèi)抗原-1的表達,促進胃癌細胞的擴散和轉移[44]。
3??免疫治療和靶向治療
胃癌患者從化療和靶向治療中受益較少,其主要原因是腫瘤的轉移、復發(fā)和耐藥性等。
M1型巨噬細胞的復極化可用于胃癌的治療。在標準的一線化療中,氟嘧啶和鉑類藥物通過Wnt信號通路阻斷巨噬細胞中程序性死亡蛋白1的表達,從而實現(xiàn)M1型巨噬細胞的復極化[45]。重樓皂苷Ⅱ和雷西莫特也可通過M1型巨噬細胞的復極化用于胃癌的局部免疫治療,但具體機制不明[46]。抑制M2型巨噬細胞可能是靶向治療胃癌的另一條途徑。高表達趨化因子配體12可促進M2型巨噬細胞的遷移,曲尼司特可通過抑制腫瘤相關成纖維細胞釋放趨化因子配體12,從而抑制M2型巨噬細胞的遷移活性[47]。此外,M2型巨噬細胞的極化和聚集與集落刺激因子-1有關,emactuzumab可通過結合集落刺激因子-1R抑制M2型巨噬細胞極化,用于胃癌的臨床治療[48]。
M2巨噬細胞與胃癌耐藥性密切相關。賴氨酰氧化酶與細胞外基質重塑的胺氧化酶合成有關,并參與腫瘤細胞的增殖、遷移、侵襲和轉移。賴氨酰氧化酶過度表達可激活Wnt和NF-κB信號通路,促進M2型巨噬細胞極化,使胃癌細胞的免疫逃逸和耐藥性增強,導致胃癌預后不佳[49]。CRNDE是一種RNA基因,參與細胞的增殖﹑遷移和侵襲,M2型巨噬細胞高表達CRNDE,通過張力蛋白同源物和磷酸酶泛素化,使胃癌對順鉑產(chǎn)生耐藥性[50]。M2型巨噬細胞分泌的miR-223與奧沙利鉑的耐藥相關,但具體機制尚不明確[51]。因此,阻斷以上途徑可降低胃癌的耐藥性。萎縮性胃炎、IM屬于癌前狀態(tài),Dys屬于癌前病變,若在癌前病變階段進行干預,可有效降低胃癌的發(fā)病率。
在HP感染相關癌前狀態(tài)及癌前病變的治療中,根除HP可逆轉癌前病變。但部分研究認為,HP根除對Correa進程的阻斷存在“不可逆點”,即HP根除僅對某階段病變有逆轉效應,超過該階段則失去逆轉效應。巨噬細胞在Correa進程中具有重要作用,作用于巨噬細胞可治療癌前狀態(tài)和癌前病變。
4??小結
本文對HP誘導巨噬細胞向不同方向極化的機制進行系統(tǒng)闡述,并討論不同極化類型巨噬細胞在NAG至胃癌發(fā)展中的重要作用。巨噬細胞極化失衡在胃癌發(fā)生發(fā)展中的重要作用使其成為HP感染相關癌前狀態(tài)、癌前病變及胃癌治療的新靶點。然而,巨噬細胞極化在NAG至胃癌發(fā)展中的具體機制并未得到充分研究和證實,且多種藥物干預手段尚有待進一步評估。因此,闡明HP誘導的巨噬細胞極化失衡,并干預其過程有可能降低胃癌的發(fā)病率,這需今后進一步探索。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] AJANI?J?A,?DAMICO?T?A,?BENTREM?D?J,?et?al.?Gastric?cancer,?version?2.2022,?NCCN?clinical?practice?guidelines?in?oncology[J].?J?Natl?Compr?Canc?Netw,?2022,?20(2):?167–192.
[2] SALVATORI?S,?MARAFINI?I,?LAUDISI?F,?et?al.?Helicobacter?pylori?and?gastric?cancer:?Pathogenetic?mechanisms[J].?Int?J?Mol?Sci,?2023,?24(3):?2895.
[3] WANG?L?X,?ZHANG?S?X,?WU?H?J,?et?al.?M2b?macrophage?polarization?and?its?roles?in?diseases[J].?J?Leukoc?Biol,?2019,?106(2):345–358.
[4] LI?W,?ZHANG?X,?WU?F,?et?al.?Gastric?cancer-derived?mesenchymal?stromal?cells?trigger?M2?macrophage?polarization?that?promotes?metastasis?and?EMT?in?gastric?cancer[J].?Cell?Death?Dis,?2019,?10(12):?918.
[5] BECEIRO?S,?RADIN?J?N,?CHATUVEDI?R,?et?al.?TRPM2?ion?channels?regulate?macrophage?polarization?and?gastric?inflammation?during?Helicobacter?pylori?infection[J].?Mucosal?Immunol,?2017,?10(2):?493–507.
[6] PEEK?R?M,?FISKE?C,?WILSON?K?T.?Role?of?innate?immunity?in?Helicobacter?pylori-induced?gastric?malignancy[J].?Physiol?Rev,?2010,?90(3):?831–858.
[7] KRAKOWIAK?M?S,?NOTO?J?M,?PIAZUELO?M?B,?et?al.?Matrix?metalloproteinase?7?restrains?Helicobacter?pylori-?induced?gastric?inflammation?and?premalignant?lesions?in?the?stomach?by?altering?macrophage?polarization[J].?Oncogene,?2015,?34(14):?1865–1871.
[8] LU?Y,?RONG?J,?LAI?Y,?et?al.?The?degree?of?Helicobacter?pylori?infection?affects?the?state?of?macrophage?polarization?through?crosstalk?between?ROS?and?HIF-1α[J].?Oxid?Med?Cell?Longev,?2020,?2020:?5281795.
[9] IMAI?S,?OOKI?T,?MURATA-KAMIYA?N,?et?al.?Helicobacter?pylori?CagA?elicits?BRCAness?to?induce?genome?instability?that?may?underlie?bacterial?gastric?carcinogenesis[J].?Cell?Host?Microbe,?2021,?29(6):?941–958.
[10] YUAN?J,?LI?P,?TAO?J,?et?al.?H.?pylori?escape?host?immunoreaction?through?inhibiting?ILK?expression?by?VacA[J].?Cell?Mol?Immunol,?2009,?6(3):?191–197.
[11] OERTLI?M,?NOBEN?M,?ENGLER?D?B,?et?al.?Helicobacter?pylori?γ-glutamyl?transpeptidase?and?vacuolating?cytotoxin?promote?gastric?persistence?and?immune?tolerance[J].?Proc?Natl?Acad?Sci?USA,?2013,?110(8):?3047–3052.
[12] TSAI?C?C,?KUO?T?Y,?HONG?Z?W,?et?al.?Helicobacter?pylori?neutrophil-activating?protein?induces?release?of?histamine?and?interleukin-6?through?G?protein-mediated?MAPKs?and?PI3K/Akt?pathways?in?HMC-1?cells[J].?Virulence,?2015,?6(8):?755–765.
[13] JANG?A?R,?KANG?M?J,?SHIN?J?I,?et?al.?Unveiling?the?crucial?role?of?type?Ⅳ?secretion?system?and?motility?of?Helicobacter?pylori?in?IL-1β?production?via?NLRP3?inflammasome?activation?in?neutrophils[J].?Front?Immunol,?2020,?11:?1121.
[14] PACHATHUNDIKANDI?S?K,?BLASER?N,?BRUNS?H,?et?al.?Helicobacter?pylori?avoids?the?critical?activation?of?NLRP3?inflammasome-mediated?production?of?oncogenic?mature?IL-1β?in?human?immune?cells[J].?Cancers?(Basel),?2020,?12(4):?803.
[15] PAGLIARI?M,?MUNARI?F,?TOFFOLETTO?M,?et?al.?Helicobacter?pylori?affects?the?antigen?presentation?activity?of?macrophages?modulating?the?expression?of?the?immune?receptor?CD300E?through?miR-4270[J].?Front?Immunol,?2017,?8:?1288.
[16] HARDBOWER?D?M,?SINGH?K,?ASIM?M,?et?al.?EGFR?regulates?macrophage?activation?and?function?in?bacterial?infection[J].?J?Clin?Invest,?2016,?126(9):?3296–3312.
[17] SKOOG?E?C,?MARTIN?M?E,?BARROZO?R?M,?et?al.?Maintenance?of?type?Ⅳ?secretion?function?during?Helicobacter?pylori?infection?in?mice[J].?mBio,?2020,?11(6):?e03147–20.
[18] WATANABE?T,?TAKAHASHI?A,?SUZUKI?K,?et?al.?Epithelial-mesenchymal?transition?in?human?gastric?cancer?cell?lines?induced?by?TNF-α-inducing?protein?of?Helicobacter?pylori[J].?Int?J?Cancer,?2014,?134(10):?2373–2382.
[19] LIN?T?Y,?LAN?W?H,?CHIU?Y?F,?et?al.?Statins'?regulation?of?the?virulence?factors?of?Helicobacter?pylori?and?the?production?of?ROS?may?inhibit?the?development?of?gastric?cancer[J].?Antioxidants?(Basel),?2021,?10(8):?1293.
[20] TANG?L,?TANG?B,?LEI?Y,?et?al.?Helicobacter?pylori-?induced?heparanase?promotes?H.?pylori?colonization?and?gastritis[J].?Front?Immunol,?2021,?12:?675747.
[21] GOBERT?A?P,?FINLEY?J?L,?LATOUR?Y?L,?et?al.?Hypusination?orchestrates?the?antimicrobial?response?of?macrophages[J].?Cell?Rep,?2020,?33(11):?108510.
[22] CHAKRABARTI?J,?DUA-AWEREH?M,?SCHUMACHER?M,?et?al.?Sonic?Hedgehog?acts?as?a?macrophage?chemoattractant?during?regeneration?of?the?gastric?epithelium[J].?NPJ?Regen?Med,?2022,?7(1):?3.
[23] YOON?K,?KIM?N,?PARK?Y,?et?al.?Correlation?between?macrophage?migration?inhibitory?factor?and?autophagy?in?Helicobacter?pylori-associated?gastric?carcinogenesis[J].?PLoS?One,?2019,?14(2):?e0211736.
[24] HARDBOWER?D?M,?COBURN?L?A,?ASIM?M,?et?al.?EGFR-mediated?macrophage?activation?promotes?colitis-?associated?tumorigenesis[J].?Oncogene,?2017,?36(27):?3807–3819.
[25] LIAN?D?W,?XU?Y?F,?DENG?Q?H,?et?al.?Effect?of?patchouli?alcohol?on?macrophage?mediated?Helicobacter?pylori?digestion?based?on?intracellular?urease?inhibition[J].?Phytomedicine,?2019,?65:?153097.
[26] ITO?N,?TSUJIMOTO?H,?UENO?H,?et?al.?Helicobacter?pylori-mediated?immunity?and?signaling?transduction?in?gastric?cancer[J].?J?Clin?Med,?2020,?9(11):?3699.
[27] SUGANUMA?M,?WATANABE?T,?SUEOKA?E,?et?al.?Role?of?TNF-α-inducing?protein?secreted?by?Helicobacter?pylori?as?a?tumor?promoter?in?gastric?cancer?and?emerging?preventive?strategies[J].?Toxins?(Basel),?2021,?13(3):?181.
[28] FU?H?W.?Helicobacter?pylori?neutrophil-activating?protein:?From?molecular?pathogenesis?to?clinical?applications[J].?World?J?Gastroenterol,?2014,?20(18):?5294–5301.
[29] ZHANG?Y,?YANG?H,?ZHAO?J,?et?al.?Activation?of?MAT2A-RIP1?signaling?axis?reprograms?monocytes?in?gastric?cancer[J].?J?Immunother?Cancer,?2021,?9(10):?e001364.
[30] KIM?W,?KIM?S?J.?Heat?shock?factor?1?as?a?prognostic?and?diagnostic?biomarker?of?gastric?cancer[J].?Biomedicines,?2021,?9(6):?586.
[31] SHIGEMATSU?Y,?NIWA?T,?REHNBERG?E,?et?al.?Interleukin-1β?induced?by?Helicobacter?pylori?infection?enhances?mouse?gastric?carcinogenesis[J].?Cancer?Lett,?2013,?340(1):?141–147.
[32] TAKESHIMA?H,?NIWA?T,?YAMASHITA?S,?et?al.?TET?repression?and?increased?DNMT?activity?synergistically?induce?aberrant?DNA?methylation[J].?J?Clin?Invest,?2020,?130(10):?5370–5379.
[33] TENG?Y,?CANG?B,?MAO?F,?et?al.?Expression?of?ETS1?in?gastric?epithelial?cells?positively?regulate?inflammatory?response?in?Helicobacter?pylori-associated?gastritis[J].?Cell?Death?Dis,?2020,?11(7):?498.
[34] SONG?H,?YANG?B,?LI?Y,?et?al.?Focus?on?the?mechanisms?and?functions?of?pyroptosis,?inflammasomes,?and?inflammatory?caspases?in?infectious?diseases[J].?Oxid?Med?Cell?Longev,?2022,?2022:?2501279.
[35] ZHANG?J,?HOU?L,?LIANG?R,?et?al.?Correction?to:?CircDLST?promotes?the?tumorigenesis?and?metastasis?of?gastric?cancer?by?sponging?miR-502-5p?and?activating?the?NRAS/MEK1/ERK1/2?signaling[J].?Mol?Cancer,?2020,?19(1):?125.
[36] KONG?H,?YOU?N,?CHEN?H,?et?al.?Helicobacter?pylori-?induced?adrenomedullin?modulates?IFN-γ-producing?T-cell?responses?and?contributes?to?gastritis[J].?Cell?Death?Dis,?2020,?11(3):?189.
[37] WANG?J,?DENG?Z,?WANG?Z,?et?al.?MicroRNA-155?in?exosomes?secreted?from?Helicobacter?pylori?infection?macrophages?immunomodulates?inflammatory?response[J].?Am?J?Transl?Res,?2016,?8(9):?3700–3709.
[38] MING?S,?YIN?H,?LI?X,?et?al.?GITR?promotes?the?polarization?of?tfh-like?cells?in?Helicobacter?pylori-?positive?gastritis[J].?Front?Immunol,?2021,?12:?736269.
[39] LIU?Y?J,?ZENG?S?H,?HU?Y?D,?et?al.?Overexpression?of?NREP?promotes?migration?and?invasion?in?gastric?cancer?through?facilitating?epithelial-mesenchymal?transition[J].?Front?Cell?Dev?Biol,?2021,?9:?746194.
[40] XIN?L,?WU?Y,?LIU?C,?et?al.?Exosome-mediated?transfer?of?lncRNA?HCG18?promotes?M2?macrophage?polarization?in?gastric?cancer[J].?Mol?Immunol,?2021,?140:?196–205.
[41] DAWSON?R?E,?DESWAERTE?V,?WEST?A?C,?et?al.?STAT3-mediated?upregulation?of?the?AIM2?DNA?sensor?links?innate?immunity?with?cell?migration?to?promote?epithelial?tumourigenesis[J].?Gut,?2022,?71(8):?1515–1531.
[42] CHEN?Y,?ZHANG?S,?WANG?Q,?et?al.?Tumor-recruited?M2?macrophages?promote?gastric?and?breast?cancer?metastasis?via?M2?macrophage-secreted?CHI3L1?protein[J].?J?Hematol?Oncol,?2017,?10(1):?36.
[43] LIU?Q,?YANG?C,?WANG?S,?et?al.?Wnt5a-induced?M2?polarization?of?tumor-associated?macrophages?via?IL-10?promotes?colorectal?cancer?progression[J].?Cell?Commun?Signal,?2020,?18(1):?51.
[44] YANG?X,?CAI?S,?SHU?Y,?et?al.?Exosomal?miR-487a?derived?from?M2?macrophage?promotes?the?progression?of?gastric?cancer[J].?Cell?Cycle,?2021,?20(4):?434–444.
[45] KIM?R,?AN?M,?LEE?H,?et?al.?Early?tumor-immune?microenvironmental?remodeling?and?response?to?first-line?fluoropyrimidine?and?platinum?chemotherapy?in?advanced?gastric?cancer[J].?Cancer?Discov,?2022,?12(4):?984–1001.
[46] YANG?Y,?YANG?Y,?CHEN?M,?et?al.?Injectable?shear-thinning?polylysine?hydrogels?for?localized?immunotherapy?of?gastric?cancer?through?repolarization?of?tumor-associated?macrophages[J].?Biomater?Sci,?2021,?9(19):?6597–6608.
[47] NAKAMURA?Y,?KINOSHITA?J,?YAMAGUCHI?T,?et?al.?Crosstalk?between?cancer-associated?fibroblasts?and?immune?cells?in?peritoneal?metastasis:?Inhibition?in?the?migration?of?M2?macrophages?and?mast?cells?by?Tranilast[J].?Gastric?Cancer,?2022,?25(3):?515–536.
[48] GOMEZ-ROCA?C?A,?ITALIANO?A,?LE?TOURNEAU?C,?et?al.?Phase?Ⅰ?study?of?emactuzumab?single?agent?or?in?combination?with?paclitaxel?in?patients?with?advanced/?metastatic?solid?tumors?reveals?depletion?of?immunosuppressive?M2-like?macrophages[J].?Ann?Oncol,?2019,?30(8):?1381–1392.
[49] NAI?A,?ZENG?H,?WU?Q,?et?al.?LncRNA/miR-29c-?mediated?high?expression?of?lox?can?influence?the?immune?status?and?chemosensitivity?and?can?forecast?the?poor?prognosis?of?gastric?cancer[J].?Front?Cell?Dev?Biol,?2021,?9:?760470.
[50] XIN?L,?ZHOU?L?Q,?LIU?C,?et?al.?Transfer?of?lncRNA?CRNDE?in?TAM-derived?exosomes?is?linked?with?cisplatin?resistance?in?gastric?cancer[J].?EMBO?Rep,?2021,?22(12):?e52124.
[51] JIN?X,?QIU?X,?HUANG?Y,?et?al.?MiR-223-3p?carried?by?cancer-associated?fibroblast?microvesicles?targets?SORBS1?to?modulate?the?progression?of?gastric?cancer[J].?Cancer?Cell?Int,?2022,?22(1):?96.
(收稿日期:2023–12–13)
(修回日期:2024–05–18)