• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    穩(wěn)定界面助力石墨實(shí)現(xiàn)超長(zhǎng)儲(chǔ)鉀性能

    2024-07-04 00:00:00許濤孫偉孔天賜周杰錢(qián)逸泰
    物理化學(xué)學(xué)報(bào) 2024年2期
    關(guān)鍵詞:石墨烯負(fù)極界面

    摘要:石墨作為鋰離子電池的商業(yè)陽(yáng)極材料,由于其高豐度、低成本和低電位的優(yōu)勢(shì),在K離子電池中也顯示出了的巨大潛力。然而,K離子半徑(0.138 nm)大于Li離子半徑(0.076 nm),會(huì)造成的明顯結(jié)構(gòu)損傷導(dǎo)致明顯的容量衰減和不穩(wěn)定的循環(huán)壽命。在這里,我們用簡(jiǎn)單有效的微波方法通過(guò)石墨烯涂層設(shè)計(jì)了石墨陽(yáng)極的穩(wěn)定界面。微波還原可以在10 s內(nèi)有效地去除氧化石墨烯的氧基,這一點(diǎn)得到了X射線光電子能譜(XPS)的證實(shí)。石墨烯涂層不僅可以緩沖石墨的體積膨脹以抑制結(jié)構(gòu)崩潰,還可以加速電子傳輸以提高倍率性能。石墨烯涂層負(fù)極(GCG)在3000次循環(huán)后表現(xiàn)出262 mAh·g?1的超級(jí)循環(huán)穩(wěn)定性。與石墨相比GCG的倍率性能也更加優(yōu)異(500 mA·g?1的電流密度下容量為161.2 mAh·g?1)。相反,在相同的電流密度下,石墨的容量在150次循環(huán)后衰減到小于150 mAh·g?1。進(jìn)一步的電化學(xué)阻抗(EIS)和恒電流間歇滴定(GITT)測(cè)試表明,與石墨相比,GCG表現(xiàn)出更快的電導(dǎo)率和離子擴(kuò)散。循環(huán)后的拉曼光譜、掃描電鏡(SEM)和透射電鏡(TEM)圖像驗(yàn)證了石墨烯作為緩沖界面有利于電極結(jié)構(gòu)的完整性和固體電解質(zhì)膜(SEI)的穩(wěn)定性。這項(xiàng)工作為鉀離子電池的大規(guī)模應(yīng)用提供了新的希望。

    關(guān)鍵詞:鉀離子電池;負(fù)極;石墨烯;微波還原;界面

    中圖分類(lèi)號(hào):O646

    Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance

    Abstract: Graphite has been extensively employed ascommercial anode material in Li-ion batteries due to its highabundance, low cost, and negative electrode potential.Furthermore, it has demonstrated significant potential for use in Kionbatteries. However, distinct structural damage caused by thelarger radius of K-ion (0.138 nm) compared to that of Li-ion (0.076nm) leads to obvious capacity decay and unstable cycle life. It iscrucial to improve the cycling stability of graphite in potassium ionbatteries (PIBs). Herein, we design a stable interface of graphiteanode by graphene coating with a simple and efficient microwavemethod. According to X-ray photoelectron spectroscopy (XPS),microwave reduction can effectively remove the oxygen group ofgraphene oxide (GO) within 10 s. The graphene coating can buffer the volume expansion of the graphite to suppressstructural collapse; it can also accelerate electronic transmission to improve rate performance. As a result, the graphenecoatinggraphite anode, named GCG, exhibits super cycling stability with a capacity of 262 mAh·g?1 after 3000 cycles at acurrent density of 0.2 A·g?1, which means it can operate smoothly for one year. In contrast, at the same current density,graphite exhibits capacity fading to less than 150 mAh·g?1 after 150 cycles. Moreover, compared to graphite, GCGdemonstrates better rate performance achieving a capacity of 161.2 mAh·g?1 at 500 mA·g?1. Further electrochemicalimpedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) tests show that GCG exhibits fasterelectrical conductivity and ion diffusion compared to graphite. Raman spectroscopy, scanning electron microscopy (SEM),and transmission electron microscopy (TEM) images after cycling verify that the graphene buffer interface benefits theintegrity of the electrode structure and improves the stability of the solid electrolyte interphase (SEI). Compared to graphite,the GCG anode exhibits better performance, as follows: 1) The graphene coating inhibits exfoliation of graphite duringcycling, solving the problem of graphite anode’ short cycling life, and 2) the graphene protective layer improves the iondiffusion rate, resulting in better rate performance of the GCG. In addition, this approach offers the advantages of simpleoperation and low cost, hopefully enabling large-scale applications of potassium-ion batteries.

    Key Words: Potassium ion battery; Anode; Graphene; Microwave reduction; Interface

    1 Introduction

    Clean and renewable energies play an important role inresolving the environment pollution and reducing the emissionof greenhouse gas. Batteries as an excellent energy storagesystem is vital for the efficient utilization of energy 1. Currently,the cost of commercial lithium-ion batteries (LIB) is gettinghigher and higher because of the gradual depletion of lithiumresource 2–4. Potassium ion batteries (PIBs) are regarded as analternative choice for the sufficient potassium sources 5,6 in theearth and a low standard reduction potential of K/K+ (?2.93 Vvs. SHE (standard hydrogen electrode)), which is closing to theLi/Li+ (?3.04 V vs. SHE). Besides, the K-ion exhibits the smallerStokes’ radius of (0.36 nm) in conventional propylene carbonatesolvent that benefits for the higher ion conductivity anddiffusion. What’s more worth mentioning is that PIBs can alsouse aluminum foil to replace copper foil as the anode currentcollector since the alloying reaction between potassium andaluminum do not occur at a low potential, which will furtherdecrease the cost of batteries. Therefore, exploiting highperformanceelectrode materials of KIBs is an important goal inenergy storage.

    To date, various anodes materials had been reported for PIBs,in which carbon-based materials has been regarded as mostsuitable materials 7–10. Graphite, applied in LIBs commercially,also has a great potential for large-scale applications to PIBsbecause of the low cost and the low charge-discharge voltageplateau. More importantly, the K+ ion can insert into graphite(like Li+) and form graphite intercalation compounds (KC8),corresponding to the theoretical capacity of 279 mAh·g?1 11.However, the radium of K-ion (0.138 nm) is larger than that ofLi-ion (0.076 nm) and Na-ion (0.102 nm) 12, leading to the distinct structure damage of anode materials during thepotassiation-depotassiation process, which will trigger theobvious capacity decay and unstable cycle life. What’s more, thelayered structure of graphite is easy to be exfoliated during theintercalation process of potassium ion, which makes it difficultto form a uniform and dense solid electrolyte interphase (SEI)film during the charging and discharging process. So it isimportant to develop efficient method to stable the structure ofgraphite with an ultralong cycling life.

    Reduced graphene oxide (rGO) is widely used as theprotective layer for metal-ion batteries, benefiting from the largespecific surface area, superior mechanical elasticity and highelectrical conductivity 13,14. For instance, Hou et al. 15 designeda 3D Nb2C/rGO by using rGO as a porous framework achievinga reversible capacity of 301.7 mAh·g?1 after 500 cycles at 2A·g?1. He at al. 16 also designed an rGO/expend graphite/rGOsandwich that coats EG with reduced graphene oxide to bufferthe volumetric variation of EG to improve the cyclic stability ofthe electrode. However, rGO prepared by the chemical reductionis usually highly defective and rich in residual oxygen groups,which are harmful to SEI stability 17. Conventional thermalreduction often involve the high energy cost and long processperiod. Microwave reduction as the fast and effective methodhave received a lot of attention. Recently, Voiry et al. 18 preparedthe high-quality graphene via microwave reduction of solutionexfoliatedgraphene oxide. Zhao et al. 19 produced the N- and Sdopedgraphene with the superior K-storage capability via themicrowave method.

    Herein, we develop the microwave reduction method toprepare the graphene-coating graphite composites (GCG) withhigh efficiency. According to previous reports 18 and our experimental results, the proportion of carbon atoms can beincreased to more than 90% by microwave reduction aftergraphene oxide coated graphite. For the poor microwaveabsorption capacity of GO, we adopt graphite with thedelocalized π electrons to enhance localized heating and reduceGO. The obtained graphene as the stable interface improved thecycling stability and rate performance of graphite. Theaccelerated kinetic process is investigated via electrochemicalimpedance spectroscopy (EIS) and galvanostatic intermittenttitration technique (GITT). Furthermore, the stability of structureof graphite and SEI is also explored via the X-ray photoelectronspectroscopy (XPS), scanning electron microscopy (SEM), andtransmission electron microscopy (TEM).

    2 Experimental section

    2.1 Material synthesis

    The preparation of GO: Weigh 5 g graphite sheet and 3.75 gsodium nitrate into a beaker, 160 mL concentrated sulfuric acidwas added while stirring, stirred for 0.5 h, slowly add 20 gKMnO4, continue stirring for 12 h, and then stand for 24 h,slowly add 500 mL deionized water, and slowly add 30 mLH2O2, centrifugation, washing, dialysis for 6–7 d.

    In a typical synthesis of GCG, the commercial graphite wasmixed with graphene oxide with the mass ratio of 4 : 1. After 30min stirring and then freeze-dried to obtain GCG samples. Afterthat, the GCG was microwave reduced in the microwave ovenfor 10 s. The microwave was produced by a domestic microwaveoven (Midea, 700 W). A container which can pumped to vacuumwas used as the reactor.

    2.2 Characterization of the samples

    The structures of the samples are measured by X-raydiffraction (XRD) on a Philips X’ Pert Super diffractometer withCu Kα (λ = 0.154182 nm), and Raman spectroscopy is performedby a JYLABRAM-HR Confocal Laser Micro-Ramanspectrometer at 532 nm. The morphologies of the samples arecharacterized on scanning electron microscopy (SEM,GeminiSEM 450 Carl Zeiss, Germany), transmission electronmicroscopy (TEM, Hitachi H7650, Japan) and high resolutiontransmission electron microscopy (HRTEM, JEOL-JEM-2100F,Japan). X-ray photoelectron spectrum is collected on anESCALAB 250 X-ray photoelectron spectrometer (Perkin-Elmer ESCALAB 250X, America).

    2.3 Electrochemical measurements

    The graphite and GCG electrodes were prepared by firstmixing graphite or GCG active materials, Super P conductiveadditives, and a carboxymethyl cellulose (CMC) binder, at amass ratio of 8 : 1 : 1, in deionized water solvent, using ballmilling for 12 h. The obtained slurry was then cast on a Cucurrent collector using a scraper and dried at 80 °C for 10 h.Subsequently, the electrode was cut into disks (diameter, 14 cm)with an active material loading of (≈ 1 mg·cm?2). 2016-typeKIBs were assembled in the glove box with the G or G@C workelectrodes, a K metal disk (diameter, 1.5 cm; Alfa Aesar; 99.9%)as the counter electrode, a glass fiber separator, and 0.8 mol·L?1KPF6 in an EC (ethylene carbonate)-DEC (diethyl carbonate)(1 : 1 by volume) electrolyte (the amount of electrolyte in eachbattery was 100 μL). The cycling and C-rate performances in the0.005–3 V range (vs. K/K+) tested at 25 °C using a CT2001Asystem (Wuhan LAND). The cyclic voltammogram (CV)measurements and electrochemical impedance spectroscopy(EIS) are performed on a CHI 660D ElectrochemicalWorkstation (Shanghai Chenhua Corp).

    3 Results and discussion

    As displayed in Fig. 1a,b, compared with the exfoliated andbroken structure of graphite after cycling, GCG retained theintegrity of the structure, benefiting from the buffer effect ofgraphene in the volume expansion of graphite, which leads to thestable SEI film and cycling performance. Besides, the grapheneaccelerated the electronic and ion transport. The preparationprocedure of the GCG is illustrated in Fig. 1c. Commercialgraphite was first mixed with the GO solution prepared by themodified Hummers method. After freeze-drying, the driedsample was put inside the microwave oven for 10 s. Graphite asa dielectric material has a sp2 bonded carbon network withdelocalized π electrons and exhibits good microwave absorptionproperties. Under the microwave irradiation, temperature ofgraphite rises sharply first and graphite transfer heat to GOinstantaneous. The instantaneous high energy can dissociate thesurface oxidation groups of GO into H2O and CO2. During thisprocess, most of the residual oxygen groups in graphene oxidescan be reduced and the GCG is obtained.

    X-ray diffraction (XRD) patterns (Fig. 2a) for graphite andGCG both show a broad peak at 26.5° corresponding to the (002)crystallographic planes of graphite, which indicates that themicrowave irradiation does not destroy the structure of graphite.As shown in Fig. 2b, the graphite represents a strong G peak(at ≈ 1580 cm?1) 20 and a weak D peak (at ≈ 1350 cm?1), with aID/IG intensity ration of about 0.28. However, because of thesurface graphene coating, both the G peak and D peak of GCGare very strong, and the ID/IG value (about 0.77) is also higher than that of graphite, which confirms the noncrystallized coatingsurface.

    The morphology and microstructure of GCG and graphite arefurther characterized via scanning electron microscopy (SEM)and transmission electron microscopy (TEM). Graphite shows atypical scaly structure (Fig. S1, Supporting Information). Aftermicrowave irradiation, the graphite is well-coated by grapheneas shown in Fig. 2c. The low-magnification TEM (Fig. S2a,Supporting Information) and high-resolution TEM (HRTEM)(Fig. 2d) images of GCG also suggest that the graphene has agood protection to graphite. The HRTEM image of GCG revealsthat the interlayer spacing is about 0.35 nm, corresponding to the(002) lattice plane of graphite. Furthermore, comparing with thebig volume of graphite, the thickness of graphene layer is about3 nm which will not affect the intercalation of potassium ion.

    To further know the property changes before and aftermicrowave irradiation of GCG, the samples were characterizedby surface-sensitive X-ray photoelectron spectroscopy (XPS).As the result shown in Fig. 2e,f, the microwave irradiation canreduce the GO effectively. The GO coating graphite exhibits atypical C=O, C―O and C―C 21,22 species in C 1s spectra (Fig.2e), and C=O and C―O in O 1s spectra (Fig. S3a, SupportingInformation). After microwave irradiation, the GCG exhibits anintense C―C peak and a weak C―O peak (Fig. 2e) indicatingthat after the microwave reduction, the main oxygen groups ofGO had been removed, which is also confirmed by the changeof element ratio of GCG. The ratio of oxygen is reduced to lessthan 10% (Fig. 2f), although the peak of oxygen can still bedetected (Fig. S3b, Supporting Information). Overall,microwave irradiation can reduce graphene with high efficientand form a thick artificial SEI on the surface of graphite.

    3.1 Electrochemical performance of the GCG anodes

    The electrochemical performance of the GCG anodes wasinvestigated in CR2016 type KIBs, which was assembled with0.8 mol·L?1 KPF6 in EC-DEC (1 : 1 by volume) as theelectrolyte. From the cyclic voltammetry curve (CV, Fig. 3a),the obvious reduction peaks at 0.20 and 0.31 V in initial cyclewhich disappear in the following scans, should be attributed tothe decomposition of the electrolyte and the side reaction ofelectrolyte with electrode surface. The peaks at 0.48 and 0.56 Vrespond to the depotassiation process. The reclosing of nextcycles also indicating the surface stability of GCG after the firstcycle.

    The charge-discharge curves of GCG shown in Fig. 3b exhibitthat the discharge and charge capacities in the first cycle are435.5 and 309.4 mAh·g?1, respectively, corresponding to theinitial coulombic efficiency of 71.05%. The lower first coulombefficiency than graphite (79.02%, Fig. S4), may attribute to thehigh surface of graphene which will bring more side effects atthe first cycle.

    To further explore the effect of the graphene in GCG, thecycling stability is tested at the current density of 0.2 A·g?1. Asshown in Fig. 3c, GCG exhibits superior cycle stability with thereversible capacity of 262 mAh·g?1 after 3000 cycles. However,graphite delivers a rapidly capacity fading at the current densityof 0.2 A·g?1, with the capacity decreasing to less than 150mAh·g?1 after 150 cycles. The improved electrochemicalperformance of GCG is ascribed to the buffer effect of graphenein the volume expansion of graphite. It is worth noting that thecharge-discharge profiles of GCG still overlap well even after3000 cycles (Fig. 3d), which also confirms the better cyclingstability of GCG. Moreover, GCG also exhibits an enhanced rate performance. The reversible capacities of 320.5, 276, 150.1,65.4, 43.2 and 36.1 mAh·g?1 are achieved at 0.1, 0.2, 0.5, 1, 2and 5 A·g?1, respectively. When the current density comes backto 1 A·g?1, the capacity is still 62.1 mAh·g?1 (Fig. 3e). Thesuperior electrochemical performance of GCG than graphiteindicates that the lay of graphene can not only protect graphiteto achieve an ultralong cycle life, but also accelerate ion andelectron transmission to improve the rate performance.

    3.2 Potassium storage mechanisms of GCG anode

    To further study the potassium storage mechanisms of GCGelectrode, CV curves with different scan rates were investigated.Fig. 4a shows five of CV curves at the scan rates of 0.2–2mV?s?1. Kinetic behavior information can be obtained from thefollows 23–25:

    I = avb (1)

    lgi = blgv + lga (2)

    where a and b denote constant, i represents peak current, vdenotes scan rate. And the value of b is determined by the slopeof lgi ? lg (scan rate). When b = 0.5, diffusion dominates thecharging and discharging process. When b = 1, the capacitiveprocess contributes the capacity. As displayed in Fig. 4b, the bvalue was calculated as 0.6 based on the lgi ? lgv curves, whichis large than 0.5 and less than 1, indicating the capacitive-controland diffusion-control co-exist for the K-ion storage 9.

    The electrochemical impedance spectroscopy (EIS) andgalvanostatic intermittent titration technique (GITT) test wereconducted 26,27 to further understand the kinetics of K+intercalation/deintercalation in GCG (Fig. 4c,d, Fig. S6–7). Theinterfacial impendance value of GCG and graphite can be judgedfrom Nyquist plots (Fig. 4c). All samples demonstrate anintercept with the x-axis, a semicircle and the line in lowfrequency region, corresponding to the electrolyte (Re), chargetransfer (Rct), and ion diffusion resistance (Zw), respectively 28,29.Especially, the slope of GCG is larger than graphite which meansthat K+ diffusion and charge transfer in GCG are easier than ingraphite which is also confirmed by the GITT test 30.

    Pre-activation (3 cycles at 0.1 A·g?1) was set before the GITTmeasurements to avoid the influence of the SEI formation. TheK+ diffusion coefficients (DK+) can be calculated by Fick’ssecond law and shown in Fig. 5d. Specifically, the DK+ dropssharply at a low voltage. Then, DK+ increases with furtherpotassiation, indicating that the formation of a low stageintercalation compound 31 is a rate-limiting procedure. Inaddition, the DK+ values of GCG are higher than graphite,indicating that GCG has the faster electrochemical kinetics andsuperior rate performance than graphite because of the graphene.

    3.3 Microstructure of GCG after cycled

    What’s more, the morphology and microstructure of GCGanode after 100 cycles is studied by the Raman spectrum, SEMand TEM to understand the influence of the graphene on theGCG. Fig. 5a,b show the Raman spectrums of GCG and graphiteafter 100 cycles. ID/IG of graphite increased from 0.28 to 0.87,which indicates the unstable structure of graphite during cycling.However, the ID/IG ratio of GCG almost did not change (from0.77 to 0.85), demonstrating a stable surface of GCG.

    The images of GCG and graphite after 100 cycles can bedirectly observed from SEM and TME (Fig. S8–10, Fig. 5c,d).The obvious stratify of graphite in Fig. S10a means the damagedstructure after cycling which confirm the continuous exfoliationand the capacity decrease of graphite. However, the GCG has adense and uniform surface in the SEM (Fig. S10b), suggestingthat graphene can inhabit the exfoliation of graphite and keep thegraphite structure intact effectively. The TEM image shows astable SEI (about 5 nm) formed on the surface of GCG (Fig.5c). However, graphite has little SEI on the surface (Fig. 5d)because of the exfoliation of the layer structure during cycling.

    Furthermore, the SEI contents on the surface of graphite andGCG were investigated by XPS analysis (Fig. 5e,f) after 100cycles. High-resolution C 1s spectra of GCG are deconvolutedinto four peaks at around 284.5, 286.2, 287.5, and 289 eV,corresponding to the presence of C―C, C―O, C=O, and O―C=O bonds. Compared to GCG, the C 1s spectra of graphitehave a high C ― C proportion which means little SEIcomposition on the surface after cycling. Although graphite can also form a SEI during cycling 32, the constant exfoliation leadsto a unstable SEI on the surface of graphite as the cycle going,which will cause a serve capacity decrease and a constantlydecomposition of electrolyte. On the contrary, although the sidereaction of electrolyte is inevitable in the beginning of cycling,the stable surface of GCG can restrain the exfoliation of graphite.Moreover, the F 1s of graphite and GCG also have muchdifferences (Fig. S11, Supporting Information). The graphite hasa very low element percentage content (0.24%) which is lessthan 1%, so the F 1s peak is not obvious. However, the GCG hasa higher content of F (1.94%). And the peaks of KF (Fig. S10)also mean that a robust inorganic-rich SEI has been formedduring cycling. The inconspicuous P peak might be due to thesmall amount of content (lt; 1%) on the surface of graphite andGCG. In a word, further analysis shows that the artificial SEI ofGCG can form a stable surface to restrain the exfoliation ofgraphite and achieving an ultralong cycling life.

    4 Conclusions

    In this study, we demonstrated that the interface of graphiteplays an important role in both cycling and rate performance.Through microwave reduction of GO, we can get a highly stableinterface which can not only reduce the side reaction of graphitewith electrolyte, but also can adapt the volume change duringcycling to keep the structure intact of graphite. The obtainedGCG had a superior electrochemical performance, with a stablecycling over 3000 cycles at a current density of 0.2 A·g?1.Different characterization techniques such as XPS and Ramanhad proved that graphene as the coating film can prevent severeexfoliation and constant formation of SEI in graphite, which willcause the fast capacity decrease. GITT and EIS confirmed thatgraphene accelerates the kinetics process. This artificial SEIstrategy provides a new approach to get a stable graphite anodefor next potassium ion battery with high energy densities.

    Author Contributions: Conceptualization, Tao Xu and JieZhou; Methodology, Tao Xu; Software, Tao Xu; Validation,Tianci Kong and Wei Sun; Formal Analysis, Tao Xu;Investigation, Tao Xu; Resources, Tao Xu; Data Curation, TaoXu; Writing-Original Draft Preparation, Tao Xu; Writing-Review amp; Editing, Tao Xu; Visualization, Tao Xu; Supervision,Jie Zhou and Yitai Qian; Project Administration, Jie Zhou andYitai Qian; Funding Acquisition, Jie Zhou and Yitai Qian.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Goodenough, J. B. Nat. Electron. 2018, 1 (3), 204.doi: 10.1038/s41928-018-0048-6

    (2) Tarascon, J.-M. Nat. Chem. 2010, 2 (6), 510. doi: 10.1038/nchem.680

    (3) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7 (1), 19.doi: 10.1038/nchem.2085

    (4) Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9 (5),4404. doi: 10.1021/acsami.6b07989

    (5) Wu, X.; Leonard, D. P.; Ji, X. Chem. Mater. 2017, 29 (12), 5031.doi: 10.1021/acs.chemmater.7b01764

    (6) Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. Adv.Energy Mater. 2017, 7 (24), 1602911. doi: 10.1002/aenm.201602911

    (7) Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Adv. Funct. Mater. 2016,26 (44), 8103. doi: 10.1002/adfm.201602248

    (8) Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Electrochem.Commun. 2015, 60, 172. doi: 10.1016/j.elecom.2015.09.002

    (9) Kim, H.; Hyun, J. C.; Jung, J. I.; Lee, J. B.; Choi, J.; Cho, S. Y.; Jin,H.-J.; Yun, Y. S. J. Mater. Chem. A 2022, 10 (4), 2055.doi: 10.1039/d1ta08981a

    (10) Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Adv. Energy Mater.2016, 6 (3), 1501874. doi: 10.1002/aenm.201501874

    (11) Jian, Z.; Luo, W.; Ji, X. J. Am. Chem. Soc. 2015, 137 (36), 11566.doi: 10.1021/jacs.5b06809

    (12) Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun,C.-F. Angew. Chem. Int. Ed. 2019, 58 (46), 16474.doi: 10.1002/anie.201909202

    (13) Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-S.; Kudo, T.; Honma, I.Nano Lett. 2008, 8 (8), 2277. doi: 10.1021/nl800957b

    (14) Liang, K.; Li, M.; Hao, Y.; Yan, W.; Cao, M.; Fan, S.; Han, W.; Su, J.Chem. Eng. J. 2020, 394, 124956. doi: 10.1016/j.cej.2020.124956

    (15) Liu, C.; Fang, Z.; Li, X.; Zhou, J.; Yang, G.; Peng, L.; Guo, X.; Ding,W.; Hou, W. Nano Res. 2022, 16 (2), 2463.doi: 10.1007/s12274-022-4994-y

    (16) Wang, J.; Yin, B.; Gao, T.; Wang, X.; Li, W.; Hong, X.; Wang, Z.; He,H. Acta Phys. -Chim. Sin. 2022, 38 (2), 2012088. [王鍵, 尹波, 高天,王星懿, 李望, 洪興星, 汪竹青, 何海勇. 物理化學(xué)學(xué)報(bào), 2022, 38(2), 2012088.] doi: 10.3866/PKU.WHXB202012088

    (17) Liu, W.; Li, H.; Jin, J.; Wang, Y.; Zhang, Z.; Chen, Z.; Wang, Q.;Chen, Y.; Paek, E.; Mitlin, D. Angew. Chem. Int. Ed. 2019, 58 (46),16590. doi: 10.1002/anie.201906612

    (18) Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.;Shin, H. S.; Chhowalla, M. Science 2016, 353 (6306), 1413.doi: 10.1126/science.aah3398

    (19) Zhang, Y.; Chen, X.; Cen, W.; Ren, W.; Guo, H.; Vvu, S.; Xiao, Y.;Chen, S.; Guo, Y.; Xiao, D.; et al. Nano Res. 2022, 15 (5), 4083.doi: 10.1007/s12274-021-4023-6

    (20) Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Chem. Rev. 2010, 110 (3),1278. doi: 10.1021/cr800344k

    (21) Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.;Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012.doi: 10.1038/nenergy.2017.12

    (22) Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.;Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy. 2018, 3 (9), 739.doi: 10.1038/s41560-018-0199-8

    (23) Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo,P.; Du, C.; Yin, G. J. Power Sources 2017, 361, 80.doi: 10.1016/j.jpowsour.2017.06.023

    (24) Kim, H.; Hong, J.; Park, Y.-U.; Kim, J.; Hwang, I.; Kang, K. Adv.Funct. Mater. 2015, 25 (4), 534. doi: 10.1002/adfm.201402984

    (25) Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7 (5),1597. doi: 10.1039/c3ee44164d

    (26) Qin, L.; Xiao, N.; Zheng, J.; Lei, Y.; Zhai, D.; Wu, Y. Adv. EnergyMater. 2019, 9 (44), 1902618. doi: 10.1002/aenm.201902618

    (27) Lin, X.; Dong, Y.; Chen, X.; Liu, H.; Liu, Z.; Xing, T.; Li, A.; Song,H. J. Mater. Chem. A 2021, 9 (10), 6423. doi: 10.1039/d1ta00178g

    (28) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. J. Electrochem Soc.2004, 151 (9), A1324. doi: 10.1149/1.1775218

    (29) Funabiki, A.; Inaba, M.; Ogumi, Z.; Yuasa, S.; Otsuji, J.; Tasaka, A.J. Electrochem. Soc. 1998, 145 (1), 172. doi: 10.1149/1.1838231

    (30) Meng, C.; Yuan, M.; Cao, B.; Lin, X.; Zhang, J.; Li, A.; Chen, X.;Jia, M.; Song, H. Carbon 2022, 192, 347.doi: 10.1016/j.carbon.2022.02.039

    (31) Li, Q.; Zhang, Y.; Chen, Z.; Zhang, J.; Tao, Y.; Yang, Q.-H. Adv. EnergyMater. 2022, 12 (35), 2201574. doi: 10.1002/aenm.202201574

    (32) Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Angew. Chem. Int. Ed.2019, 58 (31), 10500. doi: 10.1002/anie.201904258

    國(guó)家自然科學(xué)基金(22201275, 21975244, 21831006), 中央高?;緲I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)基金(WK2060000036), 安徽省自然科學(xué)基金(2208085QB32)資助項(xiàng)目

    猜你喜歡
    石墨烯負(fù)極界面
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    國(guó)企黨委前置研究的“四個(gè)界面”
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開(kāi)發(fā)方法研究
    功率芯片表面絕緣層厚度對(duì)石墨烯散熱效果的影響
    人機(jī)交互界面發(fā)展趨勢(shì)研究
    綜合化學(xué)實(shí)驗(yàn)設(shè)計(jì):RGO/MnO復(fù)合材料的合成及其電化學(xué)性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    鋰離子電池石墨烯復(fù)合電極材料專(zhuān)利分析
    石墨烯量子電容的理論研究
    科技視界(2015年25期)2015-09-01 17:59:32
    亚洲午夜精品一区,二区,三区| 国产99白浆流出| 国产精品 欧美亚洲| 欧美色视频一区免费| 精品久久久久久久毛片微露脸| 国产精品98久久久久久宅男小说| 久久伊人香网站| 桃红色精品国产亚洲av| 国产av不卡久久| 久久精品91蜜桃| 在线国产一区二区在线| 一本精品99久久精品77| 国产熟女午夜一区二区三区| av有码第一页| 国产精品香港三级国产av潘金莲| 免费在线观看影片大全网站| 欧美乱色亚洲激情| 国产单亲对白刺激| 日日干狠狠操夜夜爽| 精品乱码久久久久久99久播| 亚洲 国产 在线| 757午夜福利合集在线观看| 国产亚洲欧美精品永久| or卡值多少钱| 18禁黄网站禁片免费观看直播| 国产午夜福利久久久久久| 香蕉久久夜色| 最近最新中文字幕大全电影3 | 免费搜索国产男女视频| 欧美在线一区亚洲| 国产精品九九99| 日韩 欧美 亚洲 中文字幕| 亚洲熟女毛片儿| 9191精品国产免费久久| 国产精品永久免费网站| 国产成人一区二区三区免费视频网站| 亚洲五月天丁香| АⅤ资源中文在线天堂| 2021天堂中文幕一二区在线观 | 久久久久久久午夜电影| 国产成人系列免费观看| 亚洲中文字幕一区二区三区有码在线看 | 91老司机精品| 午夜免费鲁丝| 国产精品98久久久久久宅男小说| 一二三四在线观看免费中文在| 午夜福利高清视频| 日韩成人在线观看一区二区三区| 12—13女人毛片做爰片一| 悠悠久久av| 91字幕亚洲| 久久人人精品亚洲av| 成人三级黄色视频| 亚洲av成人不卡在线观看播放网| 国产精品国产高清国产av| 人妻丰满熟妇av一区二区三区| 狂野欧美激情性xxxx| 久久香蕉激情| 亚洲一码二码三码区别大吗| 天堂动漫精品| 欧美在线黄色| 老汉色∧v一级毛片| 老司机深夜福利视频在线观看| 91大片在线观看| 欧美日韩亚洲国产一区二区在线观看| 91国产中文字幕| 99国产精品一区二区蜜桃av| 亚洲av日韩精品久久久久久密| 一区二区日韩欧美中文字幕| 午夜免费成人在线视频| 亚洲午夜精品一区,二区,三区| 啦啦啦观看免费观看视频高清| 成人亚洲精品av一区二区| bbb黄色大片| 精品欧美国产一区二区三| 狠狠狠狠99中文字幕| 久久久精品欧美日韩精品| av在线播放免费不卡| 999久久久国产精品视频| 变态另类成人亚洲欧美熟女| 香蕉久久夜色| 真人做人爱边吃奶动态| 成人国产综合亚洲| 免费在线观看影片大全网站| 国产又爽黄色视频| 日韩欧美 国产精品| 国产精品99久久99久久久不卡| 国产伦一二天堂av在线观看| 欧美激情久久久久久爽电影| 91九色精品人成在线观看| 午夜免费鲁丝| 亚洲天堂国产精品一区在线| 成人18禁在线播放| 老司机午夜十八禁免费视频| 国产熟女午夜一区二区三区| 亚洲精华国产精华精| 国产精品免费一区二区三区在线| 国产三级在线视频| 久久婷婷成人综合色麻豆| 精品一区二区三区视频在线观看免费| 免费在线观看视频国产中文字幕亚洲| 成人欧美大片| 在线国产一区二区在线| 国产1区2区3区精品| www国产在线视频色| 亚洲成国产人片在线观看| 色av中文字幕| 国产国语露脸激情在线看| 欧美性猛交黑人性爽| 91字幕亚洲| 久久久久亚洲av毛片大全| 在线观看免费视频日本深夜| 国产亚洲精品一区二区www| 两个人看的免费小视频| 午夜福利成人在线免费观看| 国产单亲对白刺激| 十分钟在线观看高清视频www| 好男人在线观看高清免费视频 | 国产aⅴ精品一区二区三区波| 亚洲国产精品久久男人天堂| av片东京热男人的天堂| 禁无遮挡网站| 制服丝袜大香蕉在线| 琪琪午夜伦伦电影理论片6080| 黑丝袜美女国产一区| 久久久水蜜桃国产精品网| 亚洲成人国产一区在线观看| 久久天堂一区二区三区四区| 18禁黄网站禁片免费观看直播| 日韩免费av在线播放| 亚洲一区二区三区色噜噜| 国语自产精品视频在线第100页| 好看av亚洲va欧美ⅴa在| 可以在线观看毛片的网站| 中文字幕最新亚洲高清| 欧美国产日韩亚洲一区| 老司机午夜福利在线观看视频| 麻豆成人av在线观看| 中文资源天堂在线| 久久 成人 亚洲| 欧美最黄视频在线播放免费| 国产亚洲精品一区二区www| 一区二区三区国产精品乱码| 人人澡人人妻人| 丁香六月欧美| 日韩国内少妇激情av| 成人特级黄色片久久久久久久| 国产av在哪里看| www.自偷自拍.com| 亚洲 欧美 日韩 在线 免费| 白带黄色成豆腐渣| 精品久久久久久久人妻蜜臀av| 制服人妻中文乱码| 精品无人区乱码1区二区| 久久久久国内视频| 免费电影在线观看免费观看| 精品少妇一区二区三区视频日本电影| 午夜福利成人在线免费观看| 丝袜美腿诱惑在线| 自线自在国产av| 久久青草综合色| 99riav亚洲国产免费| 亚洲第一av免费看| 成人永久免费在线观看视频| 日韩有码中文字幕| 18禁国产床啪视频网站| 少妇 在线观看| 国产激情久久老熟女| av中文乱码字幕在线| 日韩精品中文字幕看吧| 精品国内亚洲2022精品成人| 亚洲国产精品久久男人天堂| 成人国语在线视频| 欧美色欧美亚洲另类二区| 好男人在线观看高清免费视频 | 国产久久久一区二区三区| 久久久国产成人精品二区| 97超级碰碰碰精品色视频在线观看| 国产国语露脸激情在线看| 国产精品美女特级片免费视频播放器 | av超薄肉色丝袜交足视频| 久久精品国产亚洲av高清一级| 国产一区二区三区在线臀色熟女| 亚洲精品美女久久av网站| 在线免费观看的www视频| 久久99热这里只有精品18| 免费av毛片视频| 欧美zozozo另类| 99精品久久久久人妻精品| 一本一本综合久久| 在线观看免费日韩欧美大片| 日韩大码丰满熟妇| 国产午夜精品久久久久久| 岛国视频午夜一区免费看| 一进一出好大好爽视频| 久久精品国产清高在天天线| 久久精品国产清高在天天线| 宅男免费午夜| 黄片小视频在线播放| 免费电影在线观看免费观看| 亚洲精品久久成人aⅴ小说| 97碰自拍视频| 波多野结衣高清无吗| 国产精品影院久久| 亚洲av成人不卡在线观看播放网| 国产99白浆流出| 悠悠久久av| 国产精品久久久人人做人人爽| 国产精品日韩av在线免费观看| 男女之事视频高清在线观看| 亚洲狠狠婷婷综合久久图片| 露出奶头的视频| 黑丝袜美女国产一区| 国产一区二区三区在线臀色熟女| 极品教师在线免费播放| 欧美性猛交黑人性爽| 免费看a级黄色片| 亚洲av五月六月丁香网| svipshipincom国产片| 午夜精品久久久久久毛片777| 久久香蕉国产精品| 大型黄色视频在线免费观看| 亚洲国产欧美网| 亚洲成国产人片在线观看| 久久性视频一级片| 免费电影在线观看免费观看| 亚洲精品久久成人aⅴ小说| 日本 av在线| 久久亚洲精品不卡| 国产伦在线观看视频一区| 级片在线观看| 一级毛片女人18水好多| 人人妻人人看人人澡| 在线观看66精品国产| 999久久久精品免费观看国产| 99久久久亚洲精品蜜臀av| 久久久久亚洲av毛片大全| 国产又爽黄色视频| 国产91精品成人一区二区三区| 黄色女人牲交| 黄片小视频在线播放| 女性生殖器流出的白浆| 黄频高清免费视频| 麻豆av在线久日| 可以在线观看的亚洲视频| 在线观看免费午夜福利视频| 国产亚洲欧美98| 精品欧美一区二区三区在线| 级片在线观看| 黄色毛片三级朝国网站| 亚洲国产精品合色在线| 午夜两性在线视频| 日韩中文字幕欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| av天堂在线播放| 男女做爰动态图高潮gif福利片| 黄色视频不卡| or卡值多少钱| 国产精品久久久久久人妻精品电影| 给我免费播放毛片高清在线观看| 人人妻人人澡人人看| 在线av久久热| 国产片内射在线| 国产99久久九九免费精品| 在线国产一区二区在线| 成人国产综合亚洲| 老司机靠b影院| 亚洲国产毛片av蜜桃av| 国产91精品成人一区二区三区| 国产三级黄色录像| 成人午夜高清在线视频 | 日日夜夜操网爽| 在线观看66精品国产| 美女午夜性视频免费| 国产精品自产拍在线观看55亚洲| tocl精华| 亚洲欧美精品综合久久99| 日韩一卡2卡3卡4卡2021年| 中文字幕人妻熟女乱码| 一进一出抽搐动态| 久久精品国产99精品国产亚洲性色| 国产精品 欧美亚洲| 国产激情偷乱视频一区二区| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美日韩在线播放| 波多野结衣av一区二区av| 午夜福利欧美成人| 国产亚洲欧美在线一区二区| 中国美女看黄片| 亚洲精华国产精华精| 国产麻豆成人av免费视频| 国产亚洲欧美精品永久| 中文字幕av电影在线播放| 亚洲一区中文字幕在线| 老司机靠b影院| 午夜a级毛片| or卡值多少钱| 一本一本综合久久| 久久久久精品国产欧美久久久| 中文字幕精品免费在线观看视频| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 国产区一区二久久| 天堂影院成人在线观看| 好看av亚洲va欧美ⅴa在| 色哟哟哟哟哟哟| 男女下面进入的视频免费午夜 | 国产三级黄色录像| 亚洲黑人精品在线| 非洲黑人性xxxx精品又粗又长| 亚洲av电影不卡..在线观看| 亚洲在线自拍视频| 91老司机精品| 黑人操中国人逼视频| 美国免费a级毛片| 久久久久国产精品人妻aⅴ院| 999久久久国产精品视频| 男女下面进入的视频免费午夜 | 97碰自拍视频| 欧美av亚洲av综合av国产av| 日本精品一区二区三区蜜桃| 99久久无色码亚洲精品果冻| 亚洲欧美激情综合另类| 久久久久久久久免费视频了| 欧美精品啪啪一区二区三区| 神马国产精品三级电影在线观看 | 亚洲美女黄片视频| 哪里可以看免费的av片| 老鸭窝网址在线观看| 三级毛片av免费| 两个人看的免费小视频| 成人国产综合亚洲| 色在线成人网| 天堂动漫精品| 18美女黄网站色大片免费观看| 欧美一级毛片孕妇| 国产亚洲精品综合一区在线观看 | 国语自产精品视频在线第100页| 午夜免费成人在线视频| 国产黄a三级三级三级人| 丝袜人妻中文字幕| 亚洲av电影不卡..在线观看| 精品第一国产精品| 亚洲自偷自拍图片 自拍| 午夜视频精品福利| 亚洲第一青青草原| 亚洲精品中文字幕一二三四区| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 亚洲专区国产一区二区| 午夜福利欧美成人| 日韩欧美免费精品| 两人在一起打扑克的视频| 脱女人内裤的视频| 妹子高潮喷水视频| 精品乱码久久久久久99久播| a级毛片在线看网站| 两人在一起打扑克的视频| 热re99久久国产66热| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 俄罗斯特黄特色一大片| 国产国语露脸激情在线看| 欧美最黄视频在线播放免费| 侵犯人妻中文字幕一二三四区| 男女下面进入的视频免费午夜 | 两性夫妻黄色片| 午夜久久久久精精品| 亚洲午夜精品一区,二区,三区| 亚洲国产精品sss在线观看| 极品教师在线免费播放| 日本一区二区免费在线视频| 亚洲在线自拍视频| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产| 99久久无色码亚洲精品果冻| 少妇的丰满在线观看| 欧美 亚洲 国产 日韩一| 最好的美女福利视频网| 一二三四社区在线视频社区8| 麻豆成人午夜福利视频| 午夜免费鲁丝| 亚洲国产欧美日韩在线播放| 亚洲熟妇中文字幕五十中出| 在线观看免费日韩欧美大片| 中文字幕最新亚洲高清| 亚洲一区中文字幕在线| 亚洲第一av免费看| 99国产精品一区二区蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av| 天天躁狠狠躁夜夜躁狠狠躁| or卡值多少钱| 久久这里只有精品19| 亚洲午夜理论影院| 国产精品久久久久久亚洲av鲁大| 啦啦啦 在线观看视频| 欧美色视频一区免费| xxx96com| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 俺也久久电影网| 精品久久久久久久久久免费视频| 一区二区三区激情视频| 国产精品久久久人人做人人爽| 国产成人精品无人区| 亚洲第一电影网av| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| tocl精华| 波多野结衣巨乳人妻| av中文乱码字幕在线| 日本免费a在线| 精品无人区乱码1区二区| 亚洲一区二区三区不卡视频| 久久99热这里只有精品18| 一进一出抽搐动态| 欧美乱码精品一区二区三区| 成人三级黄色视频| 69av精品久久久久久| 国产av一区在线观看免费| 亚洲中文字幕日韩| 亚洲精品国产精品久久久不卡| 久久这里只有精品19| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 两个人看的免费小视频| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看| 在线观看免费日韩欧美大片| 久久青草综合色| 国产精品影院久久| 正在播放国产对白刺激| 免费在线观看黄色视频的| 99国产精品99久久久久| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看| 久久久久久人人人人人| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 国产午夜福利久久久久久| 午夜福利免费观看在线| 精品久久蜜臀av无| 亚洲五月色婷婷综合| 亚洲熟妇中文字幕五十中出| 无人区码免费观看不卡| 在线十欧美十亚洲十日本专区| 久久婷婷人人爽人人干人人爱| 国产色视频综合| 国产亚洲精品综合一区在线观看 | 国产精品免费视频内射| 亚洲熟妇中文字幕五十中出| 国产视频内射| 女同久久另类99精品国产91| 19禁男女啪啪无遮挡网站| 欧美黄色淫秽网站| 侵犯人妻中文字幕一二三四区| 99在线人妻在线中文字幕| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 免费高清在线观看日韩| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 精品免费久久久久久久清纯| 欧美久久黑人一区二区| 亚洲精品一区av在线观看| 国产精品 国内视频| 免费观看精品视频网站| 久久久国产欧美日韩av| 又大又爽又粗| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 欧美色视频一区免费| 欧美性长视频在线观看| 一二三四社区在线视频社区8| 国产亚洲欧美98| 亚洲熟女毛片儿| 黄色视频,在线免费观看| 国产人伦9x9x在线观看| 自线自在国产av| 国产精品 国内视频| 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看| 国产真实乱freesex| 岛国在线观看网站| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 亚洲av熟女| 国产精品野战在线观看| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 免费无遮挡裸体视频| 久久久国产精品麻豆| 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 国产成人精品无人区| 日日爽夜夜爽网站| 久久亚洲精品不卡| 午夜激情福利司机影院| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 午夜免费鲁丝| 国产不卡一卡二| 亚洲成人久久爱视频| 国产乱人伦免费视频| av有码第一页| 国产片内射在线| 村上凉子中文字幕在线| 制服诱惑二区| 美女国产高潮福利片在线看| 欧美性猛交黑人性爽| 一本精品99久久精品77| 自线自在国产av| 俺也久久电影网| 国产精品国产高清国产av| 女性生殖器流出的白浆| 在线播放国产精品三级| 国产亚洲精品第一综合不卡| 国产精华一区二区三区| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 最近最新中文字幕大全电影3 | 国产精品二区激情视频| 亚洲av电影不卡..在线观看| 国产三级在线视频| 国产av又大| 国产黄片美女视频| 俄罗斯特黄特色一大片| 久久青草综合色| 久久99热这里只有精品18| 国产亚洲欧美98| 一进一出抽搐gif免费好疼| 久久精品91无色码中文字幕| 搞女人的毛片| 美女高潮到喷水免费观看| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| 非洲黑人性xxxx精品又粗又长| 在线观看www视频免费| 一个人观看的视频www高清免费观看 | e午夜精品久久久久久久| 久久婷婷成人综合色麻豆| 日韩大码丰满熟妇| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 免费电影在线观看免费观看| 亚洲精品国产一区二区精华液| 91成人精品电影| 在线观看日韩欧美| 国产视频一区二区在线看| 亚洲av熟女| 一本大道久久a久久精品| 视频区欧美日本亚洲| 91老司机精品| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 国产真实乱freesex| 动漫黄色视频在线观看| 日本 欧美在线| 色老头精品视频在线观看| 亚洲九九香蕉| 一区二区三区国产精品乱码| 波多野结衣高清作品| 国产片内射在线| 亚洲片人在线观看| 老司机福利观看| 亚洲国产毛片av蜜桃av| 老司机午夜十八禁免费视频| 国内少妇人妻偷人精品xxx网站 | 男女午夜视频在线观看| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| bbb黄色大片| 国产亚洲精品第一综合不卡| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线 | 侵犯人妻中文字幕一二三四区| a在线观看视频网站| 99久久久亚洲精品蜜臀av| 99热6这里只有精品| 亚洲国产精品sss在线观看| www.精华液| 黄片小视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利18| 成熟少妇高潮喷水视频| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 久久久久久国产a免费观看| 精品高清国产在线一区| 日本精品一区二区三区蜜桃| 正在播放国产对白刺激| www.999成人在线观看| 91老司机精品| 国产一区二区三区在线臀色熟女| 在线十欧美十亚洲十日本专区| 亚洲人成电影免费在线| 亚洲片人在线观看| 国产亚洲精品av在线| 一本一本综合久久| 国内揄拍国产精品人妻在线 | 国产蜜桃级精品一区二区三区| 91九色精品人成在线观看| 国产av又大| 婷婷六月久久综合丁香| 一本综合久久免费| 最近在线观看免费完整版|