• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮摻雜碳納米管包覆Fe0.64Ni0.36@Fe3NiN 核殼結(jié)構(gòu)用于高穩(wěn)定鋅-空氣電池

    2024-07-04 00:00:00蒲晨鄧代潔李赫楠徐麗
    物理化學學報 2024年2期

    摘要:可逆鋅-空氣電池因其高功率密度和環(huán)境友好性而得到了廣泛研究。然而,氧還原反應(ORR)和氧析出反應(OER)的緩慢動力學限制了其實際應用。迄今為止,二氧化銥和二氧化釕被認為是氧還原反應的最佳電催化劑,同時鉑碳被認為是最有效的氧還原反應的電催化劑。然而,由于Pt、Ir和Ru的天然豐度低、成本高的原因,它們在ZABs中的實際應用嚴格受限。因此,探索低成本和高性能的雙功能催化劑對促進可充電鋅-空氣電池的發(fā)展至關重要。具有高導電性、低氧還原反應能壘的過渡金屬合金可作為有潛力的氧還原電催化劑。然而,為提高過渡金屬合金催化劑的雙功能催化活性,可構(gòu)筑過渡金屬合金@過渡金屬氮化物的核殼結(jié)構(gòu)。在此,我們設計了一種氮摻雜碳納米管包覆Fe0.64Ni0.36@Fe3NiN核殼結(jié)構(gòu)(Fe0.64Ni0.36@Fe3NiN/NCNT)的雙功能電催化劑,其具有高效的雙功能催化活性。核殼結(jié)構(gòu)可以為ORR/OER產(chǎn)生更多的活性點。Fe0.64Ni0.36核具有高導電性,有助于電荷轉(zhuǎn)移。Fe3NiN殼有助于提升催化劑的OER性能。氮摻雜碳納米管不僅能夠有效增強傳質(zhì)效應和內(nèi)部電荷傳遞,還可以提升其電化學活性表面積。此外,具有高抗腐蝕性能的Fe3NiN外殼可以有效地保護Fe0.64Ni0.36內(nèi)核,從而提高了電化學過程中催化劑的穩(wěn)定性。氮摻雜碳納米管對Fe0.64Ni0.36@Fe3NiN核殼結(jié)構(gòu)也具有一定的保護作用,因此Fe0.64Ni0.36@Fe3NiN/NCNT表現(xiàn)出優(yōu)異的穩(wěn)定性。Fe0.64Ni0.36@Fe3NiN/NCNT催化劑表現(xiàn)出優(yōu)異的雙功能氧電催化性能,ORR的半波電位為0.88 V,在10 mA·cm?2時的OER過電位為380 mV,以及高電化學穩(wěn)定性(8 h后電流密度剩余92.8%)。此外,與基于Pt/C + IrO2 (155 mW·cm?2)和Fe0.64Ni0.36/NCNT (89 mW·cm?2)的鋅-空氣電池相比,基于Fe0.64Ni0.36@Fe3NiN/NCNT的鋅-空氣電池展現(xiàn)出更高的功率密度(214 mW·cm?2),提供781mAh·g?1的高容量,并展現(xiàn)出了超長的循環(huán)穩(wěn)定性(循環(huán)壽命超過1100 h)。我們相信這項工作將對于新型催化劑設計有所啟發(fā),從而實現(xiàn)高度穩(wěn)定和高效的鋅-空氣電池。

    關鍵詞:雙功能電催化劑;Fe3NiN;核殼結(jié)構(gòu);鋅-空氣電池;長循環(huán)壽命

    中圖分類號:O646

    Abstract: Rechargeable zinc-air batteries (ZABs) havebeen extensively investigated owing to their high powerdensity and environmental friendliness. However, the slowkinetics of the oxygen reduction reaction (ORR) and oxygenevolution reaction (OER) processes limit their practicalapplication. Currently, IrO2 and RuO2 are considered theoptimal OER electrocatalysts, and Pt/C is the most effectiveORR electrocatalyst. However, the practical application of Pt,Ir, and Ru in ZABs is severely limited owing to their low naturalabundance and high cost. Therefore, the fabrication ofinexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transitionmetalalloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they areconsidered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures canbe fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst withFe0.64Ni0.36@Fe3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe0.64Ni0.36@Fe3NiN/NCNT) wasdesigned for highly efficient rechargeable ZABs. Fe0.64Ni0.36@Fe3NiN/NCNT was synthesized by pyrolyzing the nickel-ironlayereddouble hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe0.64Ni0.36 alloy. The core-shellstructure produced more ORR/OER active sites. The Fe0.64Ni0.36 core exhibited high electrical conductivity, which facilitatescharge transfer. The Fe3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover,the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but alsoprovided a large electrochemical active surface area. The high anticorrosion property of the Fe3NiN shell effectivelyprotected the Fe0.64Ni0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes.The protective carbon layer and the superior chemical stability of the Fe3NiN shell resulted in the ultrahigh stability ofFe0.64Ni0.36@Fe3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with ahalf-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA·cm?2. Moreover, the catalystexhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe0.64Ni0.36@Fe3NiN/NCNT-basedZAB exhibited a higher peak power density (214 mW?cm?2) than the ZABs based on Pt/C+IrO2 (155 mW?cm?2) andFe0.64Ni0.36/NCNT (89 mW?cm?2). Moreover, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB delivered a high capacity of 781mAh?g?1, while the ZABs based on Fe0.64Ni0.36/NCNT and Pt/C+IrO2 reached capacities of 688 and 739 mAh?g?1,respectively. Furthermore, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life gt; 1100h), which exceeded those of Pt/C (50 h) and Fe0.64Ni0.36/NCNT (450 h). We propose that this study will facilitate the designof novel catalysts for highly stable and efficient ZABs.

    Key Words: Bifunctional electrocatalyst; Fe3NiN; Core-shell structure; Zinc-air battery; Ultra-long cycle stability

    1 Introduction

    Among the many renewable energy conversion devices, zincairbatteries (ZABs) have attracted abundant attention in bothacademic and industrial communities due to their environmentalfriendliness, high stability and high theoretical energy density(1086 Wh·kg?1) 1,2. However, the practical efficiency of theZABs is inevitably affected by the slow kinetics of oxygenreduction reaction (ORR) and oxygen evolution reaction(OER) 3–6. Currently, Ru/Ir-based OER electrocatalysts and PtbasedORR electrocatalysts with a high price and scarcity arelimited in large-scale commercialization 7–10. Therefore, thedeveloping of high-efficiency, cost-effective, and stablebifunctional oxygen electrocatalysts are highly essential.

    Currently, transition-metal-based electrocatalysts (metalalloy, metal oxides, carbides, hydroxides, phosphides, sulfidesand nitrides) are gravitating more focus on their abundance andpotential catalytic performance 11–14. Among these materials,transition metal alloys not only possess high electricalconductivity but can lower the oxygen reaction energy barrier byinducing internal electron redistribution 15–17. Therefore, transitionmetal alloys are considered promising electrocatalysts 18,19. Thedissolution of transition metal alloys in alkaline remains asubstantial issue. And, the most effective and cost-effective strategy to prevent this corrosion during the oxygen reaction isthe introduction of carbon substrates which can encapsulate thealloy nanoparticles 20. Moreover, the introduction of carbonsubstrates can conspicuously avoid aggregation, broadening thesurface area and fully exposing the active sites 15–19.Nevertheless, transition metal alloys exhibit limited bifunctionalactivity 21–23. The improvement strategies of bifunctional activityneed to be explored urgently. Nowadays, transition metalnitrides are gravitating more focus for their unique electronicstructure, superior chemical stability and excellent mechanicalrobustness. The M― N bonding of transition metal nitridesinduces the expansion of the parent lattice and shrinkage of themetal d-band, leading to a similar electronic structure of preciousmetals at the Fermi level and fundamentally changing theactivity of the catalytic site 14,24,25. Moreover, transition metalnitrides have abundant valence states and provide a largeflexibility for the regulation of the electronic structure. Withgreat flexibility for modulation, transition metal nitrides can beendowed with promising bifunctional electrocatalyticactivities 14,26. Therefore, through constructing the transitionmetal nitrides-transition metal alloys core@shell nanostructure,the bifunctional electrocatalytic activity can be effectivelyimproved.

    Herein, the Fe0.64Ni0.36@Fe3NiN core@shell nanostructureencapsulated in N-doped carbon nanotubes(Fe0.64Ni0.36@Fe3NiN/NCNT) was successfully synthesized bysurface ammonia etching of the nickel-iron alloys (Fig. 1a). TheFe0.64Ni0.36 alloy can enhance the conductivity of Fe3NiN. TheFe3NiN shell can enhance the performance of OER and improvethe dual-function performance. Meanwhile, the dense Fe3NiNshell with high thermal stability and corrosion resistance caneffectively protect the Fe0.64Ni0.36 core, which promotesremarkable activity and stability in ORR and OER processes.Notably, the Fe0.64Ni0.36@Fe3NiN/NCNT exhibited a high halfwavepotential (E1/2) of 0.88 V for ORR and a low overpotential(380 mV) for OER. Moreover, the Fe0.64Ni0.36 alloy stronglyinduces the construction of N-doped carbon nanotube (NCNT)which can not only provide a large electrochemical activesurface area (ECSA) but protect the Fe0.64Ni0.36@Fe3NiNcore@shell nanostructure from harsh electrochemicalcorrosion 27,28. Thus, the current density ofFe0.64Ni0.36@Fe3NiN/NCNT remains at 92.8% after 8 h ofelectrochemical measurements. Moreover, the assembledZABs with Fe0.64Ni0.36@Fe3NiN/NCNT exhibit a highefficiency with an ultra-long cycle life of 1100 h.

    2 Experimental and computational section

    2.1 Chemicals

    Ferric(III) nitrate nonahydrate (Fe(NO3)3·9H2O, 99%),nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O, 99%), urea(CO(NH2)2, 99%), sulfuric acid (H2SO4, 98.3%) and ethanol(C2H5OH, 99.7%) were obtained from Sino Pharm ChemicalReagent Co., Ltd. (Shanghai, China). Commercial Pt/C (20 wt%)and IrO2 (99.9%) were procured from Alfa Aesar Chemicals Co.Ltd. (Shanghai, China). Nafion (5 wt%) was purchased fromSigma-Aldrich Chemie Gmbh (Shanghai, China). Grapheneoxide (GO) was purchased from Nanjing XFNANO MaterialsTech Co., Ltd. (Nanjing, China).

    2.2 Synthesis of Fe0.64Ni0.36/NCNT

    Firstly, melamine, melic acid and urea were mixed and ballmilled (molar ratio = 1 : 1 : 3), and then underwent a thermaltreatment at 550 °C for 4 h with a heating rate of 2 °C·min?1under a nitrogen atmosphere to synthesize g-C3N4 29. Followinga typical procedure, 0.200 g of g-C3N4, 0.231 g ofFe(NO3)3·9H2O, 0.0665 g of Ni(NO3)2·6H2O, 0.360 g of urea,and 0.0150 g of GO were dissolved in 40 mL deionized water.The solution was sonicated for 30 min. Next, the final mixturewas transferred to a Teflon-lined steel autoclave and heated at120 °C for 18 h in an oven. The sediment was collected bycentrifugation and washed three times with deionized water andethanol, then centrifuged and dried overnight in a vacuum ovenat 60 °C. After grinding the dried solid, the sample was heatedat 850 °C for 1 h with a heating rate of 5 °C·min?1 under an argonatmosphere. After cooling to room temperature, the calcinedblack sample was removed from the tube and then dispersed in an H2SO4 solution (0.5 mol·L?1) for 12 h. The abovementionedsample was washed in deionized water until neutral and thendried at 60 °C. The Fe0.64Ni0.36 alloys/nitrogen-doped carbonnanotube (Fe0.64Ni0.36/NCNT) was formed.

    2.3 Synthesis of Fe0.64Ni0.36@Fe3NiN/NCNT

    The Fe0.64Ni0.36@Fe3NiN/NCNT catalyst was obtained bysurface ammonia etching of Fe0.64Ni0.36/NCNT. TheFe0.64Ni0.36/NCNT was nitrided in a mixture of ammonia andargon atmosphere at 800 °C for 2 h in a tube furnace with aheating rate of 5 °C·min?1. The resulting catalysts were denotedas Fe0.64Ni0.36@Fe3NiN/NCNT.

    2.4 Synthesis of Fe2N/NC, NG and NCNT

    The synthesis of Fe2N/NC and NG is similar to the abovementionedone for the Fe0.64Ni0.36/NCNT. The starting solutionswere replaced by 0.200 g of g-C3N4, 0.242 g of Fe(NO3)3·9H2O,0.360 g of urea, and 0.0150 g of GO for synthesizing Fe2N/NC.The starting solutions were replaced by 0.200 g of g-C3N4, 0.360g of urea, and 0.0150 g of GO for synthesizing NG. Meanwhile,the acid cleaning step was abandoned during the synthesis. TheCNT and g-C3N4 were placed in a tubular furnace, heated to850 °C for 1 h to produce the NCNT catalyst.

    3 Results and discussion

    The formation process of the Fe0.64Ni0.36@Fe3NiNencapsulated in N-doped carbon nanotubes is illustrated in Fig.1a. In brief, a combination of hydrothermal method, alloyingprocedure and ammonia treatment was adopted to form the finalcatalyst. Above all, the nickel-iron layered double hydroxideprecursor was prepared by a facile hydrothermal reaction. Afterthe pyrolysis process at 850 °C, the formed alloy can directlycatalyze carbon sources into highly interconnected NCNTs (Fig.S1a, Supporting Information). It is worth mentioning that theNCNTs with supplementary active sites can not only providehigh dispersibility but promote electron transfer 30,31. In the finalstep of catalyst preparation, Fe0.64Ni0.36@Fe3NiN/NCNT wasprepared by ammonia treatment of the Fe0.64Ni0.36/NCNT.

    The scanning electron microscopy (SEM) image reveals thespecific network structure composed of 1D carbon nanotubes(Fig. 1b), which can enhance mass-transport efficiency 32. Thetransmission electron microscopy (TEM) image ofFe0.64Ni0.36@Fe3NiN/NCNT displays that the nanoparticles witha diameter of about 20–50 nm are embedded in the tip of NCNTs(Fig. 1c). The specific carbon nanotube structure cannot befound in the SEM of NG and Fe2N/NC (Fig. S1b,c), which provethat Fe0.64Ni0.36 can catalyze the conversion of carbon source intoNCNT at a high temperature. Moreover, the high-resolutionTEM (HRTEM) verifies the Fe0.64Ni0.36@Fe3NiN core-shellstructure. The lattice fringe of 0.219, 0.218, and 0.220 nm relatesto the (111) facet of Fe3NiN as the shell part after the ammoniaetching of Fe0.64Ni0.36 alloy surfaces (Fig. 1d). The lattice fringeof the core part is 0.208 and 0.205 nm corresponding (111)planes of Fe0.64Ni0.36 alloy. And the lattice fringe of 0.34 nmcorresponds to the (003) lattice plane of graphite-3R (Fig. 1d) 33.Through pyrolyzing the NiFe LDH precursor and then ammoniaetching the Fe0.64Ni0.36 alloy, Fe3NiN nitride was successfullyformed on the surface of the Fe0.64Ni0.36 alloy. Similarly, Wanget al. produced nitrides on the TiNbZrTa/CrFeCoNi alloysurface by magnetron sputtering 34. Liu et al. reported a 3Delectrode configuration composed of metallic NiConitrides/NiCo2O4/GF as a pH-universal bifunctionalelectrocatalyst by being heated at 400 °C in an NH3 atmospherefor 2 h 35. Besides, Kuttiyiel et al. synthesized iridium-nickelnitride shell on the IrNi cores and then evaluated their activity inthe hydrogen evolution reaction through ammonia etching in510 °C 36. Besides, the particle of Fe0.64Ni0.36@Fe3NiN is tightlywrapped in a layer of NCNT with a thickness of about 3.3 nm.Fig. S2 exhibits the Raman spectra of theFe0.64Ni0.36@Fe3NiN/NCNT, Fe0.64Ni0.36/NCNT and NG. Theintensity ratios of the ID/IG peaks were calculated to be 1.08(Fe0.64Ni0.36@Fe3NiN/NCNT), 0.98 (Fe0.64Ni0.36/NCNT) and0.92 (NG). It demonstrates that the Fe0.64Ni0.36@Fe3NiN/NCNThas more defects than Fe0.64Ni0.36/NCNT and NG 37,38. The energydispersive spectroscopy (EDS) of Fe0.64Ni0.36@Fe3NiN/NCNTimplies that the N, Ni, and Fe elements are evenly distributedover the particle (Fig. 1e).

    After annealing the Fe0.64Ni0.36/NCNT precursor for 1 h, Xraydiffraction (XRD) pattern of the as-obtainedFe0.64Ni0.36@Fe3NiN/NCNT can be indexed to the cubic Fe3NiNphase (PDF#09-0318) (Fig. 2a) and Fe0.64Ni0.36 (PDF#47-1405) 39,40. The 2θ values of 41.186°, 48.103° and 70.176°correspond to the (111), (200) and (220) crystal facets,respectively. Additionally, two peaks for (200) and (220) latticeplanes slightly shift to lower diffraction angles (Fig. S3) due tocrystal defects or distortion resulting from the core-shellstructures, which finally brings extra active sites for oxygenreaction 41,42. The peak located at 26.6° can be indexed to the(003) lattice plane of the rhombohedral graphite structure(PDF#26-1079) 43, consistent with TEM results. The X-rayphotoelectron spectroscopy (XPS) was carried out to furtherconfirm the chemical composition and valence states of theFe0.64Ni0.36@Fe3NiN/NCNT catalyst. The survey spectrum ofFe0.64Ni0.36@Fe3NiN/NCNT exhibits the presence of typicalpeaks of C 1s, O 1s, N 1s, Fe 2p and Ni 2p (Fig. S4). The peaksof the Fe 2p spectrum at 707.06 and 708.38 eV correspond to Fe0species and Fe―Nx (Fig. 2b). The peak at 711.20 and 713.72 eVis corresponding to Fe2+ and Fe3+, respectively. In addition, thepeaks at 715.22 eV can be assigned to the satellite peaks 16,42.The Ni 2p spectrum of Fe0.64Ni0.36@Fe3NiN/NCNT shows theappearance of Ni0, Ni―Nx, Ni2+, Ni3+, and the satellite peaks at853.24, 853.92, 855.08, 857.46 and 861.24 eV (Fig. 2c),respectively. The appearance of Fe―Nx and Ni―Nx is inaccordance with the Fe3NiN phase shown in the XRD pattern.After the ammonia treatment, the contents of metal-nitrogenspecies significantly increase (Table S1 and S2, SupportingInformation). The N 1s spectrum (Fig. 2d) ofFe0.64Ni0.36@Fe3NiN/NCNT can be divided into five characteristic peaks of pyridinic N (398.42 eV), Fe/Ni―Nx(399.04 eV), pyrrolic N (399.41 eV), graphitic N (401.08 eV)and oxidized N (404.14 eV), further certifying the existence ofmetal nitrides 16,17. The nitrogen species are mainly graphitic Nand pyridinic N (Table S3). The pyridinic N is the active site ofthe oxygen reduction reaction. The graphitic N can enhance theconductivity to improve the current density 46,47. Compared tothe N 1s spectra from the Fe0.64Ni0.36/NCNT, theFe0.64Ni0.36@Fe3NiN/NCNT has significantly less pyrrolic Nand more Fe/Ni―Nx species (Table S3), which is consistent withthe findings from the spectra of Fe 2p and Ni 2p.

    To measure the electrocatalytic performance ofFe0.64Ni0.36@Fe3NiN/NCNT, a three-electrode system has beenconstructed in 0.1 mol·L?1 KOH electrolyte with saturated O2 orN2. Cyclic voltammetry (CV) curves are shown in Fig. S5 andFig. S6 to evaluate the ORR activity of the electrocatalysts. Thecharacteristic oxygen reduction peaks appear in all samples(Fe0.64Ni0.36@Fe3NiN/NCNT, Fe0.64Ni0.36/NCNT, Fe2N/NC, NGand Pt/C). The CV curves of Fe0.64Ni0.36@Fe3NiN/NCNTexhibit an oxygen reduction peak at 0.77 V, which is larger thanthat of Fe0.64Ni0.36/NCNT (0.69 V). This result indicates that theFe0.64Ni0.36@Fe3NiN/NCNT exhibits excellent ORR performance.The catalytic performances of Fe0.64Ni0.36@Fe3NiN/NCNT,F(xiàn)e0.64Ni0.36/NCNT, Fe2N/NC, NG and noble-metal catalysts(Pt/C for ORR, IrO2 for OER) were estimated through linearsweep voltammetry (LSV) measurements in 1.0 mol·L?1 KOHelectrolyte with saturated O2 (Fig. 3a,e). The LSV curves exhibitthe ORR performance with an onset and half-wave potential(E1/2) of 1.02 and 0.88 V for Fe0.64Ni0.36@Fe3NiN/NCNT.Compared with the Fe0.64Ni0.36@Fe3NiN/NCNT, thecommercial Pt/C (0.95 and 0.85 V), Fe0.64Ni0.36/NCNT (0.93 and0.82 V), Fe2N/NC (0.90 and 0.79 V) and NG (0.87 and 0.77 V)show low onset and half-wave potential. While the NCNTexhibits a lower onset potential (0.80 V) and half-wave potential(0.68 V) (Fig. S7). Chronoamperometry tests were performed toconfirm the ORR stability. After 8 h, the current density ofFe0.64Ni0.36@Fe3NiN/NCNT remains 92.8%, which is better thanthat of Fe0.64Ni0.36/NCNT (84.3%), Fe2N/NC (89.0%), NG(84.4%) and Pt/C (78.3%) (Fig. 3b). This remarkable stability ofFe0.64Ni0.36@Fe3NiN/NCNT can be attributed to the metalnitride layer and carbon substrate with high crystallinity, whichcan protect nanoparticles from corrosion during the harshelectrochemical process 13. Besides, the rotating ring diskelectrode (RRDE) test shows that the H2O2 yield ofFe0.64Ni0.36@Fe3NiN/NCNT is below 5% in the potentialranging of 0.2–0.8 V, which is close to that of Pt/C andFe0.64Ni0.36/NCNT. The electron-transfer number is 3.82–3.97,reconfirming a four-electron transfer pathway (Fig. 3c). Thecorresponding LSV curves of RRDE tests are exhibited in Fig.S8. The electron transfer properties were evaluated throughelectrochemical impedance spectra (EIS).Fe0.64Ni0.36@Fe3NiN/NCNT possesses the smallest radius circle(Fig. S9), suggesting a higher charge-transfer efficiency owingto the specific structure. The electrochemical active surface area(ECSA) was evaluated based on the proportional relationshipbetween ECSA and electrochemical double-layer capacitance(Cdl), which was obtained by measuring the non-Faradaic current(Fig. S10 and Fig. S11). The Cdl of Fe0.64Ni0.36@Fe3NiN/NCNTcatalyst is 59.3 mF·cm?2 which is larger than those of 48.8mF·cm?2 for Fe0.64Ni0.36/NCNT catalyst, 17.4 mF·cm?2 for Pt/C,12.5 mF·cm?2 for Fe2N/NC catalyst and 13.1 mF·cm?2 for NG(Fig. 3d). It indicates that more active sites are activated whenFe0.64Ni0.36 and Fe3NiN are coupled together with a core-shellstructure. The larger ECSA is due to the lower charge-transferresistance and the structure of carbon nanotube 13. The OERperformances of the catalysts were evaluated in 0.1 mol·L?1KOH electrolyte with saturated N2. TheFe0.64Ni0.36@Fe3NiN/NCNT shows an overpotential of 380 mVat a current density of 10 mA·cm?2 (Fig. 3e), which is lower thanthat of the commercial IrO2 (390 mV), Fe2N/NC (400 mV),F(xiàn)e0.64Ni0.36/NCNT (450 mV) and NG (460 mV). The surface ofFe3NiN can reconstruct into an amorphous FeNi-containingoxyhydroxide shell which serves as the real active species duringthe OER process 11,48. Thus, the Fe3NiN shell in the surface ofthe Fe0.64Ni0.36 core contributes to enhancing the performance ofOER. Measuring the potential gap ΔE (= Ej=10 ? E1/2) betweenthe half-wave potential (E1/2) of ORR and potential of OER(Ej=10) at a current density of 10 mA·cm?2 is calculated toevaluate bifunctional oxygen reaction activity. TheFe0.64Ni0.36@Fe3NiN/NCNT has shown an excellent ΔE of 0.73 V,which is superior to the Pt/C for ORR and IrO2 for OER (ΔE =0.77 V) and the Fe0.64Ni0.36/NCNT (ΔE = 0.85 V) (Fig. 3f),surpassing many works reported previously (Table S4).Additionally, by comparing to the performance of somepreviously reported outstanding bifunctional catalysts, theFe0.64Ni0.36@Fe3NiN/NCNT indeed exhibits a better bifunctionalperformance (ΔE = 0.73 V, Table S4). In summary, the reasonsfor the enhanced electrocatalytic performance can be attributedto the following factors: 1) Fe0.64Ni0.36 core possesses highelectrical conductivity which contributes to the charge transfer.The Fe3NiN shell with superior chemical stability can serve as aprotection layer to enhance the stability of theFe0.64Ni0.36@Fe3NiN/NCNT. 2) The nitride@alloy core-shellstructure can produce more active sites for ORR/OER. TheFe3NiN shell can enhance the performance of OER, whicheventually lead to improving the dual-function performance. 3)The NCNT catalyzed by Fe0.64Ni0.36 possesses a high degree ofgraphitization and a high level of graphitic-N active sites, whichcan efficiently enhance the mass transfer efficiency and intrinsicelectrical conductivity. And, the carbon layer can furthersignificantly protect the internal particle during theelectrochemical test, resulting in ultra-high cyclic stability.

    The excellent bifunctional performance of the core-shellstructure ensures that the Fe0.64Ni0.36@Fe3NiN/NCNT can be anideal catalyst for the real application of rechargeable zinc-airbatteries. To demonstrate that, a classical rechargeable zinc-airbattery was assembled by applying the Fe0.64Ni0.36@Fe3NiN/NCNTas the cathode. For comparison, two batteries loading the Pt/C +IrO2 and Fe0.64Ni0.36/NCNT catalysts respectively were alsoestimated under the same test condition. TheFe0.64Ni0.36@Fe3NiN/NCNT-based ZABs display an opencircuitvoltage as large as 1.51 V (Fig. 4a), which is close to thatof Pt/C + IrO2-based ZABs (1.51 V) and Fe0.64Ni0.36/NCNTbasedZABs (1.38 V). The charge and discharge polarizationcurves have been recorded at current density varying from 0 to400 mA·cm?2 in Fig. 4b. The Fe0.64Ni0.36@Fe3NiN/NCNT-basedZABs present a low charge-discharge voltage gap compared withthe Pt/C + IrO2-based ZABs. The Fe0.64Ni0.36@Fe3NiN/NCNTbasedZABs deliver a maximum power density of 214 mW·cm?2at 364 mA·cm?2 (Fig. 4c), which is higher than that of Pt/C +IrO2 (155 mW·cm?2) and Fe0.64Ni0.36/NCNT (89 mW·cm?2),outperforming many reported ZABs in the recent works (TableS5). Besides, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZABs candeliver a high capacity of 781 mAh·g?1 at a current density of 20mA·cm?2, while the Fe0.64Ni0.36/NCNT and Pt/C + IrO2 reach at688 and 739 mAh·g?1 (Fig. 4d). During the discharge operation,no conspicuous voltage drop was observed. To verify the highstability of this specific structure in the real application, thecharge-discharge cycle curve (20 min for each charge anddischarge) was tested on the constant current density (5 mA·cm?2).As shown in Fig. 4e, the Fe0.64Ni0.36@Fe3NiN/NCNT-basedZABs display remarkable long-term durability over 3300 cyclesin 1100 h. The Fe0.64Ni0.36@Fe3NiN/NCNT-based ZABsdelivered a smaller voltage gap (1.04 V), indicating bettercharge-discharge performance. And the steady energy efficiencyis about 52.3%. However, a gradual increase in the voltage gapcan be observed in the Fe0.64Ni0.36/NCNT-based ZABs aftertesting about 450 h. It proves that the Fe3NiN shell inFe0.64Ni0.36@Fe3NiN/NCNT can enhance the stability ofFe0.64Ni0.36@Fe3NiN/NCNT-based ZABs.

    4 Conclusions

    In summary, the Fe0.64Ni0.36@Fe3NiN core@shellnanostructure encapsulated in N-doped carbon nanotubes wassuccessfully prepared via a facile strategy of pyrolyzing the NiFeLDH precursor and ammonia etching the Fe0.64Ni0.36 alloy. TheFe3NiN can be formed by ammonia etching the Fe0.64Ni0.36 alloyto obtain core@shell nanostructure which can provide morecatalytic active sites. The Fe3NiN contributes to enhancing theperformance of OER and leads to improving the dual-functionperformance. The Fe0.64Ni0.36@Fe3NiN/NCNT can significantlyobtain the outstanding oxygen reaction performance (ΔE = 0.73 V)with high ORR (E1/2 = 0.88 V) and OER (Ej=10 = 1.61 V)activities. Besides, the nitride layer with high crystallinity couldalso protect the Fe0.64Ni0.36@Fe3NiN from being directlyexposed to an electrochemical environment. Consequently,when Fe0.64Ni0.36@Fe3NiN/NCNT was applied as the cathode inZABs, it exhibits a high peak power density (214 mW·cm?2) anda prominent long-term durability (1100 h) in practicalapplications. The ultra-high cycling stability benefits from theprotection of the carbon layer in NCNT and the superiorchemical stability of Fe3NiN. This work provides a reasonablestrategy to design and synthesize core-shell electrocatalysts withhigh performance for zinc-air batteries.

    Author Contributions: Methodology, Validation,Investigation, Data Curation, Writing-Original DraftPreparation, Chen Pu; Investigation, Data Curation, Writing-Original Draft Preparation, Daijie Deng; Conceptualization,Supervision, Writing-Review amp; Editing, Resources, ProjectAdministration, Henan Li and Li Xu.

    Supporting Information: available free of charge via the Internet at http://www.whxb.pku.edu.cn.

    References

    (1) Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. ACS Appl. Mater.Interfaces 2021, 13, 40172. doi: 10.1021/acsami.1c08462

    (2) Wu, M.; Zhang, G.; Wu, M.; Prakash, J.; Sun, S. Energy StorageMater. 2019, 21, 253. doi: 10.1016/j.ensm.2019.05.018

    (3) Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J.; Sun, B.; Fan,Q. H.; Shao, G. J.; Chen, C.; Liu, H.; et al. Adv. Mater. 2023, 35,2210714. doi: 10.1002/adma.202210714

    (4) Anand, P.; Wong, M. S.; Fu, Y. P. Energy Storage Mater. 2023, 58,362. doi: 10.1016/j.ensm.2023.03.033

    (5) Deng, D. J.; Ma, H. X.; Wu, S. Q.; Wang, H.; Qian, J. C.; Wu, J. C.;Li, H. M.; Yan, C.; Li, H. N.; Xu, L. Renewables 2023, Accepted.doi: 10.31635/renewables.023.202200020

    (6) Wu, S. Q.; Deng, D. J.; Zhang, E. J.; Li, H. N.; Xu, L. Carbon 2022,196, 347. doi: 10.1016/j.carbon.2022.04.043

    (7) Lee, C.; Shin, K.; Park, Y.; Yun, Y. H.; Doo, G.; Jung, G. H.; Kim,M.; Cho, W.; Kim, C.; Lee, H. M.; et al. Adv. Funct. Mater. 2023, 32,2301557. doi: 10.1002/adfm.202301557

    (8) Hong, S.; Ham, K.; Hwang, J.; Kang, S.; Seo, M. H.; Choi, Y.; Han,B.; Lee, J.; Cho, K. Adv. Funct. Mater. 2023, 33, 2209543.doi: 10.1002/adfm.202209543

    (9) Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, J.; Wang, Y.; Guo, Z. J.; Yu,J.; Bello, I. T.; Ni, M. Appl. Catal. B 2023, 320, 121992.doi: 10.1016/j.apcatb.2022.121992

    (10) Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Adv. Mater. 2019, 31,1802234. doi: 10.1002/adma.201802234

    (11) Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.;Zhao, T.; Lin, R.; Wang, K.; et al. Appl. Catal. B 2020, 274, 119086.doi: 10.1016/j.apcatb.2020.119086

    (12) Liu, W.; Zhang, J.; Bai, Z.; Jiang, G.; Li, M.; Feng, K.; Yang, L.;Ding, Y.; Yu, T.; Chen, Z.; et al. Adv. Funct. Mater. 2018, 28,1706675. doi: 10.1002/adfm.201706675

    (13) Wu, M.; Zhang, G.; Chen, N.; Hu, Y.; Regier, T.; Rawach, D.; Sun, S.ACS Energy Lett. 2021, 6, 1153. doi: 10.1021/acsenergylett.1c00037

    (14) Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.;Xiao, X.; Lee, J. M. Chem. Soc. Rev. 2021, 50, 1354.doi: 10.1039/D0CS00415D

    (15) Xiong, Q.; Zheng, J.; Liu, B.; Liu, Y.; Li, H.; Yang, M. Appl. Catal. B2023, 321, 122067. doi: 10.1016/j.apcatb.2022.122067

    (16) Ma, Y.; Chen, W.; Jiang, Z.; Tian, X.; Wang, X.; Chen, G.; Jiang, Z.-J.J. Mater. Chem. A 2022, 10, 12616. doi: 10.1039/D2TA03110H

    (17) Kim, K.; Min, K.; Go, Y.; Lee, Y.; Shim, S. E.; Lim, D.; Baeck, S. H.Appl. Catal. B 2022, 315, 121501. doi: 10.1016/j.apcatb.2022.121501

    (18) Wu, Z.; Lu, X. F.; Zang, S.; Lou, X. W. Adv. Funct. Mater. 2020, 30,1910274. doi: 10.1002/adfm.201910274

    (19) Huang, Z. F.; Wang, J.; Peng, Y.; Jung, C. Y.; Fisher, A.; Wang, X.Adv. Energy Mater. 2017, 7, 1700544. doi: 10.1002/aenm.201700544

    (20) Li, G.; Tang, Y.; Fu, T.; Xiang, Y.; Xiong, Z.; Si, Y.; Guo, C.; Jiang,Z. S. Chem. Eng. J. 2022, 429, 132174. doi: 10.1016/j.cej.2021.132174

    (21) Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.; Shi, Z.;Jeong, C.; Kang, J.; Li, O. L. J. Colloid Interface Sci 2021, 582, 977.doi: 10.1016/j.jcis.2020.08.101

    (22) Sheng, K.; Yi, Q.; Chen, A. L.; Wang, Y.; Yan, Y.; Nie, H.; Zhou, X.ACS Appl. Mater. Interfaces 2021, 13, 45394.doi: 10.1021/acsami.1c10671

    (23) Xu, X.; Xie, J.; Liu, B.; Wang, R.; Liu, M.; Zhang, J.; Liu, J.; Cai, Z.;Zou, J. Appl. Catal. B 2022, 316, 121687.doi: 10.1016/j.apcatb.2022.121687

    (24) He, X.; Tian, Y.; Huang, Z.; Xu, L.; Wu, J.; Qian, J.; Zhang, J.; Li, H.J. Mater. Chem. A 2021, 9, 2301. doi: 10.1039/D0TA10370E

    (25) Liu, Z.; Liu, D.; Zhao, L.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem.A 2021, 9, 7750. doi: 10.1039/D1TA01014J

    (26) Ban, J.; Xu, H.; Cao, G.; Fan, Y.; Pang, W. K.; Shao, G.; Hu, J. Adv.Funct. Mater. 2023, 33, 2300623. doi: 10.1002/adfm.202300623

    (27) Jiang, R.; Tung, S. O.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.;Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260.doi: 10.1016/j.ensm.2017.11.005

    (28) Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.;Qiao, Y.; Mu, S.; Xu, Q. Adv. Funct. Mater. 2018, 28, 1805641.doi: 10.1002/adfm.201805641

    (29) Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev.2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075

    (30) Kang, J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Tan, X. Y.; Liu, S.M.; Wang, S.B. Chem. Eng. J. 2019, 362, 251.doi: 10.1016/j.cej.2019.01.035.

    (31) Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R. Adv. Mater.2022, 34, 2105410. doi: 10.1002/adma.202105410

    (32) Zhao, B.; Wu, Y.; Han, L.; Xia, Z.; Wang, Q.; Chang, S.; Liu, B.;Wang, G.; Shang, Y.; Cao, A. Energy Storage Mater. 2022, 50, 344.doi: 10.1016/j.ensm.2022.05.029

    (33) Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C.; Roth, E. P.; Amine,K. Energy Environ. Sci. 2011, 4, 4023. doi: 10.1039/c1ee01786a

    (34) Wang, J.; Shu, R.; Chai, J.; Rao, S. G.; Le Febvrier, A.; Wu, H.; Zhu,Y.; Yao, C.; Luo, L.; Li, W.; et al. Mater. Des. 2022, 219, 110749.doi: 10.1016/j.matdes.2022.110749

    (35) Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.;Dai, L.; Liu, H. Adv. Sci 2019, 6, 1801829.doi: 10.1002/advs.201801829

    (36) Kuttiyiel, K. A.; Sasaki, K.; Chen, W. F.; Su, D.; Adzic, R. R.J. Mater. Chem. A 2014, 2, 591. doi: 10.1039/C3TA14301E

    (37) Deng, D.; Qian, J.; Liu, X.; Li, H.; Su, D.; Li, H.; Li, H.; Xu, L. Adv.Funct. Materials 2022, 32, 2203471. doi: 10.1002/adfm.202203471

    (38) Deng, D.; Wu, S.; Li, H.; Li, H.; Xu, L. Small 2023, 19, 2205469.doi: 10.1002/smll.202205469

    (39) López-Callejas, R.; Valencia-Alvarado, R.; Mu?oz-Castro, A. E.;Godoy-Cabrera, O. G.; Barocio, S. R.; Chávez-Alarcón, E. Vacuum2004, 76, 287. doi: 10.1016/j.vacuum.2004.07.060

    (40) Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. J. Energy Chem.2014, 23, 324. doi: 10.1016/S2095-4956(14)60154-6

    (41) Chen, M.; Lu, S.; Fu, X.; Luo, J. Adv. Sci. 2020, 7, 1903777.doi: 10.1002/advs.201903777

    (42) Wu, M.; Zhang, G.; Qiao, J.; Chen, N.; Chen, W.; Sun, S. NanoEnergy 2019, 61, 86. doi: 10.1016/j.nanoen.2019.04.031

    (43) Park, J.; Yoon, K. Y.; Kwak, M. J.; Lee, J. E.; Kang, J.; Jang, J. H.ACS Appl. Mater. Interfaces 2021, 13, 54906.doi: 10.1021/acsami.1c13872

    (44) Xu, L.; Wu, S.; He, X.; Wang, H.; Deng, D.; Wu, J.; Li, H. Chem.Eng. J. 2022, 437, 135291. doi: 10.1016/j.cej.2022.135291

    (45) Lou, Y.; Liu, J.; Liu, M.; Wang, F. ACS Catal. 2020, 10, 2443.doi: 10.1021/acscatal.9b03716

    (46) Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.;Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1970332.doi: 10.1002/adfm.201970332

    (47) Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.;Huang, Y. Nano Energy 2018, 52, 307.doi: 10.1016/j.nanoen.2018.08.003

    (48) Tang, H.; Yang, D.; Lu, M.; Kong, S.; Hou, Y.; Liu, D.; Liu, D.; Yan,S.; Chen, Z.; Yu, T.; et al. J. Mater. Chem. A 2021, 9, 25435.doi: 10.1039/D1TA07561F

    國家自然科學基金(22178148, 22278193)資助項目

    精品久久久久久久人妻蜜臀av| 一级毛片 在线播放| 国国产精品蜜臀av免费| 久久久久精品久久久久真实原创| 神马国产精品三级电影在线观看| 汤姆久久久久久久影院中文字幕| 蜜臀久久99精品久久宅男| 亚洲欧美精品专区久久| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 国内精品宾馆在线| 中文乱码字字幕精品一区二区三区| 午夜福利视频1000在线观看| 亚洲国产色片| 欧美xxxx性猛交bbbb| 欧美日韩亚洲高清精品| 人妻 亚洲 视频| 人人妻人人看人人澡| 成人高潮视频无遮挡免费网站| 伦精品一区二区三区| 国产成人午夜福利电影在线观看| 国产精品人妻久久久久久| 18+在线观看网站| 国产毛片在线视频| 女人久久www免费人成看片| .国产精品久久| 高清午夜精品一区二区三区| 国产永久视频网站| av播播在线观看一区| 日韩伦理黄色片| 日韩大片免费观看网站| 国产亚洲最大av| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 免费黄网站久久成人精品| 久久精品国产鲁丝片午夜精品| 免费看光身美女| 久久99蜜桃精品久久| 激情 狠狠 欧美| 水蜜桃什么品种好| 中文资源天堂在线| 亚洲精品,欧美精品| 丰满乱子伦码专区| 最近的中文字幕免费完整| 成人欧美大片| 日本与韩国留学比较| av一本久久久久| 精品人妻熟女av久视频| 99久久精品一区二区三区| 国产高潮美女av| 午夜激情久久久久久久| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 22中文网久久字幕| 国产精品爽爽va在线观看网站| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久人妻蜜臀av| 男女啪啪激烈高潮av片| 亚洲av一区综合| 美女高潮的动态| 在线播放无遮挡| 蜜臀久久99精品久久宅男| 国产精品精品国产色婷婷| 亚洲精品成人av观看孕妇| 少妇的逼水好多| 亚洲精品视频女| 精品一区在线观看国产| 国产v大片淫在线免费观看| 国产毛片在线视频| 国产精品秋霞免费鲁丝片| 王馨瑶露胸无遮挡在线观看| 精品久久久噜噜| 国内精品美女久久久久久| 欧美精品国产亚洲| 青春草国产在线视频| 国产伦在线观看视频一区| 国产精品成人在线| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 网址你懂的国产日韩在线| 99久久精品热视频| 老司机影院成人| 男女无遮挡免费网站观看| 国产女主播在线喷水免费视频网站| 一边亲一边摸免费视频| 久久99热6这里只有精品| 在线精品无人区一区二区三 | 亚洲真实伦在线观看| 国产亚洲午夜精品一区二区久久 | 国产 一区精品| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品古装| 白带黄色成豆腐渣| 美女国产视频在线观看| 亚洲最大成人手机在线| 在线播放无遮挡| 国产 一区精品| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 成人毛片60女人毛片免费| 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 亚洲欧美日韩东京热| 在线观看一区二区三区| 五月天丁香电影| 久久久精品免费免费高清| 国产黄色免费在线视频| av卡一久久| 涩涩av久久男人的天堂| 91午夜精品亚洲一区二区三区| 噜噜噜噜噜久久久久久91| 色视频www国产| 亚洲最大成人中文| 各种免费的搞黄视频| 天天躁日日操中文字幕| 日韩免费高清中文字幕av| 亚洲av免费高清在线观看| 国产精品蜜桃在线观看| 精品久久久噜噜| 老司机影院毛片| 人体艺术视频欧美日本| 一区二区三区乱码不卡18| 最近的中文字幕免费完整| 亚洲图色成人| 成年版毛片免费区| 亚洲天堂av无毛| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 国产成人aa在线观看| 直男gayav资源| 特级一级黄色大片| 高清午夜精品一区二区三区| 日韩欧美精品v在线| 日本wwww免费看| av在线天堂中文字幕| 亚洲精品第二区| 亚洲在久久综合| 精品一区二区免费观看| 99热6这里只有精品| 高清视频免费观看一区二区| 丰满人妻一区二区三区视频av| 午夜爱爱视频在线播放| 亚洲色图av天堂| 国产精品人妻久久久影院| 久久精品夜色国产| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| 乱系列少妇在线播放| 在线精品无人区一区二区三 | 国产成人精品婷婷| 舔av片在线| 青青草视频在线视频观看| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 欧美日韩综合久久久久久| 成人国产麻豆网| 啦啦啦中文免费视频观看日本| 精品人妻熟女av久视频| 国产成人午夜福利电影在线观看| 制服丝袜香蕉在线| 亚洲av成人精品一二三区| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| 久久亚洲国产成人精品v| 国产黄频视频在线观看| 舔av片在线| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 国产成人91sexporn| 狂野欧美激情性xxxx在线观看| 国产精品熟女久久久久浪| 国产免费又黄又爽又色| 秋霞伦理黄片| 麻豆久久精品国产亚洲av| 色吧在线观看| 观看美女的网站| 麻豆精品久久久久久蜜桃| 国产精品蜜桃在线观看| 免费观看性生交大片5| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 国产乱人视频| 久久久国产一区二区| 性插视频无遮挡在线免费观看| 国产乱来视频区| 欧美97在线视频| 全区人妻精品视频| 久久99热这里只有精品18| 国产在视频线精品| 青春草视频在线免费观看| 男女啪啪激烈高潮av片| 一级二级三级毛片免费看| 少妇 在线观看| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 亚洲av.av天堂| 成人无遮挡网站| 九九爱精品视频在线观看| 亚洲国产日韩一区二区| 成人黄色视频免费在线看| 免费大片18禁| 国产 精品1| 免费少妇av软件| 亚洲国产精品999| 免费观看av网站的网址| 日产精品乱码卡一卡2卡三| 国产精品av视频在线免费观看| 亚洲精品国产av成人精品| 尾随美女入室| 国产av不卡久久| 一级av片app| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 99久久精品一区二区三区| 成人国产麻豆网| 亚洲人与动物交配视频| 日本免费在线观看一区| 国产成人免费无遮挡视频| 成人午夜精彩视频在线观看| 丰满人妻一区二区三区视频av| 欧美丝袜亚洲另类| 国产免费视频播放在线视频| 80岁老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 成人一区二区视频在线观看| 一级毛片 在线播放| 成人鲁丝片一二三区免费| 亚洲第一区二区三区不卡| 一级毛片电影观看| 别揉我奶头 嗯啊视频| 亚洲av中文av极速乱| 精品久久久精品久久久| 亚洲性久久影院| 亚洲av福利一区| 久久人人爽人人片av| 欧美日韩综合久久久久久| 一级二级三级毛片免费看| 国产日韩欧美在线精品| 国产精品久久久久久精品电影| 国产亚洲一区二区精品| 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久 | 国产人妻一区二区三区在| 亚洲aⅴ乱码一区二区在线播放| 99久久精品国产国产毛片| 人妻 亚洲 视频| 欧美日韩在线观看h| 精品久久久久久久末码| tube8黄色片| 亚洲激情五月婷婷啪啪| 国精品久久久久久国模美| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 一本久久精品| 国产探花在线观看一区二区| 只有这里有精品99| 亚洲色图综合在线观看| 老女人水多毛片| 久久久久久九九精品二区国产| 国产高清国产精品国产三级 | 国产成人aa在线观看| 91狼人影院| www.色视频.com| 免费在线观看成人毛片| 高清视频免费观看一区二区| 少妇丰满av| 天天躁日日操中文字幕| 亚洲三级黄色毛片| 欧美亚洲 丝袜 人妻 在线| 久久97久久精品| 国产成人精品一,二区| av播播在线观看一区| 亚洲国产最新在线播放| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 毛片女人毛片| 内射极品少妇av片p| 99热网站在线观看| 欧美成人一区二区免费高清观看| 日韩一区二区视频免费看| 久久久午夜欧美精品| 嫩草影院精品99| 亚洲国产精品国产精品| 国产黄片美女视频| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 久久女婷五月综合色啪小说 | 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 成年女人在线观看亚洲视频 | 99热6这里只有精品| 久热这里只有精品99| 美女脱内裤让男人舔精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品色激情综合| 韩国av在线不卡| 欧美最新免费一区二区三区| 久久久精品94久久精品| 欧美高清性xxxxhd video| 插逼视频在线观看| 日韩制服骚丝袜av| 亚洲欧美一区二区三区国产| 大香蕉久久网| 少妇的逼好多水| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 国产在视频线精品| 亚洲av中文字字幕乱码综合| 亚洲av国产av综合av卡| 久久97久久精品| 涩涩av久久男人的天堂| 麻豆久久精品国产亚洲av| 日本猛色少妇xxxxx猛交久久| 99热6这里只有精品| 亚洲最大成人中文| 亚洲国产av新网站| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 亚洲一区二区三区欧美精品 | 中文资源天堂在线| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 好男人在线观看高清免费视频| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 性插视频无遮挡在线免费观看| 国产精品国产av在线观看| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| 国产黄频视频在线观看| 国产在视频线精品| 女人久久www免费人成看片| 国产国拍精品亚洲av在线观看| 久久久久国产精品人妻一区二区| 亚洲av二区三区四区| 一级二级三级毛片免费看| 久久久久久久亚洲中文字幕| 亚洲欧美精品专区久久| 国精品久久久久久国模美| 亚洲三级黄色毛片| 在线观看一区二区三区| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| 777米奇影视久久| 日韩一区二区三区影片| 成人免费观看视频高清| 少妇的逼好多水| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 亚洲综合色惰| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 一区二区av电影网| 日韩在线高清观看一区二区三区| 哪个播放器可以免费观看大片| 亚洲国产最新在线播放| 人妻 亚洲 视频| 精品国产三级普通话版| 国产人妻一区二区三区在| 在线精品无人区一区二区三 | 国产亚洲5aaaaa淫片| 国产成人aa在线观看| 国产乱人视频| 久久99热6这里只有精品| 国产精品福利在线免费观看| 国产一级毛片在线| 又大又黄又爽视频免费| 亚洲天堂国产精品一区在线| 丰满人妻一区二区三区视频av| 真实男女啪啪啪动态图| 自拍欧美九色日韩亚洲蝌蚪91 | av在线app专区| 亚洲综合色惰| 日韩视频在线欧美| 综合色av麻豆| 久久久久久久久久成人| 欧美zozozo另类| 成人免费观看视频高清| 久久久久九九精品影院| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 中文欧美无线码| 91精品国产九色| 久久精品久久久久久噜噜老黄| 成年av动漫网址| 亚洲怡红院男人天堂| av黄色大香蕉| 黑人高潮一二区| 青春草视频在线免费观看| 亚洲欧洲日产国产| 中文资源天堂在线| 国精品久久久久久国模美| 国产白丝娇喘喷水9色精品| 亚洲,一卡二卡三卡| 国产精品.久久久| 国产黄片视频在线免费观看| 欧美高清成人免费视频www| 久久久国产一区二区| 久热这里只有精品99| 我的女老师完整版在线观看| 中文字幕制服av| 最新中文字幕久久久久| av在线老鸭窝| 丰满乱子伦码专区| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 国产精品熟女久久久久浪| 日本免费在线观看一区| av卡一久久| 日韩视频在线欧美| 夜夜爽夜夜爽视频| 欧美bdsm另类| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 欧美性猛交╳xxx乱大交人| 欧美97在线视频| 97超视频在线观看视频| 观看免费一级毛片| 七月丁香在线播放| 亚洲国产精品国产精品| 黄片wwwwww| 少妇 在线观看| 久久精品人妻少妇| 国产片特级美女逼逼视频| 全区人妻精品视频| 天天躁日日操中文字幕| 久久久久国产网址| 亚洲av一区综合| 中国美白少妇内射xxxbb| 听说在线观看完整版免费高清| 免费少妇av软件| 一本色道久久久久久精品综合| 别揉我奶头 嗯啊视频| 日本午夜av视频| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 在线观看免费高清a一片| 在线精品无人区一区二区三 | 亚洲一区二区三区欧美精品 | 大陆偷拍与自拍| 欧美日韩视频高清一区二区三区二| 精品一区二区三卡| 日日撸夜夜添| 熟妇人妻不卡中文字幕| 国产午夜精品久久久久久一区二区三区| 好男人在线观看高清免费视频| 永久网站在线| 亚洲成人久久爱视频| 国产精品偷伦视频观看了| 狠狠精品人妻久久久久久综合| 中国三级夫妇交换| 国产成人午夜福利电影在线观看| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 国产精品99久久99久久久不卡 | 中文字幕人妻熟人妻熟丝袜美| 777米奇影视久久| 国产精品不卡视频一区二区| 嫩草影院入口| 国产爱豆传媒在线观看| 婷婷色av中文字幕| 亚洲综合色惰| 波多野结衣巨乳人妻| 免费观看性生交大片5| 国产熟女欧美一区二区| 秋霞在线观看毛片| 草草在线视频免费看| 在线观看一区二区三区激情| 久久久精品欧美日韩精品| 国产毛片a区久久久久| 大香蕉97超碰在线| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| xxx大片免费视频| 中国美白少妇内射xxxbb| 性插视频无遮挡在线免费观看| 我的老师免费观看完整版| 青春草国产在线视频| 亚洲天堂av无毛| 久热久热在线精品观看| 少妇被粗大猛烈的视频| 如何舔出高潮| 日韩中字成人| 女人被狂操c到高潮| av在线观看视频网站免费| 中文乱码字字幕精品一区二区三区| 成人高潮视频无遮挡免费网站| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 精品久久国产蜜桃| 国产淫语在线视频| 国产成人精品婷婷| 青春草视频在线免费观看| 高清av免费在线| 秋霞伦理黄片| 久久久久久久午夜电影| 人妻 亚洲 视频| 激情五月婷婷亚洲| 免费av观看视频| 国产视频首页在线观看| 欧美高清成人免费视频www| 激情 狠狠 欧美| 亚洲无线观看免费| 午夜亚洲福利在线播放| 99re6热这里在线精品视频| 久久人人爽av亚洲精品天堂 | 国产毛片a区久久久久| 亚洲国产精品成人综合色| 精品酒店卫生间| 亚洲精品影视一区二区三区av| 夫妻性生交免费视频一级片| 一级毛片我不卡| 肉色欧美久久久久久久蜜桃 | 亚洲天堂av无毛| 国产日韩欧美在线精品| 国产黄片视频在线免费观看| 三级国产精品欧美在线观看| 蜜桃亚洲精品一区二区三区| 国产男人的电影天堂91| 看免费成人av毛片| 国产精品一区www在线观看| 精品国产乱码久久久久久小说| 国产色婷婷99| 美女xxoo啪啪120秒动态图| 成人亚洲欧美一区二区av| 国产成人aa在线观看| 精品国产三级普通话版| 看黄色毛片网站| 欧美xxxx黑人xx丫x性爽| 久久久午夜欧美精品| 中文字幕人妻熟人妻熟丝袜美| 少妇的逼好多水| 色综合色国产| 人妻少妇偷人精品九色| 汤姆久久久久久久影院中文字幕| 成人二区视频| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 99热网站在线观看| 亚洲不卡免费看| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 亚洲国产欧美人成| 国产在线男女| 欧美日韩视频高清一区二区三区二| 国产精品99久久99久久久不卡 | 插逼视频在线观看| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃 | 女人久久www免费人成看片| 久久韩国三级中文字幕| av天堂中文字幕网| 婷婷色综合www| 我的老师免费观看完整版| 亚洲欧美一区二区三区国产| 亚洲精品,欧美精品| 在线亚洲精品国产二区图片欧美 | 一区二区三区四区激情视频| 亚洲成色77777| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 亚洲美女视频黄频| 日本一本二区三区精品| 国产精品三级大全| 欧美+日韩+精品| av卡一久久| 日本黄大片高清| 最近的中文字幕免费完整| 欧美日韩视频精品一区| 直男gayav资源| 亚洲av福利一区| 免费av观看视频| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 男人爽女人下面视频在线观看| 欧美日韩在线观看h| 久久精品熟女亚洲av麻豆精品| 美女内射精品一级片tv| 自拍偷自拍亚洲精品老妇| 天堂网av新在线| 在线观看免费高清a一片| 一区二区三区精品91| 青春草视频在线免费观看| 王馨瑶露胸无遮挡在线观看| 街头女战士在线观看网站| 久久精品熟女亚洲av麻豆精品| videossex国产| 97人妻精品一区二区三区麻豆| 80岁老熟妇乱子伦牲交| 美女cb高潮喷水在线观看| 欧美日韩精品成人综合77777| 亚洲人成网站在线观看播放| 插阴视频在线观看视频| av免费观看日本| 免费看不卡的av| 久久久色成人| 97人妻精品一区二区三区麻豆| 少妇的逼水好多| 午夜福利视频1000在线观看|