• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于活性炭||Na0.44MnO2 的低成本、高倍率和長壽命堿性鈉離子電池電容器

    2024-07-04 00:00:00薛晴李圣驛趙亞楠盛鵬徐麗李正曦張波李慧王博楊立濱曹余良陳重學(xué)
    物理化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:低成本

    摘要:水系鈉離子電池電容器具有成本低、功率大、安全性好等優(yōu)點,是下一代大規(guī)模儲能系統(tǒng)的理想選擇之一。本文采用Na0.44MnO2正極、活性炭(AC)負極、6 mol?L?1 NaOH電解液和廉價的不銹鋼集流體構(gòu)建了可充電堿性鈉離子電池電容器。由于Na0.44MnO2正極在堿性電解液中具有較高的過充耐受性,通過首次充電時的原位過充預(yù)活化過程可以解決半鈉化Na0.44MnO2正極和AC負極初始庫倫效率低的缺點。因此,AC||Na0.44MnO2可充電堿性鈉離子電池電容器具有優(yōu)異的電化學(xué)性能,在功率密度為85 W?kg?1時,能量密度達26.6 Wh?kg?1,循環(huán)10000次后容量保持率為89%。同時,在50 °C的高溫和?20 °C的低溫也具有良好的電化學(xué)性能。這些結(jié)果表明AC||Na0.44MnO2可充電堿性鈉離子電池電容器具備應(yīng)用于大規(guī)模儲能的潛力。

    關(guān)鍵詞:鈉離子電池電容;堿性電解液;過充自保護;低成本;寬工作溫程

    中圖分類號:O646

    Abstract: As the most advanced battery technology to date, lithiumionbattery has occupied the main battery markets for electric vehiclesand grid scale energy storage systems. However, the limited lithiumreserves as well as the high price raise concerns about the sustainabilityof lithium-ion battery. Although sodium-ion battery is proposed as a goodsupplement to lithium-ion battery, expensive and flammable electrolytecomponents, harsh assembly environments and potential safety hazardshave limited the rapid development to a certain extent. The organicelectrolyte was replaced with an aqueous solution to construct a newtype of aqueous sodium ion battery capacitor (ASIBC). It is of greatsignificance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However,applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructedby using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol?L?1 NaOH electrolyte, and cheap stainless-steel currentcollector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the halfsodiumNa0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging preactivationprocess during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh?g?1(neutral electrolyte) to 77.3 mAh?g?1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, theAC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh?kg?1 at apower density of 85 W?kg?1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantagesof the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemicalpre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverseeffects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density offull cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode duringovercharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperaturerange, achieving satisfied electrochemical performance at a high temperature of 50 °C and a low temperature of ?20 °C.Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.

    Key Words: Sodium-ion battery capacitor; Alkaline electrolyte; Overcharging self-protection; Low cost;Wide operating temperature range

    1 Introduction

    Recently, the influence of increasing consumption oftraditional fossil fuel and environmental pollution issue has ledthe worldwide researchers to develop advanced large-scaleenergy storage system. Among various types of current energystorage devices, electrochemical energy storage technology hasbecome the focus over the recent decade due to its advantages offlexibility, high energy conversion efficiency and simplemaintenance 1,2. The cathode and anode active substances of ionbatteries are compounds that can be reversiblyextraction/insertion. It has high energy density, but the powerdensity is insufficient and the cycle life is short, which restrictsthe development of the battery 3,4. Electrochemical capacitorswith high power density and long cycle life are known as animportant supplement to batteries in electrical energy storageapplications 5–7. However, the traditional electrochemicalcapacitors store charges via either ion adsorption-desorption orfast surface redox reactions, which requires a high weightpercent of electrolyte in full cells to support surface reaction oradsorption, consequently lowering the energy density 8,9. Tocombine the merits of both batteries and electrochemicalcapacitors, ion battery capacitor (IBC), which is composed of abattery-type electrode (intercalation/deintercalation mechanism)and a capacitor-type electrode (physical adsorption/desorptionmechanism), is thus proposed as a new type of energy storagedevice 10–12. Because the charge storage of the IBC is realizedthrough the transfer of only cations between cathode and anode,while the anions don't take part in, therefore only a small amountof electrolyte is needed in IBC just like in batteries.

    Although most of the representative lithium-ion batterycapacitors (LIBCs) have demonstrated high energy density byemploying nonaqueous electrolyte, several critical issues alsoaccompanied, including high cost, environmental pollution andsafe risks relating to hazardous flammable organic electrolyte.Compared to organic electrolyte, aqueous electrolyte with highionic conductivity, low cost, non-toxic, and superior thermalstability shows a better application potential in LIBCs. However,the limited lithium resource and rising cost make LIBCs unableto meet the requirements of rapidly expanding large scale energystorage systems. In this case, aqueous sodium ion batterycapacitor (ASIBC) emerges as a promising candidate due to lowcostand abundance of sodium source and similar operatingprinciples to aqueous lithium-ion battery capacitor.

    Constrained by the narrow operating voltage window andserious side reactions in aqueous battery, only a few cathodematerials are available for ASIBC. Among them, tunnel-type oxide, Na0.44MnO2 attracts the most attentions because of itshigh resource abundance, low cost, and environmentalcompatibility 13–15. Na0.44MnO2 possesses a unique 3D crystalstructure and abundant large S tunnels for sodium ions diffusion,showing exceptional cycling performance and remarkable ratecapability in both aqueous and nonaqueous electrolytes. Forexample, Whitacre et al. 16 fabricated a full cell using the activecarbon as the anode, Na0.44MnO2 as the cathode and 1 mol·L?1Na2SO4 as electrolyte, which demonstrates high-rate and longtermcycling performance. Although Na0.44MnO2 couldtheoretically insert/extract 0.44 Na+ with a capacity of 121mAh·g?1 during charge-discharge process, it can merely attain areversible capacity of 60 mAh·g?1 in full cells because only0.22Na+ could be extracted during the first charge, an even lowercapacity of ~40 mAh·g?1 is obtained in neutral solution (Na2SO4,NaNO3, NaCl) due to the limitation of the hydrogen ionsinsertion reaction 17. Therefore, much efforts have been made toimprove the utilization of Na0.44MnO2 in ASIBC 18,19.

    When the neutral electrolyte is replaced by alkalineelectrolyte, the reversible capacity of Na0.44MnO2 can beincreased to 80 mAh·g?1 because the potential of hydrogen ionsinsertion shifts negatively in the alkaline electrolyte. Not onlythat, the alkaline electrolyte has some other advantages. Forexample, neutral system must use expensive current collectormetals (Ti, Ag, Au, etc.) to withstand the corrosion caused bypH alteration upon hydrogen or oxygen evolution reaction 20,21.Instead, alkaline system can just use cheap current collectors(stainless steel, nickel), thus considerably reducing the cost ofASIBC. Most importantly, alkaline electrolytes can tolerateovercharging of the cell due to intrinsic oxygen-shuttleprotection mechanism, where oxygen evolution reaction mightbe used as an approach to improve the reversible capacity (~100mAh·g?1) in full cell 18,19,22. In this regard, it is feasible toconstruct ASIBC with higher energy density, lower cost andlonger-term lifetime based on Na0.44MnO2 cathode and alkalineelectrolyte.

    In this work, a novel ASIBC was constructed by usingNa0.44MnO2 as cathode, active carbon (AC) as anode, 6 mol·L?1NaOH as electrolyte, and stainless steel as current collector. Theelectrochemical performance of the ASIBC was studied,including the reversible capacity, rate capability, cycling life,energy density, and power density. Also, the reaction mechanismwas detailedly explored. Furthermore, the performance ofASIBC at ?20 and 50 °C was investigated. It is believed that thelow-cost and long-life AC||Na0.44MnO2 ASIBC is a promisingcapacitor candidate for future energy storage devices.

    2 Experimental

    2.1 Material preparation

    Rod-like Na0.44MnO2 was synthesized through a phenolformalin-assisted sol-gel method. A typical synthesis processwas as follows: CH3COONa (AR, ≥ 99.0%, Sinopharm) andMn(CH3COO)2 (AR, ≥ 99.0%, Sinopharm) with a stoichiometric ratio of 0.462 : 1 first dissolved in mixed solution of deionizedwater and ethyl alcohol (1 : 1 by vol.) with vigorous stirring at70 °C. After the solution stirred for 30 min, 0.3 g of phenol (AR,≥ 98.0%, Sinopharm) and 0.4 mL of formalin (AR, 37.0%–40.0%, Sinopharm) were added into the above solution insuccession, stirred for 6 h at 80 °C until vaporize both water andethyl alcohol to obtain pale pink gel precursor. After drying at100 °C for overnight in a vacuum oven, the precursor wasground into powder and then heated in a muffle furnace at 900 °Cfor 15 h with a heating rate of 2 °C to obtain the final products.

    2.2 Characterizations

    The crystallographic information was characterized by X-raydiffractometer (XRD, Bruker D8 ADVANCE, Germany) with aCu Kα X-ray source over a range of 2θ angles from 10° to 70° ata scan rate of 4 (°)·min?1. The morphology analysis wasconducted on scanning electron microscopy (SEM, ZEISSMerlin Compact, Germany) and transmission electronmicroscopy (TEM, JEM-2100FEF, Japan).

    2.3 Electrochemical tests

    The Na0.44MnO2 electrodes were prepared via mixing activematerial, Super P and polytetrafluoroethylene emulsion with amass ratio of 8 : 1 : 1. Firstly, the active material and conductivecarbon were well mixed by grounding. And then, binder andisopropanol were added and stirred to form a gum-like mixture.The mixture was pressed on stainless steel net and dried at100 °C for more than 10 h. And the average mass loading ofelectrode is about 5 mg·cm?2. The AC electrodes were fabricatedusing same method except that Ketjen Black was selected asconductive carbon and the mass ratio of active material,conductive carbon and binder is 7 : 2 : 1.

    The three-electrode system was assembled using Na0.44MnO2or AC as working electrode, zinc foil as reference electrode andcounter electrode, 6 mol·L?1 NaOH as electrolyte at roomtemperature in air. The electrochemical properties of sodium ionbattery capacitors were evaluated in 2032-coin cells withNa0.44MnO2 as cathode, AC as anode, non-woven fabric asseparator, and 6 mol·L?1 NaOH as electrolyte at same conditionswith three-electrode system. The mass ratio of cathode andanode is about 1 : 0.9. The galvanostatic charge/dischargemeasurements are carried out using a LANDCT2001A (LandElectronic Co., Ltd., Wuhan, China). Cyclic voltammetry (CV)measurements were conducted on the AutoLab PGSTAT 128 N(Eco Chemie, Netherlands).

    3 Results and discussion

    The XRD pattern of Na0.44MnO2 powders synthesized via solgelmethod showed that the sample was crystallized in theorthorhombic structure (Pbam space group, JCPDS No. 27-0750) of the tunnel-type material (Fig. S1, SupportingInformation), in agreement with previous results 23,24. Themorphology of Na0.44MnO2 sample was characterized by SEM,TEM and High Resolution Transmission Electron Microscope(HRTEM). As shown in Fig. 1a,b, the sample is composed ofshort rod-like particles with a length range of 4–8 μm and widthchanging from 1 to 3 μm. The smaller length/width ratio isbeneficial for fast diffusion of sodium ion in crystal structure,which have been demonstrated by our previous work 22 and otherrelated reports 17,25. The TEM image in Fig. 1c shows rod-likestructure, which is consistent with the SEM results. The latticefringe with a spacing of 0.25 nm in HRTEM images (Fig. 1d) isclearly seen, corresponding to the (360) plane in theorthorhombic structure.

    The electrochemical properties of Na0.44MnO2 electrode weretested in 6 mol·L?1 NaOH solution. And CV profiles,galvanostatic charge-discharge profiles, rate capability and longtermcycling stability of Na0.44MnO2 cathode in the potentialrange of 1.1–1.95 V (vs. Zn/Zn2+) are indicated in Fig. 2. Fourpairs strong redox peaks (1.22/1.15, 1.44/1.38, 1.75/1.70 and1.95/1.92 V) and two pairs weak peaks (1.28/1.23, 1.83/1.80 V)were observed in CV curve (Fig. 2a), representing the differentinsertion/extraction processes of sodium ions into/from tunnelstructure. Symmetrical oxidation and reduction peaks reveal thelow electrochemical polarization of Na0.44MnO2 in alkalinesolution. The shape and relative position of CV peaks are prettyconsistent with those measured in nonaqueous electrolytes,implying the similar reaction mechanism in both electrolytes. Inaddition, at the current rate of 0.5C, the Na0.44MnO2 electrodecould release a reversible discharge capacity of 78.4 mAh·g?1(Fig. 2b), corresponding to the intercalation of 0.285 Na+ in eachNaxMnO2 molecule (0.22 lt; x lt; 0.66) 26,27. And some complexand inconspicuous voltage platforms in good agreement with theCV profiles were obtained. The initial Coulombic efficiency was86.9%, which probably attributed to some inescapable sidereaction in aqueous electrolyte at a low current density, such asoxygen evolution reaction on the surface of electrode and currentcollector. The discharge capacities of Na0.44MnO2 electrode atvarious current rates were also investigated and shown inFig. 2c. When the current density was increased to 1C, 2C, 5C,10C, 20C and 50C, the capacity of Na0.44MnO2 electrode was 74,70.8, 67.4, 62.1, 53.9, 48.4 and 43.7 mAh·g?1, respectively, andstill capable of maintaining above 40 mAh·g?1, which is higherthan that in the neutral electrolyte. The impressive rate capabilitycould be attributed to the intrinsically fast sodium ion transferkinetics in tunnel-type oxide and high ionic conductivity (~400mS·cm?1) in 6 mol·L?1 NaOH solution. In Fig. 2d, at the rate of10C, Na0.44MnO2 electrode can gain an excellent capacityretention of 95.1% with Coulombic efficiency approaching100% over 100 cycles. These favorable electrochemicalperformances make Na0.44MnO2 as a potential cathode materialfor high-performance ASIBC.

    Among those anode materials matched with alkalineelectrolyte, activated carbon (AC) is considered as one of thebest choices due to its superior cycling stability and wide varietyof raw materials. The electrochemical properties of AC anode in6 mol·L?1 NaOH were also studied using three-electrodemethods with zinc plates as both reference electrode and counterelectrode. Fig. 3a shows the CV curve of the AC electrode,exhibiting typical capacitive behavior in 6 mol·L?1 NaOHelectrolyte 28. The oxidative cutoff potential is limited to 1.1 V(vs. Zn/Zn2+) in view of the reductive cutoff potential ofNa0.44MnO2 cathode. The charge-discharge curves of the ACelectrode at 1C are displayed in Fig. 3b. Within the voltagewindow of 0.3-1.1 V, the AC electrode can release specificcapacity of 71.6 mAh·g?1, corresponding to a high specificcapacitance of 322.2 F·g?1, which is largely higher than that inneural electrolyte 16. The reversible capacity of AC electrodeunder different current densities was also tested. As shown in Fig. 3c, AC electrode delivered desirable rate capability with thereversible capacity of 73.1, 66.6, 62.8, 60.1 and 56.9 mAh·g?1 at1C, 2C, 5C, 10C and 20C. Even at a very high rate of 50C, thereversible capacity of 53.3 mAh·g?1 was reserved. When the current rate goes back to 1C, the capacity of 71.6 mAh·g?1 canbe restored, showing excellent rate capability andelectrochemical reversibility. The high performance of the ACelectrode is mainly due to the high ionic conductivity provided by alkaline electrolyte and the energy storage mechanism ofelectrical double-layer capacitor for the AC electrode 29.Similarly, the long-term cycling performance at the rate of 10Cis shown in Fig. 3d. It can be manifested that the AC electrodepossessed superior cyclic stability with a capacity retention of90.7% after 2000 cycles (reversible capacities for the 1st and2000th cycle is 64.6 and 58.6 mAh·g?1, respectively). Theexcellent electrochemical performance of the AC electrodeprovides a strong guarantee for the construction of high-energydensity,high-power and long-term-lifetime AC||Na0.44MnO2ASIBC.

    Based on the above discussion, both Na0.44MnO2 cathode andAC anode exhibit preeminent electrochemical performance,which inspires us to assemble a novel sodium ion batterycapacitorwith Na0.44MnO2 and AC. The typical CV curves ofthe AC||Na0.44MnO2 ASIBC are presented in Fig. 4a, and thecharge/discharge voltage range of AC||Na0.44MnO2 ASIBC iscontrolled between 0 and 1.65 V according to the working rangof cathode and anode (1.1–1.95 and 0.3–1.65 V, respectively). Itis well known that Na0.44MnO2 can only release 0.22Na+ duringthe first charge process, which means that a capacity of merely50 mAh·g?1 can be utilized in full cells. For example, in 6mol·L?1 NaOH, the initial charge capacity of Na0.44MnO2electrode is 44.1 mAh·g?1, but the discharge capacity reaches78.2 mAh·g?1, nearly two times of charge capacity (Fig. S2). Inorder to improve the available reversible capacity, someadditional procedures are needful, such as pre-cycling or presodiumwhich would increase manufacturing cost of Na0.44MnO2. As for the AC anode, the irreversible absorptionoccurs on AC at the first cycle would consume extra sodium ionsfrom cathode (Fig. S3), thus leading to an extremely low initialCoulombic efficiency (ICE). Obviously, the low initial chargecapacity for Na0.44MnO2 cathode and low initial Coulombicefficiency for AC anode are major obstacles for theirapplications. Fortunately, these problems could be perfectlyresolved by overcharging AC||Na0.44MnO2 full cell upon initialcharge process in alkaline electrolyte. The first charge curves ofsodium ion battery capacitor are shown in Fig. 4b. The initialcharge process could be divided into two steps: open-circuitvoltage to 1.25 V, and 1.25 to 1.6 V. For the first stage, sodiumions deintercalate from tunnel structure of Na0.44MnO2 cathodeand sodium ions in the electrolyte are absorbed on the surface ofAC anode simultaneously (Fig. 4c). Through the calculation ofcharge capacity in this stage (51.4 mAh·g?1 for Na0.44MnO2),approximately 0.19Na+ extracted from the tunnel structure. Onbasis of the mass ratio of cathode and anode (1 : 0.9), thesolidated anode can be written as Na0.026C. Thus, theelectrochemical reactions of this charge step can be formulatedas follows:

    Positive: Na0.475MnO2 ? 0.19Na+ ? 0.19e? = Na0.285MnO2

    Negative: 7.34C + 0.19Na+ + 0.19e? = 7.34Na0.026C

    For the second stage, the drastic oxygen evolution reactionemerges around cathode, and AC anode continued absorbingsodium ions (Fig. 4c). Based on the charge capacity of 63.4mAh·g?1 for Na0.44MnO2 in this region, the electrochemicalreaction in second stage may be described as follows:

    Positive: 0.23OH? ? 0.23e? = 0.0575O2 + 0.115H2O

    Negative: 7.34Na0.026C + 0.23Na+ + 0.23e? = 7.34Na0.057C

    From the above description of the electrochemical mechanismof AC||Na0.44MnO2, it can be clearly seen that the in situelectrochemical pre-activation process can easily resolve thematching problem between Na0.44MnO2 cathode and AC anode.Interestingly, the overcharging oxygen evolution mechanism ofNa0.44MnO2 cathode can provide self-protection function in thealkaline electrolyte because the oxygen generated can beefficiently reduced at the negative side, which is similar to that demonstrated in Cd//Ni and MH/Ni batteries 30,31.

    Undoubtedly, oxygen evolution reaction disappeared afterinitial cycle because the Na+ ion amount of Na0.44MnO2electrode can be supplemented in the discharging process, whichcould be confirmed by incremental CE in subsequent chargingand discharging curves (Fig. 4d and the inset picture). Fig. 4eshows typical charge-discharge curves of AC||Na0.44MnO2ASIBC at 1C in the voltage range of 0–1.65 V. TheAC||Na0.44MnO2 ASIBC delivered a reversible capacity of 70.5mAh·g?1 (based on the mass of Na0.44MnO2). The rateperformance of full cell was also evaluated to explore itsfeasibility for high power applications (Fig. 4f). The reversiblecapacities can reach 71.8, 65.9, 61.3, 57.7, 53.8 and 49.4mAh·g?1 at 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Mostimportantly, when the current rate went back to 1C, thereversible capacity swiftly returned to 71.6 mAh·g?1 (nearly100% capacity recovery), showing a strong tolerance for fastsodium ion storage. Moreover, the full cell also exhibitedtremendous cycling stability with a capacity retention of 89%after 10000 cycles at the current rate of 10C (Fig. 5a). Theaverage Coulombic efficiency maintained above 99% all along,indicative of a highly reversible Na-ion transfer between cathodeand anode. Ragone plots of AC||Na0.44MnO2 ASIBC are shownin Fig. 5b. The power density and energy density can becalculated according to Pm = Im × U-, and Wm = Cm × U- . U- isthe average discharge voltage, Im is the current density, andCm refers to the capacity calculated based on the total weight ofcathode and anode. At a power density of 85 W·kg?1, an energydensity of 26.6 Wh·kg?1 could be obtained. When the powerdensity reaches 4.2 kW·kg?1, it still remains an energy density of18.0 Wh·kg?1. Compared with other aqueous Mn-based systems,AC||Na0.44MnO2 ASIBC is fairly competitive in energy densityand cyclic stability (Table 1).

    In order to further meet the requirement of practicalapplications, we evaluated the electrochemical performance ofthe AC||Na0.44MnO2 ASIBC at ?20 and 50 °C. The ratecapability under ?20, 25 and 50 °C is illustrated in Fig. 6a. At?20 °C, the discharge capacity of the AC||Na0.44MnO2 ASIBC reached 30.7, 27.7, 22.2, 17.8, and 14.5 mAh·g?1 at 1C, 2C, 5C,10C, and 20C, respectively. At 50 °C, the AC||Na0.44MnO2ASIBC exhibited higher rate capacities (42.7, 41.7, 38.9, 36.2and 32.2 mAh·g?1 at 1C, 2C, 5C, 10C, and 20C, respectively)due to faster sodium dynamics in electrode material, electrolyte,and electrode-electrolyte interface. When current rate returnedto 1C, the origin discharge capacities for three AC||Na0.44MnO2ASIBCs can be recovered, indicating outstandingelectrochemical reversibility. Additionally, the AC||Na0.44MnO2ASIBCs at ?20, 25 and 50 °C also showed excellent cyclingperformance with no obvious capacity fading within 150 cycles(Fig. 6b). The wide operating temperature range may expand theapplication fields of AC||Na0.44MnO2 ASIBC.

    4 Conclusions

    In this work, we designed an alkaline sodium ion batterycapacitorwith Na0.44MnO2 cathode, AC anode, 6 mol·L?1 NaOHelectrolyte and investigated its electrochemical performance.The available capacity of Na0.44MnO2 in half cell largelyincreased from ~40 mAh·g?1 (neutral electrolyte) to 77.3mAh·g?1 (alkaline electrolyte) due to broadened Na+intercalation potential region. Thus, the fabricatedAC||Na0.44MnO2 ASIBC exhibited exceptional electrochemicalproperties with a high energy density of 26.6 Wh·kg?1 at a powerdensity of 85 W·kg?1, superior cycling stability of 89% capacityretention over 10,000 cycles and high-power capability, whichorigins from the use of alkaline electrolyte. Not only that, theadvantages of the alkaline electrolyte for the AC||Na0.44MnO2ASIBC are also reflected in the following aspects: (1) throughthe in situ electrochemical pre-activation process, theovercharging oxygen evolution reaction during first chargingprocess can balance the adverse effects of the half-sodiumNa0.44MnO2 cathode and low-ICE AC anode on the energydensity of full cell; (2) the overcharging self-protection functioncan promote the generated oxygen to be eliminated at anodeduring overcharging, which improves the system safety; (3) thelow-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, theAC||Na0.44MnO2 ASIBC also possesses wide operatingtemperature range, achieving satisfied electrochemicalperformance at a high temperature of 50 °C and a lowtemperature of ?20 °C. Considering the merits of low-cost, highsafety, no toxicity and environment-friendly, AC||Na0.44MnO2ASIBC has good application prospects in the field of large-scaleenergy storage.

    Author Contributions: Conceptualization, Z.C. and Y.C.;Methodology, Q.X., S.L. and Y.Z.; Validation, Q.X., P.S. andL.X.; Formal Analysis, Q.X., Z.L., B.Z. and H.L.; Investigation,Q.X., B.W. and L.Y.; Resources, Z.C. and Y.C.; Data Curation,Q.X. and Y.Z.; Writing-Original Draft Preparation, Q.X., Y.Z.and Z.C.; Writing-Review amp; Editing, Y.Z., Z.C. and Y.C.;Supervision, Z.C. and Y.C.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14,200. doi: 10.1038/s41565-019-0371-8

    (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46.doi: 10.1016/j.ensm.2019.12.024

    (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15.doi: 10.1002/cnl2.4

    (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96.doi: 10.1002/cnl2.19

    (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151.doi: 10.1038/s41563-020-0747-z

    (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew.Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy2022, 1, 2021000. doi: 10.1002/BTE2.202100

    (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C.Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    (10) Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020,36, 1903055. [郭楠楠, 張?zhí)K, 王魯香, 賈殿贈. 物理化學(xué)學(xué)報,2020, 36, 1903055.] doi: 10.3866/PKU.WHXB201903055

    (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.;Liang, J.; Zhi, C. Nano Energy 2018, 50, 623.doi: 10.1016/j.nanoen.2018.06.017

    (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L.Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.;Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155.doi: 10.1002/adma.201100904

    (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACSAppl. Mater. Interfaces 2018, 10, 11689.doi: 10.1021/acsami.8b00478

    (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao,Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463. doi: 10.1016/j.elecom.2010.01.020

    (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.;Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401.doi: 10.1038/ncomms7401

    (18) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2020, 36,1905027. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2020, 36, 1905027.]doi: 10.3866/PKU.WHXB201905027

    (19) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2021, 37,1907049. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2021, 37, 1907049.]doi: 10.3866/PKU.WHXB201907049

    (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods2019, 3, 1800272. doi: 10.1002/smtd.201800272

    (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia,Y. Adv. Energy Mater. 2018, 8, 1703008.doi: 10.1002/aenm.201703008

    (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.;Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10,34108. doi: 10.1021/acsami.8b08297

    (23) Li, H.; Liu, S.; Wang, H.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Cao, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2019, 35,1357. [李慧, 劉雙宇, 汪慧明, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 曹余良, 陳重學(xué). 物理化學(xué)學(xué)報, 2019, 35, 1357.]doi: 10.3866/PKU.WHXB201902021

    (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv.Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan,M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602.doi: 10.1016/j.nanoen.2016.07.021

    (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem.2007, 46, 3289. doi: 10.1021/ic0700250

    (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.doi: 10.1016/j.jpowsour.2016.01.101

    (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T.J. Power Sources 2019, 436, 226882.doi: 10.1016/j.jpowsour.2019.226882

    (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.;Cao, G. Nano Energy 2018, 47, 224.doi: 10.1016/j.nanoen.2018.03.002

    (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347.doi: 10.1016/j.jpowsour.2003.11.043

    (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P.J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. PowerSources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R.J. Power Sources 2014, 253, 98.doi: 10.1016/j.jpowsour.2013.12.011

    (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf.Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F.J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

    國家電網(wǎng)公司科技計劃(5500-202158251A-0-0-00)資助項目

    猜你喜歡
    低成本
    大氣顆粒物源識別在線分析儀的開發(fā)及應(yīng)用
    城市電視臺要辦“特色綜藝”
    記者搖籃(2016年11期)2017-01-12 14:01:53
    初中物理低成本實驗資源的開發(fā)和利用
    未來英才(2016年3期)2016-12-26 10:03:57
    高效低成本的單晶N型太陽電池加工工藝的應(yīng)用
    實現(xiàn)園林管理低成本的對策和建議
    基于SOC的智能野外目標監(jiān)視和記錄系統(tǒng)設(shè)計與實現(xiàn)
    基于微波物理熱效應(yīng)的高壓電線除冰裝置方案設(shè)計
    科技視界(2016年2期)2016-03-30 13:05:46
    Y不銹鋼絲有限公司低成本SWOT分析
    商(2016年3期)2016-03-11 09:48:58
    低成本通用型液壓夾具的設(shè)計及推廣
    科學(xué)家(2015年9期)2015-10-29 15:37:18
    制服诱惑二区| 97超级碰碰碰精品色视频在线观看| 久久久精品欧美日韩精品| 狂野欧美激情性xxxx| 88av欧美| 国产精品久久久av美女十八| 欧美精品亚洲一区二区| 一本大道久久a久久精品| 欧美日本视频| 亚洲 欧美一区二区三区| 美女扒开内裤让男人捅视频| 欧美黄色片欧美黄色片| 国产男靠女视频免费网站| 一级黄色大片毛片| 少妇熟女aⅴ在线视频| 中文字幕高清在线视频| 亚洲 欧美一区二区三区| 午夜成年电影在线免费观看| 午夜福利影视在线免费观看| 乱人伦中国视频| 亚洲成人国产一区在线观看| 母亲3免费完整高清在线观看| 操出白浆在线播放| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| ponron亚洲| 一a级毛片在线观看| videosex国产| av福利片在线| 啦啦啦观看免费观看视频高清 | 少妇 在线观看| 好男人电影高清在线观看| 黄色女人牲交| 两个人视频免费观看高清| 无人区码免费观看不卡| 成人欧美大片| 又黄又粗又硬又大视频| www.自偷自拍.com| 亚洲中文av在线| 国产精品久久视频播放| 美女 人体艺术 gogo| 国产在线精品亚洲第一网站| 九色亚洲精品在线播放| 丁香欧美五月| 欧美激情高清一区二区三区| 99久久国产精品久久久| 国产激情欧美一区二区| 色哟哟哟哟哟哟| 老汉色∧v一级毛片| 成人特级黄色片久久久久久久| 国产男靠女视频免费网站| 免费av毛片视频| 丰满的人妻完整版| 国产一区二区激情短视频| 黄色视频不卡| 久久久精品欧美日韩精品| 亚洲人成电影观看| 成人18禁在线播放| 欧美激情久久久久久爽电影 | 十八禁人妻一区二区| 欧美丝袜亚洲另类 | 又黄又爽又免费观看的视频| 国产男靠女视频免费网站| 亚洲精品美女久久久久99蜜臀| 日本a在线网址| 亚洲一卡2卡3卡4卡5卡精品中文| 人人澡人人妻人| 一边摸一边抽搐一进一出视频| 亚洲av成人不卡在线观看播放网| 变态另类丝袜制服| 久久香蕉激情| 高潮久久久久久久久久久不卡| 亚洲色图av天堂| 亚洲伊人色综图| 日本精品一区二区三区蜜桃| 久久亚洲真实| svipshipincom国产片| 亚洲专区字幕在线| 国产精品亚洲美女久久久| 操出白浆在线播放| 999精品在线视频| 亚洲国产欧美日韩在线播放| 一二三四在线观看免费中文在| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 给我免费播放毛片高清在线观看| 国产成人免费无遮挡视频| 亚洲电影在线观看av| 91成人精品电影| 色哟哟哟哟哟哟| 午夜精品在线福利| 搡老妇女老女人老熟妇| 久久久久国内视频| 久久性视频一级片| 日韩av在线大香蕉| 免费高清在线观看日韩| 午夜福利,免费看| 97碰自拍视频| 午夜两性在线视频| 婷婷精品国产亚洲av在线| 日韩精品免费视频一区二区三区| 亚洲第一青青草原| 国产一区二区在线av高清观看| 搡老妇女老女人老熟妇| 少妇被粗大的猛进出69影院| 亚洲美女黄片视频| 午夜视频精品福利| 亚洲专区国产一区二区| 搡老熟女国产l中国老女人| 侵犯人妻中文字幕一二三四区| 亚洲 欧美 日韩 在线 免费| 不卡一级毛片| 99久久久亚洲精品蜜臀av| 天天躁夜夜躁狠狠躁躁| 99久久久亚洲精品蜜臀av| 窝窝影院91人妻| 久久国产精品人妻蜜桃| 免费一级毛片在线播放高清视频 | 国产在线精品亚洲第一网站| 淫妇啪啪啪对白视频| 欧美 亚洲 国产 日韩一| 色婷婷久久久亚洲欧美| 一级毛片高清免费大全| 国产成人影院久久av| 午夜亚洲福利在线播放| 亚洲国产欧美一区二区综合| 国产成人影院久久av| 99riav亚洲国产免费| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 免费在线观看视频国产中文字幕亚洲| 精品人妻在线不人妻| 99国产精品一区二区蜜桃av| 久久久久久亚洲精品国产蜜桃av| 欧美性长视频在线观看| 免费无遮挡裸体视频| 亚洲 国产 在线| 长腿黑丝高跟| 热99re8久久精品国产| 国产成人免费无遮挡视频| 午夜视频精品福利| 露出奶头的视频| 97超级碰碰碰精品色视频在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产xxxxx性猛交| 一夜夜www| 国产色视频综合| 黄片播放在线免费| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 日韩视频一区二区在线观看| av在线播放免费不卡| 国产精品 国内视频| АⅤ资源中文在线天堂| 淫秽高清视频在线观看| 露出奶头的视频| 视频在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 午夜久久久久精精品| 欧美一级a爱片免费观看看 | 亚洲天堂国产精品一区在线| 免费观看精品视频网站| 最新美女视频免费是黄的| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 亚洲熟女毛片儿| 久久香蕉国产精品| 多毛熟女@视频| 欧美一区二区精品小视频在线| 欧美日韩亚洲综合一区二区三区_| www.精华液| 国产一区二区三区视频了| 视频区欧美日本亚洲| 国产成人欧美在线观看| 国产成人欧美| 亚洲精品中文字幕一二三四区| 九色国产91popny在线| 国产精品影院久久| 91国产中文字幕| 日日夜夜操网爽| 嫩草影视91久久| 久久中文字幕人妻熟女| 国产精品久久电影中文字幕| 999精品在线视频| 亚洲精品国产精品久久久不卡| 99在线视频只有这里精品首页| 91老司机精品| 91字幕亚洲| 国产午夜精品久久久久久| 久久久精品国产亚洲av高清涩受| 在线观看舔阴道视频| 在线视频色国产色| 麻豆av在线久日| 精品久久久久久久久久免费视频| 午夜精品国产一区二区电影| 一边摸一边抽搐一进一小说| 热re99久久国产66热| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 欧美日本视频| 久久亚洲精品不卡| 真人一进一出gif抽搐免费| 亚洲 欧美一区二区三区| 欧美日韩黄片免| 亚洲精品美女久久久久99蜜臀| 如日韩欧美国产精品一区二区三区| 国产精品永久免费网站| 亚洲精品国产区一区二| 露出奶头的视频| 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片| 欧美中文综合在线视频| 动漫黄色视频在线观看| 午夜福利免费观看在线| 免费在线观看亚洲国产| 久久精品亚洲精品国产色婷小说| 97人妻精品一区二区三区麻豆 | 一区二区三区激情视频| 天堂√8在线中文| 国产av又大| 色综合欧美亚洲国产小说| 免费不卡黄色视频| 老司机午夜福利在线观看视频| 最近最新中文字幕大全电影3 | 日韩欧美一区二区三区在线观看| 香蕉国产在线看| 日韩大尺度精品在线看网址 | av中文乱码字幕在线| 在线视频色国产色| 两个人免费观看高清视频| 国产精品九九99| 一进一出抽搐动态| 亚洲国产欧美网| 18禁观看日本| 日韩 欧美 亚洲 中文字幕| 亚洲精品美女久久久久99蜜臀| 日韩视频一区二区在线观看| 99riav亚洲国产免费| 精品一区二区三区四区五区乱码| 给我免费播放毛片高清在线观看| 女警被强在线播放| 日本撒尿小便嘘嘘汇集6| 精品日产1卡2卡| av天堂久久9| 午夜激情av网站| 久久精品aⅴ一区二区三区四区| 一边摸一边抽搐一进一小说| 看免费av毛片| 亚洲精品在线观看二区| 欧美在线一区亚洲| 欧美久久黑人一区二区| 成人av一区二区三区在线看| 国产亚洲精品久久久久5区| 首页视频小说图片口味搜索| 欧美性长视频在线观看| 亚洲av成人av| 精品一区二区三区四区五区乱码| 日韩精品中文字幕看吧| 国产欧美日韩一区二区三| 制服丝袜大香蕉在线| 久久久久九九精品影院| 99香蕉大伊视频| 成人国语在线视频| 亚洲人成伊人成综合网2020| 久久热在线av| 免费一级毛片在线播放高清视频 | 精品福利观看| 老司机在亚洲福利影院| 12—13女人毛片做爰片一| 午夜福利欧美成人| 亚洲中文av在线| 这个男人来自地球电影免费观看| 美女 人体艺术 gogo| 熟女少妇亚洲综合色aaa.| 精品久久久精品久久久| 欧美在线黄色| 大香蕉久久成人网| 男男h啪啪无遮挡| 亚洲自拍偷在线| 99热只有精品国产| 亚洲熟妇中文字幕五十中出| 久久亚洲真实| 麻豆一二三区av精品| 巨乳人妻的诱惑在线观看| 成人手机av| 亚洲午夜理论影院| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 欧美日韩瑟瑟在线播放| 美女高潮喷水抽搐中文字幕| 久久久精品国产亚洲av高清涩受| 一边摸一边做爽爽视频免费| 成人免费观看视频高清| 色尼玛亚洲综合影院| 午夜福利高清视频| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| av片东京热男人的天堂| 老司机在亚洲福利影院| 久久精品人人爽人人爽视色| 中文字幕最新亚洲高清| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 一本综合久久免费| 欧美黄色片欧美黄色片| 国产精品,欧美在线| 99在线视频只有这里精品首页| 国产亚洲精品综合一区在线观看 | 99re在线观看精品视频| 亚洲成国产人片在线观看| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 在线观看www视频免费| 99riav亚洲国产免费| 亚洲色图av天堂| 精品免费久久久久久久清纯| 757午夜福利合集在线观看| 久久中文字幕人妻熟女| 无限看片的www在线观看| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 1024香蕉在线观看| 最新美女视频免费是黄的| 丰满的人妻完整版| 日韩欧美国产在线观看| 1024香蕉在线观看| 国产日韩一区二区三区精品不卡| 99精品欧美一区二区三区四区| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 精品久久久久久成人av| 巨乳人妻的诱惑在线观看| 国产单亲对白刺激| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| av天堂在线播放| 亚洲人成伊人成综合网2020| 91成人精品电影| 国产区一区二久久| 丁香欧美五月| 精品日产1卡2卡| 一级a爱片免费观看的视频| 国产单亲对白刺激| 国产一区在线观看成人免费| 人妻久久中文字幕网| 精品久久久久久,| 在线av久久热| 国产精品亚洲美女久久久| 天天躁狠狠躁夜夜躁狠狠躁| 91麻豆av在线| 日韩欧美一区视频在线观看| 亚洲欧洲精品一区二区精品久久久| 在线永久观看黄色视频| 亚洲天堂国产精品一区在线| 亚洲成av片中文字幕在线观看| 国产在线精品亚洲第一网站| 变态另类丝袜制服| 看黄色毛片网站| or卡值多少钱| 日日摸夜夜添夜夜添小说| 欧美激情极品国产一区二区三区| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 在线观看舔阴道视频| 国产精品精品国产色婷婷| 好看av亚洲va欧美ⅴa在| 香蕉丝袜av| 成人永久免费在线观看视频| 久久久久久久精品吃奶| 麻豆成人av在线观看| 日韩大码丰满熟妇| 老汉色∧v一级毛片| 99精品久久久久人妻精品| 天天躁夜夜躁狠狠躁躁| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦观看免费观看视频高清 | √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲| svipshipincom国产片| 亚洲视频免费观看视频| 怎么达到女性高潮| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看舔阴道视频| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 曰老女人黄片| 午夜福利视频1000在线观看 | 精品无人区乱码1区二区| 国产av在哪里看| 精品国产一区二区久久| 中文亚洲av片在线观看爽| 啦啦啦 在线观看视频| 淫秽高清视频在线观看| 国产av一区在线观看免费| 亚洲自拍偷在线| 黄片大片在线免费观看| 成人精品一区二区免费| 精品国产美女av久久久久小说| 很黄的视频免费| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频| 亚洲精品在线观看二区| a在线观看视频网站| 看免费av毛片| av在线播放免费不卡| 国产成人一区二区三区免费视频网站| 一边摸一边抽搐一进一出视频| 国产午夜精品久久久久久| bbb黄色大片| 日韩精品中文字幕看吧| 亚洲av成人av| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 亚洲av日韩精品久久久久久密| 免费久久久久久久精品成人欧美视频| 伊人久久大香线蕉亚洲五| 两性夫妻黄色片| 国产欧美日韩一区二区三区在线| 国产精品亚洲av一区麻豆| 男女下面进入的视频免费午夜 | 久久伊人香网站| 婷婷六月久久综合丁香| 一级毛片女人18水好多| av在线天堂中文字幕| 欧美日韩瑟瑟在线播放| 丝袜美足系列| 99国产综合亚洲精品| 少妇熟女aⅴ在线视频| 麻豆av在线久日| 身体一侧抽搐| 国产区一区二久久| 久久婷婷人人爽人人干人人爱 | 成在线人永久免费视频| 成年版毛片免费区| 好男人在线观看高清免费视频 | 十八禁网站免费在线| 午夜日韩欧美国产| 免费人成视频x8x8入口观看| 黄网站色视频无遮挡免费观看| 91国产中文字幕| 日本免费一区二区三区高清不卡 | 精品人妻在线不人妻| 国产精品一区二区免费欧美| 免费高清在线观看日韩| 欧美日韩精品网址| 久久九九热精品免费| 自线自在国产av| 国产精品亚洲av一区麻豆| 男女下面进入的视频免费午夜 | 国产成人免费无遮挡视频| 国产精品自产拍在线观看55亚洲| 欧美性长视频在线观看| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 免费不卡黄色视频| 一区二区日韩欧美中文字幕| 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 国语自产精品视频在线第100页| tocl精华| 国产亚洲精品第一综合不卡| 法律面前人人平等表现在哪些方面| 99国产精品免费福利视频| 国产亚洲精品av在线| 男女下面插进去视频免费观看| 精品少妇一区二区三区视频日本电影| 久久久国产成人免费| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 国产一区二区三区在线臀色熟女| av免费在线观看网站| 午夜精品在线福利| 波多野结衣av一区二区av| 亚洲精品国产色婷婷电影| 久久久久久国产a免费观看| 欧美国产精品va在线观看不卡| 桃红色精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 国产精品九九99| 欧美国产精品va在线观看不卡| 大香蕉久久成人网| 91成人精品电影| 亚洲欧洲精品一区二区精品久久久| 国产精品日韩av在线免费观看 | 国产色视频综合| 最好的美女福利视频网| 国产精品一区二区在线不卡| 成在线人永久免费视频| 国产视频一区二区在线看| 精品国产一区二区久久| 国产蜜桃级精品一区二区三区| 国产精品野战在线观看| av网站免费在线观看视频| 午夜视频精品福利| 午夜福利成人在线免费观看| 国产精品一区二区三区四区久久 | 一区二区三区激情视频| 国产亚洲欧美98| 亚洲成人国产一区在线观看| 精品久久久精品久久久| 黄片大片在线免费观看| 久久人人精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 黄色视频不卡| 99国产精品99久久久久| 变态另类丝袜制服| 老司机午夜福利在线观看视频| 美国免费a级毛片| 欧美日本中文国产一区发布| 人妻久久中文字幕网| 久久婷婷人人爽人人干人人爱 | 国产欧美日韩一区二区三区在线| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 波多野结衣一区麻豆| 999精品在线视频| 好男人在线观看高清免费视频 | 嫩草影视91久久| 日本五十路高清| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 国产人伦9x9x在线观看| 亚洲av美国av| 国产激情欧美一区二区| 免费高清在线观看日韩| 天天一区二区日本电影三级 | 成年版毛片免费区| 中国美女看黄片| 国产精品亚洲一级av第二区| 久久久久九九精品影院| 久久久久久免费高清国产稀缺| 国产熟女午夜一区二区三区| 国产在线观看jvid| 亚洲 欧美一区二区三区| 亚洲黑人精品在线| 韩国精品一区二区三区| 欧美大码av| 丝袜美腿诱惑在线| 亚洲精品国产区一区二| 校园春色视频在线观看| 90打野战视频偷拍视频| 亚洲三区欧美一区| 大码成人一级视频| 亚洲中文av在线| 久久国产精品影院| 夜夜夜夜夜久久久久| 99精品欧美一区二区三区四区| 少妇熟女aⅴ在线视频| 久99久视频精品免费| 国产免费av片在线观看野外av| 亚洲国产日韩欧美精品在线观看 | 一级毛片精品| 啪啪无遮挡十八禁网站| 好男人电影高清在线观看| 正在播放国产对白刺激| 国产亚洲精品久久久久5区| 12—13女人毛片做爰片一| √禁漫天堂资源中文www| 久久久精品欧美日韩精品| 激情视频va一区二区三区| 老司机午夜福利在线观看视频| 亚洲精品粉嫩美女一区| 9热在线视频观看99| 非洲黑人性xxxx精品又粗又长| 色综合亚洲欧美另类图片| 欧美乱色亚洲激情| 男人操女人黄网站| 日韩欧美一区视频在线观看| 欧美日本视频| 青草久久国产| 99国产极品粉嫩在线观看| 免费久久久久久久精品成人欧美视频| 天堂动漫精品| 亚洲一区中文字幕在线| 无人区码免费观看不卡| 国产不卡一卡二| 91大片在线观看| 日韩视频一区二区在线观看| 午夜两性在线视频| 女人被狂操c到高潮| 久久精品影院6| 少妇 在线观看| 久久久国产成人精品二区| 久久香蕉国产精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成伊人成综合网2020| 国产精品二区激情视频| 欧美精品亚洲一区二区| 首页视频小说图片口味搜索| 国产一区二区激情短视频| av免费在线观看网站| 欧美黄色淫秽网站| 国产一区二区激情短视频| 亚洲 欧美 日韩 在线 免费| 欧美中文综合在线视频|