• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于活性炭||Na0.44MnO2 的低成本、高倍率和長壽命堿性鈉離子電池電容器

    2024-07-04 00:00:00薛晴李圣驛趙亞楠盛鵬徐麗李正曦張波李慧王博楊立濱曹余良陳重學(xué)
    物理化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:低成本

    摘要:水系鈉離子電池電容器具有成本低、功率大、安全性好等優(yōu)點,是下一代大規(guī)模儲能系統(tǒng)的理想選擇之一。本文采用Na0.44MnO2正極、活性炭(AC)負極、6 mol?L?1 NaOH電解液和廉價的不銹鋼集流體構(gòu)建了可充電堿性鈉離子電池電容器。由于Na0.44MnO2正極在堿性電解液中具有較高的過充耐受性,通過首次充電時的原位過充預(yù)活化過程可以解決半鈉化Na0.44MnO2正極和AC負極初始庫倫效率低的缺點。因此,AC||Na0.44MnO2可充電堿性鈉離子電池電容器具有優(yōu)異的電化學(xué)性能,在功率密度為85 W?kg?1時,能量密度達26.6 Wh?kg?1,循環(huán)10000次后容量保持率為89%。同時,在50 °C的高溫和?20 °C的低溫也具有良好的電化學(xué)性能。這些結(jié)果表明AC||Na0.44MnO2可充電堿性鈉離子電池電容器具備應(yīng)用于大規(guī)模儲能的潛力。

    關(guān)鍵詞:鈉離子電池電容;堿性電解液;過充自保護;低成本;寬工作溫程

    中圖分類號:O646

    Abstract: As the most advanced battery technology to date, lithiumionbattery has occupied the main battery markets for electric vehiclesand grid scale energy storage systems. However, the limited lithiumreserves as well as the high price raise concerns about the sustainabilityof lithium-ion battery. Although sodium-ion battery is proposed as a goodsupplement to lithium-ion battery, expensive and flammable electrolytecomponents, harsh assembly environments and potential safety hazardshave limited the rapid development to a certain extent. The organicelectrolyte was replaced with an aqueous solution to construct a newtype of aqueous sodium ion battery capacitor (ASIBC). It is of greatsignificance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However,applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructedby using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol?L?1 NaOH electrolyte, and cheap stainless-steel currentcollector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the halfsodiumNa0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging preactivationprocess during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh?g?1(neutral electrolyte) to 77.3 mAh?g?1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, theAC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh?kg?1 at apower density of 85 W?kg?1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantagesof the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemicalpre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverseeffects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density offull cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode duringovercharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperaturerange, achieving satisfied electrochemical performance at a high temperature of 50 °C and a low temperature of ?20 °C.Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.

    Key Words: Sodium-ion battery capacitor; Alkaline electrolyte; Overcharging self-protection; Low cost;Wide operating temperature range

    1 Introduction

    Recently, the influence of increasing consumption oftraditional fossil fuel and environmental pollution issue has ledthe worldwide researchers to develop advanced large-scaleenergy storage system. Among various types of current energystorage devices, electrochemical energy storage technology hasbecome the focus over the recent decade due to its advantages offlexibility, high energy conversion efficiency and simplemaintenance 1,2. The cathode and anode active substances of ionbatteries are compounds that can be reversiblyextraction/insertion. It has high energy density, but the powerdensity is insufficient and the cycle life is short, which restrictsthe development of the battery 3,4. Electrochemical capacitorswith high power density and long cycle life are known as animportant supplement to batteries in electrical energy storageapplications 5–7. However, the traditional electrochemicalcapacitors store charges via either ion adsorption-desorption orfast surface redox reactions, which requires a high weightpercent of electrolyte in full cells to support surface reaction oradsorption, consequently lowering the energy density 8,9. Tocombine the merits of both batteries and electrochemicalcapacitors, ion battery capacitor (IBC), which is composed of abattery-type electrode (intercalation/deintercalation mechanism)and a capacitor-type electrode (physical adsorption/desorptionmechanism), is thus proposed as a new type of energy storagedevice 10–12. Because the charge storage of the IBC is realizedthrough the transfer of only cations between cathode and anode,while the anions don't take part in, therefore only a small amountof electrolyte is needed in IBC just like in batteries.

    Although most of the representative lithium-ion batterycapacitors (LIBCs) have demonstrated high energy density byemploying nonaqueous electrolyte, several critical issues alsoaccompanied, including high cost, environmental pollution andsafe risks relating to hazardous flammable organic electrolyte.Compared to organic electrolyte, aqueous electrolyte with highionic conductivity, low cost, non-toxic, and superior thermalstability shows a better application potential in LIBCs. However,the limited lithium resource and rising cost make LIBCs unableto meet the requirements of rapidly expanding large scale energystorage systems. In this case, aqueous sodium ion batterycapacitor (ASIBC) emerges as a promising candidate due to lowcostand abundance of sodium source and similar operatingprinciples to aqueous lithium-ion battery capacitor.

    Constrained by the narrow operating voltage window andserious side reactions in aqueous battery, only a few cathodematerials are available for ASIBC. Among them, tunnel-type oxide, Na0.44MnO2 attracts the most attentions because of itshigh resource abundance, low cost, and environmentalcompatibility 13–15. Na0.44MnO2 possesses a unique 3D crystalstructure and abundant large S tunnels for sodium ions diffusion,showing exceptional cycling performance and remarkable ratecapability in both aqueous and nonaqueous electrolytes. Forexample, Whitacre et al. 16 fabricated a full cell using the activecarbon as the anode, Na0.44MnO2 as the cathode and 1 mol·L?1Na2SO4 as electrolyte, which demonstrates high-rate and longtermcycling performance. Although Na0.44MnO2 couldtheoretically insert/extract 0.44 Na+ with a capacity of 121mAh·g?1 during charge-discharge process, it can merely attain areversible capacity of 60 mAh·g?1 in full cells because only0.22Na+ could be extracted during the first charge, an even lowercapacity of ~40 mAh·g?1 is obtained in neutral solution (Na2SO4,NaNO3, NaCl) due to the limitation of the hydrogen ionsinsertion reaction 17. Therefore, much efforts have been made toimprove the utilization of Na0.44MnO2 in ASIBC 18,19.

    When the neutral electrolyte is replaced by alkalineelectrolyte, the reversible capacity of Na0.44MnO2 can beincreased to 80 mAh·g?1 because the potential of hydrogen ionsinsertion shifts negatively in the alkaline electrolyte. Not onlythat, the alkaline electrolyte has some other advantages. Forexample, neutral system must use expensive current collectormetals (Ti, Ag, Au, etc.) to withstand the corrosion caused bypH alteration upon hydrogen or oxygen evolution reaction 20,21.Instead, alkaline system can just use cheap current collectors(stainless steel, nickel), thus considerably reducing the cost ofASIBC. Most importantly, alkaline electrolytes can tolerateovercharging of the cell due to intrinsic oxygen-shuttleprotection mechanism, where oxygen evolution reaction mightbe used as an approach to improve the reversible capacity (~100mAh·g?1) in full cell 18,19,22. In this regard, it is feasible toconstruct ASIBC with higher energy density, lower cost andlonger-term lifetime based on Na0.44MnO2 cathode and alkalineelectrolyte.

    In this work, a novel ASIBC was constructed by usingNa0.44MnO2 as cathode, active carbon (AC) as anode, 6 mol·L?1NaOH as electrolyte, and stainless steel as current collector. Theelectrochemical performance of the ASIBC was studied,including the reversible capacity, rate capability, cycling life,energy density, and power density. Also, the reaction mechanismwas detailedly explored. Furthermore, the performance ofASIBC at ?20 and 50 °C was investigated. It is believed that thelow-cost and long-life AC||Na0.44MnO2 ASIBC is a promisingcapacitor candidate for future energy storage devices.

    2 Experimental

    2.1 Material preparation

    Rod-like Na0.44MnO2 was synthesized through a phenolformalin-assisted sol-gel method. A typical synthesis processwas as follows: CH3COONa (AR, ≥ 99.0%, Sinopharm) andMn(CH3COO)2 (AR, ≥ 99.0%, Sinopharm) with a stoichiometric ratio of 0.462 : 1 first dissolved in mixed solution of deionizedwater and ethyl alcohol (1 : 1 by vol.) with vigorous stirring at70 °C. After the solution stirred for 30 min, 0.3 g of phenol (AR,≥ 98.0%, Sinopharm) and 0.4 mL of formalin (AR, 37.0%–40.0%, Sinopharm) were added into the above solution insuccession, stirred for 6 h at 80 °C until vaporize both water andethyl alcohol to obtain pale pink gel precursor. After drying at100 °C for overnight in a vacuum oven, the precursor wasground into powder and then heated in a muffle furnace at 900 °Cfor 15 h with a heating rate of 2 °C to obtain the final products.

    2.2 Characterizations

    The crystallographic information was characterized by X-raydiffractometer (XRD, Bruker D8 ADVANCE, Germany) with aCu Kα X-ray source over a range of 2θ angles from 10° to 70° ata scan rate of 4 (°)·min?1. The morphology analysis wasconducted on scanning electron microscopy (SEM, ZEISSMerlin Compact, Germany) and transmission electronmicroscopy (TEM, JEM-2100FEF, Japan).

    2.3 Electrochemical tests

    The Na0.44MnO2 electrodes were prepared via mixing activematerial, Super P and polytetrafluoroethylene emulsion with amass ratio of 8 : 1 : 1. Firstly, the active material and conductivecarbon were well mixed by grounding. And then, binder andisopropanol were added and stirred to form a gum-like mixture.The mixture was pressed on stainless steel net and dried at100 °C for more than 10 h. And the average mass loading ofelectrode is about 5 mg·cm?2. The AC electrodes were fabricatedusing same method except that Ketjen Black was selected asconductive carbon and the mass ratio of active material,conductive carbon and binder is 7 : 2 : 1.

    The three-electrode system was assembled using Na0.44MnO2or AC as working electrode, zinc foil as reference electrode andcounter electrode, 6 mol·L?1 NaOH as electrolyte at roomtemperature in air. The electrochemical properties of sodium ionbattery capacitors were evaluated in 2032-coin cells withNa0.44MnO2 as cathode, AC as anode, non-woven fabric asseparator, and 6 mol·L?1 NaOH as electrolyte at same conditionswith three-electrode system. The mass ratio of cathode andanode is about 1 : 0.9. The galvanostatic charge/dischargemeasurements are carried out using a LANDCT2001A (LandElectronic Co., Ltd., Wuhan, China). Cyclic voltammetry (CV)measurements were conducted on the AutoLab PGSTAT 128 N(Eco Chemie, Netherlands).

    3 Results and discussion

    The XRD pattern of Na0.44MnO2 powders synthesized via solgelmethod showed that the sample was crystallized in theorthorhombic structure (Pbam space group, JCPDS No. 27-0750) of the tunnel-type material (Fig. S1, SupportingInformation), in agreement with previous results 23,24. Themorphology of Na0.44MnO2 sample was characterized by SEM,TEM and High Resolution Transmission Electron Microscope(HRTEM). As shown in Fig. 1a,b, the sample is composed ofshort rod-like particles with a length range of 4–8 μm and widthchanging from 1 to 3 μm. The smaller length/width ratio isbeneficial for fast diffusion of sodium ion in crystal structure,which have been demonstrated by our previous work 22 and otherrelated reports 17,25. The TEM image in Fig. 1c shows rod-likestructure, which is consistent with the SEM results. The latticefringe with a spacing of 0.25 nm in HRTEM images (Fig. 1d) isclearly seen, corresponding to the (360) plane in theorthorhombic structure.

    The electrochemical properties of Na0.44MnO2 electrode weretested in 6 mol·L?1 NaOH solution. And CV profiles,galvanostatic charge-discharge profiles, rate capability and longtermcycling stability of Na0.44MnO2 cathode in the potentialrange of 1.1–1.95 V (vs. Zn/Zn2+) are indicated in Fig. 2. Fourpairs strong redox peaks (1.22/1.15, 1.44/1.38, 1.75/1.70 and1.95/1.92 V) and two pairs weak peaks (1.28/1.23, 1.83/1.80 V)were observed in CV curve (Fig. 2a), representing the differentinsertion/extraction processes of sodium ions into/from tunnelstructure. Symmetrical oxidation and reduction peaks reveal thelow electrochemical polarization of Na0.44MnO2 in alkalinesolution. The shape and relative position of CV peaks are prettyconsistent with those measured in nonaqueous electrolytes,implying the similar reaction mechanism in both electrolytes. Inaddition, at the current rate of 0.5C, the Na0.44MnO2 electrodecould release a reversible discharge capacity of 78.4 mAh·g?1(Fig. 2b), corresponding to the intercalation of 0.285 Na+ in eachNaxMnO2 molecule (0.22 lt; x lt; 0.66) 26,27. And some complexand inconspicuous voltage platforms in good agreement with theCV profiles were obtained. The initial Coulombic efficiency was86.9%, which probably attributed to some inescapable sidereaction in aqueous electrolyte at a low current density, such asoxygen evolution reaction on the surface of electrode and currentcollector. The discharge capacities of Na0.44MnO2 electrode atvarious current rates were also investigated and shown inFig. 2c. When the current density was increased to 1C, 2C, 5C,10C, 20C and 50C, the capacity of Na0.44MnO2 electrode was 74,70.8, 67.4, 62.1, 53.9, 48.4 and 43.7 mAh·g?1, respectively, andstill capable of maintaining above 40 mAh·g?1, which is higherthan that in the neutral electrolyte. The impressive rate capabilitycould be attributed to the intrinsically fast sodium ion transferkinetics in tunnel-type oxide and high ionic conductivity (~400mS·cm?1) in 6 mol·L?1 NaOH solution. In Fig. 2d, at the rate of10C, Na0.44MnO2 electrode can gain an excellent capacityretention of 95.1% with Coulombic efficiency approaching100% over 100 cycles. These favorable electrochemicalperformances make Na0.44MnO2 as a potential cathode materialfor high-performance ASIBC.

    Among those anode materials matched with alkalineelectrolyte, activated carbon (AC) is considered as one of thebest choices due to its superior cycling stability and wide varietyof raw materials. The electrochemical properties of AC anode in6 mol·L?1 NaOH were also studied using three-electrodemethods with zinc plates as both reference electrode and counterelectrode. Fig. 3a shows the CV curve of the AC electrode,exhibiting typical capacitive behavior in 6 mol·L?1 NaOHelectrolyte 28. The oxidative cutoff potential is limited to 1.1 V(vs. Zn/Zn2+) in view of the reductive cutoff potential ofNa0.44MnO2 cathode. The charge-discharge curves of the ACelectrode at 1C are displayed in Fig. 3b. Within the voltagewindow of 0.3-1.1 V, the AC electrode can release specificcapacity of 71.6 mAh·g?1, corresponding to a high specificcapacitance of 322.2 F·g?1, which is largely higher than that inneural electrolyte 16. The reversible capacity of AC electrodeunder different current densities was also tested. As shown in Fig. 3c, AC electrode delivered desirable rate capability with thereversible capacity of 73.1, 66.6, 62.8, 60.1 and 56.9 mAh·g?1 at1C, 2C, 5C, 10C and 20C. Even at a very high rate of 50C, thereversible capacity of 53.3 mAh·g?1 was reserved. When the current rate goes back to 1C, the capacity of 71.6 mAh·g?1 canbe restored, showing excellent rate capability andelectrochemical reversibility. The high performance of the ACelectrode is mainly due to the high ionic conductivity provided by alkaline electrolyte and the energy storage mechanism ofelectrical double-layer capacitor for the AC electrode 29.Similarly, the long-term cycling performance at the rate of 10Cis shown in Fig. 3d. It can be manifested that the AC electrodepossessed superior cyclic stability with a capacity retention of90.7% after 2000 cycles (reversible capacities for the 1st and2000th cycle is 64.6 and 58.6 mAh·g?1, respectively). Theexcellent electrochemical performance of the AC electrodeprovides a strong guarantee for the construction of high-energydensity,high-power and long-term-lifetime AC||Na0.44MnO2ASIBC.

    Based on the above discussion, both Na0.44MnO2 cathode andAC anode exhibit preeminent electrochemical performance,which inspires us to assemble a novel sodium ion batterycapacitorwith Na0.44MnO2 and AC. The typical CV curves ofthe AC||Na0.44MnO2 ASIBC are presented in Fig. 4a, and thecharge/discharge voltage range of AC||Na0.44MnO2 ASIBC iscontrolled between 0 and 1.65 V according to the working rangof cathode and anode (1.1–1.95 and 0.3–1.65 V, respectively). Itis well known that Na0.44MnO2 can only release 0.22Na+ duringthe first charge process, which means that a capacity of merely50 mAh·g?1 can be utilized in full cells. For example, in 6mol·L?1 NaOH, the initial charge capacity of Na0.44MnO2electrode is 44.1 mAh·g?1, but the discharge capacity reaches78.2 mAh·g?1, nearly two times of charge capacity (Fig. S2). Inorder to improve the available reversible capacity, someadditional procedures are needful, such as pre-cycling or presodiumwhich would increase manufacturing cost of Na0.44MnO2. As for the AC anode, the irreversible absorptionoccurs on AC at the first cycle would consume extra sodium ionsfrom cathode (Fig. S3), thus leading to an extremely low initialCoulombic efficiency (ICE). Obviously, the low initial chargecapacity for Na0.44MnO2 cathode and low initial Coulombicefficiency for AC anode are major obstacles for theirapplications. Fortunately, these problems could be perfectlyresolved by overcharging AC||Na0.44MnO2 full cell upon initialcharge process in alkaline electrolyte. The first charge curves ofsodium ion battery capacitor are shown in Fig. 4b. The initialcharge process could be divided into two steps: open-circuitvoltage to 1.25 V, and 1.25 to 1.6 V. For the first stage, sodiumions deintercalate from tunnel structure of Na0.44MnO2 cathodeand sodium ions in the electrolyte are absorbed on the surface ofAC anode simultaneously (Fig. 4c). Through the calculation ofcharge capacity in this stage (51.4 mAh·g?1 for Na0.44MnO2),approximately 0.19Na+ extracted from the tunnel structure. Onbasis of the mass ratio of cathode and anode (1 : 0.9), thesolidated anode can be written as Na0.026C. Thus, theelectrochemical reactions of this charge step can be formulatedas follows:

    Positive: Na0.475MnO2 ? 0.19Na+ ? 0.19e? = Na0.285MnO2

    Negative: 7.34C + 0.19Na+ + 0.19e? = 7.34Na0.026C

    For the second stage, the drastic oxygen evolution reactionemerges around cathode, and AC anode continued absorbingsodium ions (Fig. 4c). Based on the charge capacity of 63.4mAh·g?1 for Na0.44MnO2 in this region, the electrochemicalreaction in second stage may be described as follows:

    Positive: 0.23OH? ? 0.23e? = 0.0575O2 + 0.115H2O

    Negative: 7.34Na0.026C + 0.23Na+ + 0.23e? = 7.34Na0.057C

    From the above description of the electrochemical mechanismof AC||Na0.44MnO2, it can be clearly seen that the in situelectrochemical pre-activation process can easily resolve thematching problem between Na0.44MnO2 cathode and AC anode.Interestingly, the overcharging oxygen evolution mechanism ofNa0.44MnO2 cathode can provide self-protection function in thealkaline electrolyte because the oxygen generated can beefficiently reduced at the negative side, which is similar to that demonstrated in Cd//Ni and MH/Ni batteries 30,31.

    Undoubtedly, oxygen evolution reaction disappeared afterinitial cycle because the Na+ ion amount of Na0.44MnO2electrode can be supplemented in the discharging process, whichcould be confirmed by incremental CE in subsequent chargingand discharging curves (Fig. 4d and the inset picture). Fig. 4eshows typical charge-discharge curves of AC||Na0.44MnO2ASIBC at 1C in the voltage range of 0–1.65 V. TheAC||Na0.44MnO2 ASIBC delivered a reversible capacity of 70.5mAh·g?1 (based on the mass of Na0.44MnO2). The rateperformance of full cell was also evaluated to explore itsfeasibility for high power applications (Fig. 4f). The reversiblecapacities can reach 71.8, 65.9, 61.3, 57.7, 53.8 and 49.4mAh·g?1 at 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Mostimportantly, when the current rate went back to 1C, thereversible capacity swiftly returned to 71.6 mAh·g?1 (nearly100% capacity recovery), showing a strong tolerance for fastsodium ion storage. Moreover, the full cell also exhibitedtremendous cycling stability with a capacity retention of 89%after 10000 cycles at the current rate of 10C (Fig. 5a). Theaverage Coulombic efficiency maintained above 99% all along,indicative of a highly reversible Na-ion transfer between cathodeand anode. Ragone plots of AC||Na0.44MnO2 ASIBC are shownin Fig. 5b. The power density and energy density can becalculated according to Pm = Im × U-, and Wm = Cm × U- . U- isthe average discharge voltage, Im is the current density, andCm refers to the capacity calculated based on the total weight ofcathode and anode. At a power density of 85 W·kg?1, an energydensity of 26.6 Wh·kg?1 could be obtained. When the powerdensity reaches 4.2 kW·kg?1, it still remains an energy density of18.0 Wh·kg?1. Compared with other aqueous Mn-based systems,AC||Na0.44MnO2 ASIBC is fairly competitive in energy densityand cyclic stability (Table 1).

    In order to further meet the requirement of practicalapplications, we evaluated the electrochemical performance ofthe AC||Na0.44MnO2 ASIBC at ?20 and 50 °C. The ratecapability under ?20, 25 and 50 °C is illustrated in Fig. 6a. At?20 °C, the discharge capacity of the AC||Na0.44MnO2 ASIBC reached 30.7, 27.7, 22.2, 17.8, and 14.5 mAh·g?1 at 1C, 2C, 5C,10C, and 20C, respectively. At 50 °C, the AC||Na0.44MnO2ASIBC exhibited higher rate capacities (42.7, 41.7, 38.9, 36.2and 32.2 mAh·g?1 at 1C, 2C, 5C, 10C, and 20C, respectively)due to faster sodium dynamics in electrode material, electrolyte,and electrode-electrolyte interface. When current rate returnedto 1C, the origin discharge capacities for three AC||Na0.44MnO2ASIBCs can be recovered, indicating outstandingelectrochemical reversibility. Additionally, the AC||Na0.44MnO2ASIBCs at ?20, 25 and 50 °C also showed excellent cyclingperformance with no obvious capacity fading within 150 cycles(Fig. 6b). The wide operating temperature range may expand theapplication fields of AC||Na0.44MnO2 ASIBC.

    4 Conclusions

    In this work, we designed an alkaline sodium ion batterycapacitorwith Na0.44MnO2 cathode, AC anode, 6 mol·L?1 NaOHelectrolyte and investigated its electrochemical performance.The available capacity of Na0.44MnO2 in half cell largelyincreased from ~40 mAh·g?1 (neutral electrolyte) to 77.3mAh·g?1 (alkaline electrolyte) due to broadened Na+intercalation potential region. Thus, the fabricatedAC||Na0.44MnO2 ASIBC exhibited exceptional electrochemicalproperties with a high energy density of 26.6 Wh·kg?1 at a powerdensity of 85 W·kg?1, superior cycling stability of 89% capacityretention over 10,000 cycles and high-power capability, whichorigins from the use of alkaline electrolyte. Not only that, theadvantages of the alkaline electrolyte for the AC||Na0.44MnO2ASIBC are also reflected in the following aspects: (1) throughthe in situ electrochemical pre-activation process, theovercharging oxygen evolution reaction during first chargingprocess can balance the adverse effects of the half-sodiumNa0.44MnO2 cathode and low-ICE AC anode on the energydensity of full cell; (2) the overcharging self-protection functioncan promote the generated oxygen to be eliminated at anodeduring overcharging, which improves the system safety; (3) thelow-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, theAC||Na0.44MnO2 ASIBC also possesses wide operatingtemperature range, achieving satisfied electrochemicalperformance at a high temperature of 50 °C and a lowtemperature of ?20 °C. Considering the merits of low-cost, highsafety, no toxicity and environment-friendly, AC||Na0.44MnO2ASIBC has good application prospects in the field of large-scaleenergy storage.

    Author Contributions: Conceptualization, Z.C. and Y.C.;Methodology, Q.X., S.L. and Y.Z.; Validation, Q.X., P.S. andL.X.; Formal Analysis, Q.X., Z.L., B.Z. and H.L.; Investigation,Q.X., B.W. and L.Y.; Resources, Z.C. and Y.C.; Data Curation,Q.X. and Y.Z.; Writing-Original Draft Preparation, Q.X., Y.Z.and Z.C.; Writing-Review amp; Editing, Y.Z., Z.C. and Y.C.;Supervision, Z.C. and Y.C.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14,200. doi: 10.1038/s41565-019-0371-8

    (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46.doi: 10.1016/j.ensm.2019.12.024

    (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15.doi: 10.1002/cnl2.4

    (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96.doi: 10.1002/cnl2.19

    (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151.doi: 10.1038/s41563-020-0747-z

    (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew.Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy2022, 1, 2021000. doi: 10.1002/BTE2.202100

    (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C.Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    (10) Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020,36, 1903055. [郭楠楠, 張?zhí)K, 王魯香, 賈殿贈. 物理化學(xué)學(xué)報,2020, 36, 1903055.] doi: 10.3866/PKU.WHXB201903055

    (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.;Liang, J.; Zhi, C. Nano Energy 2018, 50, 623.doi: 10.1016/j.nanoen.2018.06.017

    (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L.Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.;Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155.doi: 10.1002/adma.201100904

    (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACSAppl. Mater. Interfaces 2018, 10, 11689.doi: 10.1021/acsami.8b00478

    (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao,Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463. doi: 10.1016/j.elecom.2010.01.020

    (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.;Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401.doi: 10.1038/ncomms7401

    (18) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2020, 36,1905027. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2020, 36, 1905027.]doi: 10.3866/PKU.WHXB201905027

    (19) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2021, 37,1907049. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2021, 37, 1907049.]doi: 10.3866/PKU.WHXB201907049

    (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods2019, 3, 1800272. doi: 10.1002/smtd.201800272

    (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia,Y. Adv. Energy Mater. 2018, 8, 1703008.doi: 10.1002/aenm.201703008

    (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.;Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10,34108. doi: 10.1021/acsami.8b08297

    (23) Li, H.; Liu, S.; Wang, H.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Cao, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2019, 35,1357. [李慧, 劉雙宇, 汪慧明, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 曹余良, 陳重學(xué). 物理化學(xué)學(xué)報, 2019, 35, 1357.]doi: 10.3866/PKU.WHXB201902021

    (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv.Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan,M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602.doi: 10.1016/j.nanoen.2016.07.021

    (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem.2007, 46, 3289. doi: 10.1021/ic0700250

    (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.doi: 10.1016/j.jpowsour.2016.01.101

    (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T.J. Power Sources 2019, 436, 226882.doi: 10.1016/j.jpowsour.2019.226882

    (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.;Cao, G. Nano Energy 2018, 47, 224.doi: 10.1016/j.nanoen.2018.03.002

    (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347.doi: 10.1016/j.jpowsour.2003.11.043

    (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P.J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. PowerSources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R.J. Power Sources 2014, 253, 98.doi: 10.1016/j.jpowsour.2013.12.011

    (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf.Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F.J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

    國家電網(wǎng)公司科技計劃(5500-202158251A-0-0-00)資助項目

    猜你喜歡
    低成本
    大氣顆粒物源識別在線分析儀的開發(fā)及應(yīng)用
    城市電視臺要辦“特色綜藝”
    記者搖籃(2016年11期)2017-01-12 14:01:53
    初中物理低成本實驗資源的開發(fā)和利用
    未來英才(2016年3期)2016-12-26 10:03:57
    高效低成本的單晶N型太陽電池加工工藝的應(yīng)用
    實現(xiàn)園林管理低成本的對策和建議
    基于SOC的智能野外目標監(jiān)視和記錄系統(tǒng)設(shè)計與實現(xiàn)
    基于微波物理熱效應(yīng)的高壓電線除冰裝置方案設(shè)計
    科技視界(2016年2期)2016-03-30 13:05:46
    Y不銹鋼絲有限公司低成本SWOT分析
    商(2016年3期)2016-03-11 09:48:58
    低成本通用型液壓夾具的設(shè)計及推廣
    科學(xué)家(2015年9期)2015-10-29 15:37:18
    每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 亚洲专区中文字幕在线| 欧美性猛交黑人性爽| 亚洲国产欧美一区二区综合| 日韩欧美在线二视频| 欧美乱码精品一区二区三区| 午夜两性在线视频| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 午夜福利18| 啦啦啦 在线观看视频| 男人舔奶头视频| 日韩 欧美 亚洲 中文字幕| 午夜福利免费观看在线| 日本a在线网址| 黄色视频,在线免费观看| 波多野结衣高清作品| 国产高清有码在线观看视频 | 人成视频在线观看免费观看| 亚洲国产中文字幕在线视频| 一本大道久久a久久精品| 97碰自拍视频| 亚洲熟妇熟女久久| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| 欧美成狂野欧美在线观看| 日本在线视频免费播放| 夜夜看夜夜爽夜夜摸| 国产精品,欧美在线| 亚洲五月天丁香| 老司机午夜福利在线观看视频| 欧美日本视频| 久久久国产欧美日韩av| av视频在线观看入口| 欧美中文日本在线观看视频| 国产成+人综合+亚洲专区| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| av片东京热男人的天堂| 搡老熟女国产l中国老女人| 日韩免费av在线播放| 日韩三级视频一区二区三区| 无人区码免费观看不卡| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区| 在线观看午夜福利视频| 免费在线观看日本一区| www.自偷自拍.com| 色综合站精品国产| 久久久久国产一级毛片高清牌| 无限看片的www在线观看| 人人妻,人人澡人人爽秒播| 日韩视频一区二区在线观看| 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 免费观看人在逋| 久久久久久亚洲精品国产蜜桃av| 女性被躁到高潮视频| 精品国产一区二区三区四区第35| 日韩高清综合在线| 人妻丰满熟妇av一区二区三区| 欧美亚洲日本最大视频资源| or卡值多少钱| 久久久久久亚洲精品国产蜜桃av| www日本在线高清视频| 美女免费视频网站| av超薄肉色丝袜交足视频| 国产激情久久老熟女| 老熟妇乱子伦视频在线观看| 午夜免费观看网址| 好男人在线观看高清免费视频 | 欧美日韩乱码在线| 午夜久久久在线观看| 国产乱人伦免费视频| 亚洲片人在线观看| 一区二区三区精品91| 黑人欧美特级aaaaaa片| 97碰自拍视频| 黄频高清免费视频| 高清在线国产一区| 亚洲电影在线观看av| 欧美黑人欧美精品刺激| 免费在线观看成人毛片| 欧美不卡视频在线免费观看 | 国产精品 国内视频| 天堂影院成人在线观看| 亚洲 欧美 日韩 在线 免费| 琪琪午夜伦伦电影理论片6080| 亚洲成av人片免费观看| 精品国内亚洲2022精品成人| 91成人精品电影| 黄频高清免费视频| xxx96com| 日本免费一区二区三区高清不卡| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 欧美日韩黄片免| 天堂动漫精品| 真人一进一出gif抽搐免费| 精品国内亚洲2022精品成人| 国产成人系列免费观看| 日韩大码丰满熟妇| 男男h啪啪无遮挡| 午夜福利18| 69av精品久久久久久| 国内久久婷婷六月综合欲色啪| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| 久久久久国内视频| 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲美女久久久| 精品人妻1区二区| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 国产精品乱码一区二三区的特点| 欧美激情 高清一区二区三区| 后天国语完整版免费观看| 成人精品一区二区免费| 男女下面进入的视频免费午夜 | 亚洲精品av麻豆狂野| 亚洲真实伦在线观看| 91av网站免费观看| 观看免费一级毛片| 婷婷精品国产亚洲av在线| 狠狠狠狠99中文字幕| 国产精品 欧美亚洲| 亚洲成人免费电影在线观看| or卡值多少钱| 午夜成年电影在线免费观看| 身体一侧抽搐| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 999精品在线视频| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 一区二区三区高清视频在线| 男女之事视频高清在线观看| 免费观看精品视频网站| 美女大奶头视频| www.www免费av| 中文字幕av电影在线播放| 亚洲精品一区av在线观看| 黄频高清免费视频| 欧美丝袜亚洲另类 | 成人av一区二区三区在线看| 国产亚洲精品久久久久5区| 亚洲国产中文字幕在线视频| 麻豆久久精品国产亚洲av| 亚洲av电影在线进入| 91麻豆av在线| 欧美成人午夜精品| 极品教师在线免费播放| 最近最新中文字幕大全电影3 | 免费看十八禁软件| 亚洲av成人一区二区三| 99热只有精品国产| 桃色一区二区三区在线观看| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 欧美日韩精品网址| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 久久天躁狠狠躁夜夜2o2o| 一级毛片精品| 国产不卡一卡二| 99riav亚洲国产免费| 中文字幕高清在线视频| 免费电影在线观看免费观看| 国产精品亚洲av一区麻豆| 侵犯人妻中文字幕一二三四区| 天堂动漫精品| 亚洲第一欧美日韩一区二区三区| 欧美三级亚洲精品| 制服丝袜大香蕉在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人不卡在线观看播放网| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 日本成人三级电影网站| 日韩欧美免费精品| 一级毛片女人18水好多| 日本 av在线| 真人一进一出gif抽搐免费| 搞女人的毛片| 99精品欧美一区二区三区四区| 欧美丝袜亚洲另类 | 色老头精品视频在线观看| 日韩欧美三级三区| 国产成人啪精品午夜网站| 亚洲成人久久性| 搡老妇女老女人老熟妇| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看 | av片东京热男人的天堂| 久久久久久人人人人人| 在线观看午夜福利视频| 欧美日本视频| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 一个人观看的视频www高清免费观看 | 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 亚洲av五月六月丁香网| 91av网站免费观看| 国产成人精品久久二区二区免费| 国产精品二区激情视频| 亚洲欧洲精品一区二区精品久久久| 国产av在哪里看| 又大又爽又粗| 不卡av一区二区三区| 日本精品一区二区三区蜜桃| 欧美中文综合在线视频| 久久国产乱子伦精品免费另类| 禁无遮挡网站| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 国产高清videossex| 波多野结衣高清无吗| 99riav亚洲国产免费| 欧美乱色亚洲激情| 一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 18禁黄网站禁片免费观看直播| 国产欧美日韩一区二区精品| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 亚洲国产日韩欧美精品在线观看 | 欧美乱码精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 天堂影院成人在线观看| 久久精品aⅴ一区二区三区四区| 无人区码免费观看不卡| 一区二区三区激情视频| 这个男人来自地球电影免费观看| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区| 久久亚洲精品不卡| 日本一区二区免费在线视频| 不卡一级毛片| 亚洲五月天丁香| 国产精品亚洲美女久久久| 日韩三级视频一区二区三区| 欧美一级a爱片免费观看看 | 午夜福利在线观看吧| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久, | 免费高清视频大片| 亚洲天堂国产精品一区在线| 久久国产乱子伦精品免费另类| 精品熟女少妇八av免费久了| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 在线十欧美十亚洲十日本专区| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| 少妇被粗大的猛进出69影院| 久久伊人香网站| 亚洲国产毛片av蜜桃av| 国产97色在线日韩免费| 久久欧美精品欧美久久欧美| 亚洲成人久久爱视频| 久久精品91蜜桃| 国产成人精品久久二区二区91| 欧美日本视频| a级毛片a级免费在线| 高潮久久久久久久久久久不卡| avwww免费| 国产成人av教育| 亚洲电影在线观看av| 欧美黑人巨大hd| 国产免费男女视频| 99国产综合亚洲精品| 久久青草综合色| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 成人三级黄色视频| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 国内精品久久久久久久电影| 不卡一级毛片| 少妇裸体淫交视频免费看高清 | 久久国产亚洲av麻豆专区| 精品一区二区三区视频在线观看免费| 久久久国产精品麻豆| 无人区码免费观看不卡| 岛国在线观看网站| 国产精品免费一区二区三区在线| 日本一区二区免费在线视频| 757午夜福利合集在线观看| 88av欧美| av片东京热男人的天堂| 在线观看66精品国产| 色综合站精品国产| 亚洲男人的天堂狠狠| 亚洲精品中文字幕在线视频| 久久久久久大精品| 校园春色视频在线观看| 久久婷婷成人综合色麻豆| 日本免费a在线| 亚洲在线自拍视频| 国产精品久久久av美女十八| 真人一进一出gif抽搐免费| 国产视频一区二区在线看| 大型av网站在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久久午夜电影| 精品国产乱子伦一区二区三区| 国产欧美日韩一区二区三| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看| 在线看三级毛片| 嫩草影视91久久| 亚洲成人久久爱视频| 少妇粗大呻吟视频| 麻豆成人午夜福利视频| 99久久久亚洲精品蜜臀av| 亚洲五月婷婷丁香| 欧美三级亚洲精品| 欧美色视频一区免费| 欧美日韩黄片免| 国产亚洲av嫩草精品影院| 亚洲三区欧美一区| 禁无遮挡网站| 999精品在线视频| 一本一本综合久久| 亚洲成人久久性| 99在线视频只有这里精品首页| 一区二区三区激情视频| 国产欧美日韩一区二区精品| 国内少妇人妻偷人精品xxx网站 | 好男人在线观看高清免费视频 | 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 国产区一区二久久| 午夜福利18| 首页视频小说图片口味搜索| 18禁黄网站禁片免费观看直播| 成年女人毛片免费观看观看9| 波多野结衣av一区二区av| 在线看三级毛片| av中文乱码字幕在线| 精品一区二区三区四区五区乱码| 午夜免费成人在线视频| 国产成人欧美在线观看| 97人妻精品一区二区三区麻豆 | 大型黄色视频在线免费观看| 日韩一卡2卡3卡4卡2021年| 此物有八面人人有两片| xxxwww97欧美| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 男女做爰动态图高潮gif福利片| 久久久国产成人精品二区| 欧美av亚洲av综合av国产av| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 精品久久蜜臀av无| 国产精品香港三级国产av潘金莲| 国产高清videossex| 亚洲成人国产一区在线观看| 久久青草综合色| 国产精品九九99| 中文字幕av电影在线播放| 欧美性猛交黑人性爽| 黑人操中国人逼视频| 欧美日韩亚洲综合一区二区三区_| 韩国av一区二区三区四区| 日韩欧美免费精品| 欧美日韩精品网址| 91国产中文字幕| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| 亚洲一区高清亚洲精品| 亚洲片人在线观看| 亚洲人成网站高清观看| 色综合站精品国产| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| 中国美女看黄片| 在线观看www视频免费| 香蕉国产在线看| 麻豆久久精品国产亚洲av| 亚洲成人久久爱视频| 精品人妻1区二区| 少妇的丰满在线观看| 日韩精品免费视频一区二区三区| 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| 最新美女视频免费是黄的| 十八禁网站免费在线| 一级毛片女人18水好多| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 啦啦啦免费观看视频1| 国产视频内射| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 中文字幕久久专区| 嫩草影院精品99| 成人永久免费在线观看视频| cao死你这个sao货| 在线观看www视频免费| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9| 国产主播在线观看一区二区| 午夜免费鲁丝| av在线天堂中文字幕| 亚洲自偷自拍图片 自拍| 成人午夜高清在线视频 | 在线观看日韩欧美| 99久久99久久久精品蜜桃| 欧美激情高清一区二区三区| 黄色成人免费大全| 99在线人妻在线中文字幕| 一级毛片精品| 搡老妇女老女人老熟妇| 欧美成人午夜精品| 亚洲成av人片免费观看| 午夜福利在线在线| www.精华液| 宅男免费午夜| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 亚洲av五月六月丁香网| 精品欧美国产一区二区三| 97碰自拍视频| 亚洲avbb在线观看| 日本精品一区二区三区蜜桃| 91九色精品人成在线观看| 人成视频在线观看免费观看| 欧美亚洲日本最大视频资源| 成年免费大片在线观看| 国产精品久久久人人做人人爽| 男女那种视频在线观看| 亚洲人成77777在线视频| 99国产精品一区二区三区| 欧美成人一区二区免费高清观看 | 一二三四在线观看免费中文在| 日本a在线网址| 日韩国内少妇激情av| 叶爱在线成人免费视频播放| 久久国产亚洲av麻豆专区| 亚洲av美国av| 精品久久久久久成人av| 亚洲真实伦在线观看| 一进一出抽搐动态| 免费在线观看影片大全网站| 成人手机av| 亚洲电影在线观看av| 丝袜人妻中文字幕| 日本成人三级电影网站| 国产精品 国内视频| 亚洲色图av天堂| 亚洲av第一区精品v没综合| 美国免费a级毛片| 欧美性猛交╳xxx乱大交人| 一区二区三区国产精品乱码| 免费高清视频大片| 中文字幕久久专区| 哪里可以看免费的av片| 一级毛片女人18水好多| 亚洲av美国av| 亚洲人成网站高清观看| 99精品欧美一区二区三区四区| 高清在线国产一区| 久久久久久久午夜电影| 老司机在亚洲福利影院| 日韩有码中文字幕| 搡老岳熟女国产| 天堂影院成人在线观看| 国产一区二区三区在线臀色熟女| 曰老女人黄片| 1024手机看黄色片| 国产精品久久久av美女十八| 亚洲在线自拍视频| 国产亚洲精品久久久久5区| 熟女电影av网| 桃色一区二区三区在线观看| 午夜免费观看网址| 亚洲午夜理论影院| 国产精品久久视频播放| 日韩免费av在线播放| 欧美日韩亚洲国产一区二区在线观看| 天堂√8在线中文| 久久精品亚洲精品国产色婷小说| 黄片大片在线免费观看| 无遮挡黄片免费观看| 伦理电影免费视频| 嫩草影院精品99| 又紧又爽又黄一区二区| 免费在线观看亚洲国产| 午夜免费观看网址| 91九色精品人成在线观看| 这个男人来自地球电影免费观看| 99国产极品粉嫩在线观看| 亚洲国产精品久久男人天堂| 国产精品九九99| 老熟妇乱子伦视频在线观看| 欧美日韩福利视频一区二区| 啦啦啦免费观看视频1| 怎么达到女性高潮| 亚洲一码二码三码区别大吗| 亚洲一区二区三区色噜噜| 久久草成人影院| 亚洲熟妇中文字幕五十中出| 中文字幕精品免费在线观看视频| 男人的好看免费观看在线视频 | 久久人妻福利社区极品人妻图片| 精品不卡国产一区二区三区| 中文字幕精品亚洲无线码一区 | 可以免费在线观看a视频的电影网站| 欧美黄色片欧美黄色片| 免费在线观看视频国产中文字幕亚洲| 男人操女人黄网站| 97人妻精品一区二区三区麻豆 | 久久精品国产清高在天天线| 中文字幕高清在线视频| 在线观看午夜福利视频| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 亚洲七黄色美女视频| 成人av一区二区三区在线看| 国产成人啪精品午夜网站| 成人亚洲精品一区在线观看| 国产精品亚洲一级av第二区| 日本撒尿小便嘘嘘汇集6| 国产精品免费一区二区三区在线| 一本大道久久a久久精品| 亚洲色图 男人天堂 中文字幕| 搡老岳熟女国产| 亚洲 欧美一区二区三区| 夜夜爽天天搞| 97碰自拍视频| 最新美女视频免费是黄的| 国产伦人伦偷精品视频| 成人av一区二区三区在线看| 亚洲国产精品久久男人天堂| 天天添夜夜摸| 亚洲熟女毛片儿| 国产单亲对白刺激| 亚洲精品国产精品久久久不卡| 婷婷精品国产亚洲av| 无人区码免费观看不卡| 宅男免费午夜| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 草草在线视频免费看| 国产亚洲精品av在线| 两性夫妻黄色片| 亚洲国产看品久久| 亚洲国产欧美网| 俺也久久电影网| 巨乳人妻的诱惑在线观看| 看片在线看免费视频| 99riav亚洲国产免费| 亚洲第一av免费看| 成人欧美大片| 亚洲五月天丁香| 久久人人精品亚洲av| 亚洲人成网站高清观看| cao死你这个sao货| 婷婷精品国产亚洲av在线| 黄片播放在线免费| 亚洲国产精品成人综合色| 国产av在哪里看| 啦啦啦观看免费观看视频高清| 母亲3免费完整高清在线观看| 午夜免费成人在线视频| 黄色a级毛片大全视频| 久久亚洲真实| 村上凉子中文字幕在线| 精品一区二区三区av网在线观看| 成人午夜高清在线视频 | 欧美国产日韩亚洲一区| 欧美激情高清一区二区三区| 欧美一区二区精品小视频在线| svipshipincom国产片| 91av网站免费观看| 精品电影一区二区在线| 最新美女视频免费是黄的| 国产成人精品久久二区二区91| av天堂在线播放| 亚洲 欧美一区二区三区|