• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于活性炭||Na0.44MnO2 的低成本、高倍率和長壽命堿性鈉離子電池電容器

    2024-07-04 00:00:00薛晴李圣驛趙亞楠盛鵬徐麗李正曦張波李慧王博楊立濱曹余良陳重學(xué)
    物理化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:低成本

    摘要:水系鈉離子電池電容器具有成本低、功率大、安全性好等優(yōu)點,是下一代大規(guī)模儲能系統(tǒng)的理想選擇之一。本文采用Na0.44MnO2正極、活性炭(AC)負極、6 mol?L?1 NaOH電解液和廉價的不銹鋼集流體構(gòu)建了可充電堿性鈉離子電池電容器。由于Na0.44MnO2正極在堿性電解液中具有較高的過充耐受性,通過首次充電時的原位過充預(yù)活化過程可以解決半鈉化Na0.44MnO2正極和AC負極初始庫倫效率低的缺點。因此,AC||Na0.44MnO2可充電堿性鈉離子電池電容器具有優(yōu)異的電化學(xué)性能,在功率密度為85 W?kg?1時,能量密度達26.6 Wh?kg?1,循環(huán)10000次后容量保持率為89%。同時,在50 °C的高溫和?20 °C的低溫也具有良好的電化學(xué)性能。這些結(jié)果表明AC||Na0.44MnO2可充電堿性鈉離子電池電容器具備應(yīng)用于大規(guī)模儲能的潛力。

    關(guān)鍵詞:鈉離子電池電容;堿性電解液;過充自保護;低成本;寬工作溫程

    中圖分類號:O646

    Abstract: As the most advanced battery technology to date, lithiumionbattery has occupied the main battery markets for electric vehiclesand grid scale energy storage systems. However, the limited lithiumreserves as well as the high price raise concerns about the sustainabilityof lithium-ion battery. Although sodium-ion battery is proposed as a goodsupplement to lithium-ion battery, expensive and flammable electrolytecomponents, harsh assembly environments and potential safety hazardshave limited the rapid development to a certain extent. The organicelectrolyte was replaced with an aqueous solution to construct a newtype of aqueous sodium ion battery capacitor (ASIBC). It is of greatsignificance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However,applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructedby using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol?L?1 NaOH electrolyte, and cheap stainless-steel currentcollector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the halfsodiumNa0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging preactivationprocess during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh?g?1(neutral electrolyte) to 77.3 mAh?g?1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, theAC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh?kg?1 at apower density of 85 W?kg?1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantagesof the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemicalpre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverseeffects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density offull cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode duringovercharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperaturerange, achieving satisfied electrochemical performance at a high temperature of 50 °C and a low temperature of ?20 °C.Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.

    Key Words: Sodium-ion battery capacitor; Alkaline electrolyte; Overcharging self-protection; Low cost;Wide operating temperature range

    1 Introduction

    Recently, the influence of increasing consumption oftraditional fossil fuel and environmental pollution issue has ledthe worldwide researchers to develop advanced large-scaleenergy storage system. Among various types of current energystorage devices, electrochemical energy storage technology hasbecome the focus over the recent decade due to its advantages offlexibility, high energy conversion efficiency and simplemaintenance 1,2. The cathode and anode active substances of ionbatteries are compounds that can be reversiblyextraction/insertion. It has high energy density, but the powerdensity is insufficient and the cycle life is short, which restrictsthe development of the battery 3,4. Electrochemical capacitorswith high power density and long cycle life are known as animportant supplement to batteries in electrical energy storageapplications 5–7. However, the traditional electrochemicalcapacitors store charges via either ion adsorption-desorption orfast surface redox reactions, which requires a high weightpercent of electrolyte in full cells to support surface reaction oradsorption, consequently lowering the energy density 8,9. Tocombine the merits of both batteries and electrochemicalcapacitors, ion battery capacitor (IBC), which is composed of abattery-type electrode (intercalation/deintercalation mechanism)and a capacitor-type electrode (physical adsorption/desorptionmechanism), is thus proposed as a new type of energy storagedevice 10–12. Because the charge storage of the IBC is realizedthrough the transfer of only cations between cathode and anode,while the anions don't take part in, therefore only a small amountof electrolyte is needed in IBC just like in batteries.

    Although most of the representative lithium-ion batterycapacitors (LIBCs) have demonstrated high energy density byemploying nonaqueous electrolyte, several critical issues alsoaccompanied, including high cost, environmental pollution andsafe risks relating to hazardous flammable organic electrolyte.Compared to organic electrolyte, aqueous electrolyte with highionic conductivity, low cost, non-toxic, and superior thermalstability shows a better application potential in LIBCs. However,the limited lithium resource and rising cost make LIBCs unableto meet the requirements of rapidly expanding large scale energystorage systems. In this case, aqueous sodium ion batterycapacitor (ASIBC) emerges as a promising candidate due to lowcostand abundance of sodium source and similar operatingprinciples to aqueous lithium-ion battery capacitor.

    Constrained by the narrow operating voltage window andserious side reactions in aqueous battery, only a few cathodematerials are available for ASIBC. Among them, tunnel-type oxide, Na0.44MnO2 attracts the most attentions because of itshigh resource abundance, low cost, and environmentalcompatibility 13–15. Na0.44MnO2 possesses a unique 3D crystalstructure and abundant large S tunnels for sodium ions diffusion,showing exceptional cycling performance and remarkable ratecapability in both aqueous and nonaqueous electrolytes. Forexample, Whitacre et al. 16 fabricated a full cell using the activecarbon as the anode, Na0.44MnO2 as the cathode and 1 mol·L?1Na2SO4 as electrolyte, which demonstrates high-rate and longtermcycling performance. Although Na0.44MnO2 couldtheoretically insert/extract 0.44 Na+ with a capacity of 121mAh·g?1 during charge-discharge process, it can merely attain areversible capacity of 60 mAh·g?1 in full cells because only0.22Na+ could be extracted during the first charge, an even lowercapacity of ~40 mAh·g?1 is obtained in neutral solution (Na2SO4,NaNO3, NaCl) due to the limitation of the hydrogen ionsinsertion reaction 17. Therefore, much efforts have been made toimprove the utilization of Na0.44MnO2 in ASIBC 18,19.

    When the neutral electrolyte is replaced by alkalineelectrolyte, the reversible capacity of Na0.44MnO2 can beincreased to 80 mAh·g?1 because the potential of hydrogen ionsinsertion shifts negatively in the alkaline electrolyte. Not onlythat, the alkaline electrolyte has some other advantages. Forexample, neutral system must use expensive current collectormetals (Ti, Ag, Au, etc.) to withstand the corrosion caused bypH alteration upon hydrogen or oxygen evolution reaction 20,21.Instead, alkaline system can just use cheap current collectors(stainless steel, nickel), thus considerably reducing the cost ofASIBC. Most importantly, alkaline electrolytes can tolerateovercharging of the cell due to intrinsic oxygen-shuttleprotection mechanism, where oxygen evolution reaction mightbe used as an approach to improve the reversible capacity (~100mAh·g?1) in full cell 18,19,22. In this regard, it is feasible toconstruct ASIBC with higher energy density, lower cost andlonger-term lifetime based on Na0.44MnO2 cathode and alkalineelectrolyte.

    In this work, a novel ASIBC was constructed by usingNa0.44MnO2 as cathode, active carbon (AC) as anode, 6 mol·L?1NaOH as electrolyte, and stainless steel as current collector. Theelectrochemical performance of the ASIBC was studied,including the reversible capacity, rate capability, cycling life,energy density, and power density. Also, the reaction mechanismwas detailedly explored. Furthermore, the performance ofASIBC at ?20 and 50 °C was investigated. It is believed that thelow-cost and long-life AC||Na0.44MnO2 ASIBC is a promisingcapacitor candidate for future energy storage devices.

    2 Experimental

    2.1 Material preparation

    Rod-like Na0.44MnO2 was synthesized through a phenolformalin-assisted sol-gel method. A typical synthesis processwas as follows: CH3COONa (AR, ≥ 99.0%, Sinopharm) andMn(CH3COO)2 (AR, ≥ 99.0%, Sinopharm) with a stoichiometric ratio of 0.462 : 1 first dissolved in mixed solution of deionizedwater and ethyl alcohol (1 : 1 by vol.) with vigorous stirring at70 °C. After the solution stirred for 30 min, 0.3 g of phenol (AR,≥ 98.0%, Sinopharm) and 0.4 mL of formalin (AR, 37.0%–40.0%, Sinopharm) were added into the above solution insuccession, stirred for 6 h at 80 °C until vaporize both water andethyl alcohol to obtain pale pink gel precursor. After drying at100 °C for overnight in a vacuum oven, the precursor wasground into powder and then heated in a muffle furnace at 900 °Cfor 15 h with a heating rate of 2 °C to obtain the final products.

    2.2 Characterizations

    The crystallographic information was characterized by X-raydiffractometer (XRD, Bruker D8 ADVANCE, Germany) with aCu Kα X-ray source over a range of 2θ angles from 10° to 70° ata scan rate of 4 (°)·min?1. The morphology analysis wasconducted on scanning electron microscopy (SEM, ZEISSMerlin Compact, Germany) and transmission electronmicroscopy (TEM, JEM-2100FEF, Japan).

    2.3 Electrochemical tests

    The Na0.44MnO2 electrodes were prepared via mixing activematerial, Super P and polytetrafluoroethylene emulsion with amass ratio of 8 : 1 : 1. Firstly, the active material and conductivecarbon were well mixed by grounding. And then, binder andisopropanol were added and stirred to form a gum-like mixture.The mixture was pressed on stainless steel net and dried at100 °C for more than 10 h. And the average mass loading ofelectrode is about 5 mg·cm?2. The AC electrodes were fabricatedusing same method except that Ketjen Black was selected asconductive carbon and the mass ratio of active material,conductive carbon and binder is 7 : 2 : 1.

    The three-electrode system was assembled using Na0.44MnO2or AC as working electrode, zinc foil as reference electrode andcounter electrode, 6 mol·L?1 NaOH as electrolyte at roomtemperature in air. The electrochemical properties of sodium ionbattery capacitors were evaluated in 2032-coin cells withNa0.44MnO2 as cathode, AC as anode, non-woven fabric asseparator, and 6 mol·L?1 NaOH as electrolyte at same conditionswith three-electrode system. The mass ratio of cathode andanode is about 1 : 0.9. The galvanostatic charge/dischargemeasurements are carried out using a LANDCT2001A (LandElectronic Co., Ltd., Wuhan, China). Cyclic voltammetry (CV)measurements were conducted on the AutoLab PGSTAT 128 N(Eco Chemie, Netherlands).

    3 Results and discussion

    The XRD pattern of Na0.44MnO2 powders synthesized via solgelmethod showed that the sample was crystallized in theorthorhombic structure (Pbam space group, JCPDS No. 27-0750) of the tunnel-type material (Fig. S1, SupportingInformation), in agreement with previous results 23,24. Themorphology of Na0.44MnO2 sample was characterized by SEM,TEM and High Resolution Transmission Electron Microscope(HRTEM). As shown in Fig. 1a,b, the sample is composed ofshort rod-like particles with a length range of 4–8 μm and widthchanging from 1 to 3 μm. The smaller length/width ratio isbeneficial for fast diffusion of sodium ion in crystal structure,which have been demonstrated by our previous work 22 and otherrelated reports 17,25. The TEM image in Fig. 1c shows rod-likestructure, which is consistent with the SEM results. The latticefringe with a spacing of 0.25 nm in HRTEM images (Fig. 1d) isclearly seen, corresponding to the (360) plane in theorthorhombic structure.

    The electrochemical properties of Na0.44MnO2 electrode weretested in 6 mol·L?1 NaOH solution. And CV profiles,galvanostatic charge-discharge profiles, rate capability and longtermcycling stability of Na0.44MnO2 cathode in the potentialrange of 1.1–1.95 V (vs. Zn/Zn2+) are indicated in Fig. 2. Fourpairs strong redox peaks (1.22/1.15, 1.44/1.38, 1.75/1.70 and1.95/1.92 V) and two pairs weak peaks (1.28/1.23, 1.83/1.80 V)were observed in CV curve (Fig. 2a), representing the differentinsertion/extraction processes of sodium ions into/from tunnelstructure. Symmetrical oxidation and reduction peaks reveal thelow electrochemical polarization of Na0.44MnO2 in alkalinesolution. The shape and relative position of CV peaks are prettyconsistent with those measured in nonaqueous electrolytes,implying the similar reaction mechanism in both electrolytes. Inaddition, at the current rate of 0.5C, the Na0.44MnO2 electrodecould release a reversible discharge capacity of 78.4 mAh·g?1(Fig. 2b), corresponding to the intercalation of 0.285 Na+ in eachNaxMnO2 molecule (0.22 lt; x lt; 0.66) 26,27. And some complexand inconspicuous voltage platforms in good agreement with theCV profiles were obtained. The initial Coulombic efficiency was86.9%, which probably attributed to some inescapable sidereaction in aqueous electrolyte at a low current density, such asoxygen evolution reaction on the surface of electrode and currentcollector. The discharge capacities of Na0.44MnO2 electrode atvarious current rates were also investigated and shown inFig. 2c. When the current density was increased to 1C, 2C, 5C,10C, 20C and 50C, the capacity of Na0.44MnO2 electrode was 74,70.8, 67.4, 62.1, 53.9, 48.4 and 43.7 mAh·g?1, respectively, andstill capable of maintaining above 40 mAh·g?1, which is higherthan that in the neutral electrolyte. The impressive rate capabilitycould be attributed to the intrinsically fast sodium ion transferkinetics in tunnel-type oxide and high ionic conductivity (~400mS·cm?1) in 6 mol·L?1 NaOH solution. In Fig. 2d, at the rate of10C, Na0.44MnO2 electrode can gain an excellent capacityretention of 95.1% with Coulombic efficiency approaching100% over 100 cycles. These favorable electrochemicalperformances make Na0.44MnO2 as a potential cathode materialfor high-performance ASIBC.

    Among those anode materials matched with alkalineelectrolyte, activated carbon (AC) is considered as one of thebest choices due to its superior cycling stability and wide varietyof raw materials. The electrochemical properties of AC anode in6 mol·L?1 NaOH were also studied using three-electrodemethods with zinc plates as both reference electrode and counterelectrode. Fig. 3a shows the CV curve of the AC electrode,exhibiting typical capacitive behavior in 6 mol·L?1 NaOHelectrolyte 28. The oxidative cutoff potential is limited to 1.1 V(vs. Zn/Zn2+) in view of the reductive cutoff potential ofNa0.44MnO2 cathode. The charge-discharge curves of the ACelectrode at 1C are displayed in Fig. 3b. Within the voltagewindow of 0.3-1.1 V, the AC electrode can release specificcapacity of 71.6 mAh·g?1, corresponding to a high specificcapacitance of 322.2 F·g?1, which is largely higher than that inneural electrolyte 16. The reversible capacity of AC electrodeunder different current densities was also tested. As shown in Fig. 3c, AC electrode delivered desirable rate capability with thereversible capacity of 73.1, 66.6, 62.8, 60.1 and 56.9 mAh·g?1 at1C, 2C, 5C, 10C and 20C. Even at a very high rate of 50C, thereversible capacity of 53.3 mAh·g?1 was reserved. When the current rate goes back to 1C, the capacity of 71.6 mAh·g?1 canbe restored, showing excellent rate capability andelectrochemical reversibility. The high performance of the ACelectrode is mainly due to the high ionic conductivity provided by alkaline electrolyte and the energy storage mechanism ofelectrical double-layer capacitor for the AC electrode 29.Similarly, the long-term cycling performance at the rate of 10Cis shown in Fig. 3d. It can be manifested that the AC electrodepossessed superior cyclic stability with a capacity retention of90.7% after 2000 cycles (reversible capacities for the 1st and2000th cycle is 64.6 and 58.6 mAh·g?1, respectively). Theexcellent electrochemical performance of the AC electrodeprovides a strong guarantee for the construction of high-energydensity,high-power and long-term-lifetime AC||Na0.44MnO2ASIBC.

    Based on the above discussion, both Na0.44MnO2 cathode andAC anode exhibit preeminent electrochemical performance,which inspires us to assemble a novel sodium ion batterycapacitorwith Na0.44MnO2 and AC. The typical CV curves ofthe AC||Na0.44MnO2 ASIBC are presented in Fig. 4a, and thecharge/discharge voltage range of AC||Na0.44MnO2 ASIBC iscontrolled between 0 and 1.65 V according to the working rangof cathode and anode (1.1–1.95 and 0.3–1.65 V, respectively). Itis well known that Na0.44MnO2 can only release 0.22Na+ duringthe first charge process, which means that a capacity of merely50 mAh·g?1 can be utilized in full cells. For example, in 6mol·L?1 NaOH, the initial charge capacity of Na0.44MnO2electrode is 44.1 mAh·g?1, but the discharge capacity reaches78.2 mAh·g?1, nearly two times of charge capacity (Fig. S2). Inorder to improve the available reversible capacity, someadditional procedures are needful, such as pre-cycling or presodiumwhich would increase manufacturing cost of Na0.44MnO2. As for the AC anode, the irreversible absorptionoccurs on AC at the first cycle would consume extra sodium ionsfrom cathode (Fig. S3), thus leading to an extremely low initialCoulombic efficiency (ICE). Obviously, the low initial chargecapacity for Na0.44MnO2 cathode and low initial Coulombicefficiency for AC anode are major obstacles for theirapplications. Fortunately, these problems could be perfectlyresolved by overcharging AC||Na0.44MnO2 full cell upon initialcharge process in alkaline electrolyte. The first charge curves ofsodium ion battery capacitor are shown in Fig. 4b. The initialcharge process could be divided into two steps: open-circuitvoltage to 1.25 V, and 1.25 to 1.6 V. For the first stage, sodiumions deintercalate from tunnel structure of Na0.44MnO2 cathodeand sodium ions in the electrolyte are absorbed on the surface ofAC anode simultaneously (Fig. 4c). Through the calculation ofcharge capacity in this stage (51.4 mAh·g?1 for Na0.44MnO2),approximately 0.19Na+ extracted from the tunnel structure. Onbasis of the mass ratio of cathode and anode (1 : 0.9), thesolidated anode can be written as Na0.026C. Thus, theelectrochemical reactions of this charge step can be formulatedas follows:

    Positive: Na0.475MnO2 ? 0.19Na+ ? 0.19e? = Na0.285MnO2

    Negative: 7.34C + 0.19Na+ + 0.19e? = 7.34Na0.026C

    For the second stage, the drastic oxygen evolution reactionemerges around cathode, and AC anode continued absorbingsodium ions (Fig. 4c). Based on the charge capacity of 63.4mAh·g?1 for Na0.44MnO2 in this region, the electrochemicalreaction in second stage may be described as follows:

    Positive: 0.23OH? ? 0.23e? = 0.0575O2 + 0.115H2O

    Negative: 7.34Na0.026C + 0.23Na+ + 0.23e? = 7.34Na0.057C

    From the above description of the electrochemical mechanismof AC||Na0.44MnO2, it can be clearly seen that the in situelectrochemical pre-activation process can easily resolve thematching problem between Na0.44MnO2 cathode and AC anode.Interestingly, the overcharging oxygen evolution mechanism ofNa0.44MnO2 cathode can provide self-protection function in thealkaline electrolyte because the oxygen generated can beefficiently reduced at the negative side, which is similar to that demonstrated in Cd//Ni and MH/Ni batteries 30,31.

    Undoubtedly, oxygen evolution reaction disappeared afterinitial cycle because the Na+ ion amount of Na0.44MnO2electrode can be supplemented in the discharging process, whichcould be confirmed by incremental CE in subsequent chargingand discharging curves (Fig. 4d and the inset picture). Fig. 4eshows typical charge-discharge curves of AC||Na0.44MnO2ASIBC at 1C in the voltage range of 0–1.65 V. TheAC||Na0.44MnO2 ASIBC delivered a reversible capacity of 70.5mAh·g?1 (based on the mass of Na0.44MnO2). The rateperformance of full cell was also evaluated to explore itsfeasibility for high power applications (Fig. 4f). The reversiblecapacities can reach 71.8, 65.9, 61.3, 57.7, 53.8 and 49.4mAh·g?1 at 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Mostimportantly, when the current rate went back to 1C, thereversible capacity swiftly returned to 71.6 mAh·g?1 (nearly100% capacity recovery), showing a strong tolerance for fastsodium ion storage. Moreover, the full cell also exhibitedtremendous cycling stability with a capacity retention of 89%after 10000 cycles at the current rate of 10C (Fig. 5a). Theaverage Coulombic efficiency maintained above 99% all along,indicative of a highly reversible Na-ion transfer between cathodeand anode. Ragone plots of AC||Na0.44MnO2 ASIBC are shownin Fig. 5b. The power density and energy density can becalculated according to Pm = Im × U-, and Wm = Cm × U- . U- isthe average discharge voltage, Im is the current density, andCm refers to the capacity calculated based on the total weight ofcathode and anode. At a power density of 85 W·kg?1, an energydensity of 26.6 Wh·kg?1 could be obtained. When the powerdensity reaches 4.2 kW·kg?1, it still remains an energy density of18.0 Wh·kg?1. Compared with other aqueous Mn-based systems,AC||Na0.44MnO2 ASIBC is fairly competitive in energy densityand cyclic stability (Table 1).

    In order to further meet the requirement of practicalapplications, we evaluated the electrochemical performance ofthe AC||Na0.44MnO2 ASIBC at ?20 and 50 °C. The ratecapability under ?20, 25 and 50 °C is illustrated in Fig. 6a. At?20 °C, the discharge capacity of the AC||Na0.44MnO2 ASIBC reached 30.7, 27.7, 22.2, 17.8, and 14.5 mAh·g?1 at 1C, 2C, 5C,10C, and 20C, respectively. At 50 °C, the AC||Na0.44MnO2ASIBC exhibited higher rate capacities (42.7, 41.7, 38.9, 36.2and 32.2 mAh·g?1 at 1C, 2C, 5C, 10C, and 20C, respectively)due to faster sodium dynamics in electrode material, electrolyte,and electrode-electrolyte interface. When current rate returnedto 1C, the origin discharge capacities for three AC||Na0.44MnO2ASIBCs can be recovered, indicating outstandingelectrochemical reversibility. Additionally, the AC||Na0.44MnO2ASIBCs at ?20, 25 and 50 °C also showed excellent cyclingperformance with no obvious capacity fading within 150 cycles(Fig. 6b). The wide operating temperature range may expand theapplication fields of AC||Na0.44MnO2 ASIBC.

    4 Conclusions

    In this work, we designed an alkaline sodium ion batterycapacitorwith Na0.44MnO2 cathode, AC anode, 6 mol·L?1 NaOHelectrolyte and investigated its electrochemical performance.The available capacity of Na0.44MnO2 in half cell largelyincreased from ~40 mAh·g?1 (neutral electrolyte) to 77.3mAh·g?1 (alkaline electrolyte) due to broadened Na+intercalation potential region. Thus, the fabricatedAC||Na0.44MnO2 ASIBC exhibited exceptional electrochemicalproperties with a high energy density of 26.6 Wh·kg?1 at a powerdensity of 85 W·kg?1, superior cycling stability of 89% capacityretention over 10,000 cycles and high-power capability, whichorigins from the use of alkaline electrolyte. Not only that, theadvantages of the alkaline electrolyte for the AC||Na0.44MnO2ASIBC are also reflected in the following aspects: (1) throughthe in situ electrochemical pre-activation process, theovercharging oxygen evolution reaction during first chargingprocess can balance the adverse effects of the half-sodiumNa0.44MnO2 cathode and low-ICE AC anode on the energydensity of full cell; (2) the overcharging self-protection functioncan promote the generated oxygen to be eliminated at anodeduring overcharging, which improves the system safety; (3) thelow-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, theAC||Na0.44MnO2 ASIBC also possesses wide operatingtemperature range, achieving satisfied electrochemicalperformance at a high temperature of 50 °C and a lowtemperature of ?20 °C. Considering the merits of low-cost, highsafety, no toxicity and environment-friendly, AC||Na0.44MnO2ASIBC has good application prospects in the field of large-scaleenergy storage.

    Author Contributions: Conceptualization, Z.C. and Y.C.;Methodology, Q.X., S.L. and Y.Z.; Validation, Q.X., P.S. andL.X.; Formal Analysis, Q.X., Z.L., B.Z. and H.L.; Investigation,Q.X., B.W. and L.Y.; Resources, Z.C. and Y.C.; Data Curation,Q.X. and Y.Z.; Writing-Original Draft Preparation, Q.X., Y.Z.and Z.C.; Writing-Review amp; Editing, Y.Z., Z.C. and Y.C.;Supervision, Z.C. and Y.C.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14,200. doi: 10.1038/s41565-019-0371-8

    (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46.doi: 10.1016/j.ensm.2019.12.024

    (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15.doi: 10.1002/cnl2.4

    (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96.doi: 10.1002/cnl2.19

    (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151.doi: 10.1038/s41563-020-0747-z

    (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew.Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy2022, 1, 2021000. doi: 10.1002/BTE2.202100

    (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C.Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    (10) Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020,36, 1903055. [郭楠楠, 張?zhí)K, 王魯香, 賈殿贈. 物理化學(xué)學(xué)報,2020, 36, 1903055.] doi: 10.3866/PKU.WHXB201903055

    (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.;Liang, J.; Zhi, C. Nano Energy 2018, 50, 623.doi: 10.1016/j.nanoen.2018.06.017

    (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L.Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.;Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155.doi: 10.1002/adma.201100904

    (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACSAppl. Mater. Interfaces 2018, 10, 11689.doi: 10.1021/acsami.8b00478

    (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao,Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463. doi: 10.1016/j.elecom.2010.01.020

    (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.;Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401.doi: 10.1038/ncomms7401

    (18) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2020, 36,1905027. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2020, 36, 1905027.]doi: 10.3866/PKU.WHXB201905027

    (19) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2021, 37,1907049. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2021, 37, 1907049.]doi: 10.3866/PKU.WHXB201907049

    (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods2019, 3, 1800272. doi: 10.1002/smtd.201800272

    (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia,Y. Adv. Energy Mater. 2018, 8, 1703008.doi: 10.1002/aenm.201703008

    (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.;Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10,34108. doi: 10.1021/acsami.8b08297

    (23) Li, H.; Liu, S.; Wang, H.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Cao, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2019, 35,1357. [李慧, 劉雙宇, 汪慧明, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 曹余良, 陳重學(xué). 物理化學(xué)學(xué)報, 2019, 35, 1357.]doi: 10.3866/PKU.WHXB201902021

    (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv.Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan,M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602.doi: 10.1016/j.nanoen.2016.07.021

    (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem.2007, 46, 3289. doi: 10.1021/ic0700250

    (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.doi: 10.1016/j.jpowsour.2016.01.101

    (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T.J. Power Sources 2019, 436, 226882.doi: 10.1016/j.jpowsour.2019.226882

    (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.;Cao, G. Nano Energy 2018, 47, 224.doi: 10.1016/j.nanoen.2018.03.002

    (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347.doi: 10.1016/j.jpowsour.2003.11.043

    (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P.J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. PowerSources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R.J. Power Sources 2014, 253, 98.doi: 10.1016/j.jpowsour.2013.12.011

    (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf.Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F.J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

    國家電網(wǎng)公司科技計劃(5500-202158251A-0-0-00)資助項目

    猜你喜歡
    低成本
    大氣顆粒物源識別在線分析儀的開發(fā)及應(yīng)用
    城市電視臺要辦“特色綜藝”
    記者搖籃(2016年11期)2017-01-12 14:01:53
    初中物理低成本實驗資源的開發(fā)和利用
    未來英才(2016年3期)2016-12-26 10:03:57
    高效低成本的單晶N型太陽電池加工工藝的應(yīng)用
    實現(xiàn)園林管理低成本的對策和建議
    基于SOC的智能野外目標監(jiān)視和記錄系統(tǒng)設(shè)計與實現(xiàn)
    基于微波物理熱效應(yīng)的高壓電線除冰裝置方案設(shè)計
    科技視界(2016年2期)2016-03-30 13:05:46
    Y不銹鋼絲有限公司低成本SWOT分析
    商(2016年3期)2016-03-11 09:48:58
    低成本通用型液壓夾具的設(shè)計及推廣
    科學(xué)家(2015年9期)2015-10-29 15:37:18
    伊人久久大香线蕉亚洲五| 日本五十路高清| 一区福利在线观看| 欧美日韩亚洲综合一区二区三区_| 这个男人来自地球电影免费观看| av网站在线播放免费| 午夜福利视频精品| 成人国产一区最新在线观看| 性高湖久久久久久久久免费观看| 免费在线观看黄色视频的| 欧美少妇被猛烈插入视频| 又黄又粗又硬又大视频| 极品少妇高潮喷水抽搐| 天天添夜夜摸| 日韩有码中文字幕| 国产成人免费无遮挡视频| 建设人人有责人人尽责人人享有的| 男女无遮挡免费网站观看| 国产精品av久久久久免费| 69精品国产乱码久久久| 人人澡人人妻人| 水蜜桃什么品种好| 国产欧美日韩一区二区三 | 精品久久久久久电影网| 亚洲av成人一区二区三| 日本五十路高清| 国产免费现黄频在线看| 老司机午夜十八禁免费视频| 欧美日韩国产mv在线观看视频| 女人被躁到高潮嗷嗷叫费观| 女人久久www免费人成看片| 考比视频在线观看| 亚洲人成77777在线视频| 久久久国产精品麻豆| 久久精品成人免费网站| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 激情视频va一区二区三区| 一区二区日韩欧美中文字幕| 久久99一区二区三区| 亚洲伊人久久精品综合| 欧美乱码精品一区二区三区| 波多野结衣av一区二区av| 色94色欧美一区二区| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 一本综合久久免费| 亚洲一区中文字幕在线| 18在线观看网站| 久久中文字幕一级| 免费观看人在逋| 18在线观看网站| 麻豆国产av国片精品| 男人操女人黄网站| 大码成人一级视频| 2018国产大陆天天弄谢| 啦啦啦中文免费视频观看日本| 国产成人精品久久二区二区免费| 热99国产精品久久久久久7| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 涩涩av久久男人的天堂| 久久中文看片网| 亚洲性夜色夜夜综合| 男女免费视频国产| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻一区二区三区麻豆| cao死你这个sao货| 青春草亚洲视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 热99re8久久精品国产| 窝窝影院91人妻| 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频| 超色免费av| 成人影院久久| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频 | 另类精品久久| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人综合另类久久久| 午夜免费鲁丝| 久久久久久人人人人人| 亚洲人成77777在线视频| 免费不卡黄色视频| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 狠狠狠狠99中文字幕| 国产97色在线日韩免费| 国产精品久久久久久精品电影小说| 美女中出高潮动态图| 69av精品久久久久久 | 曰老女人黄片| 欧美av亚洲av综合av国产av| 19禁男女啪啪无遮挡网站| 精品人妻一区二区三区麻豆| 人人澡人人妻人| 在线观看免费高清a一片| 亚洲精品第二区| 考比视频在线观看| 欧美日韩福利视频一区二区| 一区二区三区乱码不卡18| 在线观看人妻少妇| 色精品久久人妻99蜜桃| 少妇猛男粗大的猛烈进出视频| 自线自在国产av| 丝袜美腿诱惑在线| 亚洲欧洲日产国产| 黄色 视频免费看| www.av在线官网国产| 精品久久久久久电影网| 欧美精品亚洲一区二区| 在线精品无人区一区二区三| 亚洲国产欧美一区二区综合| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三区在线| 欧美xxⅹ黑人| 精品第一国产精品| 丝瓜视频免费看黄片| 国产精品自产拍在线观看55亚洲 | 高清黄色对白视频在线免费看| 黑人猛操日本美女一级片| 又紧又爽又黄一区二区| 亚洲精品美女久久av网站| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品| 久久精品久久久久久噜噜老黄| 亚洲成人手机| 久久精品熟女亚洲av麻豆精品| 久久天躁狠狠躁夜夜2o2o| 汤姆久久久久久久影院中文字幕| 免费一级毛片在线播放高清视频 | 天天添夜夜摸| 正在播放国产对白刺激| 好男人电影高清在线观看| 欧美激情高清一区二区三区| 精品一区在线观看国产| 国产在线一区二区三区精| 在线看a的网站| 欧美少妇被猛烈插入视频| 999精品在线视频| 国产成人精品在线电影| 国产激情久久老熟女| 国产日韩欧美视频二区| 国产一区二区三区在线臀色熟女 | 男女午夜视频在线观看| 欧美xxⅹ黑人| 啦啦啦在线免费观看视频4| 精品亚洲乱码少妇综合久久| 电影成人av| 亚洲情色 制服丝袜| 亚洲欧美激情在线| 俄罗斯特黄特色一大片| 人人澡人人妻人| 精品亚洲乱码少妇综合久久| 久久精品亚洲av国产电影网| 色播在线永久视频| 他把我摸到了高潮在线观看 | 久久99热这里只频精品6学生| 黑人巨大精品欧美一区二区mp4| 女人高潮潮喷娇喘18禁视频| 一区二区三区精品91| 日本黄色日本黄色录像| 高清黄色对白视频在线免费看| 日本撒尿小便嘘嘘汇集6| 欧美中文综合在线视频| 国产成人免费无遮挡视频| 五月天丁香电影| 99国产极品粉嫩在线观看| 男人添女人高潮全过程视频| 午夜福利免费观看在线| 中文欧美无线码| 久久久久国产一级毛片高清牌| 久久99热这里只频精品6学生| 秋霞在线观看毛片| 欧美在线黄色| 日韩熟女老妇一区二区性免费视频| 麻豆国产av国片精品| 男女国产视频网站| 91成人精品电影| 天堂中文最新版在线下载| 国产片内射在线| 国产成人欧美| 天天操日日干夜夜撸| 高潮久久久久久久久久久不卡| 国产亚洲av片在线观看秒播厂| 一级片免费观看大全| 人人妻人人添人人爽欧美一区卜| 午夜福利视频在线观看免费| 成人手机av| 亚洲国产欧美网| 国产精品久久久人人做人人爽| 国产欧美日韩综合在线一区二区| 亚洲专区国产一区二区| 免费观看人在逋| 欧美久久黑人一区二区| 日本欧美视频一区| 中文字幕人妻熟女乱码| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线播放一区 | 亚洲中文日韩欧美视频| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 老司机靠b影院| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| 精品久久久精品久久久| 国产一区二区三区综合在线观看| 夫妻午夜视频| 又紧又爽又黄一区二区| 亚洲成人国产一区在线观看| 色精品久久人妻99蜜桃| 免费av中文字幕在线| 中文字幕最新亚洲高清| 国产精品99久久99久久久不卡| 丝袜喷水一区| 视频区欧美日本亚洲| 国产极品粉嫩免费观看在线| 啦啦啦在线免费观看视频4| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 超色免费av| 国产精品一区二区免费欧美 | 一区二区三区精品91| 久久热在线av| 国产一级毛片在线| 国产一区二区激情短视频 | 亚洲精品国产av蜜桃| 精品人妻在线不人妻| 国产无遮挡羞羞视频在线观看| 国产亚洲av片在线观看秒播厂| 亚洲精品美女久久av网站| 一区在线观看完整版| 亚洲 欧美一区二区三区| 飞空精品影院首页| 精品少妇内射三级| 亚洲专区国产一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 色94色欧美一区二区| 视频区欧美日本亚洲| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面 | 亚洲欧美激情在线| tube8黄色片| 男女免费视频国产| 高清在线国产一区| 国产精品久久久久久精品古装| 国产在线视频一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 纯流量卡能插随身wifi吗| 天天添夜夜摸| 婷婷丁香在线五月| 水蜜桃什么品种好| 午夜福利一区二区在线看| 免费看十八禁软件| 久久影院123| 老汉色∧v一级毛片| 美女高潮到喷水免费观看| 黄色片一级片一级黄色片| 午夜福利视频精品| 欧美在线黄色| 亚洲精品久久久久久婷婷小说| 精品少妇久久久久久888优播| 韩国精品一区二区三区| 岛国毛片在线播放| 国产麻豆69| 看免费av毛片| 黄色 视频免费看| 国产精品自产拍在线观看55亚洲 | 美女大奶头黄色视频| 各种免费的搞黄视频| 正在播放国产对白刺激| 国产精品1区2区在线观看. | 一区二区av电影网| av天堂久久9| 国产亚洲av高清不卡| 丁香六月天网| 亚洲av电影在线进入| 操美女的视频在线观看| 啦啦啦视频在线资源免费观看| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 亚洲欧美日韩另类电影网站| h视频一区二区三区| 久久免费观看电影| 两个人看的免费小视频| 欧美亚洲日本最大视频资源| 国产在线免费精品| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看 | 欧美成狂野欧美在线观看| 男女高潮啪啪啪动态图| 91国产中文字幕| svipshipincom国产片| 下体分泌物呈黄色| 亚洲国产看品久久| 1024视频免费在线观看| 欧美久久黑人一区二区| 亚洲精品国产av蜜桃| 香蕉丝袜av| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 91精品三级在线观看| e午夜精品久久久久久久| 国产激情久久老熟女| 久久午夜综合久久蜜桃| 在线观看www视频免费| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清国产精品国产三级| 人人妻,人人澡人人爽秒播| 悠悠久久av| 最近中文字幕2019免费版| 一区在线观看完整版| 日韩免费高清中文字幕av| 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站| 热re99久久精品国产66热6| 十八禁网站网址无遮挡| 91麻豆av在线| 少妇粗大呻吟视频| 久久天躁狠狠躁夜夜2o2o| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av香蕉五月 | 韩国精品一区二区三区| a级毛片在线看网站| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 中文字幕人妻熟女乱码| 色老头精品视频在线观看| 在线精品无人区一区二区三| 女人精品久久久久毛片| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 一区二区日韩欧美中文字幕| 欧美日韩福利视频一区二区| 午夜激情av网站| 天天添夜夜摸| 窝窝影院91人妻| 另类亚洲欧美激情| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产 | 欧美中文综合在线视频| 三上悠亚av全集在线观看| 亚洲精品中文字幕一二三四区 | 麻豆国产av国片精品| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 视频在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 99国产精品一区二区三区| 国产在视频线精品| 天堂俺去俺来也www色官网| 久热这里只有精品99| 伊人亚洲综合成人网| 熟女少妇亚洲综合色aaa.| 一本综合久久免费| 韩国精品一区二区三区| 亚洲精品久久成人aⅴ小说| 国产日韩欧美在线精品| 亚洲精品一二三| 国产xxxxx性猛交| 亚洲第一青青草原| 久久久久精品人妻al黑| 大陆偷拍与自拍| 69精品国产乱码久久久| 自拍欧美九色日韩亚洲蝌蚪91| 真人做人爱边吃奶动态| 老熟妇乱子伦视频在线观看 | 久久毛片免费看一区二区三区| 国产成人精品无人区| 国产日韩一区二区三区精品不卡| av天堂在线播放| 黑丝袜美女国产一区| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品一区二区www | 考比视频在线观看| 最近最新免费中文字幕在线| 一级毛片女人18水好多| 欧美av亚洲av综合av国产av| 亚洲精品自拍成人| 欧美少妇被猛烈插入视频| 美女国产高潮福利片在线看| 91麻豆精品激情在线观看国产 | 国产精品 国内视频| 亚洲av男天堂| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 成人国产av品久久久| 精品国产乱子伦一区二区三区 | 在线观看免费日韩欧美大片| 91老司机精品| 婷婷成人精品国产| www.999成人在线观看| 一进一出抽搐动态| 一本综合久久免费| 亚洲国产精品999| 亚洲综合色网址| 午夜精品国产一区二区电影| 中亚洲国语对白在线视频| 国产免费一区二区三区四区乱码| 亚洲第一青青草原| 中文字幕色久视频| 午夜视频精品福利| 麻豆av在线久日| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 久久久国产欧美日韩av| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 日韩,欧美,国产一区二区三区| 如日韩欧美国产精品一区二区三区| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 超色免费av| 男人爽女人下面视频在线观看| 99香蕉大伊视频| 久久人妻福利社区极品人妻图片| 脱女人内裤的视频| 黄片小视频在线播放| 国产成人啪精品午夜网站| 一个人免费看片子| 最黄视频免费看| 亚洲三区欧美一区| 久久精品国产亚洲av高清一级| 91老司机精品| 国产日韩欧美在线精品| 中国美女看黄片| 国产亚洲精品一区二区www | 99热网站在线观看| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av高清一级| 99久久综合免费| 十八禁网站免费在线| 国产精品一区二区在线不卡| 他把我摸到了高潮在线观看 | 老司机靠b影院| 精品一区二区三区四区五区乱码| 青春草视频在线免费观看| av天堂久久9| 岛国毛片在线播放| 超碰成人久久| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区三区在线| 久久久久视频综合| 欧美变态另类bdsm刘玥| 亚洲精品av麻豆狂野| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 黑人操中国人逼视频| 一本一本久久a久久精品综合妖精| 少妇的丰满在线观看| 黄色 视频免费看| 亚洲av电影在线进入| av一本久久久久| 91字幕亚洲| 国产成人精品久久二区二区91| 亚洲国产欧美网| 日本精品一区二区三区蜜桃| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| cao死你这个sao货| 女人爽到高潮嗷嗷叫在线视频| 在线精品无人区一区二区三| 欧美精品av麻豆av| 久久亚洲精品不卡| 婷婷丁香在线五月| 极品少妇高潮喷水抽搐| 午夜老司机福利片| 男人舔女人的私密视频| 免费在线观看黄色视频的| 久久久久久久大尺度免费视频| 日韩大码丰满熟妇| 在线 av 中文字幕| 十八禁网站网址无遮挡| 欧美精品av麻豆av| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 波多野结衣av一区二区av| 国产熟女午夜一区二区三区| 国产精品1区2区在线观看. | 国产男女内射视频| 精品国产一区二区三区四区第35| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 久久这里只有精品19| 欧美+亚洲+日韩+国产| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 少妇裸体淫交视频免费看高清 | 久久香蕉激情| 亚洲中文日韩欧美视频| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 狠狠狠狠99中文字幕| 欧美人与性动交α欧美软件| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 黄频高清免费视频| 亚洲一区中文字幕在线| 伊人亚洲综合成人网| 不卡av一区二区三区| 狠狠婷婷综合久久久久久88av| 老司机深夜福利视频在线观看 | 午夜成年电影在线免费观看| 中文字幕制服av| 建设人人有责人人尽责人人享有的| 亚洲中文av在线| 脱女人内裤的视频| 久久久水蜜桃国产精品网| 欧美大码av| 狠狠精品人妻久久久久久综合| 久久99一区二区三区| 日日夜夜操网爽| 国产精品久久久人人做人人爽| svipshipincom国产片| 国产91精品成人一区二区三区 | 日韩制服骚丝袜av| 亚洲成人免费电影在线观看| 亚洲精品自拍成人| 日韩一区二区三区影片| 欧美成狂野欧美在线观看| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 飞空精品影院首页| 久久久国产成人免费| 99久久人妻综合| 成人国产av品久久久| 午夜福利,免费看| 国产成+人综合+亚洲专区| 亚洲精品久久久久久婷婷小说| 亚洲少妇的诱惑av| 两个人看的免费小视频| 欧美xxⅹ黑人| 亚洲国产成人一精品久久久| 老司机午夜福利在线观看视频 | 免费女性裸体啪啪无遮挡网站| 超碰97精品在线观看| 91麻豆av在线| 五月开心婷婷网| 一级a爱视频在线免费观看| 成人黄色视频免费在线看| videos熟女内射| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看 | 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| 午夜福利在线观看吧| 国产精品99久久99久久久不卡| 交换朋友夫妻互换小说| 老司机深夜福利视频在线观看 | 国产激情久久老熟女| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| av有码第一页| 夜夜骑夜夜射夜夜干| cao死你这个sao货| 亚洲中文字幕日韩| 免费看十八禁软件| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 老司机影院成人| 一级,二级,三级黄色视频| 老司机深夜福利视频在线观看 | 国产一区二区 视频在线| 一本一本久久a久久精品综合妖精| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久| 久久久国产一区二区| 欧美老熟妇乱子伦牲交| 啦啦啦在线免费观看视频4| 亚洲av电影在线进入| 国产精品熟女久久久久浪| 18在线观看网站| 18禁观看日本| 老司机午夜福利在线观看视频 | 久久久久久人人人人人| 桃花免费在线播放| avwww免费| 99久久综合免费| 国产一区二区三区av在线| 欧美97在线视频| netflix在线观看网站| 亚洲天堂av无毛| 另类亚洲欧美激情| 亚洲va日本ⅴa欧美va伊人久久 | 热re99久久精品国产66热6| 日本猛色少妇xxxxx猛交久久|