【摘要】 短鏈脂肪酸(SCFAs)在腸道微生物群調(diào)控宿主代謝中起到了主要介導(dǎo)作用,且與2型糖尿?。═2DM)密切相關(guān),可改善T2DM患者的血糖、體質(zhì)量和血脂指標(biāo)。盡管有學(xué)者認(rèn)為SCFAs有望成為T2DM的新型治療靶點(diǎn),但目前尚未有相關(guān)綜述。本文總結(jié)了短鏈脂肪酸的生物學(xué)特性,討論了SCFAs調(diào)節(jié)食欲、炎癥、胰島β細(xì)胞、脂質(zhì)代謝與肝臟糖原代謝的證據(jù),進(jìn)一步明確調(diào)控SCFAs在T2DM中的作用及其研究進(jìn)展,探討了調(diào)控SCFAs治療T2DM的潛力。
【關(guān)鍵詞】 糖尿病,2型;短鏈脂肪酸;胃腸道微生物組;代謝;研究進(jìn)展
【中圖分類號(hào)】 R 587.1 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0533
Advances in the Role of Short-chain Fatty Acids in Type 2 Diabetes
JIANG Rongsheng,ZHANG Long,GUAN Qifan,ZHANG Jing,WU Yuanfeng,LIU Mingjun*
School of Acupuncture and Tuina,Changchun University of Chinese Medicine,Changchun 130117,China
*Corresponding author:LIU Mingjun,Professor;E-mail:195433711@qq.com
【Abstract】 Short-chain fatty acids(SCFAs)play a major mediating role in gut microbiota regulation of host metabolism and are strongly associated with type 2 diabetes mellitus (T2DM),which improves glycemic,body weight,and lipid indices in T2DM patients. Although it has been suggested that SCFAs are expected to be novel therapeutic targets for T2DM,no review has been conducted. Therefore,this paper summarizes the biological properties of SCFAs,discusses the evidence that SCFAs regulate appetite,inflammation,pancreatic β-cells,lipid metabolism and hepatic glycogen metabolism,further clarifies the progress of research on regulating the role of SCFAs in T2DM and their mechanisms,and explores the potential of regulating SCFAs for the treatment of T2DM.
【Key words】 Diabetes mellitus,type 2;Short chain fatty acid;Gastrointestinal microbiome;Metabolism;Research progress
2型糖尿病(T2DM)是導(dǎo)致死亡的主要原因,也是人類社會(huì)重要健康問題之一。有數(shù)據(jù)顯示,當(dāng)前全球成年人糖尿病患者數(shù)量高達(dá)4.63億,其中90%為T2DM[1]。T2DM需要長(zhǎng)期服藥,治療周期長(zhǎng)且易產(chǎn)生并發(fā)癥,給醫(yī)療衛(wèi)生系統(tǒng)帶來了巨大壓力。
近年來的研究證實(shí)了腸道微生物群(GM)影響宿主能量代謝且與T2DM發(fā)病機(jī)制密切相關(guān)[2],作為GM衍生物的短鏈脂肪酸(SCFAs)在這種聯(lián)系中發(fā)揮了重要作用。臨床研究發(fā)現(xiàn),SCFAs可改善T2DM患者的血糖、體質(zhì)量及胰島素抵抗(IR)[3-4],并提高葡萄糖耐量[5]。進(jìn)一步探究SCFAs在這一過程中發(fā)揮的作用及生物學(xué)機(jī)制對(duì)后續(xù)的研究及臨床策略的制訂具有積極意義。
1 文獻(xiàn)檢索策略
英文檢索策略:以“Short-chain fatty acids;Fatty Acids,Volatile;SCFAs;Type 2 Diabetes Mellitus;Type 2 Diabetes;T2DM;Insulin resistance;Insulin Sensitivity”為關(guān)鍵詞檢索PubMed、Web of Science、OVID Medline、Scopus數(shù)據(jù)庫(kù)。中文檢索策略:以“短鏈脂肪酸、乙酸、丙酸、丁酸;2型糖尿病、糖尿病;腸道微生物群、腸道菌群”為關(guān)鍵詞,檢索中國(guó)知網(wǎng)、萬方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)、維普網(wǎng)及中國(guó)生物醫(yī)學(xué)文獻(xiàn)服務(wù)系統(tǒng)。檢索時(shí)間為建庫(kù)至2023-03-25。文獻(xiàn)納入標(biāo)準(zhǔn):基于SCFAs治療T2DM的臨床研究、基礎(chǔ)研究以及對(duì)相關(guān)文獻(xiàn)、數(shù)據(jù)二次分析的研究。文獻(xiàn)排除標(biāo)準(zhǔn):重復(fù)發(fā)表的文獻(xiàn)、無法獲得完整數(shù)據(jù)的文獻(xiàn)、存在明顯錯(cuò)誤的文獻(xiàn)。
2 SCFAs的產(chǎn)生與轉(zhuǎn)運(yùn)
SCFAs主要包括乙酸、丙酸和丁酸[6]。SCFAs的底物主要是膳食纖維和蛋白質(zhì)[7],這些物質(zhì)在發(fā)酵產(chǎn)生SCFAs的過程中為宿主提供能量。SCFAs主要產(chǎn)生于腸道,多個(gè)菌種參與這一過程,是其外源性來源。細(xì)胞代謝過程中的脂肪酸氧化也會(huì)產(chǎn)生SCFAs,是其內(nèi)源性來源[8]。因此,GM與飲食是影響SCFAs產(chǎn)生的重要因素。
大部分SCFAs在產(chǎn)生后通過單羧酸鹽轉(zhuǎn)運(yùn)蛋白和鈉偶聯(lián)的單羧酸鹽轉(zhuǎn)運(yùn)蛋白1介導(dǎo)的主動(dòng)轉(zhuǎn)運(yùn)被結(jié)腸細(xì)胞迅速吸收[9],一部分未解離的SCFAs通過被動(dòng)擴(kuò)散被結(jié)腸吸收。被結(jié)腸吸收后SCFAs進(jìn)入血液循環(huán),但在通過門靜脈進(jìn)入肝臟后被肝細(xì)胞代謝[10],最終有約5%的SCFAs被排出體外[11]。丁酸為腸道細(xì)胞的生長(zhǎng)提供能量[12];丙酸主要被肝臟吸收利用,作為糖異生的底物參與宿主代謝[13];大部分乙酸進(jìn)入外周循環(huán)。
3 SCFAs的主要信號(hào)傳導(dǎo)途徑
3.1 G蛋白偶聯(lián)受體(GPCRs)
GPCRs參與人體絕大多數(shù)的細(xì)胞和生理功能,GPR41、GPR43和GPR109a是已被確定的SCFAs重要受體,其中GPR43又稱為游離脂肪酸受體2(FFAR2),GPR41又稱為游離脂肪酸受體3(FFAR3)[14-15]。FFAR2存在于宿主整個(gè)胃腸道和脂肪組織以及胰島α、β細(xì)胞,腸內(nèi)分泌細(xì)胞,免疫細(xì)胞等。同樣,F(xiàn)FAR3在宿主結(jié)腸、交感神經(jīng)、脂肪組織和免疫組當(dāng)中廣泛表達(dá)。GPR109a的表達(dá)位點(diǎn)以結(jié)腸和免疫細(xì)胞為主。
共有4種異源三聚體G蛋白(Gαs、Gαi/o、Gαq/11和Gα12/13)與激活后的GPCRs結(jié)合,進(jìn)而作用于單個(gè)或多個(gè)效應(yīng)器[16]。FFAR2、FFAR3和GPR109a均可與百日咳毒素(PTX)敏感性Gαi/o蛋白偶聯(lián),抑制腺苷酸環(huán)化酶的活性,減少環(huán)磷酸腺苷的產(chǎn)生[17]。FFAR2還與PTX不敏感的Gαq/11蛋白偶聯(lián)[18],激活磷脂酶C,促進(jìn)位于內(nèi)質(zhì)網(wǎng)上的肌醇三磷酸受體的活化,導(dǎo)致Ca2+濃度增加[19]。GPR109a最初被認(rèn)為是維生素B3或煙酸的受體[20],隨后的研究發(fā)現(xiàn)丁酸和β-羥基丁酸也是GPR109a的配體[21]。SCFAs可以通過FFAR2/GPR109a對(duì)DNA的甲基化產(chǎn)生影響,使調(diào)節(jié)性細(xì)胞的數(shù)量增加。同時(shí)還可抑制胰島素分泌,并在T2DM胰島β細(xì)胞中下調(diào)[22-23]。可見GPCRs與SCFAs的結(jié)合影響著宿主代謝,對(duì)改善T2DM的管理有積極意義。
3.2 組蛋白去乙?;福℉DACs)
SCFAs是天然的HDACs抑制劑,可通過轉(zhuǎn)運(yùn)體進(jìn)入細(xì)胞對(duì)HDACs產(chǎn)生抑制作用,也可通過激活GPCRs間接抑制HDACs[24]。SCFAs對(duì)HDACs的抑制作用受濃度影響,高濃度的SCFAs產(chǎn)生的抑制作用更明顯。早在1978年,研究人員就已經(jīng)發(fā)現(xiàn)SCFAs對(duì)HDACs的抑制作用[25]中丁酸的作用比丙酸的作用更為明顯[26]。乙酸對(duì)HDACs的抑制作用存在不同的研究結(jié)果,部分研究表明乙酸幾乎不存在HDACs抑制作用[27],但也有研究表明外源性補(bǔ)充乙酸可以顯著降低大鼠腦和肝中的HDACs水平[28]。這表明乙酸對(duì)HDACs的抑制作用具有組織依賴性。因此,SCFAs對(duì)HDACs的抑制作用可能受到濃度與組織的影響。
4 SCFAs在T2DM中的作用
4.1 調(diào)節(jié)食欲
胰高血糖素樣肽1(GLP-1)和肽酪氨酸主要由腸L細(xì)胞產(chǎn)生,二者可激活阿片促黑色素原(POMC)/可卡因-安他非明轉(zhuǎn)錄調(diào)節(jié)肽(CART)神經(jīng)元,并抑制Agouti相關(guān)蛋白(AgRP)/神經(jīng)肽Y(NPY)神經(jīng)元,從而減少飲食攝入[29]。肥胖人群的GLP-1釋放水平較低,靜脈注射乙酸鈉會(huì)提高人體血漿內(nèi)肽酪氨酸和GLP-1濃度[30]。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),SCFAs激活FFAR2可以增強(qiáng)腸L細(xì)胞分泌GLP-1和肽酪氨酸[31-32],而FFAR2和FFAR3的敲除會(huì)降低SCFAs所誘導(dǎo)的GLP-1釋放[33]。已有確切的證據(jù)表明迷走神經(jīng)中GLP-1受體激活可以調(diào)節(jié)飲食攝入及能量代謝[34],切除迷走神經(jīng)可以消除GLP-1和肽酪氨酸所誘導(dǎo)的進(jìn)食減少[35]。即SCFAs刺激腸L細(xì)胞分泌GLP-1,通過激活迷走神經(jīng)中的GLP-1受體誘導(dǎo)下丘腦產(chǎn)生飽腹感信號(hào)。GLP-1可以增強(qiáng)葡萄糖刺激的胰島素分泌(GSIS)從而降低葡萄糖的循環(huán)水平,同時(shí)還抑制胰高血糖素分泌從而減少內(nèi)源性葡萄糖的產(chǎn)生,達(dá)到減少食物攝入和減慢胃排空的效果[36]。
瘦素通過抑制外側(cè)下丘腦含有表達(dá)黑色素濃縮激素和食欲素的神經(jīng)元來減少飲食攝入[37]。有研究表明,SCFAs可通過激活FFAR2和FFAR3刺激瘦素的表達(dá)[38],乙酸在這一過程中的作用比較明顯。盡管這些證據(jù)表明SCFAs可以促進(jìn)瘦素的表達(dá),但這一過程能否突破肥胖個(gè)體的瘦素抵抗而調(diào)節(jié)食欲仍缺乏明確的證據(jù)。饑餓素是一種由饑餓素細(xì)胞產(chǎn)生的促食欲激素。研究表明,攝入菊粉會(huì)使瘦個(gè)體和肥胖個(gè)體均表現(xiàn)出SCFAs水平的升高和饑餓素水平的降低[39]。相關(guān)動(dòng)物實(shí)驗(yàn)結(jié)果同樣顯示,注射SCFAs后,羯羊的血漿饑餓素濃度下降[40]。盡管這些結(jié)果體現(xiàn)了SCFAs與饑餓素之間可能存在關(guān)聯(lián),但具體的生物學(xué)機(jī)制仍需進(jìn)一步探索。
4.2 調(diào)節(jié)炎癥
腸道作為一個(gè)半滲透的物理屏障,可以限制細(xì)菌和分子的滲透。T2DM患者存在明顯的GM失調(diào),導(dǎo)致腸黏膜屏障受損,使脂多糖不斷滲入血液中,引發(fā)炎癥[41]。SCFAs則可以通過維持腸道屏障功能和對(duì)免疫細(xì)胞及炎性因子的調(diào)節(jié)來緩解炎癥狀態(tài),對(duì)改善T2DM具有積極意義。
丁酸作為結(jié)腸細(xì)胞的主要能量來源,對(duì)于維持結(jié)腸穩(wěn)態(tài)具有重要意義。丁酸鈉通過促進(jìn)上皮細(xì)胞增殖以及增加腸內(nèi)膜緊密連接蛋白如occludin和zona occludens-1的表達(dá)來維持腸道屏障的完整性[42],還可促進(jìn)轉(zhuǎn)錄因子SP1與Claudin-1啟動(dòng)子之間的相互作用來增加Claudin-1轉(zhuǎn)錄,增強(qiáng)腸道屏障功能[43]。
SCFAs通過抑制HDACs來影響單核細(xì)胞、巨噬細(xì)胞的成熟,從而下調(diào)白介素6(IL-6)和白介素12(IL-12)等炎性因子的表達(dá)[44-45]。SCFAs對(duì)結(jié)腸Treg細(xì)胞的調(diào)節(jié)作用促進(jìn)了幼稚CD4+T細(xì)胞分化為抗炎FOXP3 Tregs[46],同時(shí)可以提高抗炎因子白介素10(IL-10)的表達(dá),從而抑制炎癥[47]。其次,丁酸還通過抑制核因子(NF)κB轉(zhuǎn)錄活性降低誘導(dǎo)型一氧化氮合酶(iNOS)、腫瘤壞死因子(TNF)-α和IL-6的表達(dá),并增強(qiáng)IL-10的表達(dá)[48-49]。可見,SCFAs對(duì)免疫細(xì)胞和炎性因子的調(diào)節(jié)主要通過NF-κB通路來實(shí)現(xiàn)[50],SCFAs抑制HDACs的功能也發(fā)揮了抗炎作用。
4.3 調(diào)節(jié)胰島β細(xì)胞
胰島β細(xì)胞在調(diào)節(jié)血糖、維持葡萄糖穩(wěn)態(tài)中發(fā)揮著重要作用。T2DM患者常有胰島β細(xì)胞功能障礙,這可能是炎癥和代謝功能受損的應(yīng)激表現(xiàn)。維持或改善β細(xì)胞的功能和狀態(tài)是治療T2DM的主要目標(biāo)之一。動(dòng)物實(shí)驗(yàn)結(jié)果顯示,丁酸鹽可以促進(jìn)胰島素基因表達(dá)顯著上升和β細(xì)胞數(shù)量增加,而乙酸鹽、丙酸鹽的作用并不明顯。研究者認(rèn)為丁酸鹽可能主要通過其HDACs抑制活性介導(dǎo)而使β細(xì)胞數(shù)量增加[51]。人體試驗(yàn)發(fā)現(xiàn)SCFAs以濃度依賴性的方式影響人類胰島細(xì)胞的活力,1 mmol/L和2 mmol/L的乙酸和丁酸可以預(yù)防STZ誘導(dǎo)的β細(xì)胞凋亡,并通過支持線粒體呼吸功能,防止鏈脲佐菌素(STZ)誘導(dǎo)的β細(xì)胞耗氧率的降低[52]。
SCFAs對(duì)GSIS的影響已被關(guān)注多年[53],但具體作用機(jī)制尚不明確。在動(dòng)物實(shí)驗(yàn)中,乙酸可以通過激活副交感神經(jīng)來促進(jìn)GSIS[54];但在人類試驗(yàn)中,乙酸并未表現(xiàn)出對(duì)GSIS的促進(jìn)作用[55]。盡管在人類和動(dòng)物實(shí)驗(yàn)中產(chǎn)生了不同結(jié)果,但這可能是FFAR2的藥理學(xué)性質(zhì)和實(shí)驗(yàn)對(duì)象的物種差異所造成的,可以確定的是,F(xiàn)FAR2是一個(gè)有潛力的T2DM治療靶點(diǎn)[55]。另外的研究則結(jié)果顯示FFAR2和FFAR3對(duì)GSIS產(chǎn)生負(fù)向調(diào)節(jié)[56-57],這似乎提示FFAR2和FFAR3拮抗劑的應(yīng)用是治療T2DM的新手段。
總之,SCFAs通過調(diào)節(jié)β細(xì)胞的數(shù)量和活力、增強(qiáng)線粒體功能、抑制HDACs等途徑來調(diào)節(jié)GSIS的分泌,F(xiàn)FAR2和FFAR3在其中發(fā)揮的具體作用有待于進(jìn)一步的探索和確認(rèn)。動(dòng)物實(shí)驗(yàn)與臨床研究的結(jié)果存在矛盾,同類型的實(shí)驗(yàn)也出現(xiàn)不一致的結(jié)果,這可能與實(shí)驗(yàn)的具體實(shí)施方式和物種特異性有關(guān)。
4.4 改善骨骼肌IR
骨骼肌IR是T2DM的重要特征,也是評(píng)價(jià)T2DM嚴(yán)重程度的指標(biāo)之一[58],導(dǎo)致這一現(xiàn)象的原因主要有線粒體功能障礙、糖原合成受損及胰島素信號(hào)傳導(dǎo)受損。
運(yùn)動(dòng)是T2DM的治療措施之一,通過增加能量消耗,減少脂質(zhì)累積改善T2DM癥狀。有研究探討了運(yùn)動(dòng)對(duì)骨骼肌IR的影響,發(fā)現(xiàn)運(yùn)動(dòng)對(duì)T2DM模型大鼠的GM分布產(chǎn)生影響,從而逆轉(zhuǎn)了SCFAs的減少。進(jìn)一步分析發(fā)現(xiàn),乙酸通過增加骨骼肌的自噬來改善IR,這一過程可能涉及SCFAs/GPR43信號(hào)軸[59]。
在高脂飲食誘導(dǎo)的肥胖小鼠中,補(bǔ)充丁酸鹽可以降低肥胖和IR,促進(jìn)過氧化物酶體增殖物激活受體γ共激活劑(PGC)-1α活性可能是這一過程中重要的分子機(jī)制,AMPK的活化和抑制HDACs有助于PGC-1α的調(diào)控[60]。另一項(xiàng)研究中,丁酸鹽通過增加胰島素受體底物(IRS)-1啟動(dòng)子的組蛋白乙?;瘉砀纳乒趋兰〉囊葝u素敏感性,強(qiáng)調(diào)了HDACs抑制的直接作用[61]。
總之,SCFAs通過多個(gè)途徑改善骨骼肌IR,這對(duì)于維持機(jī)體的胰島素受體質(zhì)量與數(shù)量,保證正常糖攝取,從而緩解T2DM具有重要意義。
4.5 調(diào)節(jié)脂質(zhì)代謝
SCFAs不僅可以作為底物參與脂質(zhì)代謝,同時(shí)還可作為調(diào)節(jié)因子影響脂質(zhì)代謝。乙酸鹽可以抑制肝臟、骨骼肌和脂肪組織中的脂質(zhì)沉積[62]。丙酸鹽可以降低腹部脂肪的分布以及肝臟中的脂質(zhì)含量[63]。丁酸與脂肪組織中的GPR109a結(jié)合可以增加脂質(zhì)氧化和能量消耗,減少脂質(zhì)沉積[64]。
形態(tài)測(cè)量分析顯示,高脂飲食飼養(yǎng)60 d后,動(dòng)物模型中會(huì)出現(xiàn)脂質(zhì)沉積狀態(tài)的肝細(xì)胞,占全部肝細(xì)胞的21%[65]。通過飲食補(bǔ)充丁酸鹽不僅將產(chǎn)生脂質(zhì)沉積的肝細(xì)胞比例降低到11%,同時(shí)還可減少細(xì)胞質(zhì)脂滴的大小和比例[66]。在T2DM模型大鼠中同樣觀察到了丁酸減輕肝臟脂質(zhì)沉積的結(jié)果[67]。這種結(jié)果可能與SCFAs增加能量消耗,增強(qiáng)線粒體功能并促進(jìn)脂肪酸氧化有關(guān)[68]。
與白色脂肪相比,褐色脂肪能夠產(chǎn)生更多的熱量,消耗更多的能量。促進(jìn)白色脂肪褐變是調(diào)節(jié)脂質(zhì)代謝和減輕肥胖的措施之一。如前文所述,SCFAs可以提高瘦素的表達(dá),瘦素作用于下丘腦后通過交感神經(jīng)刺激去甲腎上腺素的分泌。去甲腎上腺素作用于白色脂肪上的β3腎上腺素受體促進(jìn)白色脂肪褐變[69]。因此,補(bǔ)充膳食纖維提高SCFAs的表達(dá)水平可以促進(jìn)白色脂肪褐變,是調(diào)節(jié)脂質(zhì)代謝的方式之一。丁酸鹽則通過腦腸神經(jīng)回路直接刺激褐色脂肪組織的代謝活動(dòng),促進(jìn)脂質(zhì)氧化[70],使脂肪細(xì)胞體積變?。?0]。
大量的研究證明SCFAs促進(jìn)脂質(zhì)氧化與AMPK通路有關(guān)。乙酸鹽減少細(xì)胞內(nèi)三酰甘油、膽固醇酯和乙酸脫氫酶的含量,促進(jìn)了腸道脂質(zhì)的消耗。具體而言是通過AMPK/PGC-1α/PPARα途徑的上調(diào)來促進(jìn)脂質(zhì)氧化[71]。在肥胖小鼠中,膳食補(bǔ)充丁酸降低了過氧化物酶體增殖激活受體γ的表達(dá),促進(jìn)了線粒體解偶聯(lián)蛋白2的表達(dá),提高單磷酸腺苷(AMP)與三磷酸腺苷(ATP)的比率,從而通過AMPK降低脂質(zhì)合成,促進(jìn)脂質(zhì)氧化[72]。另一項(xiàng)研究探索了丁酸鹽及其衍生物調(diào)節(jié)肥胖和IR的前景,明確了丁酸鹽和丁酰胺改善了線粒體功能和脂肪酸氧化,激活了AMPK-乙酰輔酶A羧化酶途徑,改善葡萄糖穩(wěn)態(tài)[73]。盡管動(dòng)物實(shí)驗(yàn)的結(jié)果令人興奮,但目前仍缺乏人體實(shí)驗(yàn)的有力證據(jù)來支持這一結(jié)論。
4.6 調(diào)節(jié)肝臟糖原代謝
肝臟是胰腺分泌胰島素后到達(dá)的第一個(gè)器官,同時(shí)還負(fù)責(zé)調(diào)節(jié)葡萄糖的儲(chǔ)存與釋放,這使得肝臟IR成為T2DM的早期癥狀[74],因此,調(diào)節(jié)肝臟的糖原代謝是治療T2DM的重要環(huán)節(jié)。
AMPK在人體能量代謝過程中有重要作用,既往研究認(rèn)為其具有逆轉(zhuǎn)T2DM相關(guān)代謝異常的巨大潛力。通過對(duì)人HepG2肝細(xì)胞的檢測(cè)發(fā)現(xiàn)丙酸鹽與GPR43結(jié)合激活A(yù)MPK,下調(diào)葡萄糖-6-磷酸酶(G6Pase)和磷酸烯醇丙酮酸羧激酶(PEPCK)的表達(dá),抑制肝糖異生[75]。在T2DM模型大鼠中膳食補(bǔ)充黑米和黑豆殼花青素提取物,增加了多種SCFAs生成細(xì)菌的豐度,同時(shí)激活A(yù)MPK、磷脂酰肌醇 3-激酶(PI3K)和蛋白激酶B(AKT),降低羥甲基戊二酸單酰輔酶A還原酶、G6Pase和PEPCK表達(dá),并抑制肝臟糖異生[76]。兩項(xiàng)研究的結(jié)果具有一致性,提示SCFAs對(duì)肝糖異生的調(diào)節(jié)作用具有一定的潛力。
在T2DM小鼠中,丁酸給藥增加了GPR43的表達(dá),同時(shí)提高小鼠和HepG2細(xì)胞中的糖原儲(chǔ)存。具體而言,丁酸通過促進(jìn)GPR43表達(dá),抑制信號(hào)傳導(dǎo)AKT,激活糖原合酶激酶3(GSK3)來促進(jìn)肝細(xì)胞當(dāng)中的糖原代謝[77]。進(jìn)一步的研究表明,丁酸促進(jìn)GPR43及其下游蛋白β-arrestin2的表達(dá),抑制AKT的活化,激活A(yù)MPK-PGC-1α信號(hào)通路和p-GSK3的表達(dá)[78]??傊?,GPR43-β-arrestin2-AMPK-PGC1-α信號(hào)通路在丁酸調(diào)節(jié)肝糖原代謝的功能中發(fā)揮作用。
5 討論與展望
T2DM屬于慢性代謝性疾病,其發(fā)病機(jī)制涉及多個(gè)因素,當(dāng)前的治療方案以藥物控制血糖為主。但作為一種需終身治療的疾病,患者的依從性無法得到確切的保證。長(zhǎng)時(shí)間的高血糖狀態(tài)導(dǎo)致胰島β細(xì)胞功能下降,容易導(dǎo)致不良后果,而炎癥、IR等亦是T2DM的常見伴隨癥狀。可見,T2DM是一種較為復(fù)雜的疾病,探索該病的新型治療方案和管理策略符合疾病的發(fā)展?fàn)顟B(tài)和治療需要。GM是人體最大的微生態(tài)系統(tǒng),對(duì)人體的代謝有著重大影響。近期研究發(fā)現(xiàn)GM紊亂或許是導(dǎo)致T2DM的原因之一,而SCFAs則被認(rèn)為是潛在的治療靶標(biāo)。
SCFAs產(chǎn)生的主要底物是膳食纖維和蛋白質(zhì),通過飲食或運(yùn)動(dòng)等方式進(jìn)行干預(yù)可對(duì)其表達(dá)水平產(chǎn)生影響,避免了藥物干預(yù)帶來的不良反應(yīng)。SCFAs的分布較為廣泛,參與機(jī)體代謝的多個(gè)方面,能夠產(chǎn)生多途徑的網(wǎng)絡(luò)生物學(xué)效應(yīng)。這些特性是其被作為潛在靶標(biāo)的基本條件。隨著研究的不斷深入,SCFAs在T2DM中的作用被不斷發(fā)掘。如前文綜述,SCFAs在調(diào)節(jié)食欲、炎癥、脂質(zhì)代謝、糖原代謝以及調(diào)節(jié)胰島β細(xì)胞的數(shù)量和活力、改善骨骼肌IR等方面展現(xiàn)出了積極的研究結(jié)果,這提示SCFAs具有治療T2DM的潛力。
盡管已經(jīng)有大量的研究表明調(diào)控SCFAs對(duì)治療T2DM具有一定的作用,但需要注意的是當(dāng)前的研究主要集中于動(dòng)物實(shí)驗(yàn)以及體外實(shí)驗(yàn),人體干預(yù)的多數(shù)結(jié)果僅在短期內(nèi)呈現(xiàn)出積極的結(jié)果。同時(shí),多數(shù)研究?jī)H體現(xiàn)出了SCFAs與T2DM的相關(guān)性,但未能探索出二者之間的確切聯(lián)系。另外,受限于當(dāng)前的實(shí)驗(yàn)技術(shù),人體試驗(yàn)中無法對(duì)腸道中SCFAs生成菌種的活性進(jìn)行直接檢測(cè),也無法保證向人體內(nèi)補(bǔ)充SCFAs劑量的穩(wěn)定性,不同研究的結(jié)果亦可能存在不一致的結(jié)果。這似乎提示SCFAs在疾病的治療當(dāng)中是具有雙重作用的,這種情況也許與SCFAs的濃度或機(jī)體的不同組織、疾病的不同階段相關(guān)。
基于當(dāng)前的研究已取得的成果,單獨(dú)調(diào)控SCFAs來治療T2DM尚不成熟,建立可靠的SCFAs治療T2DM方案仍需要更加深入的研究和臨床觀察。但基于當(dāng)前關(guān)于SCFAs的研究,可以明確SCFAs在T2DM的治療中可以發(fā)揮輔助效應(yīng),在治療策略中加入SCFAs的調(diào)控,對(duì)減輕肥胖、改善IR以及調(diào)節(jié)糖脂代謝等是具有積極意義的。
作者貢獻(xiàn):姜榮生負(fù)責(zé)文章的構(gòu)思與設(shè)計(jì)、研究資料的收集與整理、論文撰寫;張龍、管其凡負(fù)責(zé)文獻(xiàn)的檢索與整理;張靜、吳元豐負(fù)責(zé)論文的潤(rùn)色;劉明軍負(fù)責(zé)論文修訂、文章的質(zhì)量控制及審校、對(duì)文章整體負(fù)責(zé),監(jiān)督管理。
本文無利益沖突。
姜榮生:https://orcid.org/0000-0002-7125-6025
參考文獻(xiàn)
GBD Causes of Death Collaborators. Global,regional,and national age-sex-specific mortality for 282 causes of death in 195 countries and territories,1980-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2018,392(10159):1736-1788. DOI:10.1016/S0140-6736(18)32203-7.
CANFORA E E,MEEX R C R,VENEMA K,et al. Gut microbial metabolites in obesity,NAFLD and T2DM[J]. Nat Rev Endocrinol,2019,15(5):261-273. DOI:10.1038/s41574-019-0156-z.
VITALE M,GIACCO R,LAIOLA M,et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern:can SCFAs play a role?[J]. Clin Nutr,2021,40(2):428-437. DOI:10.1016/j.clnu.2020.05.025.
PALACIOS T,VITETTA L,COULSON S,et al. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia:a randomised controlled pilot study[J]. Nutrients,2020,12(7):2041. DOI:10.3390/nu12072041.
YADAV H,LEE J H,LLOYD J,et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion[J]. J Biol Chem,2013,288(35):25088-25097. DOI:10.1074/jbc.M113.452516.
HE J,ZHANG P W,SHEN L Y,et al. Short-chain fatty acids and their association with signalling pathways in inflammation,glucose and lipid metabolism[J]. Int J Mol Sci,2020,21(17):6356. DOI:10.3390/ijms21176356.
MACFARLANE G T,MACFARLANE S. Bacteria,colonic fermentation,and gastrointestinal health[J]. J AOAC Int,2012,95(1):50-60. DOI:10.5740/jaoacint.sge_macfarlane.
FREELAND K R,WILSON C,WOLEVER T M S. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects[J]. Br J Nutr,2010,103(1):82-90. DOI:10.1017/S0007114509991462.
TERAMAE H,YOSHIKAWA T,INOUE R,et al. The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract[J]. Biomed Res,2010,31(4):239-249. DOI:10.2220/biomedres.31.239.
BLOEMEN J G,VENEMA K,VAN DE POLL M C,et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J]. Clin Nutr,2009,28(6):657-661. DOI:10.1016/j.clnu.2009.05.011.
PARADA VENEGAS D,DE LA FUENTE M K,LANDSKRON G,et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol,2019,10:277. DOI:10.3389/fimmu.2019.00277.
MATHEWSON N D,JENQ R,MATHEW A V,et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease[J]. Nat Immunol,2016,17(5):505-513. DOI:10.1038/ni.3400.
VADDER F D,KOVATCHEVA-DATCHARY P,GONCALVES D,et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell,2014,156(1/2):84-96. DOI:10.1016/j.cell.2013.12.016.
BROWN A J,GOLDSWORTHY S M,BARNES A A,et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem,2003,278(13):11312-11319. DOI:10.1074/jbc.M211609200.
POUL E L,LOISON C,STRUYF S,et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. J Biol Chem,2003,278(28):25481-25489. DOI:10.1074/jbc.M301403200.
FLOCK T,HAUSER A S,LUND N,et al. Selectivity determinants of GPCR-G-protein binding[J]. Nature,2017,545(7654):317-322. DOI:10.1038/nature22070.
HOUSLAY M D,MILLIGAN G. Tailoring cAMP-signalling responses through isoform multiplicity[J]. Trends Biochem Sci,1997,22(6):217-224. DOI:10.1016/s0968-0004(97)01050-5.
MILLIGAN G. G protein-coupled receptors not currently in the spotlight:free fatty acid receptor 2 and GPR35[J]. Br J Pharmacol,2018,175(13):2543-2553. DOI:10.1111/bph.14042.
KIMURA I,ICHIMURA A,OHUE-KITANO R,et al. Free fatty acid receptors in health and disease[J]. Physiol Rev,2020,100(1):171-210. DOI:10.1152/physrev.00041.2018.
TUNARU S,KERO J,SCHAUB A,et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect[J]. Nat Med,2003,9(3):352-355. DOI:10.1038/nm824.
OFFERMANNS S. Hydroxy-carboxylic acid receptor actions in metabolism[J]. Trends Endocrinol Metab,2017,28(3):227-236. DOI:10.1016/j.tem.2016.11.007.
KAYE D M,SHIHATA W A,JAMA H A,et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease[J]. Circulation,2020,141(17):1393-1403. DOI:10.1161/CIRCULATIONAHA.119.043081.
WANG N,GUO D Y,TIAN X,et al. Niacin receptor GPR109A inhibits insulin secretion and is down-regulated in type 2 diabetic islet beta-cells[J]. General amp; Comparative Endocrinology, 2016, 237:98-108. DOI:10.1016/j.ygcen.2016.08.011.
SUN M M,WU W,LIU Z J,et al. Microbiota metabolite short chain fatty acids,GPCR,and inflammatory bowel diseases[J]. J Gastroenterol,2017,52(1):1-8. DOI:10.1007/s00535-016-1242-9.
SEALY L,CHALKLEY R. The effect of sodium butyrate on histone modification[J]. Cell,1978,14(1):115-121. DOI:10.1016/0092-8674(78)90306-9.
JOHNSTONE R W. Histone-deacetylase inhibitors:novel drugs for the treatment of cancer[J]. Nat Rev Drug Discov,2002,1(4):287-299. DOI:10.1038/nrd772.WALDECKER M,KAUTENBURGER T,DAUMANN H,et al.
Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon[J]. J Nutr Biochem,2008,19(9):587-593. DOI:10.1016/j.jnutbio.2007.08.002.
SOLIMAN M L,ROSENBERGER T A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression[J]. Mol Cell Biochem,2011,352(1/2):173-180. DOI:10.1007/s11010-011-0751-3.
MURPHY K G,BLOOM S R. Gut hormones and the regulation of energy homeostasis[J]. Nature,2006,444(7121):854-859. DOI:10.1038/nature05484.
FREELAND K R,WOLEVER T M S. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1,peptide YY,ghrelin,adiponectin and tumour necrosis factor-alpha[J]. Br J Nutr,2010,103(3):460-466. DOI:10.1017/S0007114509991863.
KAJI I,KARAKI S,KUWAHARA A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release[J]. Digestion,2014,89(1):31-36. DOI:10.1159/000356211.
BROOKS L,VIARDOT A,TSAKMAKI A,et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansiontoincrease satiety[J]. Mol Metab,2017,6(1):48-60. DOI:10.1016/j.molmet.2016.10.011.
TOLHURST G,HEFFRON H,LAM Y S,et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes,2012,61(2):364-371. DOI:10.2337/db11-1019.
KRIEGER J P,ARNOLD M,PETTERSEN K G,et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia[J]. Diabetes,2016,65(1):34-43. DOI:10.2337/db15-0973.
ABBOTT C R,MONTEIRO M,SMALL C J,et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway[J]. Brain Res,2005,1044(1):127-131. DOI:10.1016/j.brainres.2005.03.011.
DELZENNE N,BLUNDELL J,BROUNS F,et al. Gastrointestinal targets of appetite regulation in humans[J]. Obes Rev,2010,11(3):234-50.
DALAMAGA M,CHOU S H,SHIELDS K,et al. Leptin at the intersection of neuroendocrinology and metabolism:current evidence and therapeutic perspectives [J]. Cell metabolism,2013,18(1):29-42.
KIMURA I,OZAWA K,INOUE D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43 [J]. Nature Communications,2013,4:1829.
RAHAT-ROZENBLOOM S,F(xiàn)ERNANDES J,CHENG J,et al. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans[J]. Eur J Clin Nutr,2017,71(8):953-958. DOI:10.1038/ejcn.2016.249.
FUKUMORI R,SUGINO T,HASEGAWA Y,et al. Plasma ghrelin concentration is decreased by short chain fatty acids in wethers[J]. Domest Anim Endocrinol,2011,41(1):50-55. DOI:10.1016/j.domaniend.2011.04.001.
SOHAIL M U,ALTHANI A,ANWAR H,et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus[J]. J Diabetes Res,2017,2017:9631435. DOI:10.1155/2017/9631435.
KUSHWAHA V,RAI P,VARSHNEY S,et al. Sodium butyrate reduces endoplasmic reticulum stress by modulating CHOP and empowers favorable anti-inflammatory adipose tissue immune-metabolism in HFD fed mice model of obesity[J]. Food Chem,2022,4:100079. DOI:10.1016/j.fochms.2022.100079.
WANG H B,WANG P Y,WANG X,et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci,2012,57(12):3126-3135. DOI:10.1007/s10620-012-2259-4.
CHANG P V,HAO L M,OFFERMANNS S,et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A,2014,111(6):2247-2252. DOI:10.1073/pnas.1322269111.
CORRêA-OLIVEIRA R,F(xiàn)ACHI J L,VIEIRA A,et al. Regulation of immune cell function by short-chain fatty acids[J]. Clin Transl Immunology,2016,5(4):e73. DOI:10.1038/cti.2016.17.
GEUKING M B,MCCOY K D,MACPHERSON A J. Metabolites from intestinal microbes shape Treg[J]. Cell Res,2013,23(12):1339-1340. DOI:10.1038/cr.2013.125.
DE OLIVEIRA F L,SALGA?O M K,DE OLIVEIRA M T,et al. Exploring the potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as promising psychobiotics using SHIME[J]. Nutrients,2023,15(6):1521. DOI:10.3390/nu15061521.
PARK J S,LEE E J,LEE J C,et al. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells:involvement of NF-kappaB and ERK signaling pathways[J]. Int Immunopharmacol,2007,7(1):70-77. DOI:10.1016/j.intimp.2006.08.015.
SEGAIN J P,RAINGEARD DE LA BLéTIèRE D,BOURREILLE A,et al. Butyrate inhibits inflammatory responses through NF kappa B inhibition:implications for Crohn's disease[J]. Gut,2000,47(3):397-403. DOI:10.1136/gut.47.3.397.
CHEN G X,RAN X,LI B,et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model[J]. EBioMedicine,2018,30:317-325. DOI:10.1016/j.ebiom.2018.03.030.
ZHANG Y C,LEI Y T,HONARPISHEH M,et al. Butyrate and class Ⅰ histone deacetylase inhibitors promote differentiation of neonatal porcine islet cells into beta cells[J]. Cells,2021,10(11):3249. DOI:10.3390/cells10113249.
HU S X,KUWABARA R,DE HAAN B J,et al. Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress[J]. Int J Mol Sci,2020,21(4):1542. DOI:10.3390/ijms21041542.
XIMENES H M,HIRATA A E,ROCHA M S,et al. Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets[J]. Cell Biochem Funct,2007,25(2):173-178. DOI:10.1002/cbf.1297.
PERRY R J,PENG L,BARRY N A,et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature,2016,534(7606):213-217. DOI:10.1038/nature18309.
PRIYADARSHINI M,VILLA S R,F(xiàn)ULLER M,et al. An acetate-specific GPCR,F(xiàn)FAR2,regulates insulin secretion[J]. Mol Endocrinol,2015,29(7):1055-1066. DOI:10.1210/me.2015-1007.
PRIYADARSHINI M,LAYDEN B T. FFAR3 modulates insulin secretion and global gene expression in mouse islets[J]. Islets,2015,7(2):e1045182. DOI:10.1080/19382014.2015.1045182.
TANG C,AHMED K,GILLE A,et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes[J]. Nat Med,2015,21(2):173-177. DOI:10.1038/nm.3779.
BOON J,HOY A J,STARK R,et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance[J]. Diabetes,2013,62(2):401-410. DOI:10.2337/db12-0686.
YANG L,LIN H Q,LIN W T,et al. Exercise ameliorates insulin resistance of type 2 diabetes through motivating short-chain fatty acid-mediated skeletal muscle cell autophagy[J]. Biology,2020,9(8):203. DOI:10.3390/biology9080203.
GAO Z G,YIN J,ZHANG J,et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes,2009,58(7):1509-1517. DOI:10.2337/db08-1637.
CHRIETT S,ZERZAIHI O,VIDAL H,et al. The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1[J]. Mol Cell Endocrinol,2017,439:224-232. DOI:10.1016/j.mce.2016.09.006.
YAMASHITA H,MARUTA H,JOZUKA M,et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats[J]. Biosci Biotechnol Biochem,2009,73(3):570-576. DOI:10.1271/bbb.80634.
CHAMBERS E S,VIARDOT A,PSICHAS A,et al. Effects of targeted delivery of propionate to the human colon on appetite regulation,body weight maintenance and adiposity in overweight adults[J]. Gut,2015,64(11):1744-1754. DOI:10.1136/gutjnl-2014-307913.
AHMED K,TUNARU S,OFFERMANNS S. GPR109A,GPR109B and GPR81,a family of hydroxy-carboxylic acid receptors[J]. Trends Pharmacol Sci,2009,30(11):557-562. DOI:10.1016/j.tips.2009.09.001.
WILLEBRORDS J,PEREIRA I V,MAES M,et al. Strategies,models and biomarkers in experimental non-alcoholic fatty liver disease research[J]. Prog Lipid Res,2015,59:106-125. DOI:10.1016/j.plipres.2015.05.002.
MATHEUS V A,MONTEIRO L,OLIVEIRA R B,et al. Butyrate reduces high-fat diet-induced metabolic alterations,hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice[J]. Exp Biol Med,2017,242(12):1214-1226. DOI:10.1177/1535370217708188.
KHAN S,JENA G. Sodium butyrate reduces insulin-resistance,fat accumulation and dyslipidemia in type-2 diabetic rat:a comparative study with metformin[J]. Chem Biol Interact,2016,254:124-134. DOI:10.1016/j.cbi.2016.06.007.
DENG M J,QU F,CHEN L,et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol,2020,245(3):425-437. DOI:10.1530/JOE-20-0018.
CARON A,LEE S,ELMQUIST J K,et al. Leptin and brain-adipose crosstalks[J]. Nat Rev Neurosci,2018,19(3):153-165. DOI:10.1038/nrn.2018.7.
LI Z,YI C X,KATIRAEI S,et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut,2018,67(7):1269-1279. DOI:10.1136/gutjnl-2017-314050.
ARAúJO J R,TAZI A,BURLEN-DEFRANOUX O,et al. Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J]. Cell Host Microbe,2020,27(3):358-375.e7. DOI:10.1016/j.chom.2020.01.028.
DEN BESTEN G,BLEEKER A,GERDING A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398-2408. DOI:10.2337/db14-1213.
MOLLICA M P,MATTACE RASO G,CAVALIERE G,et al. Butyrate regulates liver mitochondrial function,efficiency,and dynamics in insulin-resistant obese mice[J]. Diabetes,2017,66(5):1405-1418. DOI:10.2337/db16-0924.
PATEL B M,GOYAL R K. Liver and insulin resistance:new wine in old bottle!?。。跩]. Eur J Pharmacol,2019,862:172657. DOI:10.1016/j.ejphar.2019.172657.
YOSHIDA H,ISHII M,AKAGAWA M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway[J]. Arch Biochem Biophys,2019,672:108057. DOI:10.1016/j.abb.2019.07.022.
SUN M B,LI D,HUA M,et al. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats[J]. Food Funct,2022,13(13):7377-7391. DOI:10.1039/d2fo01165d.
ZHANG W Q,ZHAO T T,GUI D K,et al. Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus[J]. J Agric Food Chem,2019,67(27):7694-7705. DOI:10.1021/acs.jafc.9b02083.
ZHAO T T,GU J L,ZHANG H X,et al. Sodium butyrate-modulated mitochondrial function in high-insulin induced HepG2 cell dysfunction[J]. Oxid Med Cell Longev,2020,2020:1904609. DOI:10.1155/2020/1904609.
(本文編輯:趙躍翠)
*通信作者:劉明軍,教授;E-mail:195433711@qq.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(82174525);吉林省科技發(fā)展計(jì)劃項(xiàng)目(YDZJ202201ZYTS195)
引用本文:姜榮生,張龍,管其凡,等. 短鏈脂肪酸在2型糖尿病中的作用研究進(jìn)展[J]. 中國(guó)全科醫(yī)學(xué),2024,27(24):3031-3037. DOI:10.12114/j.issn.1007-9572.2023.0533.[www.chinagp.net]
JIANG R S,ZHANG L,GUAN Q F,et al. Advances in the role of short-chain fatty acids in type 2 diabetes[J]. Chinese General Practice,2024,
27(24):3031-3037.
? Editorial Office of Chinese General Practice. This is an open access article under the CC BY-NC-ND 4.0 license.