趙斌 趙志虎 駱巍 馬劍雄 馬信龍
基金項目:國家自然科學(xué)基金青年基金項目(81501061);天津市衛(wèi)生健康行業(yè)高層次人才選拔培養(yǎng)工程-青年醫(yī)學(xué)新銳(TJSQNYXXR-D2-136);天津市衛(wèi)生健康科研項目(TJWJ2023QN049)
作者單位:天津市天津醫(yī)院數(shù)字骨科技術(shù)臨床應(yīng)用中心(郵編300211)
作者簡介:趙斌(1988),男,副主任醫(yī)師,主要從事骨科及周圍神經(jīng)損傷修復(fù)方面研究。E-mail:agzhb@sina.com
△通信作者 E-mail:maxinlong8686@sina.com
摘要:目的 探討大鼠周圍神經(jīng)損傷(PNI)后外周血內(nèi)皮祖細(xì)胞(EPCs)、堿性成纖維細(xì)胞生長因子(bFGF)、血管內(nèi)皮生長因子(VEGF)及基質(zhì)金屬蛋白酶-9(MMP-9)水平變化及EPCs與其他指標(biāo)的相關(guān)性。方法 42只SD大鼠按隨機數(shù)字表法分為對照組、PNI 1 d組、PNI 3 d組、PNI 5 d組、PNI 7 d組及PNI 14 d組,每組7只,除對照組外其余組均采用鉗夾法建立坐骨神經(jīng)損傷模型。對每組在預(yù)定時間點采用活體心臟穿刺法采血;采用Ficoll密度梯度離心法提取單個核細(xì)胞,CD34和CD133雙陽性細(xì)胞標(biāo)記EPCs,應(yīng)用流式細(xì)胞儀檢測各組EPCs數(shù)量。采用酶聯(lián)免疫吸附試驗檢測各組外周血bFGF、VEGF及MMP-9含量,分析EPCs數(shù)量與bFGF、VEGF、MMP-9水平的相關(guān)性。結(jié)果 與對照組相比,PNI 3 d組、PNI 5 d組、PNI 7 d組外周血EPCs數(shù)量升高,PNI 3 d組、PNI 5 d組、PNI 7 d組及PNI 14 d組外周血bFGF含量升高,其余各組外周血VEGF含量升高,PNI 5 d組、PNI 7 d組及PNI 14 d組外周血MMP-9含量升高(P<0.05)。PNI 5 d組和PNI 7 d組外周血EPCs數(shù)量與血清bFGF水平呈正相關(guān)(r分別為0.784和0.788,P<0.05),與血清VEGF水平呈正相關(guān)(r分別為0.889和0.852,P<0.05);PNI 5 d組、PNI 7 d組和PNI 14 d組外周血EPCs數(shù)量與血清MMP-9水平呈正相關(guān)(r分別為0.788、0.852和0.873,P<0.05)。結(jié)論 EPCs與bFGF、VEGF和MMP-9共同參與了PNI后血供修復(fù)的病理生理過程。
關(guān)鍵詞:周圍神經(jīng)損傷;坐骨神經(jīng);內(nèi)皮祖細(xì)胞;基質(zhì)金屬蛋白酶9;血管內(nèi)皮生長因子;堿性成纖維細(xì)胞生長因子
中圖分類號:R651.3 文獻標(biāo)志碼:A DOI:10.11958/20231111
Changes in peripheral blood endothelial progenitor cell mobilization and related factors after peripheral nerve injury in rats
ZHAO Bin, ZHAO Zhihu, LUO Wei, MA Jianxiong, MA Xinlong△
Digital Orthopedic Technology Clinical Application Center, Tianjin Hospital, Tianjin 300211, China
△Corresponding Author E-mail: maxinlong8686@sina.com
Abstract: Objective To study changes and correlation of peripheral bold endothelial progenitor cells (EPCs) and serum bFGF, VEGF and MMP-9 in rats with peripheral nerve injury (PNI). Methods Forty-two SD rats were divided into the control group, the PNI 1 d group, the PNI 3 d group, the PNI 5 d group, the PNI 7 d group and the PNI 14 d group according to random number table method, with 7 rats in each group. The sciatic nerve injury model was established in all groups except the control group. In each group, blood samples were collected by living heart puncture at a predetermined time point. Mononuclear cells were extracted by Ficoll density gradient centrifugation. CD34 and CD133 double positive cells were labeled with EPCs, and the number of EPCs in each group was detected by flow cytometry. The contents of bFGF, VEGF and MMP-9 in peripheral blood of each group were detected by enzyme-linked immunosorbent assay, and the correlation between the number of EPCs and bFGF, VEGF and MMP-9 was analyzed. Results Compared with the control group, EPCs in peripheral blood were increased in the PNI 3 d group, the PNI 5 d group and PNI 7 d group. bFGF contents in peripheral blood were increased in the PNI 3 d group, the PNI 5 d group, the PNI 7 d group and the PNI 14 d group, and VEGF contents in peripheral blood were increased in the other groups. The content of MMP-9 in peripheral blood was increased in the PNI 5 d group, the PNI 7 d group and the PNI 14 d group (P<0.05). The number of EPCs in peripheral blood in the PNI 5 d group and the PNI 7 d group was positively correlated with serum bFGF level (r=0.784 and 0.788, P<0.05) and serum VEGF level (r=0.889 and 0.852, P<0.05). The number of EPCs in peripheral blood of the PNI 5 d group, the PNI 7 d group and the PNI 14 d group was positively correlated with serum MMP-9 level (r=0.788, 0.852 and 0.873, P<0.05), and it was positively correlated with serum VEGF level (r=0.889 and 0.852, P<0.05). The number of EPCs in peripheral blood was positively correlated with serum MMP-9 level in the PNI 5 d group, the PNI 7 d group and the PNI 14 d group (r=0.788, 0.852 and 0.873, P<0.05). Conclusion EPCs, bFGF, VEGF and MMP-9 are involved in the pathophysiological process of blood supply repair after PNI.
Key words: peripheral nerve injuries; sciatic nerve; endothelial progenitor cells; matrix metalloproteinase 9; vascular endothelial growth factor; basic fibroblast growth factor
周圍神經(jīng)損傷(peripheral nerve injury,PNI)后的成功修復(fù)是臨床中一大難題[1]。而PNI修復(fù)過程中所需要的各種營養(yǎng)物質(zhì)與局部血供有著非常重要的關(guān)系[2]。有研究表明,內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPCs)可有效地促進周圍神經(jīng)缺損區(qū)域的血管再生,并能明顯增強周圍神經(jīng)缺損的修復(fù)、再生能力[3]。EPCs主要存在于骨髓中,在正常生理條件下,外周血EPCs數(shù)量很少。當(dāng)某些因素作用于骨髓時,可使外周血中循環(huán)EPCs數(shù)量增加,該過程稱為EPCs的動員[4]。多種細(xì)胞因子、藥物及缺血損傷等因素能促進EPCs的動員。研究表明,堿性成纖維生長因子(basic fibroblast growth factor,bFGF)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)及基質(zhì)金屬蛋白酶-9(matrix metalloproteinases 9,MMP-9)等生長因子可促進損傷周圍神經(jīng)再生、促進軸突生長[5-7]。但PNI后,外周血EPCs數(shù)量的動態(tài)變化及上述生長因子與外周血EPCs動員之間的關(guān)系目前尚不清楚。本研究觀察大鼠坐骨神經(jīng)損傷后外周血EPCs數(shù)量的動態(tài)變化,同時測定外周血bFGF、VEGF和MMP-9的含量變化,分析EPCs數(shù)量與上述因子的相關(guān)性,初步探討PNI后血管新生及EPCs動員的可能機制。
1 材料與方法
1.1 實驗動物 健康雄性SD大鼠42只,10周齡,體質(zhì)量300~350 g,購自中科院遺傳與發(fā)育生物學(xué)研究所。實驗動物生產(chǎn)許可證號:SCXK(京)2022-0011。實驗動物使用許可證號:SYXK(京)2022-0045。動物按照SPF標(biāo)準(zhǔn)進行飼養(yǎng)。實驗前適應(yīng)性喂養(yǎng)1周,自由飲水,標(biāo)準(zhǔn)大鼠固體飼料喂養(yǎng)。
1.2 主要試劑及儀器 大鼠VEGF、bFGF及MMP-9酶聯(lián)免疫吸附試驗(ELISA)試劑盒(上海藍基公司),偶聯(lián)異硫氰酸熒光素(FITC)的兔源抗大鼠CD34抗體、偶聯(lián)藻紅蛋白(PE)的兔源抗大鼠CD133抗體(北京博奧森生物技術(shù)有限公司),F(xiàn)ACS ArriaIII高分選流式細(xì)胞儀(美國BD公司),高速冷凍離心機(美國Sigma公司)。本實驗符合動物實驗倫理要求,并通過天津醫(yī)院醫(yī)學(xué)倫理委員會審核(2022醫(yī)倫審170)。
1.3 大鼠坐骨神經(jīng)損傷模型的制作及分組 實驗動物按隨機數(shù)字表法分為6組:對照組,PNI 1、3、5、7、14 d組,每組7只。按照本課題組既往研究[8-9]的方法進行大鼠坐骨神經(jīng)損傷造模:采用10%水合氯醛3.5 mL/kg經(jīng)腹腔注射麻醉,麻醉成功后大鼠呈俯臥位固定于手術(shù)臺上,無菌條件下于大鼠右側(cè)股骨中段后外方1 cm處做平行于股骨的縱行切口,長約3 cm,沿半膜肌及股二頭肌之間進行鈍性分離,顯露大鼠右側(cè)坐骨神經(jīng)。對照組僅分離、顯露右側(cè)坐骨神經(jīng),之后逐層縫合,實驗組由同一人用同一把直血管鉗完全閉合鉗夾坐骨神經(jīng)30 s,采用3-0無損傷縫線標(biāo)記損傷部位神經(jīng)外膜,大量生理鹽水沖洗傷口,逐層縫合。術(shù)后連續(xù)3 d慶大霉素肌內(nèi)注射預(yù)防感染。常規(guī)獨籠飼養(yǎng)。
1.4 取血 按照實驗預(yù)先分組,對每組在預(yù)定時間點采用活體心臟穿刺法[10]進行采血:采用10%水合氯醛按照3.5 mL/kg體質(zhì)量經(jīng)腹腔注射麻醉,麻醉成功后大鼠呈仰臥位固定于手術(shù)臺上;注射器針頭緊貼劍突下以30°角刺向心臟,針尖穿過橫膈膜后繼續(xù)斜行刺入2.5~3 cm,邊進針邊回吸,可見血液借助心臟跳動的力量進入注射器內(nèi),共取血約4 mL;其中2 mL置入抗凝管中,用于EPCs數(shù)量測定;另外2 mL置入促凝管中,用于各種生長因子含量測定。大鼠在采用該方法取血約4 mL后即發(fā)生死亡,之后按照動物實驗倫理要求對尸體進行處理。
1.5 外周血EPCs數(shù)量測定 采用FACStar流式細(xì)胞儀檢測各組外周血中EPCs數(shù)量。方法如下:按照Ficoll-Paque PLUS單個核細(xì)胞分離液說明書中方法,通過密度梯度離心法獲取單個核細(xì)胞;將上述單個核細(xì)胞懸浮于200 μL含0.5% BSA及2 mmol/L EDTA的PBS中;然后加入偶聯(lián)PE的兔抗鼠CD133抗體及偶聯(lián)FITC的兔抗鼠CD34抗體,于4 ℃條件下孵育20 min;再采用流式細(xì)胞儀測定CD34+/CD133+雙陽性的細(xì)胞,即為EPCs,見圖1。為避免非特異污染,將偶聯(lián)PE和FITC的鼠免疫球蛋白G1染色的細(xì)胞作為對照[11-12]。
1.6 ELISA檢測外周血VEGF、bFGF及MMP-9含量 將剩余2 mL血液以2 000 r/min離心10 min,留取血清,于-20 ℃冰箱保存。采用ELISA檢測大鼠PNI后不同時間點外周血血清VEGF、bFGF及MMP-9含量。嚴(yán)格按照ELISA試劑盒說明書及標(biāo)準(zhǔn)濃度建立標(biāo)準(zhǔn)曲線。各組均設(shè)3個復(fù)孔,實驗重復(fù)3次。
1.7 統(tǒng)計學(xué)方法 采用SPSS 18.0軟件進行數(shù)據(jù)分析。計量資料采用[x] ±s表示,多組間比較采用單因素方差分析,組間多重比較采用LSD-t檢驗;循環(huán)EPCs數(shù)量與bFGF、VEGF及MMP-9水平的相關(guān)性采用Pearson相關(guān)分析,P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 大鼠坐骨神經(jīng)損傷后外周血EPCs數(shù)量的變化 對照組、PNI 1 d組、PNI 3 d組、PNI 5 d組、PNI 7 d組、PNI 14 d組外周血EPCs數(shù)量(個/2×106單個核細(xì)胞)分別為11.86±2.27、13.00±2.16、33.57±3.87、74.00±7.07、53.86±5.21和14.00±2.16,差異有統(tǒng)計學(xué)意義(n=7,F(xiàn)=261.959,P<0.01)。與對照組相比,PNI 3 d組、PNI 5 d組、PNI 7 d組外周血EPCs數(shù)量升高(P<0.05),而PNI 1 d組及PNI 14 d組差異無統(tǒng)計學(xué)意義。
2.2 大鼠坐骨神經(jīng)損傷后外周血bFGF、VEGF和MMP-9含量變化 與對照組相比,PNI 3 d組、PNI 5 d組、PNI 7 d組及PNI 14 d組外周血bFGF含量升高,其余各組外周血VEGF含量升高,PNI 5 d組、PNI 7 d組及PNI 14 d組外周血MMP-9含量升高,見表1。
2.3 外周血EPCs與bFGF、VEGF和MMP-9含量變化的相關(guān)性分析 PNI 5 d組和PNI 7 d組外周血EPCs數(shù)量與血清bFGF水平呈正相關(guān)(r分別為0.784和0.788,P<0.05),與血清VEGF水平呈正相關(guān)(r分別為0.889和0.852,P<0.05);PNI 5 d組、PNI 7 d組和PNI 14 d組外周血EPCs數(shù)量與血清MMP-9水平呈正相關(guān)(r分別為0.788、0.852和0.873,P<0.05)。
3 討論
在PNI修復(fù)重建過程中,組織血供起重要作用。其一方面可以減少體內(nèi)膠原纖維形成,促進新生軸突通過;另一方面,可以為神經(jīng)細(xì)胞提供足夠的營養(yǎng),促進神經(jīng)再生、軸突生長[13-14]。研究表明,EPCs在缺血組織的血管新生中起著十分重要的作用[15]。EPCs主要存在于骨髓中,在外周血中數(shù)量很少,正常成人外周血EPCs只占單個核細(xì)胞總量的0.002%,即相當(dāng)于每毫升血液中含有70~210個EPCs[16]。EPCs是一種未成熟的血管內(nèi)皮細(xì)胞的前體細(xì)胞,其表面缺乏特異性標(biāo)志,現(xiàn)多將CD34+/CD133+雙陽性細(xì)胞定義為EPCs,并采用流式細(xì)胞儀對其進行測定[17]。本研究采用流式細(xì)胞儀對坐骨神經(jīng)損傷后外周血EPCs數(shù)量進行檢測,結(jié)果表明,與對照組相比,PNI 3 d組、PNI 5 d組、PNI7 d組的外周血EPCs數(shù)量顯著升高,表明PNI后骨髓中EPCs動員至外周血中,參與一系列病理生理過程。
有研究表明,EPCs動員與機體內(nèi)多種因子的釋放有關(guān),如MMP-9、VEGF及bFGF等[18]。因此,筆者在測定坐骨神經(jīng)損傷后外周血EPCs數(shù)量變化的同時,亦檢測了外周血血清中bFGF、VEGF及MMP-9含量。結(jié)果表明,PNI后外周血血清中bFGF、VEGF及MMP-9含量顯著升高,且在不同損傷時間呈動態(tài)變化。進一步分析發(fā)現(xiàn)坐骨神經(jīng)損傷后外周血EPCs數(shù)量與外周血血清中bFGF、VEGF、MMP-9含量呈正相關(guān)。上述結(jié)果表明,EPCs與bFGF、VEGF和MMP-9可能共同參與了PNI后血供修復(fù)的病理生理過程,上述因素間相互作用,促進PNI后的修復(fù)重建。
bFGF、VEGF、MMP-9均能夠促進EPCs動員及歸巢。PNI后,機體內(nèi)VEGF表達升高,升高的VEGF與EPCs表面的血管內(nèi)皮細(xì)胞生長因子受體2結(jié)合,通過細(xì)胞外信號調(diào)節(jié)激酶1/2(extracellular regulated protein kinases 1/2,ERK1/2)途徑促進EPCs增殖,通過激活p38絲裂原激活的蛋白激酶(MAPK)、磷脂酰肌醇-3-激酶/絲氨酸蘇氨酸蛋白激酶(PI3K/Akt)等途徑促進EPCs動員[19]。PNI后,機體內(nèi)bFGF表達升高,進而促進活化的p38 MAPK、c-Jun氨基末端激酶(JUK)和ERK磷酸化,上調(diào)膜型金屬蛋白酶-1(membrane-type metalloproteinase-1,MT1-MMP)表達,以促進EPCs動員[20]。MT1-MMP可增強VEGF表達,間接性促進EPCs增殖及動員。PNI后,機體內(nèi)MMP-9表達升高,促進可溶性KIT配體(sKitL)釋放及EPCs動員;MMP-9亦可促進VEGF釋放,間接性促進EPCs增殖及動員[18]。EPCs具有分泌各種生長因子的能力[21],PNI后其分泌bFGF、VEGF、MMP-9等生長因子增加。從上述機制中可以看出,EPCs與bFGF、VEGF和MMP-9構(gòu)成了一個復(fù)雜的、相互影響的關(guān)系網(wǎng),在PNI后的血管生成、神經(jīng)修復(fù)等方面發(fā)揮著重要的作用。
綜上,PNI后,EPCs、bFGF、VEGF及MMP-9均參與了血管修復(fù)的病理生理過程。因此,筆者推測PNI后補充外源性bFGF、VEGF及MMP-9可能促進骨髓EPCs動員,增加外周血EPCs數(shù)量,促進PNI區(qū)域血流恢復(fù),進一步促進PNI后的修復(fù)重建。但是,用藥途徑及藥物安全有效劑量等問題尚待進一步實驗研究。
參考文獻
[1] CASTRO V O,MERLINI C. Aligned electrospun nerve conduits with electrical activity as a strategy for peripheral nerve regeneration[J]. Artif Organs,2021,45(8):813-818. doi:10.1111/aor.13942.
[2] CONTRERAS E,BOLIVAR S,NAVARRO X,et al. New insights into peripheral nerve regeneration:the role of secretomes[J]. Exp Neurol,2022,354:114069. doi:10.1016/j.expneurol.2022.114069.
[3] KAMEI N,ATESOK K,OCHI M. The use of endothelial progenitor cells for the regeneration of musculoskeletal and neural tissues[J]. Stem Cells Int,2017,2017:1960804. doi:10.1155/2017/1960804.
[4] WANG J,LIAO X,JIANG X,et al. Granulocyte-colony stimulating factor mediates neovascularization in acellular dermal matrix-transplanted areas by promoting endothelial progenitor cell homing[J]. Gen Physiol Biophys,2023,42(3):263-271. doi:10.4149/gpb_2023002.
[5] HU B,ZHANG H,XU M,et al. Delivery of basic fibroblast growth factor through an in situ forming smart hydrogel activates autophagy in Schwann cells and improves facial nerves generation via the PAK-1 signaling pathway[J]. Front Pharmacol,2022,13:778680. doi:10.3389/fphar.2022.778680.
[6] BASU S,CHOUDHURY I N,NAZARETH L,et al. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment[J]. Sci Rep,2022,12(1):662. doi:10.1038/s41598-021-04222-7.
[7] LU P,WANG G,LU X,et al. Elevated matrix metalloproteinase 9 supports peripheral nerve regeneration via promoting Schwann cell migration[J]. Exp Neurol,2022,352:114020. doi:10.1016/j.expneurol.2022.114020.
[8] 孫曉雷,趙斌,馬信龍,等. 兔坐骨神經(jīng)損傷后內(nèi)源性生長因子含量的變化及意義[J]. 中華創(chuàng)傷雜志,2014,30(5):471-474. SUN X L,ZHAO B,MA X L,et al. Changes of endogenous growth factors and their significance after sciatic nerve injury in rabbits[J]. Chinese Journal of Trauma,2014,30(5):471-474. doi:10.3760/cma.j.issn.1001-8050.2014.05.025.
[9] 趙斌,馬信龍,孫曉雷,等. 兔坐骨神經(jīng)勻漿上清液對脂肪干細(xì)胞的誘導(dǎo)分化作用[J]. 中國修復(fù)重建外科雜志,2015,29(4):477-482. ZHAO B,MA X L,SUN X L,et al. Inducting differentiation effect of sciatic nerve extracts on rabbit adipose-derived stem cells in vitro[J]. Chinese Journal of Reparative and Reconstructive Surgery,2015,29(4):477-482. doi:10.7507/1002-1892.20150103.
[10] MEYER N,KROGER M,THUMMLER J,et al. Impact of three commonly used blood sampling techniques on the welfare of laboratory mice:taking the animal's perspective[J]. PLoS One,2020,15(9):e0238895. doi:10.1371/journal.pone.0238895.
[11] MAIO A,MAIORINO M I,LONGO M,et al. Change in circulating levels of endothelial progenitor cells and sexual function in women with type 1 diabetes[J]. J Clin Endocrinol Metab,2022,107(9):e3910-e3918. doi:10.1210/clinem/dgac316.
[12] VAZQUEZ-REZA M,CUSTODIA A,LOPEZ-DEQUIDT I,et al. Periodontal inflammation is associated with increased circulating levels of endothelial progenitor cells:a retrospective cohort study in a high vascular risk population[J]. Ther Adv Chronic Dis,2023,14:20406223231178276. doi:10.1177/20406223231178276.
[13] MA T,HAO Y,LI S,et al. Sequential oxygen supply system promotes peripheral nerve regeneration by enhancing Schwann cells survival and angiogenesis [J]. Biomaterials,2022,289:121755. doi:10.1016/j.biomaterials.2022.121755.
[14] SAFFARI T M,MATHOT F,F(xiàn)RIEDRICH P F,et al. Surgical angiogenesis of decellularized nerve allografts improves early functional recovery in a rat sciatic nerve defect model[J]. Plast Reconstr Surg,2021,148(3):561-570. doi:10.1097/PRS.0000000000008291.
[15] RAKKAR K,OTHMAN O A,SPRIGG N,et al. Evaluation of endothelial progenitor cell characteristics as clinical biomarkers for elderly patients with ischaemic stroke[J]. Stem Cell Rev Rep,2023,19(6):1856-1869. doi:10.1007/s12015-023-10544-y.
[16] XIE D,LI Y,XU M,et al. Effects of dulaglutide on endothelial progenitor cells and arterial elasticity in patients with type 2 diabetes mellitus[J]. Cardiovasc Diabetol,2022,21(1):200. doi:10.1186/s12933-022-01634-1.
[17] GONG D,ZHANG S,LIU L,et al. Dynamic changes of vascular endothelial growth factor and angiopoietin-1 in association with circulating endothelial progenitor cells after severe traumatic brain injury[J]. J Trauma,2011,70(6):1480-1484. doi:10.1097/TA.0b013e31821ac9e1.
[18] CALABRISO N,STANCA E,ROCHIRA A,et al. Angiogenic properties of concentrated growth factors(CGFs):the role of soluble factors and cellular components[J]. Pharmaceutics,2021,13(5):635. doi:10.3390/pharmaceutics13050635.
[19] HAN Z,HE X,F(xiàn)ENG Y,et al. Hsp20 promotes endothelial progenitor cell angiogenesis via activation of PI3K/Akt signaling pathway under hypoxia[J]. Tissue Eng Regen Med,2022,19(6):1251-1266. doi:10.1007/s13770-022-00481-1.
[20] OUYANG L,DAN Y,SHAO Z,et al. MMP-sensitive PEG hydrogel modified with RGD promotes bFGF,VEGF and EPC-mediated angiogenesis[J]. Exp Ther Med,2019,18(4):2933-2941. doi:10.3892/etm.2019.7885.
[21] ZHANG J,ZHANG H,CHEN Y,et al. Platelet-derived growth factor D promotes the angiogenic capacity of endothelial progenitor cells[J]. Mol Med Rep,2019,19(1):125-132. doi:10.3892/mmr.2018.9692.
(2023-07-21收稿 2023-08-10修回)
(本文編輯 李志蕓)