張小田 任獻(xiàn)國(guó)
基金項(xiàng)目:江蘇省自然科學(xué)基金項(xiàng)目(M2020022)
作者單位:南京醫(yī)科大學(xué)附屬逸夫醫(yī)院兒科(郵編211112)
作者簡(jiǎn)介:張小田(1986),女,主治醫(yī)師,主要從事兒童腎臟疾病方面研究。E-mail:zxt870818@163.com
△通信作者 E-mail:renxianguo@126.com
摘要:目的 探索細(xì)胞中TFAP2A對(duì)局灶節(jié)段性腎小球硬化(FSGS)相關(guān)基因含aarF結(jié)構(gòu)域的激酶4(ADCK4)的轉(zhuǎn)錄調(diào)控機(jī)制及TFAP2A與ADCK4是否存在特定的結(jié)合區(qū)域。方法 生物信息學(xué)分析腎小球硬化基因火山圖,ADCK4及TFAP2A表達(dá)水平的關(guān)系。JASPAR數(shù)據(jù)庫(kù)預(yù)測(cè)ADCK4基因轉(zhuǎn)錄起始位點(diǎn)-464 bp/+206 bp區(qū)域包含TFAP2A轉(zhuǎn)錄因子結(jié)合位點(diǎn);TFAP2A siRNA濃度分別為5、10、15 μmol/L,TFAP2A過(guò)表達(dá)質(zhì)粒質(zhì)量濃度分別為50、100、300 ?g/L,通過(guò)雙螢光素酶報(bào)告基因?qū)嶒?yàn)驗(yàn)證TFAP2A對(duì)ADCK4基因啟動(dòng)子水平的調(diào)控作用。TFAP2A siRNA及TFAP2A過(guò)表達(dá)質(zhì)粒轉(zhuǎn)染細(xì)胞,實(shí)時(shí)熒光定量PCR檢測(cè)TFAP2A、ADCK4 mRNA表達(dá),蛋白免疫印跡實(shí)驗(yàn)檢測(cè)TFAP2A、ADCK4蛋白表達(dá)。染色質(zhì)免疫沉淀試驗(yàn)驗(yàn)證TFAP2A與ADCK4啟動(dòng)子的特定區(qū)域結(jié)合。結(jié)果 生物信息學(xué)分析顯示FSGS腎組織中RNA-Seq RNA表達(dá)上調(diào)的基因273個(gè),表達(dá)下調(diào)的基因219個(gè);ADCK4與TFAP2A表達(dá)水平呈正相關(guān)(P<0.01)。雙螢光素酶報(bào)告基因?qū)嶒?yàn)證明TFAP2A siRNA濃度為10、15 μmol/L的ADCK4啟動(dòng)子相對(duì)螢光素酶活性增強(qiáng),TFAP2A過(guò)表達(dá)質(zhì)粒質(zhì)量濃度為100、300 ?g/L的ADCK4啟動(dòng)子螢光素酶活性降低(P<0.05)。與對(duì)照組相比,實(shí)驗(yàn)組ADCK4 mRNA和蛋白表達(dá)水平升高;過(guò)表達(dá)實(shí)驗(yàn)中,與對(duì)照組比較,實(shí)驗(yàn)組ADCK4 mRNA和蛋白表達(dá)水平降低(P<0.05)。染色質(zhì)免疫沉淀試驗(yàn)發(fā)現(xiàn)TFAP2A能與ADCK4啟動(dòng)子的特定區(qū)域結(jié)合。結(jié)論 轉(zhuǎn)錄因子TFAP2A負(fù)向調(diào)控ADCK4基因表達(dá),增加了調(diào)控足細(xì)胞重要基因的轉(zhuǎn)錄因子成員。
關(guān)鍵詞:腎小球硬化癥,局灶節(jié)段性;轉(zhuǎn)錄因子AP-2;啟動(dòng)區(qū),遺傳;轉(zhuǎn)錄調(diào)控;含aarF結(jié)構(gòu)域的激酶4
中圖分類號(hào):R726.92 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20231028
Transcriptional regulation of TFAP2A on glomerulosclerosis-related gene ADCK4
ZHANG Xiaotian, REN Xianguo△
Department of Pediatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211112, China
△Corresponding Author E-mail: renxianguo@126.com
Abstract: Objective To exploring the mechanism of transcriptional regulation of TFAP2A on? glomerulosclerosis-related gene aarF structural domain-containing kinase 4 (ADCK4) in cells and the specific binding region between TFAP2A and ADCK4. Methods Bioinformatics was used to analyze volcano map of glomerulosclerosis genes, and the relationship between ADCK4 and TFAP2A expression levels. JASPAR database was used to predict that ADCK4 gene transcription start site -464 bp/+206 bp region containing TFAP2A transcription factor binding site. TFAP2A siRNA concentrations were 5, 10 and 15 μmol/L, and the mass concentrations of TFAP2A overexpression plasmid were 50, 100 and 300 ?g/L, respectively. The regulatory effect of TFAP2A on the promoter level of the ADCK4 gene was verified by dual-luciferase reporter gene assay. TFAP2A siRNA and TFAP2A overexpression plasmid were used to transfect cells. Real-time fluorescence quantitative PCR was used to detect TFAP2A and ADCK4 mRNA expression. Protein immunoblotting assay was used to detect TFAP2A and ADCK4 protein expression. Chromatin immunoprecipitation assay was used to confirm TFAP2A binding to a specific region of the ADCK4 promoter. Results Bioinformatics analysis showed that 273 genes were up-regulated and 219 genes were down-regulated. The expression levels of ADCK4 and TFAP2A were positively correlated (P<0.01). Dual luciferase reporter gene assay demonstrated that the relative luciferase activity of ADCK4 promoter was enhanced with TFAP2A siRNA concentrations of 10 and 15 μmol/L, and that the luciferase activity of ADCK4 promoter was reduced when TFAP2A overexpression plasmid mass concentrations of 100 and 300 ?g/L (P < 0.05). ADCK4 mRNA and protein expression levels were increased in the TFAP2A siRNA group compared with the control siRNA group. ADCK4 mRNA and protein expression levels were decreased in the TFAP2A overexpression plasmid group compared with the pENTER plasmid group (P<0.05). Chromatin immunoprecipitation assay revealed that TFAP2A can bind to specific regions of? ADCK4 promoter. Conclusion Negative regulation of ADCK4 gene expression by the transcription factor TFAP2A increases the number of transcription factor members that regulate genes important for podocytes.
Key words: glomerulosclerosis, focal segmental; transcription factor AP-2; promoter region, genetic; transcriptional regulation; aarF structural domain-containing kinase 4
局灶節(jié)段性腎小球硬化(FSGS)在腎小球疾病中所占比例逐年上升,在兒童腎小球疾病病理中FSGS占20%[1]。病理類型為FSGS的患者中激素耐藥的比例達(dá)36%[2]。FSGS終末期腎病的發(fā)生率約為50%[3],F(xiàn)SGS是腎功能衰竭的主要原因[4]。目前FSGS的發(fā)病機(jī)制尚未完全明確,30%的激素耐藥腎病綜合征患兒是由單基因病引起[5]。目前認(rèn)為多種足細(xì)胞骨架蛋白損傷均可能導(dǎo)致FSGS,例如含aarF結(jié)構(gòu)域的激酶4(ADCK4)、肌動(dòng)蛋白α4(ACTN4)、瞬態(tài)受體電位陽(yáng)離子通道C亞家族成員6(TRPC6)及倒轉(zhuǎn)形成蛋白2(INF2)等,其中ADCK4定位在線粒體和足細(xì)胞足突上,與輔酶Q6(COQ6)發(fā)生內(nèi)源性相互作用[6]。目前嚴(yán)重腎病綜合征和快速進(jìn)展患者的治療方法仍有限[7]。對(duì)原發(fā)性FSGS發(fā)病機(jī)制的研究仍鮮見(jiàn),其中基因編輯及轉(zhuǎn)錄調(diào)控機(jī)制研究甚少。激活蛋白2(AP-2)轉(zhuǎn)錄因子于1987年首次從HeLa細(xì)胞中純化出來(lái)[8],AP-2轉(zhuǎn)錄因子蛋白家族包括TFAP2A、TFAP2B、TFAP2C、TFAP2D和TFAP2E。已有研究表明TFAP2A是腎臟發(fā)育過(guò)程中腎單位分化的新型分子[9],其在遠(yuǎn)曲小管分化中起到關(guān)鍵作用[10],抑制TFAP2A活性可調(diào)節(jié)腎單位節(jié)段發(fā)育[11],促進(jìn)細(xì)胞凋亡[12]。然而,TFAP2A對(duì)FSGS的影響及作用機(jī)制研究鮮見(jiàn)。本研究通過(guò)探究TFAP2A能否調(diào)控ADCK4表達(dá),TFAP2A與ADCK4啟動(dòng)子是否存在特異性結(jié)合區(qū)域,為FSGS的防治提供理論依據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料 人胚腎293T細(xì)胞系(HEK-293T)、螢光素酶報(bào)告基因質(zhì)粒pGL3-Basic、pTFAP2A質(zhì)粒及pENTER對(duì)照質(zhì)粒為本實(shí)驗(yàn)室保存;載有ADCK4啟動(dòng)子-464 bp/+206 bp的pGL3-Basic購(gòu)自上海捷瑞工程有限公司;實(shí)時(shí)熒光定量PCR(qRT-PCR)試劑盒(美國(guó)Bimake);胎牛血清(美國(guó)Gibco);LipofectamineTM3000轉(zhuǎn)染試劑(美國(guó)Invitrogen);雙螢光素酶報(bào)告基因檢測(cè)試劑盒(美國(guó)Promega);總蛋白提取試劑盒(南京凱基生物技術(shù)股份有限公司);GAPDH抗體(美國(guó)Proteintech);Total RNA Kit Ⅰ(美國(guó)ABI);轉(zhuǎn)染試劑p3000(美國(guó)Invitrogen);TFAP2A siRNA及其對(duì)照control siRNA(上海吉瑪制藥技術(shù)有限公司)。GAPDH、TFAP2A及ADCK4均為人源基因。兔TFAP2A抗體(美國(guó)Abcam),兔ADCK4抗體(美國(guó)Affinity公司)。辣根過(guò)氧化物酶標(biāo)記的山羊抗兔IgG(上海碧云天生物技術(shù)有限公司)。PVDF膜(美國(guó)Schleicher and Schuell Bioscience)。OMEGA plasmid mini kit Ⅰ(美國(guó)Omega公司小量質(zhì)粒提取試劑盒)。PCR熱循環(huán)儀(美國(guó)PE,PE-2400型);熒光定量PCR儀(美國(guó)Applied Biosystems,PRISM7500);伯樂(lè)凝膠成像儀(伯樂(lè)ChemiDocXRS,美國(guó))。
1.2 方法
1.2.1 生物信息學(xué)分析 利用生物信息學(xué)(Gene Expression Omnibus,GEO)數(shù)據(jù)庫(kù),在GSE108113高通量數(shù)據(jù)集中分析FSGS高表達(dá)及低表達(dá)基因火山圖,Gene Expression Profiling Interactive Analysis(GEPIA)數(shù)據(jù)庫(kù)中分析腎透明細(xì)胞癌中ADCK4及TFAP2A表達(dá)水平的關(guān)系。使用JASPAR數(shù)據(jù)庫(kù)(http://jaspar2018.genereg.net/)預(yù)測(cè)ADCK4基因轉(zhuǎn)錄起始位點(diǎn)上游-464 bp/+206 bp區(qū)域包含TFAP2A轉(zhuǎn)錄因子結(jié)合位點(diǎn)。
1.2.2 細(xì)胞培養(yǎng)及實(shí)驗(yàn)分組 從-70 ℃冰箱中取出凍存的HEK-293T細(xì)胞,放入37 ℃、5%CO2培養(yǎng)箱內(nèi)培養(yǎng),按照1∶3比例傳代。實(shí)驗(yàn)分為對(duì)照組和實(shí)驗(yàn)組,siRNA實(shí)驗(yàn)對(duì)照組用control siRNA,實(shí)驗(yàn)組用TFAP2A siRNA轉(zhuǎn)染細(xì)胞,檢測(cè)螢光素酶活性、mRNA及蛋白質(zhì)表達(dá)情況;過(guò)表達(dá)對(duì)照組用pENTER,過(guò)表達(dá)實(shí)驗(yàn)組用TFAP2A過(guò)表達(dá)質(zhì)粒,檢測(cè)螢光素酶活性、mRNA及蛋白質(zhì)表達(dá)情況。siRNA序列見(jiàn)表1。
1.2.3 真核細(xì)胞瞬時(shí)轉(zhuǎn)染及雙螢光素酶報(bào)告基因?qū)嶒?yàn) 將HEK-293T細(xì)胞接種于96孔板中,按LipofectamineTM3000使用說(shuō)明書(shū)進(jìn)行質(zhì)粒轉(zhuǎn)染。TFAP2A siRNA(濃度分別為5、10、15 μmol/L)、對(duì)照control siRNA及pGL3-464 bp/+206 bp質(zhì)粒轉(zhuǎn)染至HKE-293T細(xì)胞中。過(guò)表達(dá)實(shí)驗(yàn)TFAP2A過(guò)表達(dá)質(zhì)粒(質(zhì)量濃度分別為50、100、300 ?g/L),對(duì)照空載過(guò)表達(dá)質(zhì)粒pENTER及pGL3-464 bp/+206 bp質(zhì)粒轉(zhuǎn)染至HEK-293T細(xì)胞中,轉(zhuǎn)染24 h后多功能酶標(biāo)儀進(jìn)行雙螢光素酶報(bào)告基因?qū)嶒?yàn)驗(yàn)證TFAP2A對(duì)ADCK4基因啟動(dòng)子的調(diào)控作用。
1.2.4 qRT-PCR檢測(cè)細(xì)胞中TFAP2A和ADCK4 mRNA的表達(dá) 按Total RNA kitⅠ試劑盒說(shuō)明書(shū)提取12孔板中處理過(guò)的HEK-293T細(xì)胞總RNA,并逆轉(zhuǎn)錄成cDNA。逆轉(zhuǎn)錄條件:37 ℃ 15 min,85 ℃ 5 s,所得產(chǎn)物4 ℃保存。按照美國(guó)Applied Biosystems公司PRISM7500熒光定量PCR說(shuō)明書(shū)配好反應(yīng)體系(20 ?L):2×SYBR Green qRCR Master Mix 10 ?L,cDNA 2 ?L,上、下游引物各1 ?L,ROX Reference Dye 0.4 ?L,ddH2O 5.6 ?L。擴(kuò)增反應(yīng)條件:95 ℃預(yù)變性10 min;95 ℃ 15 s,60 ℃ 30 min,72 ℃ 30 s,共40個(gè)循環(huán)。以GAPDH為內(nèi)參,采用2-ΔΔCt法計(jì)算mRNA相對(duì)表達(dá)量。引物序列見(jiàn)表2。
1.2.5 蛋白免疫印跡實(shí)驗(yàn)(Western blot)檢測(cè)TFAP2A和ADCK4蛋白的表達(dá) 將1×105個(gè)細(xì)胞接種至6孔板,貼壁后分別用siRNA或過(guò)表達(dá)處理細(xì)胞48 h后收集細(xì)胞,樣本經(jīng)10%SDS-聚丙烯酰胺凝膠電泳(100 V)恒壓分離,然后按照凝膠面積以0.65 mA/cm2橫流電轉(zhuǎn)移1.5 h將蛋白自凝膠轉(zhuǎn)印至PVDF膜,PVDF膜經(jīng)5%脫脂奶粉封閉2 h,分別加ADCK4(1∶2 000)、TFAP2A(1∶5 000)和GAPDH抗體(1∶2 000),免疫雜交過(guò)夜(12~16 h);TBST漂洗后加入適量辣根過(guò)氧化物酶標(biāo)記的山羊抗兔IgG(1∶2 000)后封膜,37 ℃搖床2 h;TBST漂洗,伯樂(lè)凝膠成像儀曝光,以GAPDH為內(nèi)參,實(shí)驗(yàn)重復(fù)3次。
1.2.6 染色質(zhì)免疫沉淀(ChIP)擴(kuò)增含有TFAP2A結(jié)合位點(diǎn)的ADCK4啟動(dòng)子序列 使用EZ-Magna ChIPTM試劑盒(17-10086)進(jìn)行ChIP檢測(cè),待細(xì)胞生長(zhǎng)至1×107個(gè),加37%甲醛固定,超聲打斷細(xì)胞DNA至DNA片段在200~1 000 bp,用2%瓊脂糖凝膠對(duì)10 ?L DNA產(chǎn)物進(jìn)行電泳,紫外燈下可見(jiàn)大部分DNA片段位于200~1 000 bp,DNA-Protein交聯(lián),解交聯(lián)DNA-Protein合物,進(jìn)行DNA純化。PCR反應(yīng)體系:DNA 2.0 ?L、ddH2O 12.6 ?L、10×PCR Buffer 2.0 ?L、MgCl2(50 mmol/L)0.6 ?L、2.5 mmol/L dNTP 1.6 ?L、Control Primers/ADCK4 ChIP primers 0.8 ?L、Taq(5 U/?L)0.4 ?L、Total Volume 20 ?L,震蕩混合均勻短暫離心。PCR反應(yīng)條件:94 ℃預(yù)變性3 min;94 ℃變性20 s,59 ℃退火30 s,72 ℃延伸30 s,循環(huán)32次;72 ℃延伸2 min。用2%瓊脂糖凝膠電泳對(duì)PCR產(chǎn)物進(jìn)行電泳。用紫外線對(duì)電泳后的瓊脂糖凝膠進(jìn)行拍照。與全染色體為模板的對(duì)照(Input)相比,TFAP2A抗體特異性結(jié)合DNA,產(chǎn)物條帶亮度略淡,陰性對(duì)照則無(wú)特異性DNA條帶。引物序列見(jiàn)表2。
1.3 統(tǒng)計(jì)學(xué)方法 采用GraphPad prism 6.0軟件進(jìn)行數(shù)據(jù)分析。計(jì)量資料以[[x] ±s
]表示,2組間比較采用t檢驗(yàn);多組間比較采用單因素方差分析,組間多重比較行LSD-t檢驗(yàn)。線性相關(guān)分析采用Pearson法。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 生物信息學(xué)分析腎小球硬化基因表達(dá)火山圖及TFAP2A與ADCK4的關(guān)系 GEO數(shù)據(jù)庫(kù)中,GSE108113高通量數(shù)據(jù)集為FSGS腎組織中RNA-Seq RNA相對(duì)表達(dá)量的檢測(cè)結(jié)果,表達(dá)上調(diào)的基因273個(gè),表達(dá)下調(diào)的基因219個(gè);GEPIA數(shù)據(jù)庫(kù)分析證明腎透明細(xì)胞癌中TFAP2A與ADCK4表達(dá)水平呈正相關(guān)(r=0.600,P<0.01),見(jiàn)圖1。
2.2 JASPAR數(shù)據(jù)庫(kù)預(yù)測(cè)TFAP2A轉(zhuǎn)錄因子結(jié)合位點(diǎn) JASPAR數(shù)據(jù)庫(kù)預(yù)測(cè)ADCK4基因轉(zhuǎn)錄起始位點(diǎn)上游-464 bp/+206 bp區(qū)域包含2個(gè)TFAP2A轉(zhuǎn)錄因子結(jié)合位點(diǎn),第1個(gè)結(jié)合位點(diǎn)位于-428 bp~-418 bp,第2個(gè)結(jié)合位點(diǎn)位于-171 bp~-163 bp,見(jiàn)圖2。
2.3 TFAP2A下調(diào)ADCK4啟動(dòng)子活性 雙螢光素酶報(bào)告基因?qū)嶒?yàn)結(jié)果顯示,與陰性對(duì)照相比,含ADCK4基因5'側(cè)翼序列的-464 bp/+206 bp區(qū)域螢光素酶報(bào)告基因表達(dá)載體螢光素酶活性明顯升高(t=14.650,P<0.01)。siRNA實(shí)驗(yàn)結(jié)果顯示,10、15 ?mol/L實(shí)驗(yàn)組的ADCK4啟動(dòng)子相對(duì)螢光素酶活性增強(qiáng)(F=11.420,P<0.05),5 ?mol/L實(shí)驗(yàn)組的ADCK4啟動(dòng)子相對(duì)螢光素酶活性無(wú)明顯改變(P>0.05),見(jiàn)圖3。過(guò)表達(dá)實(shí)驗(yàn)結(jié)果顯示,100、300 ?g/L實(shí)驗(yàn)組的TFAP2A過(guò)表達(dá)質(zhì)粒ADCK4啟動(dòng)子螢光素酶活性降低(F=4.973,P<0.05),50 ?g/L實(shí)驗(yàn)組的TFAP2A過(guò)表達(dá)質(zhì)粒ADCK4啟動(dòng)子螢光素酶活性無(wú)明顯改變(P>0.05),見(jiàn)圖4。
2.4 TFAP2A下調(diào)ADCK4 mRNA表達(dá) 與對(duì)照組相比,實(shí)驗(yàn)組TFAP2A mRNA表達(dá)水平降低,ADCK4 mRNA表達(dá)水平升高(P<0.05),見(jiàn)圖5。過(guò)表達(dá)實(shí)驗(yàn)中,與對(duì)照組比較,實(shí)驗(yàn)組TFAP2A mRNA表達(dá)水平升高,ADCK4 mRNA表達(dá)水平降低(P<0.05),見(jiàn)圖6。
2.5 TFAP2A下調(diào)ADCK4蛋白表達(dá) 與對(duì)照組相比,實(shí)驗(yàn)組TFAP2A蛋白表達(dá)水平降低,ADCK4蛋白表達(dá)水平升高(P<0.05);過(guò)表達(dá)實(shí)驗(yàn)中,與對(duì)照組比較,實(shí)驗(yàn)組TFAP2A蛋白表達(dá)水平升高,ADCK4蛋白表達(dá)水平降低(P<0.05),見(jiàn)圖7、表3。
2.6 TFAP2A與ADCK4啟動(dòng)子區(qū)域直接結(jié)合 ChIP實(shí)驗(yàn)結(jié)果顯示,用TFAP2A抗體下拉TFAP2A蛋白與細(xì)胞核內(nèi)基因相結(jié)合的片段,IgG抗體下拉細(xì)胞中蛋白與基因片段時(shí),未發(fā)現(xiàn)非特異性IgG的結(jié)合。結(jié)果證明TFAP2A可在體內(nèi)與ADCK4啟動(dòng)子基因特異性結(jié)合,見(jiàn)圖8。
3 討論
FSGS的發(fā)病機(jī)制主要集中在原發(fā)性、遺傳性和繼發(fā)性,后者包括適應(yīng)不良、病毒相關(guān)和藥物誘發(fā)的FSGS[7],針對(duì)原發(fā)性FSGS具體發(fā)病機(jī)制的研究尚少見(jiàn)。原發(fā)性FSGS患者腎移植后的復(fù)發(fā)率仍達(dá)30%~80%[13],但基因治療后極少?gòu)?fù)發(fā),且可減少免疫抑制劑的用量及不良反應(yīng)的發(fā)生[14]。有研究表明,AQP1啟動(dòng)子變異可影響腹膜中水通道的表達(dá),且對(duì)腎功能衰竭患者腹膜透析治療過(guò)程中水的運(yùn)輸產(chǎn)生影響[15]。系統(tǒng)性紅斑狼瘡中自身抗體和干擾素α(IFN-α)可促進(jìn)環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白α(CREMα)的核易位及其與中性粒細(xì)胞中谷胱甘肽過(guò)氧化物酶4(Gpx4)啟動(dòng)子的結(jié)合,從而抑制Gpx4表達(dá),誘發(fā)鐵死亡[16]。因此,關(guān)于FSGS的啟動(dòng)子及轉(zhuǎn)錄調(diào)控研究可為疾病治療提供理論基礎(chǔ)。
本課題組前期研究已確定ADCK4核心啟動(dòng)子區(qū)[17],通過(guò)構(gòu)建ADCK4啟動(dòng)子螢光素酶基因報(bào)告重組質(zhì)粒,瞬時(shí)轉(zhuǎn)染、螢光素酶活性檢測(cè),證實(shí)構(gòu)建的ADCK4啟動(dòng)子具有啟動(dòng)子活性,提示ADCK4基因的5'側(cè)翼序列的-464 bp/+206 bp區(qū)域是一個(gè)有功能的啟動(dòng)子。mRNA轉(zhuǎn)錄調(diào)控通過(guò)不同的啟動(dòng)子活性和5'UTR序列賦予物種特異性的轉(zhuǎn)錄和翻譯調(diào)節(jié)功能[18]。本研究通過(guò)JASPAR軟件預(yù)測(cè)ADCK4啟動(dòng)子區(qū)含有TFAP2A轉(zhuǎn)錄因子結(jié)合位點(diǎn),并在啟動(dòng)子、mRNA和蛋白水平驗(yàn)證轉(zhuǎn)錄因子TFAP2A對(duì)ADCK4具有負(fù)向調(diào)控作用;ChIP實(shí)驗(yàn)確定TFAP2A與ADCK4啟動(dòng)子區(qū)域特異結(jié)合。啟動(dòng)子區(qū)的確定及啟動(dòng)子的轉(zhuǎn)錄調(diào)控機(jī)制是疾病基因治療的基礎(chǔ),已有文獻(xiàn)報(bào)道采用成簇規(guī)則間隔短回文重復(fù)序列/相關(guān)蛋白9(CRISPR/Cas9)技術(shù)糾正啟動(dòng)子區(qū)的基因變異來(lái)治療有關(guān)疾病,局部注射由小向?qū)NA(sgRNA)指引的CRISPR相關(guān)蛋白9融合腺嘌呤剪輯編輯器CjABE的腺病毒,可抑制帶有TRET啟動(dòng)子突變的神經(jīng)膠質(zhì)瘤的生長(zhǎng)[19]。CRISPR介導(dǎo)的啟動(dòng)子或增強(qiáng)子激活可挽救由單倍體不足引起的肥胖[20]。本研究證明轉(zhuǎn)錄因子TFAP2A可以調(diào)控足細(xì)胞相關(guān)基因ADCK4的表達(dá),增加了調(diào)控足細(xì)胞重要基因的轉(zhuǎn)錄因子成員。
ADCK4啟動(dòng)子范圍的確定有利于解釋二代測(cè)序基因上游非編碼啟動(dòng)子區(qū)發(fā)生突變的臨床意義,為生物信息學(xué)分析數(shù)據(jù)集提供了有功能意義的新數(shù)據(jù),對(duì)于開(kāi)發(fā)新型靶向基因治療方法具有重要意義。但TFAP2A調(diào)控ADCK4表達(dá)對(duì)鐵死亡、細(xì)胞凋亡及細(xì)胞焦亡的影響及其機(jī)制尚待進(jìn)一步深入研究。
參考文獻(xiàn)
[1] SUN L,ZHANG X,WANG Z. ADCK4 gene polymorphism aggravates renal damage caused by focal segmental glomerulosclerosis with COL4A3 mutation[J]. Biosci Rep,2021,41(1):BSR20203248. doi:10.1042/BSR20203248.
[2] NAKAGAWA N,KIMURA T,SAKATE R,et al. Demographics and treatment of patients with primary nephrotic syndrome in Japan using a national registry of clinical personal records[J]. Sci Rep,2023,13(1):14771. doi:10.1038/s41598-023-41909-5.
[3] HODSON E M,SINHA A,COOPER T E. Interventions for focal segmental glomerulosclerosis in adults[J]. Cochrane Database Syst Rev,2022,2(2):CD003233. doi:10.1002/14651858.CD003233.pub3.
[4] DE VRIESE A S,WETZELS J F,GLASSOCK R J,et al. Therapeutic trials in adult FSGS:lessons learned and the road forward[J]. Nat Rev Nephrol,2021,17(9):619-630. doi:10.1038/s41581-021-00427-1.
[5] FANG Z,ZHANG C,JIN Y,et al. Adult-onset focal segmental glomerulosclerosis with steroid-dependent nephrotic syndrome caused by a novel TBC1D8B variant:a case report and literature review[J]. Am J Kidney Dis,2023,81(2):240-244. doi:10.1053/j.ajkd.2022.06.012.
[6] ZHAI S B,ZHANG L,SUN B C,et al. Early-onset COQ8B(ADCK4) glomerulopathy in a child with isolated proteinuria:a case report and literature review[J]. BMC Nephrol,2020,21(1):406. doi:10.1186/s12882-020-02038-7.
[7] MORRIS A D,F(xiàn)LOYD L,WOYWODT A,et al. Rituximab in the treatment of primary FSGS:time for its use in routine clinical practice?[J]. Clin Kidney J,2023,16(8):1199-1205. doi:10.1093/ckj/sfad122.
[8] MITCHELL P J,WANG C,TJIAN R. Positive and negative regulation of transcription in vitro:enhancer-binding protein AP-2 is inhibited by SV40 T antigen[J]. Cell,1987,50(6):847-861. doi:10.1016/0092-8674(87)90512-5.
[9] CHAMBERS B E,GERLACH G F,CLARK E G,et al. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development[J]. Development,2019,146(13):dev172387. doi:10.1242/dev.172387.
[10] CHAMBERS B E,CLARK E G,GATZ A E,et al. Kctd15 regulates nephron segment development by repressing Tfap2a activity[J]. Development,2020,147(23):dev191973. doi:10.1242/dev.191973.
[11] MIAO Z,BALZER M S,MA Z,et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets[J]. Nat Commun,2021,12(1):2277. doi:10.1038/s41467-021-22266-1.
[12] MUTO Y,WILSON P C,LEDRU N,et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney[J]. Nat Commun,2021,12(1):2190. doi:10.1038/s41467-021-22368-w.
[13] UFFING A,PEREZ-SAEZ M J,MAZZALI M,et al. Recurrence of FSGS after kidney transplantation in adults[J]. Clin J Am Soc Nephrol,2020,15(2):247-256. doi:10.2215/CJN.08970719.
[14] DOCTOR G T,GALE D P,CHAN M M. Genomics in the kidney clinic[J]. Clin Med(Lond),2023,23(3):246-249. doi:10.7861/clinmed.2023-RM2.
[15] MORELLE J,MARECHAL C,YU Z,et al. AQP1 promoter variant,water transport,and outcomes in peritoneal dialysis[J]. N Engl J Med,2021,385(17):1570-1580. doi:10.1056/NEJMoa2034279.
[16] LI P,JIANG M,LI K,et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol,2021,22(9):1107-1117. doi:10.1038/s41590-021-00993-3.
[17] CHEN X,LIU S,CHEN J,et al. Transcription factor Kruppel-like factor 5 positively regulates the expression of AarF domain containing kinase 4[J]. Mol Biol Rep,2020,47(11):8419-8427. doi:10.1007/s11033-020-05882-w.
[18] HUA P,BADAT M,HANSSEN L L P,et al. Defining genome architecture at base-pair resolution[J]. Nature,2021,595(7865):125-129. doi:10.1038/s41586-021-03639-4.
[19] LI X,QIAN X,WANG B,et al. Programmable base editing of mutated TERT promoter inhibits brain tumour growth[J]. Nat Cell Biol,2020,22(3):282-288. doi:10.1038/s41556-020-0471-6.
[20] MATHARU N,RATTANASOPHA S,TAMURA S,et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency[J]. Science,2019,363(6424):eaau0629. doi:10.1126/science.aau0629.
(2023-09-19收稿 2024-01-11修回)
(本文編輯 陳麗潔)