冉欣雨 黃文俊 鐘彩虹
DOI:10.13925/j.cnki.gsxb.20230345
摘? ? 要:獼猴桃為國際重要水果種類,已成為我國精準扶貧、鄉(xiāng)村振興的“金果果”。淀粉作為植物光合作用固定碳形成的主要碳水化合物,在植物的整個生長發(fā)育過程中具有重要作用。獼猴桃果實屬于淀粉積累型水果,在臨近商業(yè)采收時淀粉積累達到峰值,然后隨著果實軟化成熟淀粉降解為糖,果實甜度增高,風味品質(zhì)形成。同時,獼猴桃屬于呼吸躍變型果實,具有生理后熟屬性,采后易軟化,不耐貯藏。淀粉作為細胞內(nèi)容物對維持細胞膨壓,支持果實硬度起著重要作用。隨著獼猴桃基因組的測序完成,獼猴桃果實淀粉代謝分子研究取得新的進展,尤其是淀粉降解方面,但是目前對獼猴桃果實淀粉代謝進展的整理與歸納還鮮有報道。因此,從獼猴桃果實淀粉的理化性質(zhì)、植物淀粉代謝途徑以及獼猴桃果實淀粉代謝分子機制三個方面展開,并結(jié)合淀粉與獼猴桃果實風味品質(zhì)、成熟軟化的關(guān)系,對獼猴桃果實淀粉研究現(xiàn)狀與進展進行綜述,為以后創(chuàng)制優(yōu)質(zhì)高淀粉耐貯藏獼猴桃新材料或選育新品種,以及建立即食供應的快速后熟技術(shù)體系提供理論支撐。
關(guān)鍵詞:獼猴桃;淀粉合成;淀粉降解;果實品質(zhì);成熟軟化;分子機制
中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2024)02-0325-13
Advance in starch metabolism research of kiwifruit
RAN Xinyu1, 2, HUANG Wenjun1*, ZHONG Caihong1
(1Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China; 2University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: Kiwifruit (Actinidia chinensis Planch.) is well known as “the king of fruit” and deeply loved by consumers at home and abroad because of its unique flavor and being rich in a variety of vitamins, dietary fiber, mineral elements and other nutrients. As the rapid development of kiwifruit industry in China, kiwifruit has become “Golden fruit” of the targeted poverty alleviation and rural revitalization. Starch, as the main carbohydrate derived from carbon with plant photosynthesis, plays an important role in plant whole growth and development. The kwifruit belongs to the starch-accumulating fruit, and the photosynthetic products are accumulated and converted into starch during the fruit growth and development close to the commercial harvest. The starch in kiwifruit is present in the form of particles, which increase from 3-4 μm to 10-12 μm during the fruit growth and then decrease to 6-8 μm with maturity and then disappeared finally when fruit ripens. The starch accumulation is strongly similar among different cultivars or germplasm, but the starch content differs at same stages of fruit growth and development. Initially, there is little starch accumulation in the early stages of fruit development, and starch starts to accumulate only after the increase of the cell volume and weight and reaches to the peak close to the commercial harvest, accounting for 40% of the dry matter of the fruit. At this time, 80% of the starch in the pericarp is mainly amylopectin. During storage period after harvesting, the starch is degraded into sugar with fruit softening and ripening, leading to the increase of sweetness with about 10% of sugar content and the formation of fruit flavour. In higher plants, the starch metabolism involves starch biosynthesis and starch degradation pathways. There are two ways to synthesis starch, including transient starch synthesis in the chloroplasts of photosynthetic tissue and storage starch synthesis in the amyloplast of non-photosynthetic tissue. The starch degradation begins with the hydrolysis of intact starch granules, and then the α-1, 6-glucoside bond is transferred to form linear dextran and finally degraded into glucose under the action of a series of enzymes. The starch metabolic pathway has been thoroughly studied in Arabidopsis thaliana and cereals, and the genes encoding enzymes involved in the starch metabolic pathway such as AGP pyrophosphorylase (AGPase) starch synthase (SSS), starch branching enzyme (SBE), starch debranching enzyme (DBE), starch phosphorylase (SP), α-amylase (AMY) and β-amylase (BAM) has also been identified. Compared with the starch degradation pathway in kiwifruit, the molecular mechanism of starch biosynthesis and accumulation before harvest is still unclear. The studies of starch content during kiwifruit growth and development have been largely reported, as well as the enzymes involved in starch biosynthesis. The AGPase enzyme is proposed to be the key enzyme for starch synthesis but without strong evidences, and the genes encoding AGPase and other biosynthetic enzymes and the molecular regulatory mechanism for starch synthesis in kiwifruit is still unknown. The kiwifruit is an atypical climacteric fruit type with softening and ripening ability after harvest, and easy to soften and decay after harvest, and does not store well for a long time at ambient temperature. How to prolong storage and shelf life periods without sacrificing fruit quality is always the hot spot of kiwifruit research. Starch, as the cell filling contents plays an essential role in maintaining cell turgor and supporting fruit firmness. Therefore, starch degradation is strongly associated with fruit softening and thus more attention has been paid, compared with the starch biosynthesis. The starch degradation in kiwifruit is regulated by not only ethylene and also low temperature. Although the kiwifruit itself produces very low amount of ethylene, but is very sensitive to exogenous ethylene. Even extremely low concentration of ethylene (0.1 μL·L-1) still can promote starch degradation and fruit softening at low temperature. The ethylene-induced fruit ripening has been completely and deeply studied. Meanwhile, several recent reports indicated that low temperature at appropriately 10 degree could also induce starch degradation and fruit softening under no detectable ethylene present, suggesting fruit ripening induced by low temperature could be another regulation way, independent on ethylene regulation pathway. Utilizing the low temperature to induce fruit softening and ripening becomes an alternative way to provide ready-to-eat fruit for packhouse and consumers, and now this method applied in postharvest commercial management has appeared, but the scale is relatively small and the operation protocol is not well developed. The concern is also taken into account that the ripened fruit due to low temperature usually lacks volatile aroma of ethylene-induced ripe fruit. With the completion of the genome sequencing of the kiwifruit, the research of the starch metabolism in kiwifruit has gradually shifted from the traditional study of starch accumulation pattern and the change of metabolic enzyme activity to the study of important gene mining and molecular regulation mechanism, and some new progresses have been made in the molecular regulatory mechanism of the starch degradation. However, substantial breakthroughs have not been made in the molecular regulation of the starch synthesis and accumulation up to now, and the summary of the starch metabolism studies in kiwifruit is still limited. Therefore, this review focused on the physio-chemical properties of the starch in kiwifruit, the starch metabolic pathway of plant and the molecular mechanism of the starch metabolism in kiwifruit. Combined with the relationship between starch metabolism and flavor quality, ripening and softening of kiwifruit, the current status and progresses of the starch researches in kiwifruit were reviewed. In future, the molecular regulatory mechanism of the starch degradation and fruit flavor formation should be further studied, and the study of starch synthesis pathway and molecular regulation mechanism should be deeply strengthened, which is of great significance for creating new varieties or new germplasm with high content of starch and high quality, and controlling fruit softening and ripening to provide ready-to-eat kiwifruit.
Key words: Actinidia; Starch biosynthesis; Starch degradation; Fruit quality; Ripening and softening; Molecular mechanism
獼猴桃(Actinidia chinensis Planch.)隸屬獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.),是一種原產(chǎn)于我國的藤本果樹。獼猴桃屬植物全世界有54個種,21個變種,共75個分類單元;其中,我國有52個種,泛意上獼猴桃是我國的特有屬,我國蘊藏著豐富的獼猴桃種質(zhì)資源。獼猴桃果實因具有獨特的風味,富含多種維生素、有機酸、膳食纖維、多糖、礦物質(zhì)元素及多種人體必需的氨基酸等營養(yǎng)成分而深受國內(nèi)外消費者喜愛[1]。自2009年起,我國獼猴桃種植面積和產(chǎn)量連續(xù)10 a(年)穩(wěn)居世界第一,根據(jù)聯(lián)合國糧農(nóng)組織(FAO)統(tǒng)計數(shù)據(jù),至2019年我國獼猴桃收獲面積為18.26萬hm2,年產(chǎn)量219.7萬t,分別占全球的67.9%和50.5%[2]。
淀粉是植物光合作用固定碳而形成的主要碳水化合物,在植物生長發(fā)育過程中具有重要的生物學作用。淀粉作為主要的儲存型代謝物,廣泛存在于植物不同器官中,為植物生長發(fā)育提供必要的能量[3]。研究表明,植物葉片產(chǎn)生的光合同化產(chǎn)物大部分是以蔗糖或/和山梨醇的形式存在,經(jīng)韌皮部長途運輸后卸載到正在生長發(fā)育的果實內(nèi),然后在有關(guān)酶的作用下進行一系列的代謝或跨膜運輸,最終以淀粉、蔗糖/山梨醇、果糖或葡萄糖等形式在果實內(nèi)積累[4]。獼猴桃果實屬于淀粉積累型水果,在生長發(fā)育過程中,光合產(chǎn)物被積累并轉(zhuǎn)化為淀粉[5]。在獼猴桃果實積累淀粉之前,果實中的碳水化合物供應有限,首先需要滿足細胞分裂活動而不能進行貯藏性物質(zhì)淀粉的累積[6];待果實發(fā)育前期完成體積和質(zhì)量增加后才開始進行淀粉的積累和轉(zhuǎn)化;但果實一旦開始成熟,淀粉又降解成糖。采摘后的獼猴桃果實不能再從母體獲得養(yǎng)料和水分,也不能再獲取葉片光合作用合成的碳水化合物,于是鮮活的果實必須通過呼吸作用消耗體內(nèi)貯藏的淀粉或糖等碳水化合物,進行一系列的生理生化變化,產(chǎn)生能量以維持生命的延續(xù)。已有多項研究報道了不同獼猴桃品種的果實發(fā)育與淀粉積累規(guī)律[7-9],即在果實早期發(fā)育階段幾乎沒有淀粉的積累,直到完成細胞分裂才開始積累淀粉,然后在商業(yè)采收之前淀粉含量達到峰值,約為果實干質(zhì)量的40%[7]。在采后的貯藏過程中,幾乎所有淀粉降解并轉(zhuǎn)化為糖,果實甜度增加并達到可食用狀態(tài),軟熟后的獼猴桃果實中含糖量通常高達10%[8-9]。Richardson等[9]構(gòu)建了一個基于BBCH(biologische bundesanstalt,bundessortenamt und chemische industrie)系統(tǒng)的獼猴桃果實生長發(fā)育模型,表明淀粉從BBCH73期開始(開花后4 d)在果實中積累,直到BBCH84期(開花后190 d)時達到最大值,之后被迅速分解并轉(zhuǎn)化成相似濃度的蔗糖、葡萄糖和果糖。
獼猴桃淀粉代謝與果實風味品質(zhì)和耐貯性緊密相關(guān)。獼猴桃果實采收之前淀粉合成與積累越多,果實軟熟后的總糖含量就越高,風味品質(zhì)就越好。然而獼猴桃又屬于非典型的呼吸躍變型果實,具有生理后熟屬性,采后易軟化腐爛,不耐貯藏[10]。在果實后熟過程中,淀粉和果膠不斷降解,果實質(zhì)地變軟,硬度下降,甜度升高,果實變得美味可食。所以,調(diào)控淀粉降解可以控制果實軟化速率,從而影響果實貯藏期和貨架期。近十年來,隨著獼猴桃基因組的測序完成[11],獼猴桃淀粉代謝研究已從傳統(tǒng)的淀粉積累模式及其代謝酶活性的變化等研究逐步轉(zhuǎn)移到重要基因挖掘與分子調(diào)控機制研究,其中在淀粉降解方面取得重要進展,但是目前關(guān)于獼猴桃淀粉代謝研究進展的整理與歸納鮮有報道。因此,筆者在本文中將重點從獼猴桃果實淀粉的理化性質(zhì)、植物淀粉代謝途徑以及獼猴桃果實淀粉代謝分子機制等三個方面,并結(jié)合淀粉與獼猴桃果實風味品質(zhì)、成熟軟化的關(guān)系,就國內(nèi)外相關(guān)研究進展進行綜述,為未來創(chuàng)制優(yōu)質(zhì)高淀粉耐貯藏獼猴桃新材料或選育新品種,或建立即食供應的快速后熟技術(shù)體系提供理論支撐。
1 獼猴桃果實中淀粉的理化性質(zhì)
淀粉是貯藏器官中最豐富的碳水化合物,分子式為(C6H10O5)n,由葡萄糖分子聚縮而成,以分子結(jié)構(gòu)不同分為直鏈淀粉和支鏈淀粉[12]。直鏈淀粉是線性的,葡萄糖基單位以α-1,4-糖苷鍵連接。支鏈淀粉的骨架通過α-1,4-糖苷鍵連接呈線性,而葡聚糖鏈通過α-1,6-糖苷鍵呈高度分支[13]。Bertoft等[14]研究了17種不同支鏈蛋白的內(nèi)部單位鏈組成,并將其分為4類,獼猴桃支鏈淀粉則屬于第4類,即在各種支鏈淀粉中短鏈數(shù)量最少,長鏈數(shù)量最多[15]。相對于其他玉米、谷物等普通淀粉,獼猴桃淀粉不僅具有很高的峰值黏度、最終黏度和挫折黏度,而且富含大量的鉀、鈣、鎂等礦物元素,其中鉀含量是普通淀粉的3~30倍[16-17]。
淀粉以顆粒狀態(tài)(即淀粉粒)存在,在獼猴桃果實生長發(fā)育過程中呈現(xiàn)動態(tài)變化。獼猴桃果實采收時淀粉含量(w,后同)通常處于最高水平,果肉中的淀粉主要為支鏈淀粉,占比80%,且支鏈淀粉分子質(zhì)量較小[15,18]。研究表明不同獼猴桃品種(包括Hayward、Gold3、Gold9和Hort16A)果實中的淀粉具有相對一致的顆粒形態(tài),淀粉分子徑向有序排列使其具有準晶體結(jié)構(gòu),即淀粉粒[16-18]。淀粉粒在獼猴桃果實生長發(fā)育過程中,不僅表現(xiàn)為粒徑大小的動態(tài)變化,還涉及淀粉粒結(jié)構(gòu)的變化。伴隨獼猴桃果實生長發(fā)育,淀粉粒平均粒徑從3~4 μm增加至10~12 μm,然后在成熟果實中又下降到6~8 μm[19]。在淀粉粒增大的同時,支鏈淀粉的內(nèi)部和外部結(jié)構(gòu)保持相似,表明獼猴桃淀粉粒從中心到外圍的分子結(jié)構(gòu)是均勻排列的[20]。掃描電鏡結(jié)果表明,剛采收的未成熟獼猴桃果實內(nèi)緊密排列著5~10 μm大小的淀粉粒,其邊緣輪廓清晰且完整,有利于果實質(zhì)地的保持;隨著獼猴桃軟熟,淀粉粒變得皺褶和粗糙,并最終消失,細胞間隙增大[21]。
淀粉在質(zhì)體中合成,形成淀粉體。在高等植物中,淀粉可在光合細胞的質(zhì)體或非光合細胞的質(zhì)體中合成。Possingham等[22]發(fā)現(xiàn)獼猴桃外果皮的葉綠體具有明確的基粒和類似于菠菜的基粒間膜系統(tǒng),因此有可能通過光合作用形成淀粉。而Hallett等[18]發(fā)現(xiàn)獼猴桃果心的質(zhì)體不含基粒堆,沒有光合作用形成淀粉的潛力。合成的淀粉在質(zhì)體中貯藏起來,形成淀粉體,又稱造粉體,是一種異養(yǎng)型質(zhì)體,具有雙層膜結(jié)構(gòu)和遺傳物質(zhì)[23]。隨著獼猴桃果實成熟,淀粉體質(zhì)膜發(fā)生降解,其包裹的淀粉粒分散并降解,淀粉逐漸降解為可溶性糖[24];同時淀粉體分化為有色體[25],但是關(guān)于獼猴桃果實淀粉體的起源和最終命運還尚未定論。前人研究發(fā)現(xiàn)在獼猴桃果實冷藏開始時,淀粉粒從果實各組織內(nèi)的葉綠體中散落出來,并且隨著冷藏時間延長,葉綠體數(shù)量減少,淀粉粒水解[26]。這說明淀粉體有可能起源于葉綠體[24]。
獼猴桃果實不同組織中的淀粉存在結(jié)構(gòu)或含量方面的差異。獼猴桃果實有時會出現(xiàn)“硬心”現(xiàn)象,即果肉已經(jīng)軟化,但是果心仍然是硬的,嚴重時強烈影響果實的食用。其外在原因是果心的軟化速率慢于果肉。Burdon等[27]發(fā)現(xiàn)Hayward獼猴桃果實不同組織的軟化速率不同,果肉硬度變化曲線呈S型下降,果心硬度則近似線性降低,果心的軟化速率滯后于果肉,從而出現(xiàn)“硬心”現(xiàn)象。其生理原因可能與不同組織中的淀粉結(jié)構(gòu)或含量不同有關(guān)[28]。前人研究報道Hayward獼猴桃果皮和果心組織中的生物組成、淀粉濃度和細胞器是不同的,外果皮中的淀粉粒大于果心中的淀粉粒,且隨著果實軟化而減小,但果心中的淀粉粒密度高于外果皮,因此果心淀粉濃度也更高[18]。如果這些淀粉粒密度和含量按照相同的速率降解,那么果心的淀粉含量就可能高于果肉,從而導致果心硬度高于果肉。然而在中華獼猴桃黃肉品種(包括Gold3、Gold9和Hort16A)中出現(xiàn)了相反的報道,其外果皮總淀粉含量(38.6%~51.8%)略高于果心總淀粉含量(34.6%~40.7%),但是不同品種間理化性質(zhì)和組成上的差異相對較小,表明淀粉可能不是影響不同品種獼猴桃貯藏期和貨架期的關(guān)鍵因素[29]。
2 植物淀粉代謝途徑
淀粉合成途徑分為在光合組織葉綠體中進行的瞬時淀粉合成和在非光合組織淀粉體中完成的儲藏淀粉合成。瞬時淀粉合成是指通過卡爾文循環(huán)固定CO2,并形成3-磷酸甘油酸(3-phosphoglycerate,3-PGA),轉(zhuǎn)化為磷酸丙糖(triosephosphates,TP),通過丙糖-磷酸易位體,轉(zhuǎn)運至胞液中,或在葉綠體中轉(zhuǎn)變成6-磷酸果糖(fructose-6-phosphate,F(xiàn)6P),再先后轉(zhuǎn)變成6-磷酸葡萄糖(glucose-6-phosphate,G6P)和1-磷酸葡萄糖(glucose-1-phosphate,G1P)。G1P在ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,AGPase)作用下形成腺苷二磷酸葡萄糖(ADP-glucose,ADPG)之后,在淀粉合成酶(starch synthase,SS)、分支酶(branching enzyme,BE)和脫支酶(debranching enzymes,DBE)的作用下合成直鏈淀粉和支鏈淀粉。儲藏淀粉的合成是將葉片光合作用固定的碳水化合物以蔗糖的形式運輸?shù)降矸酆铣善鞴?,轉(zhuǎn)化為G1P后進入淀粉體內(nèi),同樣先后經(jīng)過AGPase、SS、SBE和DBE酶的作用形成直鏈淀粉和支鏈淀粉[30]。
淀粉生物合成涉及一系列酶的參與。ADP-葡萄糖焦磷酸化酶(AGPase)被認為是高等植物淀粉生物合成中第一個起調(diào)節(jié)作用的關(guān)鍵酶,負責催化葡萄糖-1-磷酸(Glu-1-P)與ATP反應,生成腺苷二磷酸葡萄糖(ADPG),ADPG正是淀粉合成的主要底物,此反應也是淀粉合成過程中第一個限速步驟[31-32]。AGPase是由2個大亞基(AGP-L)和2個小亞基(AGP-S)組成的異型四聚體;根據(jù)細胞定位,AGPL和AGPS的同工酶可分為胞質(zhì)型和質(zhì)體型[33]。最近一些研究表明,在玉米中模擬AGPase磷酸化的突變可增強AGPase的活性,而去磷酸化降低了AGPase的活性,表明磷酸化可能是淀粉生物合成過程中AGPase活性調(diào)節(jié)的一種機制[34-36]。淀粉合成酶(SS)通過將ADPG的葡萄糖基轉(zhuǎn)移到α-1,4-葡萄糖的非還原性末端,從而催化淀粉合成。SS分為兩大類,一類負責支鏈淀粉的合成,包括SSⅠ、SSⅡ、SS Ⅲ和SSⅣ,前三者通常負責支鏈淀粉合成過程中α-葡聚糖鏈的伸長,而SS Ⅳ則參與淀粉顆粒的起始[37-38]。單個SSⅠ、SSⅡ或SS Ⅲ亞型的缺失會導致支鏈淀粉精細結(jié)構(gòu)的特征性變化[31]。研究發(fā)現(xiàn),MeSSⅡ-RNAi基因沉默使木薯的貯藏根中支鏈淀粉含量減少,但直鏈淀粉含量增加,導致淀粉理化性質(zhì)的改變,并且還降低了MeSSⅠ、MeSBEⅠ等與淀粉顆粒結(jié)合的能力[39]。在擬南芥中發(fā)現(xiàn)一種保守的淀粉合成酶5(SS5)能夠調(diào)節(jié)擬南芥葉綠體中形成的淀粉顆粒數(shù)量,SS5基因突變減少了擬南芥葉綠體中的淀粉粒數(shù)量,但是支鏈淀粉結(jié)構(gòu)不受影響,這表明SS5在葉綠體中直接啟動或以其他方式控制淀粉顆粒數(shù)量的過程中發(fā)揮作用,而不是在支鏈淀粉生物合成中發(fā)揮作用[40]。另一類則負責直鏈淀粉的合成,包括淀粉粒結(jié)合態(tài)淀粉合成酶(granule-bound starch synthase,GBSS),其與淀粉粒結(jié)合特異性地延長直鏈淀粉,存在GBSSⅠ和GBSSⅡ兩種同工異構(gòu)酶形式。谷物中的GBSSⅠ由Waxy基因編碼[41],在淀粉顆粒表面磷酸化后以低聚物的形式控制直鏈淀粉的合成[42]。利用CRISPR/Cas9基因編輯技術(shù)突變水稻胚乳中的Waxy基因?qū)е翯BSSⅡ的上調(diào),并降低了種子中GBSS的活性,但并未完全消除[43]。GBSSⅠ是種子、胚乳等貯藏器官中直鏈淀粉的關(guān)鍵酶,而GBSSⅡ是根、莖、葉等營養(yǎng)器官中直鏈淀粉的關(guān)鍵酶[44]。淀粉分支酶(SBE)是一種葡萄糖基轉(zhuǎn)移酶,是淀粉生物合成過程中的一個關(guān)鍵酶,它首先催化內(nèi)部α-1,4-糖苷鍵水解,繼而將斷鏈連接到C-6羥基上形成α-1,6分支點,形成分支結(jié)。根據(jù)所斷裂鏈的長度不同,SBE可分為SBEⅠ(SBE B)和SBEⅡ(SBE A)2類;在單子葉植物中,SBEⅡ又包括SBEⅡa和SBEⅡb。截至目前,對SBE酶及其基因的研究較為清楚[31,45]。淀粉去分支酶(DBEs)能水解α-1,6-糖苷鍵并糾正淀粉合成中的錯誤分支,以確保支鏈淀粉的有序合成[13]。植物中有2種DBE,包括異淀粉酶(isoamylase,ISO)和極限糊精酶(pullulanase,PUL,也叫R酶),均能水解α-1,6-糖苷鍵。
淀粉降解也需要一系列酶的協(xié)同參與。首先,通過葡聚糖水激酶(glucan water dikinase,GWD)或磷酸葡聚糖水激酶(phosphoglucan water dikinase,PWD)的可逆葡聚糖磷酸化破壞完整淀粉粒結(jié)構(gòu),將線性的糖苷鏈暴露出來,同時增強淀粉粒的可溶性以便淀粉水解酶靠近底物,有利于β-淀粉酶進行水解[46]。GWD和PWD分別對C6和C3位置的葡糖基單元進行磷酸化[47-49],但是PWD對支鏈淀粉的作用需要GWD的預先作用,表明PWD活性取決于GWD添加的C6磷酸基團的存在,或C6磷酸引起的葡聚糖結(jié)構(gòu)變化[50]。其次,淀粉上的磷酸基會阻礙淀粉降解酶沿著葡聚糖鏈移動[51],限制麥芽糖和低聚寡糖從淀粉粒中釋放出來,因此需要磷酸葡聚糖磷酸酶(phosphoglucan phosphatase,SEX)去除這些磷酸基團。目前,在擬南芥中鑒定到3個編碼SEX酶的基因,即STARCH EXCESS4(SEX4)、LIKE-STARCH-EXCESS FOUR-1(LSF1)和LIKE-STARCH-EXCESS FOUR-2(LSF2)[52-54],但其中LSF1不會使葡聚糖去磷酸化,LSF1突變體的淀粉過量表型是由顆粒表面BAM1和BAM3活性降低引起的,LSF1可能與淀粉顆粒表面的β-淀粉酶結(jié)合,從而促進淀粉的降解[55]。最近還發(fā)現(xiàn)LSF1-蘋果酸脫氫酶復合物也發(fā)揮著支架作用,可招募β-淀粉酶促進淀粉降解[56]。最后,在α-淀粉酶(α-amylase,AMY)和β-淀粉酶(β-amylase,BAM)的水解作用下完成葡聚糖的降解,轉(zhuǎn)化為葡萄糖單體[57]。α-淀粉酶是一種內(nèi)切酶,特異地切斷α-1,4-糖苷鍵,生成各種線性和分支的寡糖。研究發(fā)現(xiàn),谷物的淀粉降解需要α-淀粉酶的不同異構(gòu)體協(xié)同作用,例如在小麥中過表達AMY2基因可導致發(fā)育葉片和收獲籽粒中總α-淀粉酶活性升高2.0~437.6倍[58]。β-淀粉酶是從暴露的非還原鏈末端切斷α-1,4-糖苷鍵釋放麥芽糖的外作用酶[59],通過對轉(zhuǎn)基因馬鈴薯的實驗確定了葉綠體β-淀粉酶活性對短暫淀粉降解的重要性[60]。在擬南芥中,BAM酶蛋白由9個基因編碼,其中AtBAM4是淀粉降解的調(diào)節(jié)因子,影響淀粉降解途徑中的其他酶活性,其同工異構(gòu)體AtBAM9可能具有激活淀粉降解的作用,AtBAM4突變體表現(xiàn)為淀粉過量積累,而AtBAM9在野生型中的過量表達則降低了葉片中的淀粉含量[61]。但β-淀粉酶不能水解α-1,6-分支點或直接作用于其附近,因此,支鏈淀粉的完全降解還需要通過脫支酶(DBE)活性水解分支點。
3 獼猴桃果實淀粉代謝
3.1 淀粉代謝動態(tài)過程
獼猴桃果實淀粉代謝是一個復雜的動態(tài)過程,其特征是淀粉同時合成和降解。在以BBCH系統(tǒng)描述的Hort16A獼猴桃果實發(fā)育過程中[9],果實干物質(zhì)含量在坐果期(BBCH70)較高,然后在快速生長的第一個時期內(nèi)迅速下降,在開花后45 d時(BBCH73)達到最低;隨后干物質(zhì)快速增加,直到BBCH89時為止。鑒于淀粉是干物質(zhì)的主要成分,而獼猴桃果實恰好于BBCH73開始積累淀粉,表明此階段內(nèi)淀粉可能正在同時發(fā)生合成和降解。BBCH73時期正是果實從細胞分裂期走向細胞膨大期的轉(zhuǎn)折階段,Woolley等[62]發(fā)現(xiàn),獼猴桃受精后6周內(nèi)為細胞分裂時期,快速增加的細胞對碳水化合物有需求壓力,這一時期是果實碳素營養(yǎng)的關(guān)鍵期。故推測,干物質(zhì)在快速生長時期中的迅速下降可能是由于此時獼猴桃果實細胞分裂急需營養(yǎng),待果實生長進入細胞膨大階段時,才能開始進行淀粉的凈累積。Nardozza等[63]的研究結(jié)果也支持這種觀點,他們發(fā)現(xiàn)獼猴桃果實中的淀粉含量和糖含量在細胞分裂期內(nèi)下降,然后在細胞膨大期內(nèi)又開始上升;與此同時BAM9基因(編碼β-淀粉酶)表現(xiàn)出與淀粉含量相反的趨勢,即在細胞分裂期達到最高值,隨后逐漸下降。Wegrzyn等[64]在分析獼猴桃果實發(fā)育和采后成熟過程中α-淀粉酶活性時發(fā)現(xiàn),隨著果實發(fā)育α-淀粉酶活性和淀粉含量均在持續(xù)升高;而在采后成熟過程中,α-淀粉酶活性卻降低,淀粉開始降解,可溶性固形物含量上升。與之結(jié)果相似的是,Bonghi等[65]在分析獼猴桃成熟期間總淀粉酶活性變化時發(fā)現(xiàn),在果實收獲時淀粉酶活性最高,而在儲存期間淀粉酶活性下降。這些結(jié)果表明獼猴桃果實發(fā)育階段凈淀粉積累可能是淀粉合成速率大于降解速率引起的,而在采后成熟過程中淀粉降解的速率隨著獼猴桃成熟進程的推進而升高,于是發(fā)生淀粉凈降解,到果實成熟時,幾乎所有淀粉都已轉(zhuǎn)化為可溶性糖[66]。值得注意的是,淀粉凈積累到凈降解的過程中存在一個淀粉無凈變化的可變時間段,這期間內(nèi)可溶性固形物積累速率的最初升高發(fā)生在淀粉凈降解之前,所以可溶性固形物含量的上升不一定是淀粉降解的結(jié)果,也可能是未轉(zhuǎn)化為淀粉的可溶性碳水化合物輸入到果實內(nèi)的直接結(jié)果;同時,這個可變時間段容易受到環(huán)境條件的影響,尤其是低溫[9,67]??扇苄怨绦挝锓e累速率的升高通常被認為是淀粉降解引起的變化,但Burdon[68]提出可能有兩種機制導致可溶性固形物積累速率的快速升高:一種是淀粉停止積累時仍有碳水化合物進入果實,另一種是低溫誘導的淀粉分解。因此,即使具有相同可溶性固形物含量的果實也可能因為生理狀態(tài)不同而具有不同的貯藏潛力。
3.2 獼猴桃果實淀粉合成
淀粉合成積累與獼猴桃果實風味品質(zhì)緊密相關(guān)。糖類是水果中最重要的能量底物,主要由淀粉轉(zhuǎn)化而來;在水果成熟過程中,可溶性糖的積累在很大程度上決定了水果的甜味和風味[69]。獼猴桃通常在生理成熟時采收,此時的淀粉含量達到最大值,采后隨果實成熟,淀粉降解為糖,果實甜度增加,有機酸不斷減少,形成獨特的風味[66,70]。因此,獼猴桃果實采前積累的淀粉含量是決定果實口感風味形成的關(guān)鍵因素[71-72]。干物質(zhì)主要由可溶性固體(主要是糖)和不溶性固體(主要為結(jié)構(gòu)性碳水化合物和淀粉)組成,采收時的干物質(zhì)與果實軟熟后的糖含量以及風味品質(zhì)密切相關(guān)[73-74]。而采收時的淀粉含量可達干物質(zhì)的40%~70%,因此干物質(zhì)可以作為獼猴桃碳水化合物總量的指標,很大程度上也反映了獼猴桃果實積累的淀粉含量。研究表明,消費者在食用高干物質(zhì)含量的水果時更有可能體驗到優(yōu)質(zhì)的口感風味,正如同消費者更喜歡高干物質(zhì)水平的獼猴桃果實一樣,因為高干物質(zhì)水平意味著更多的淀粉水解成糖,果實軟熟后更甜[71-72,75]。
獼猴桃果實淀粉合成與相關(guān)酶的活性密切相關(guān)。研究表明,在淀粉生物合成途徑中大多數(shù)酶活性在細胞分裂時高于后期階段,ADP-葡萄糖焦磷酸化酶(AGPase)被認為是獼猴桃淀粉積累的關(guān)鍵酶,葡萄糖水平和中性轉(zhuǎn)化酶(NI)活性的降低標志著向淀粉凈積累過渡[63]。同期另一篇研究報道也表明NI、酸性轉(zhuǎn)化酶(AI)和蔗糖磷酸合成酶(SPS)活性的差異可能是果實淀粉積累高低、干物質(zhì)和可溶性糖含量不同的重要原因[76]。低溫貯藏可延緩獼猴桃果實軟化成熟及糖度增加,與淀粉酶、AI、NI、SPS和SS活性的降低有關(guān)[77]。環(huán)剝處理在調(diào)控果樹促花保果、增產(chǎn)提質(zhì)等方面具有良好效果。研究發(fā)現(xiàn)環(huán)剝處理提高了果實發(fā)育期內(nèi)AGPase的活性,同時調(diào)節(jié)SPS、SS、AI、NI等相關(guān)酶活性水平影響糖代謝的進程[78]。然而截至目前,關(guān)于獼猴桃果實中淀粉合成相關(guān)遺傳背景與分子機制鮮有報道,僅Nardozza等[63]利用淀粉積累極端差異的獼猴桃基因型材料發(fā)現(xiàn)了一個編碼AGPase酶大亞基的基因(APL4),可能是調(diào)控淀粉合成積累的關(guān)鍵候選基因,但還缺乏充分有力的證據(jù)。所以,下一步的研究應該聚焦在獼猴桃果實淀粉合成積累關(guān)鍵基因的挖掘及其調(diào)控網(wǎng)絡機制的解析上。
3.3 獼猴桃果實淀粉降解
淀粉降解在獼猴桃果實軟化中起著重要作用。獼猴桃果實采摘后的成熟與衰老是果實發(fā)育的最后階段,也是極其重要的生理生化過程,涉及到呼吸作用、乙烯合成、淀粉降解、增糖降酸、顏色轉(zhuǎn)變、芳香物質(zhì)合成、質(zhì)地變軟等過程及其一系列相關(guān)酶活性的變化[79]。軟化是獼猴桃果實采后成熟衰老的典型特征,其外在表現(xiàn)是果實硬度下降、質(zhì)地變軟[80]。大量研究表明,獼猴桃果實軟化主要與淀粉降解及細胞壁(主要為果膠)降解有關(guān)[81-83]。淀粉作為細胞內(nèi)容物以淀粉粒的形式存在于果肉和果心組織內(nèi),維持細胞膨壓,對細胞起著支撐作用。一旦果實進入成熟過程,淀粉逐漸降解,支撐作用也隨之消失,果實硬度就急速下降[83-84]。所以對于淀粉含量較高的水果種類而言,淀粉降解是果實軟化的重要因素之一。
至于淀粉降解發(fā)生在獼猴桃果實軟化哪個階段還有待進一步研究。根據(jù)果實硬度曲線,獼猴桃果實軟化過程被劃分為4個階段:起始階段—快速軟化階段—可食用階段—過熟階段,其中淀粉降解發(fā)生在起始階段和快速軟化階段早期,而同時果膠降解也主要發(fā)生快速軟化階段[81,85]。由于采樣時間和硬度檢測頻率的影響,不是所有獼猴桃果實硬度曲線均表現(xiàn)出4個軟化階段[68],不過較多學者認為淀粉降解主要發(fā)生在果實快速軟化階段。王貴禧等[86-88]研究表明,獼猴桃果實軟化進程可分為硬度速降期和硬度緩降期等2個階段,其中因淀粉酶活性快速上升而引起的淀粉快速降解是硬度速降的主要原因。然而,在眾多有關(guān)獼猴桃果實軟化的研究中,淀粉降解常和果膠降解交織在一起,很難明確誰在快速軟化階段發(fā)揮更重要的作用。
淀粉降解受到乙烯的調(diào)控。乙烯作為最簡單的植物激素,在呼吸躍變型果實的成熟衰老過程中發(fā)揮重要作用[89]。獼猴桃果實本身產(chǎn)生的乙烯含量極低,但是對外源乙烯卻又非常敏感,極低體積分數(shù)(0.1 μL·L-1)的乙烯仍會促進獼猴桃果實軟化和淀粉降解[90-91]。因此,乙烯處理也常用來作為催熟獼猴桃果實、消除果實個體成熟度差異的技術(shù)手段,廣泛應用在商業(yè)催熟上[92],這也說明淀粉降解受到乙烯的調(diào)控。Hu等[93]利用獼猴桃基因組序列從Hayward獼猴桃中分離鑒定了17個淀粉降解相關(guān)基因,其中AdAMY1、AdAGL3和AdBAM3.1/3L/9等基因的表達顯著受到乙烯處理的誘導,同時受到氣調(diào)貯藏的抑制,其表達量與淀粉降解高度正相關(guān),表明這些基因極可能參與了淀粉降解。隨后,陳景丹等[94]的研究也證實了AcBAM3是獼猴桃果實采后淀粉降解的關(guān)鍵基因。最近,2個重要轉(zhuǎn)錄因子AdDof3和AcbHLH137被相繼鑒定出來,它們分別調(diào)控AdBAM3L和AcBAM3靶基因的表達,從而促進淀粉降解;不過AcbHLH137與AcBAM3的具體調(diào)控機制還有待于進一步驗證[95-96]。淀粉降解除了加速獼猴桃果實軟化之外,還可能與果實醇類異味產(chǎn)生有關(guān)[97]。相比Hayward獼猴桃,Bruno獼猴桃果實在常溫貯藏過程中更易發(fā)生乙醇積累并產(chǎn)生異味,這與Bruno擁有更高活性的淀粉磷酸化酶、β-淀粉酶、UDP-葡萄糖焦磷酸化酶、蔗糖合酶和轉(zhuǎn)化酶有關(guān),這些酶會加速淀粉降解和可溶性糖積累,為乙醇發(fā)酵提供充足的底物[97]。
淀粉降解還受到低溫的誘導。前人研究表明果實可溶性固形物含量的快速上升可能與低溫誘導的淀粉降解或光合產(chǎn)物持續(xù)輸入有關(guān)[68]。秋季采收之前的低溫環(huán)境,尤其是夜間低溫會促進Hayward果實可溶性固形物積累速率的快速升高,與淀粉降解緊密相關(guān)[98]。隨后在Hort16A果實中發(fā)現(xiàn)8~12 ℃的貯藏溫度使可溶性固形物含量相比14 ℃或16 ℃處理上升更快,這說明可溶性固形物含量的上升可能與低溫誘導的淀粉降解有關(guān)[99]。最近多篇研究報告表明,在獼猴桃果實中還存在不依賴于乙烯調(diào)控的第二種成熟調(diào)控途徑:即低溫調(diào)控果實成熟途徑[100-102]。相比22 ℃常溫貯藏,5 ℃貯藏處理使得Kosui獼猴桃果實軟化更快,可溶性固形物和總糖增加發(fā)生更早,同時還沒有檢測到乙烯的產(chǎn)生。果實的快速軟化疑與淀粉降解酶基因(Acβ-AMY1、AcINV3-1)、細胞壁修飾酶基因(AcPG、AcEXP1)的表達量增加有關(guān);但是低溫誘導的軟熟果實缺乏乙烯誘導產(chǎn)生的主要芳香物質(zhì)[101]。在Rainbow Red獼猴桃果實中也發(fā)現(xiàn)了類似的規(guī)律,5 ℃和10 ℃貯藏使得果實比15 ℃和22 ℃貯藏軟化更快,與淀粉降解和細胞壁降解相關(guān)基因的表達量增加有關(guān)[103]。還發(fā)現(xiàn)一些NAC(NAC2,NAC4,NAC5,NAC6)和MADS(MADS1,MADS2)等轉(zhuǎn)錄因子可能參與了低溫誘導的果實成熟過程[103-104],但這些轉(zhuǎn)錄因子僅是根據(jù)基因表達量的變化而做出的推測,還缺乏更多詳實充分的分子實驗證據(jù)。除了β-淀粉酶基因(BAM3.2,BAM3L)參與低溫誘導的淀粉降解之外,陳璐等[105]利用不同溫度的獼猴桃采后果實轉(zhuǎn)錄組測序分析還發(fā)現(xiàn)淀粉磷酸化酶基因(PHS2,PHS2.1)特異響應5 ℃或10 ℃低溫從而間接參與淀粉降解。另外,長鏈非編碼RNA通過調(diào)控淀粉和蔗糖代謝以及細胞壁修飾途徑相關(guān)基因的表達,從而在獼猴桃低溫貯藏成熟軟化過程中也發(fā)揮著重要的調(diào)控作用[106]?;诘蜏乜烧T導獼猴桃果實快速軟化的規(guī)律,目前在商業(yè)上已出現(xiàn)通過低溫誘導制備即食獼猴桃的采后商品化操作,但處理的規(guī)模較小,大部分還處于探索階段。
4 結(jié) 語
獼猴桃因獨特的風味和豐富的營養(yǎng)價值日益受到消費者的關(guān)注和喜愛。淀粉代謝與獼猴桃果實風味品質(zhì)及果實軟化緊密相關(guān),強烈影響獼猴桃軟熟后的口感風味和貯藏性能。關(guān)于獼猴桃淀粉代謝的研究主要集中在獼猴桃生長發(fā)育過程中淀粉含量、組成、結(jié)構(gòu)和酶活性的動態(tài)變化,以及果實采后成熟軟化過程中淀粉降解途徑的分子機制解析方面。目前在獼猴桃果實淀粉降解分子研究方面取得較大的進展,包括淀粉降解途徑相關(guān)基因的挖掘以及少數(shù)重要轉(zhuǎn)錄調(diào)控因子的功能鑒定,但是在其淀粉合成與積累的分子調(diào)控方面還缺乏實質(zhì)性的突破,過多停留在淀粉合成相關(guān)酶活性水平研究方面。同時,依賴于低溫誘導的果實軟熟途徑為制備即食獼猴桃提供了新的技術(shù)手段,但是需要注意如何避免芳香物質(zhì)的缺失。因此在未來的研究中,應該繼續(xù)深入研究淀粉降解與果實軟化、風味形成的分子調(diào)理網(wǎng)絡機制,同時加強淀粉合成途徑關(guān)鍵基因的挖掘及其分子調(diào)控機制的解析,對創(chuàng)制優(yōu)質(zhì)高淀粉獼猴桃新材料、新品種或控制果實軟化成熟用于制備即食獼猴桃具有重要意義。
參考文獻 References:
[1] 黃宏文. 獼猴桃馴化改良百年啟示及天然居群遺傳漸滲的基因發(fā)掘[J]. 植物學報,2009,44(2):127-142.
HUANG Hongwen. History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild[J]. Chinese Bulletin of Botany,2009,44(2):127-142.
[2] 鐘彩虹,黃文俊,李大衛(wèi),張瓊,李黎. 世界獼猴桃產(chǎn)業(yè)發(fā)展及鮮果貿(mào)易動態(tài)分析[J]. 中國果樹,2021(7):101-108.
ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.
[3] STITT M,ZEEMAN S C. Starch turnover:pathways,regulation and role in growth[J]. Current Opinion in Plant Biology,2012,15(3):282-292.
[4] 呂英民,張大鵬. 果實發(fā)育過程中糖的積累[J]. 植物生理學通訊,2000,36(3):258-265.
L? Yingmin,ZHANG Dapeng. Accumulation of sugars in developing fruits[J]. Plant Physiology Communications,2000,36(3):258-265.
[5] MACRAE E A,REDGWELL R J. Partitioning of 14C-photosynthate in developing kiwifruit[J]. Scientia Horticulturae,1990,44(1/2):83-95.
[6] 方金豹,黃宏文,李紹華. CPPU對獼猴桃果實發(fā)育過程中糖、酸含量變化的影響[J]. 果樹學報,2002,19(4):235-239.
FANG Jinbao,HUANG Hongwen,LI Shaohua. Influence of CPPU on kiwifruit sugar content and titratable acidity during fruit development[J]. Journal of Fruit Science,2002,19(4):235-239.
[7] RICHARDSON A C,MCANENEY K J,DAWSON T E. Carbohydrate dynamics in kiwifruit[J]. Journal of Horticultural Science,1997,72(6):907-917.
[8] BEEVER D J,HOPKIRK G. Fruit development and fruit physiology[M]//BEEVER D J. Kiwifruit:Science and Management,Auckland:Ray Richards publishers,1990:97-126.
[9] RICHARDSON A C,BOLDINGH H L,MCATEE P A,GUNASEELAN K,LUO Z,ATKINSON R G,DAVID K M,BURDON J N,SCHAFFER R J. Fruit development of the diploid kiwifruit,Actinidia chinensis ‘Hort16A[J]. BMC Plant Biology,2011,11(1):182.
[10] 孟文俊,王增池. 獼猴桃鮮果采后貯藏保鮮研究進展[J]. 現(xiàn)代農(nóng)村科技,2020(4):107-109.
MENG Wenjun,WANG Zengchi. Progress of post-harvest storage and preservation of kiwifruit fresh fruit[J]. Modern Rural Science and Technology,2020(4):107-109.
[11] HUANG S X,DING J,DENG D J,TANG W,SUN H H,LIU D Y,ZHANG L,NIU X L,ZHANG X,MENG M,YU J D,LIU J,HAN Y,SHI W,ZHANG D F,CAO S Q,WEI Z J,CUI Y L,XIA Y H,ZENG H P,BAO K,LIN L,MIN Y,ZHANG H,MIAO M,TANG X F,ZHU Y Y,SUI Y,LI G W,SUN H J,YUE J Y,SUN J Q,LIU F F,ZHOU L Q,LEI L,ZHENG X Q,LIU M,HUANG L,SONG J,XU C H,LI J W,YE K Y,ZHONG S L,LU B R,HE G H,XIAO F M,WANG H L,ZHENG H K,F(xiàn)EI Z J,LIU Y S. Draft genome of the kiwifruit Actinidia chinensis[J]. Nature Communications,2013,4:2640.
[12] MARTIN C,SMITH A M. Starch biosynthesis[J]. The Plant Cell,1995,7(7):971-985.
[13] BALL S,GUAN H P,JAMES M,MYERS A,KEELING P,MOUILLE G,BUL?ON A,COLONNA P,PREISS J. From glycogen to amylopectin:A model for the biogenesis of the plant starch granule[J]. Cell,1996,86(3):349-352.
[14] BERTOFT E,PIYACHOMKWAN K,CHATAKANONDA P,SRIROTH K. Internal unit chain composition in amylopectins[J]. Carbohydrate Polymers,2008,74(3):527-543.
[15] LI D X,ZHU F. Characterization of polymer chain fractions of kiwifruit starch[J]. Food Chemistry,2018,240:579-587.
[16] LAN T,WANG J Q,LEI Y S,LEI J,SUN X Y,MA T T. A new source of starchy flour:Physicochemical and nutritional properties of starchy kiwifruit flour[J]. Food Chemistry,2024,435:137627.
[17] STEVENSON D G,JOHNSON S R,JANE J L,INGLETT G E. Chemical and physical properties of kiwifruit (Actinidia deliciosa) starch[J]. Starch-St?rke,2006,58(7):323-329.
[18] HALLETT I C,WEGRZYN T F,MACRAE E A. Starch degradation in kiwifruit:In vivo and in vitro ultrastructural studies[J]. International Journal of Plant Sciences,1995,156(4):471-480.
[19] SUGIMOTO Y,YAMAMOTO M,ABE K,F(xiàn)UWA H. Developmental changes in the properties of kiwi fruit starches (Actinidia chinensis Planch.)[J]. Journal of the Japanese Society of Starch Science,1988,35(1):1-10.
[20] LI D X,ZHU F. Starch structure in developing kiwifruit[J]. International Journal of Biological Macromolecules,2018,120:1306-1314.
[21] WANG H,WANG J,MUJUMDAR A S,JIN X W,LIU Z L,ZHANG Y,XIAO H W. Effects of postharvest ripening on physicochemical properties,microstructure,cell wall polysaccharides contents (pectin,hemicellulose,cellulose) and nanostructure of kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids,2021,118:106808.
[22] POSSINGHAM J V,COOTE M,HAWKER J S. The plastids and pigments of fresh and dried Chinese gooseberries (Actinidia chinensis)[J]. Annals of Botany,1980,45(5):529-533.
[23] WISE R R. The diversity of plastid form and function[M]//WISE R R,HOOBER K J. The Structure and Function of Plastids. Dordrecht:Springer,2007,23:3-26.
[24] 祝曼. 非光合質(zhì)體參與獼猴桃果實淀粉降解和柑橘果皮揮發(fā)性物質(zhì)積累的調(diào)控機制[D]. 武漢:華中農(nóng)業(yè)大學,2021.
ZHU Man. Regulatory mechanisms of non-photosynthetic plastids involved in starch degradation in kiwifruit and volatile compounds accumulation in citrus peel[D]. Wuhan:Huazhong Agricultural University,2021.
[25] 林加嘉. 成熟獼猴桃果實淀粉體分離及其蛋白質(zhì)組學研究[D]. 武漢:華中農(nóng)業(yè)大學,2019.
LIN Jiajia. The study of amyloplast isolation and their comparative proteomics analysis in mature kiwifruit[D]. Wuhan:Huazhong Agricultural University,2019.
[26] 郭學民,王貴禧,高榮孚. 獼猴桃冷藏期不同組織區(qū)光合色素、葉綠體細胞學及其光合放氧的變化[J]. 林業(yè)科學,2010,46(4):64-69.
GUO Xuemin,WANG Guixi,GAO Rongfu. Changes of photosynthetic pigments,chloroplast cytology and its photosynthetic oxygen evolution in different tissue zone of kiwifruit during cold storage period[J]. Scientia Silvae Sinicae,2010,46(4):64-69.
[27] BURDON J,PIDAKALA P,MARTIN P,BILLING D. Softening of ‘Hayward kiwifruit on the vine and in storage:The effects of temperature[J]. Scientia Horticulturae,2017,220:176-182.
[28] MACRAE E,BOWEN J,STEC M. Maturation of kiwifruit (Actinidia deliciosa cv. Hayward) from two orchards:Differences in composition of the tissue zones[J]. Journal of the Science of Food and Agriculture,1989,47(4):401-416.
[29] LI D X,ZHU F. Physicochemical properties of kiwifruit starch[J]. Food Chemistry,2017,220:129-136.
[30] 朱曄榮,劉苗苗,李亞輝,宋姍姍,白艷玲,王勇. 植物淀粉生物合成調(diào)節(jié)機制的研究進展[J]. 植物生理學報,2013,49(12):1319-1325.
ZHU Yerong,LIU Miaomiao,LI Yahui,SONG Shanshan,BAI Yanling,WANG Yong. Research advance in regulation mechanism of starch synthesis in plants[J]. Plant Physiology Journal,2013,49(12):1319-1325.
[31] PFISTER B,ZEEMAN S C. Formation of starch in plant cells[J]. Cellular and Molecular Life Sciences,2016,73(14):2781-2807.
[32] KANG G Z,LIU G Q,PENG X Q,WEI L T,WANG C Y,ZHU Y J,MA Y,JIANG Y M,GUO T C. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene[J]. Plant Physiology and Biochemistry,2013,73:93-98.
[33] SARIPALLI G,GUPTA P K. AGPase:Its role in crop productivity with emphasis on heat tolerance in cereals[J]. Theoretical and Applied Genetics,2015,128(10):1893-1916.
[34] YU G W,SHOAIB N,YANG Y,LIU L,MUGHAL N,MOU Y W,HUANG Y B. Effect of phosphorylation sites mutations on the subcellular localization and activity of AGPase Bt2 subunit:Implications for improved starch biosynthesis in maize[J]. Agronomy,2023,13(8):2119.
[35] YU G W,MOU Y W,SHOAIB N,HE X W,LIU L,DI R Z,MUGHAL N,ZHANG N,HUANG Y B. Serine 31 phosphorylation-driven regulation of AGPase activity:potential implications for enhanced starch yields in crops[J]. International Journal of Molecular Sciences,2023,24(20):15283.
[36] YU G W,LV Y N,SHEN L Y,WANG Y B,QING Y,WU N,LI Y P,HUANG H H,ZHANG N,LIU Y H,HU Y F,LIU H M,ZHANG J J,HUANG Y B. The proteomic analysis of maize endosperm protein enriched by Phos-tagtm reveals the phosphorylation of brittle-2 subunit of ADP-glc pyrophosphorylase in starch biosynthesis process[J]. International Journal of Molecular Sciences,2019,20(4):986.
[37] JEON J S,RYOO N,HAHN T R,WALIA H,NAKAMURA Y. Starch biosynthesis in cereal endosperm[J]. Plant Physiology and Biochemistry,2010,48(6):383-392.
[38] ABT M R,ZEEMAN S C. Evolutionary innovations in starch metabolism[J]. Current Opinion in Plant Biology,2020,55:109-117.
[39] HE S T,HAO X M,WANG S S,ZHOU W Z,MA Q X,LU X L,CHEN L N,ZHANG P. Starch synthase Ⅱ plays a crucial role in starch biosynthesis and the formation of multienzyme complexes in cassava storage roots[J]. Journal of Experimental Botany,2022,73(8):2540-2557.
[40] ABT M R,PFISTER B,SHARMA M,EICKE S,B?RGY L,NEALE I,SEUNG D,ZEEMAN S C. STARCH SYNTHASE5,a noncanonical starch synthase-like protein,promotes starch granule initiation in Arabidopsis[J]. The Plant Cell,2020,32(8):2543-2565.
[41] SHURE M,WESSLER S,F(xiàn)EDOROFF N. Molecular identification and isolation of the Waxy locus in maize[J]. Cell,1983,35(1):225-233.
[42] LIU D R,HUANG W X,CAI X L. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation[J]. Plant Science,2013,210:141-150.
[43] P?REZ L,SOTO E,F(xiàn)ARR? G,JUANOS J,VILLORBINA G,BASSIE L,MEDINA V,SERRATO A J,SAHRAWY M,ROJAS J A,ROMAGOSA I,MU?OZ P,ZHU C F,CHRISTOU P. CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis[J]. Plant Cell Reports,2019,38(3):417-433.
[44] 苗紅霞,孫佩光,張凱星,金志強,徐碧玉. 植物顆粒結(jié)合淀粉合成酶(GBSS)基因的表達調(diào)控機制研究進展[J]. 生物技術(shù)通報,2016,32(3):18-23.
MIAO Hongxia,SUN Peiguang,ZHANG Kaixing,JIN Zhiqiang,XU Biyu. Research progress on expression regulation mechanism of genes encoding granule-bound starch synthase in plants[J]. Biotechnology Bulletin,2016,32(3):18-23.
[45] MACNEILL G J,MEHRPOUYAN S,MINOW M A A,PATTERSON J A,TETLOW I J,EMES M J. Starch as a source,starch as a sink:The bifunctional role of starch in carbon allocation[J]. Journal of Experimental Botany,2017,68(16):4433-4453.
[46] SILVER D M,K?TTING O,MOORHEAD G B G. Phosphoglucan phosphatase function sheds light on starch degradation[J]. Trends in Plant Science,2014,19(7):471-478.
[47] RITTE G,HEYDENREICH M,MAHLOW S,HAEBEL S,K?TTING O,STEUP M. Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases[J]. FEBS Letters,2006,580(20):4872-4876.
[48] K?TTING O,PUSCH K,TIESSEN A,GEIGENBERGER P,STEUP M,RITTE G. Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves:The phosphoglucan,water dikinase[J]. Plant Physiology,2005,137(1):242-252.
[49] BAUNSGAARD L,L?TKEN H,MIKKELSEN R,GLARING M A,PHAM T T,BLENNOW A. A novel isoform of glucan,water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis[J]. The Plant Journal,2005,41(4):595-605.
[50] HEJAZI M,F(xiàn)ETTKE J,PARIS O,STEUP M. The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the A- and B-type allomorphs of crystallized maltodextrins but the mode of action differs[J]. Plant Physiology,2009,150(2):962-976.
[51] TAKEDA Y,HIZUKURI S. Re-examination of the action of sweet-potato beta-amylase on phosphorylated (1→4)-χ-D-glucan[J]. Carbohydrate Research,1981,89(1):174-178.
[52] COMPAROT-MOSS S,K?TTING O,STETTLER M,EDNER C,GRAF A,WEISE S E,STREB S,LUE W L,MACLEAN D,MAHLOW S,RITTE G,STEUP M,CHEN J,ZEEMAN S C,SMITH A M. A putative phosphatase,LSF1,is required for normal starch turnover in Arabidopsis leaves[J]. Plant Physiology,2010,152(2):685-697.
[53] KO?TTING O,SANTELIA D,EDNER C,EICKE S,MARTHALER T,GENTRY M S,COMPAROT-MOSS S,CHEN J,SMITH A M,STEUP M,RITTE G,ZEEMAN S C. STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana[J]. The Plant Cell,2009,21(1):334-346.
[54] SANTELIA D,K?TTING O,SEUNG D,SCHUBERT M,THALMANN M,BISCHOF S,MEEKINS D A,LUTZ A,PATRON N,GENTRY M S,ALLAIN F H T,ZEEMAN S C. The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis[J]. The Plant Cell,2011,23(11):4096-4111.
[55] SCHREIER T B,UMHANG M,LEE S K,LUE W L,SHEN Z X,SILVER D,GRAF A,M?LLER A,EICKE S,STADLER-WAIBEL M,SEUNG D,BISCHOF S,BRIGGS S P,K?TTING O,MOORHEAD G B G,CHEN J,ZEEMAN S C. LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation[J]. The Plant Cell,2019,31(9):2169-2186.
[56] LIU J,WANG X C,GUAN Z Y,WU M L,WANG X Y,F(xiàn)AN R,ZHANG F,YAN J J,LIU Y J,ZHANG D L,YIN P,YAN J J. The like sex four 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation[J]. The Plant Cell,2023,36(1):194-212.
[57] ZEEMAN S C,KOSSMANN J,SMITH A M. Starch:its metabolism,evolution,and biotechnological modification in plants[J]. Annual Review of Plant Biology,2010,61:209-234.
[58] ZHANG Q,PRITCHARD J,MIEOG J,BYRNE K,COLGRAVE M L,WANG J R,RAL J P F. Overexpression of a wheat α-amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination[J]. The Plant Journal,2021,108(2):378-393.
[59] WEISE S E,KIM K S,STEWART R P,SHARKEY T D. β-maltose is the metabolically active anomer of maltose during transitory starch degradation[J]. Plant Physiology,2005,137(2):756-761.
[60] SCHEIDIG A,F(xiàn)R?HLICH A,SCHULZE S,LLOYD J R,KOSSMANN J. Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves[J]. The Plant Journal,2002,30(5):581-591.
[61] DAVID L C,LEE S K,BRUDERER E,ABT M R,F(xiàn)ISCHER-STETTLER M,TSCHOPP M A,SOLHAUG E M,SANCHEZ K,ZEEMAN S C. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation[J]. Plant Physiology,2022,188(1):191-207.
[62] WOOLLEY D J,LAWES G S,CRUZ-CASTILLO J G. The growth and competitive ability of Actinidia deliciosa ‘Hayward fruit:Carbohydrate availability and response to the cytokinin-active compound CPPU[J]. Acta Horticulturae,1992(297):467-474.
[63] NARDOZZA S,BOLDINGH H L,OSORIO S,H?HNE M,WOHLERS M,GLEAVE A P,MACRAE E A,RICHARDSON A C,ATKINSON R G,SULPICE R,F(xiàn)ERNIE A R,CLEARWATER M J. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism[J]. Journal of Experimental Botany,2013,64(16):5049-5063.
[64] WEGRZYN T,MACRAE E. Alpha-amylase and starch degradation in kiwifruit[J]. Journal of Plant Physiology,1995,147(1):19-28.
[65] BONGHI C,PAGNI S,VIDRIH R,RAMINA A,TONUTTI P. Cell wall hydrolases and amylase in kiwifruit softening[J]. Postharvest Biology and Technology,1996,9(1):19-29.
[66] MACRAE E,QUICK W P,BENKER C,STITT M. Carbohydrate metabolism during postharvest ripening in kiwifruit[J]. Planta,1992,188(3):314-323.
[67] BURDON J,PIDAKALA P,MARTIN P,BILLING D,BOLDINGH H. Fruit maturation and the soluble solids harvest index for ‘Hayward kiwifruit[J]. Scientia Horticulturae,2016,213:193-198.
[68] BURDON J. Kiwifruit biology:The commercial implications of fruit maturation[J]. Horticultural Reviews,2018,46:385-421.
[69] LI M J,F(xiàn)ENG F J,CHENG L L. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development[J]. PLoS One,2012,7(3):e33055.
[70] MACK C,WEFERS D,SCHUSTER P,WEINERT C H,EGERT B,BLIEDUNG S,TRIERWEILER B,MUHLE-GOLL C,BUNZEL M,LUY B,KULLING S E. Untargeted multi-platform analysis of the metabolome and the non-starch polysaccharides of kiwifruit during postharvest ripening[J]. Postharvest Biology and Technology,2017,125:65-76.
[71] NARDOZZA S,GAMBLE J,AXTEN L G,WOHLERS M W,CLEARWATER M J,F(xiàn)ENG J Q,HARKER F R. Dry matter content and fruit size affect flavour and texture of novel Actinidia deliciosa genotypes[J]. Journal of the Science of Food and Agriculture,2011,91(4):742-748.
[72] HARKER F R,CARR B T,LENJO M,MACRAE E A,WISMER W V,MARSH K B,WILLIAMS M,WHITE A,LUND C M,WALKER S B,GUNSON F A,PEREIRA R B. Consumer liking for kiwifruit flavour:A meta-analysis of five studies on fruit quality[J]. Food Quality and Preference,2009,20(1):30-41.
[73] CARLI P,ARIMA S,F(xiàn)OGLIANO V,TARDELLA L,F(xiàn)RUSCIANTE L,ERCOLANO M R. Use of network analysis to capture key traits affecting tomato organoleptic quality[J]. Journal of Experimental Botany,2009,60(12):3379-3386.
[74] CANO M P,DE ANCOS B,MATALLANA M C,C?MARA M,REGLERO G,TABERA J. Differences among Spanish and Latin-American banana cultivars:Morphological,chemical and sensory characteristics[J]. Food Chemistry,1997,59(3):411-419.
[75] BURDON J,MCLEOD D,LALLU N,GAMBLE J,PETLEY M,GUNSON A. Consumer evaluation of ‘Hayward kiwifruit of different at-harvest dry matter contents[J]. Postharvest Biology and Technology,2004,34(3):245-255.
[76] 張慧琴,謝鳴,張琛,楊魯瓊,章鎮(zhèn),肖金平,周利秋. 獼猴桃果實發(fā)育過程中淀粉積累差異及其糖代謝特性[J]. 中國農(nóng)業(yè)科學,2014,47(17):3453-3464.
ZHANG Huiqin,XIE Ming,ZHANG Chen,YANG Luqiong,ZHANG Zhen,XIAO Jinping,ZHOU Liqiu. Difference in starch accumulation and characterization of sugar metabolism during fruit development of kiwi fruit[J]. Scientia Agricultura Sinica,2014,47(17):3453-3464.
[77] 戚雯燁,周晨卉,宋麗君,鐘雨,鄭小林. 毛花獼猴桃‘華特果實采后糖代謝研究[J]. 果樹學報,2016,33(6):744-751.
QI Wenye,ZHOU Chenhui,SONG Lijun,ZHONG Yu,ZHENG Xiaolin. Study on sugar metabolism of Actindia eriantha Benth ‘White during storage[J]. Journal of Fruit Science,2016,33(6):744-751.
[78] 楊勇,陳露,陳成,閻永齊. 環(huán)剝對紅陽獼猴桃果實品質(zhì)及糖代謝的影響[J]. 江蘇農(nóng)業(yè)科學,2021,49(19):156-163.
YANG Yong,CHEN Lu,CHEN Cheng,YAN Yongqi. Effects of girdling treatment on fruit quality and sugar metabolism of Hongyang kiwifruit[J]. Jiangsu Agricultural Sciences,2021,49(19):156-163.
[79] 王靜,馮梅鳳,楊碧敏,林麗莎,林河通. 獼猴桃果實采后生理、采后病害與保鮮技術(shù)研究進展[J]. 包裝與食品機械,2014,32(4):53-57.
WANG Jing,F(xiàn)ENG Meifeng,YANG Bimin,LIN Lisha,LIN Hetong. Studies on postharvest physiology,postharvest disease and freshness-keeping methods of kiwifruit[J]. Packaging and Food Machinery,2014,32(4):53-57.
[80] 黃文俊,鐘彩虹. 獼猴桃果實采后生理研究進展[J]. 植物科學學報,2017,35(4):622-630.
HUANG Wenjun,ZHONG Caihong. Research advances in the postharvest physiology of kiwifruit[J]. Plant Science Journal,2017,35(4):622-630.
[81] SCHR?DER R,ATKINSON R. Kiwifruit cell walls:Towards an understanding of softening[J]. New Zealand Journal of Forestry Science,2006,36(1):112-129.
[82] ZHANG Q Y,GE J,LIU X C,WANG W Q,LIU X F,YIN X R. Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit[J]. Journal of Advanced Research,2022,40:59-68.
[83] MOCHIZUKI T,KUROSAKI T. Histochemical changes of starch in kiwifruit (Actinidia chinensis Planch.) during fruit growth and storage[J]. Nippon Shokuhin Kogyo Gakkaishi,1988,35(4):221-225.
[84] ARPAIA M L,LABAVITCH J M,GREVE C,KADER A A. Changes in the cell wall components of kiwifruit during storage in air or controlled atmosphere[J]. Journal of the American Society for Horticultural Science,1987,112(3):474-481.
[85] ATKINSON R G,GUNASEELAN K,WANG M Y,LUO L K,WANG T C,NORLING C L,JOHNSTON S L,MADDUMAGE R,SCHR?DER R,SCHAFFER R J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line[J]. Journal of Experimental Botany,2011,62(11):3821-3835.
[86] 王貴禧,韓雅珊,于梁. 浸鈣對獼猴桃果實硬度變化影響的生化機制[J]. 園藝學報,1995,22(1):21-24.
WANG Guixi,HAN Yashan,YU Liang. Biochemical mechanism of the firmness changes of kiwifruit treated by CaCl2[J]. Acta Horticulturae Sinica,1995,22(1):21-24.
[87] 王貴禧,韓雅珊,于粱. 獼猴桃軟化過程中階段性專一酶活性變化的研究[J]. 植物學報,1995,37(3):198-203.
WANG Guixi,HAN Yashan,YU Liang. Study on the activities of stage specific enzyme during softening of kiwifruit[J]. Journal of Integrative Plant Biology,1995,37(3):198-203.
[88] 王貴禧,韓雅珊,于梁. 獼猴桃總淀粉酶活性與果實軟化的關(guān)系[J]. 園藝學報,1994,21(4):329-333.
WANG Guixi,HAN Yashan,YU Liang. The relationship between amylase activity and softening of kiwifruit after harvest[J]. Acta Horticulturae Sinica,1994,21(4):329-333.
[89] ALEXANDER L,GRIERSON D. Ethylene biosynthesis and action in tomato:A model for climacteric fruit ripening[J]. Journal of Experimental Botany,2002,53(377):2039-2055.
[90] MCDONALD B,HARMAN J E. Controlled-atmosphere storage of kiwifruit. I. Effect on fruit firmness and storage life[J]. Scientia Horticulturae,1982,17(2):113-123.
[91] MATSUMOTO S,OBARA T,LUH B S. Changes in chemical constituents of kiwifruit during post-harvest ripening[J]. Journal of Food Science,1983,48(2):607-611.
[92] RITENOUR M A,CRISOSTO C H,GARNER D T,CHENG G W,ZOFFOLI J P. Temperature,length of cold storage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit[J]. Postharvest Biology and Technology,1999,15(2):107-115.
[93] HU X,KUANG S,ZHANG A D,ZHANG W S,CHEN M J,YIN X R,CHEN K S. Characterization of starch degradation related genes in postharvest kiwifruit[J]. International Journal of Molecular Sciences,2016,17(12):2112.
[94] 陳景丹,許鳳,陳偉,楊震峰. 獼猴桃果實采后軟化期間淀粉降解關(guān)鍵基因表達分析[J]. 核農(nóng)學報,2018,32(2):236-243.
CHEN Jingdan,XU Feng,CHEN Wei,YANG Zhenfeng. Starch degradation and analysis of key-gene expression during postharvest kiwifruit softening[J]. Journal of Nuclear Agricultural Sciences,2018,32(2):236-243.
[95] ZHANG A D,WANG W Q,TONG Y,LI M J,GRIERSON D,F(xiàn)ERGUSON I,CHEN K S,YIN X R. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit[J]. Plant Physiology,2018,178(2):850-863.
[96] 劉璐,王康,韓一璐,楊民杰,陳偉,曹士鋒,施麗愉. 獼猴桃AcbHLH137功能鑒定及對淀粉降解基因AcBAM3轉(zhuǎn)錄激活分析[J]. 核農(nóng)學報,2022,36(3):544-553.
LIU Lu,WANG Kang,HAN Yilu,YANG Minjie,CHEN Wei,CAO Shifeng,SHI Liyu. Functional identification of AcbHLH137 and its transcriptional activation of starch degradation gene AcBAM3 in kiwifruit[J]. Journal of Nuclear Agricultural Sciences,2022,36(3):544-553.
[97] HUAN C,DU X J,WANG L F,KEBBEH M,LI H H,YANG X H,SHEN S L,ZHENG X L. Transcriptome analysis reveals the metabolisms of starch degradation and ethanol fermentation involved in alcoholic off-flavour development in kiwifruit during ambient storage[J]. Postharvest Biology and Technology,2021,180:111621.
[98] BURDON J,LALLU N,F(xiàn)RANCIS K,BOLDINGH H. The susceptibility of kiwifruit to low temperature breakdown is associated with pre-harvest temperatures and at-harvest soluble solids content[J]. Postharvest Biology and Technology,2007,43(3):283-290.
[99] BURDON J,PIDAKALA P,MARTIN P,MCATEE P A,BOLDINGH H L,HALL A,SCHAFFER R J. Postharvest performance of the yellow-fleshed ‘Hort16A kiwifruit in relation to fruit maturation[J]. Postharvest Biology and Technology,2014,92:98-106.
[100] MITALO O W,ASICHE W O,KASAHARA Y,TOSA Y,TOKIWA S,USHIJIMA K,NAKANO R,KUBO Y. Comparative analysis of fruit ripening and associated genes in two kiwifruit cultivars (‘Sanuki Gold and ‘Hayward) at various storage temperatures[J]. Postharvest Biology and Technology,2019,147:20-28.
[101] MITALO O W,TOKIWA S,KONDO Y,OTSUKI T,GALIS I,SUEZAWA K,KATAOKA I,DOAN A T,NAKANO R,USHIJIMA K,KUBO Y. Low temperature storage stimulates fruit softening and sugar accumulation without ethylene and aroma volatile production in kiwifruit[J]. Frontiers in Plant Science,2019,10:888.
[102] MWORIA E G,YOSHIKAWA T,SALIKON N,ODA C,ASICHE W O,YOKOTANI N,ABE D,USHIJIMA K,NAKANO R,KUBO Y. Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold kiwifruit[J]. Journal of Experimental Botany,2012,63(2):963-971.
[103] MITALO O W,ASICHE W O,KASAHARA Y,TOSA Y,OWINO W O,MWORIA E G,USHIJIMA K,NAKANO R,KUBO Y. Characterization of ripening-related genes involved in ethylene-independent low temperature-modulated ripening in ‘Rainbow Red kiwifruit during storage and on-vine[J]. The Horticulture Journal,2018,87(3):421-429.
[104] ASICHE W O,MITALO O W,KASAHARA Y,TOSA Y,MWORIA E G,OWINO W O,USHIJIMA K,NAKANO R,YANO K,KUBO Y. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit[J]. BMC Plant Biology,2018,18(1):1-18.
[105] 陳璐,高柱,毛積鵬,張小麗,盧玉鵬,林孟飛,公旭晨,王小玲. 不同溫度處理采后獼猴桃果實淀粉降解的轉(zhuǎn)錄組分析[J]. 江西農(nóng)業(yè)大學學報,2023,45(3):591-604.
CHEN Lu,GAO Zhu,MAO Jipeng,ZHANG Xiaoli,LU Yupeng,LIN Mengfei,GONG Xuchen,WANG Xiaoling. Transcriptome analysis of starch degradation in post-harvest kiwifruit treated at different temperatures[J]. Acta Agriculturae Universitatis Jiangxiensis,2023,45(3):591-604.
[106] LAI R L,WU X P,F(xiàn)ENG X,GAO M X,LONG Y,WU R J,CHENG C Z,CHEN Y T. Identification and characterization of long non-coding RNAs:Implicating insights into their regulatory role in kiwifruit ripening and softening during low-temperature storage[J]. Plants,2023,12(5):1070.
收稿日期:2023-09-05 接受日期:2023-12-18
基金項目:湖北洪山實驗室項目(2021HSZD017);中國科學院科技扶貧項目(KFJ-FP-202101)
作者簡介:冉欣雨,女,在讀碩士研究生,研究方向為獼猴桃采后生理與分子生物學。E-mail:ranxinyu0322@foxmail.com
*通信作者 Author for correspondence. E-mail:wjhuang@wbgcas.cn