包俊宏 包敖民 楊榮 李今普 王寶俠 鄭東生 何炎紅
DOI:10.13925/j.cnki.gsxb.20230438
摘? ? 要:【目的】通過對內蒙古寒地蘋果龍豐和岳艷及其2個優(yōu)系的抗寒性進行綜合評價,明確2個優(yōu)系的適生區(qū)域,為豐富寒地蘋果種質資源以及選育抗寒性強的寒地蘋果品種提供科學依據(jù)?!痉椒ā恳札堌S、岳艷以及它們的2個雜交優(yōu)系為試材,在不同低溫處理下進行1年生枝條生理指標試驗,測定相對電導率(REC)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、過氧化物酶(POD)活性、可溶性蛋白(SP)含量;以及在模擬霜降條件下做花期生理反應試驗,測定花朵子房及幼果過冷卻點和結冰點。采用隸屬函數(shù)法綜合評價4份蘋果材料的抗寒性?!窘Y果】隨著處理溫度的降低,各供試材料枝條的相對電導率逐漸升高,呈“S”形變化曲線,其中優(yōu)系TL0099相對電導率上升幅度小,岳艷躍變幅度較大;優(yōu)系TL0099的MDA含量在-25 ℃低溫脅迫下出現(xiàn)突然躍變的現(xiàn)象,而岳艷從對照(4 ℃)持續(xù)增加,-25 ℃低溫脅迫處理后開始下降;優(yōu)系TL0099的POD活性顯著高于親本組合;不同低溫處理下,2個優(yōu)系枝條SOD活性顯著高于親本組合。各供試材料SP含量到達峰值的溫度均在-20 ℃,且達到峰值后,SP含量不再上升。通過花期霜凍試驗,發(fā)現(xiàn)4份供試材料的子房、幼果受凍溫度范圍為-5.6 ℃~-2.4 ℃,且各供試材料幼果過冷卻點均高于子房過冷卻點。【結論】4份蘋果材料抗寒力強弱排序依次為:TL0099>TL0092>龍豐>岳艷。其中TL0099、TL0092為Ⅱ級抗寒品系;龍豐為Ⅲ級中抗品種;岳艷為Ⅳ級低抗品種。
關鍵詞:蘋果;抗寒性;生理指標;過冷卻點
中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2024)02-0241-11
Comprehensive evaluation of cold resistance of apple Longfeng, Yueyan and their two hybrid strains in cold region
BAO Junhong1, BAO Aomin2, YANG Rong1, 3*, LI Jinpu1, WANG Baoxia2, ZHENG Dongsheng1, HE Yanhong1*
(1College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China; 2Tongliao Forestry and Grassland Science Research Institute, Tongliao 028399, Inner Mongolia, China; 3Inner Mongolia Autonomous Region Forestry Science Research Institute, Hohhot 010010, Inner Mongolia, China)
Abstract: 【Objective】 With global warming, the risk of late frost damage in flowering period of fruit trees is increasing. Therefore, in order to stabilize food security and ensure the red line of cultivated land, the main direction of apple breeding in cold areas is to select and breed middle and early cold-resistant varieties. The evaluation of cold resistance of existing apple varieties is extremely important for new varieties breeding, and cultivation. In this paper, apple Longfeng and Yueyan and their two superior strains in northeast cold region of Inner Mongolia were studied, in order to further verify the cold resistance of the two superior strains and to clarify the suitable cultivation areas of the two superior strains, and provide scientific basis for enriching the germplasm resources of apple in cold region and breeding cold region apples with strong cold resistance. 【Methods】 Two commercial varieties, Longfeng and Yueyan, along with two superior lines, TL0092 and TL0099, were used as test materials. The physiological indicators of one-year-old branches under various low-temperature conditions, as well as the physiological responses of flower buds post low-temperature treatment, were assessed to evaluate the cold resistance of Longfeng, Yueyan, and the two superior lines. The one-year dormant branches were evenly divided into seven groups, subjected to seven different temperature treatments: 4 ℃, -10 ℃,?-20 ℃, -25 ℃, -30 ℃, -35 ℃, and -40 ℃. The temperature was reduced to the setting temperature at a rate of 5 ℃·h-1and and maintained for 24 hours, then the samples under low-temperature stress were thawed; 4 ℃ served as the control for physiological testing. The malondialdehyde content was measured using the thiobarbituric acid (TBA) method, superoxide dismutase (SOD) activity by the nitro blue tetrazolium reduction method, peroxidase (POD) activity by the guaiacol method, soluble protein (SP) content using Coomassie Brilliant Blue G-250 staining, and relative electrical conductivity (E) refered to the methods of Jin Mingli, Yang Xue, et al. The branches collected at the red-bud stage were hydroponically cultivated to bloom, and based on temperature changes during frost occurrence, six low-temperature treatments (-1 ℃, -2 ℃, -3 ℃, -4 ℃, -5 ℃, -6 ℃) were set with room temperature as the control. The simulated frost box was pre-cooled to about 10 ℃, then cooled at a rate of 6 ℃/4 h to about 4 ℃, and slowly cooled to the set temperature at a rate of 1 ℃/0.5 h, maintained for 2 hours. The heating rate was set at 1 ℃/0.5 h back to room temperature. The ovarys and exocarps of the young fruits during full bloom and young fruit stages were used as the measurement sites to determine the supercooling point and freezing point of each test material, with continuous automatic data recording and analysis of surface temperature changes of the tissues. 【Results】 The electrical conductivity of all test materials increased with the temperature decreasing, showing an “S”-shaped change curve. The varieties with strong cold resistance had lower increase in relative electrical conductivity Among them, the line TL0099 exhibited a lower increase in the relative electrical conductivity, indicating that its cell membrane system suffered less damage than the two parents and the line TL0092, showed stronger cold resistance. Conversely, Yueyan showed a relatively higher leap in the relative electrical conductivity. The conductivity of the dormant branches of all test materials showe a peak under the -40 ℃ treatment. Among the four apple materials, the line TL0099 showed a sudden jump in the MDA content at -25 ℃, while Yueyan continuously increased until -25 ℃ before declining. Under low-temperature stress, the two parent varietiess showed an “N”-shaped change trend in the POD content, the line TL0092 showed a peak at -30 ℃, showing an initial increase followed by a decrease. The POD activity of TL0099 was significantly higher than that of the parents and TL0092. The SOD content of the branches of TL0099 and TL0092 under different low-temperature treatments was significantly higher than that of the parents Longfeng and Yueyan. The SP content of the all test materials showed a peak at -20 ℃ and did not increase further, the varieties with stronger cold resistance had higher SP content. The frost test during the flowering period revealed that the freezing temperature range for the ovarys and young fruits of the test materials was -2.4 ℃ to -5.6 ℃, with the supercooling point of young fruits higher than that of the ovarys, indicating that the young fruit's cold resistance was inferior to that of the ovarys. 【Conclusion】 By conducting the artificial low-temperature treatment experiments on one-year-old branches and frost tests during the flowering period, and analyzing with the membership function method, the cold resistance of the four apple varieties (strains) was ranked as follows: TL0099>TL0092>Longfeng>Yueyan. The lines TL0092 and TL0099 were classified as Level Ⅱ cold-resistant strains, Longfeng as a Level Ⅲ moderately cold resistant variety, and Yueyan as a Level Ⅳ low-resistant variety.
Key words: Apple; Cold resistance; Physiological indicators; Supercooling point
蘋果(Malus domestica Borkh.)是溫帶落葉果樹,作為中國第二大水果,在農業(yè)生產中占有重要地位,決定著中國人的果盤子[1-2]。改革開放以來,中國蘋果產業(yè)布局不斷優(yōu)化調整,受經(jīng)濟、氣候條件、國家政策等因素的影響,蘋果生產布局發(fā)生了重大改變[3-4]。優(yōu)質抗寒蘋果主產區(qū)位于北緯40°~46°,其氣候特征包括低溫、干旱、強風、初霜早、降溫快和秋季短暫等。這些氣候條件導致蘋果樹過冬率低,出現(xiàn)抽條和凍害的現(xiàn)象。此外,隨全球氣候變暖,近年來中國的暖冬和暖春現(xiàn)象日益增多。大部分植物的物候期提前,而春季氣溫回升速度也加快,進一步增加了果樹花期遭受晚霜凍害的風險[5]。蘋果屬于呼吸躍變型果實,根據(jù)中國國情和果實特點,需要培育優(yōu)質、耐貯、晚熟的主栽品種及特色多樣化的早、中熟品種[6],而對現(xiàn)有蘋果品種抗寒能力的評價對新品種選育、栽培和后期推廣具有重要指導意義。
關于果樹抗寒性的評價,前人采用了不同方法進行了深入研究。其中,生理生化指標測試法常用于抗寒性評價[7]。井俊麗等[8]利用主成分分析法對自然越冬條件下不同蘋果砧木1年生枝條生理特性進行了分析,最終確定了3個主成分,包括11個指標作為蘋果主要的抗寒性評價指標。李榮富等[9]認為,利用電導率值能夠較為準確地反映果樹真實的抗寒能力。劉興祿等[7]采用隸屬函數(shù)法結合電導法通過對5個砧木蘋果1年生枝條低溫脅迫下的抗寒應答機制進行了抗寒性研究和評價,結果表明,電導法與隸屬函數(shù)法對不同砧木抗寒性的評價結果完全一致。叢日征等[10]認為,因抗寒機制復雜,植物的抗寒性應由多個因素綜合決定??雇硭芰σ彩菦Q定蘋果是否可以豐收的關鍵因素,但目前關于果樹花期凍害的研究較少,李曉龍等[11]認為,可以通過檢測花朵過冷點及結冰點溫度判定不同品種花朵抗寒性。孫魯龍等[12]通過霜凍試驗,研究不同矮化中間砧對瑞雪蘋果花抗霜凍能力的影響,發(fā)現(xiàn)瑞雪蘋果花霜凍半致死溫度平均為-4.32 ℃,邊花抗凍性整體上優(yōu)于中心花。袁嘉瑋等[13]采用人工氣候箱對運城主要果樹花期凍害指標進行了研究,并得到運城市蘋果、梨、杏和桃花期遭受凍害的臨界溫度。
雜交育種既能將2個或2個以上的優(yōu)異性狀集中到一個新的品系中,又能利用雜種優(yōu)勢培育出優(yōu)于雙親的新品種[14]。2012年左右,龍豐為東北地區(qū)栽植面積最大的寒地小果型蘋果品種,具有豐(穩(wěn))產、優(yōu)質、耐貯的優(yōu)良特點,成為東北寒地蘋果產區(qū)的主栽品種[15-16];而岳艷為大果型蘋果,品質和抗寒性均較好,在遼寧、河北等地廣泛栽培。2012年,筆者課題組以“抗寒、優(yōu)質、中果、果肉脆”為育種目標,以龍豐和岳艷為親本,開展了雜交育種試驗,最終獲得480株后代群體。10年的跟蹤選擇表明,子代TL0092具有不易落果、著色好、香味濃郁、可溶性固形物含量達20%的優(yōu)良特性;子代TL0099具有早熟、優(yōu)質、抗病性強等特性。因此,為進一步驗證2個優(yōu)系的抗寒能力,筆者以父母本龍豐、岳艷以及2個雜交優(yōu)系為試材,對4份供試材料進行了1年生枝條在低溫寒冷條件下的生理指標的測定,以及模擬霜降條件下花芽子房、幼果的生理反應試驗。利用隸屬函數(shù)法進行綜合性評價,以期對2個優(yōu)系抗寒性進行科學判斷,最終確定2個優(yōu)系的適宜栽培區(qū),為豐富寒地蘋果品種資源以及選育抗寒性強的寒地蘋果品種提供科學依據(jù)。
1 材料和方法
1.1 試驗材料
試驗材料為龍豐、岳艷以及岳艷×龍豐的雜交優(yōu)選后代TL0092、TL0099,具體品種情況見表1。
1.2 材料采集
于2023年2月初,剪取各試材長勢良好、均勻一致的1年生休眠枝條(分別取20枝),長度截取約為40 cm,粗度約為0.7 cm,用自來水、蒸餾水先后沖洗3次,擦干后兩端進行蠟封,塑封置于冰盒帶回實驗室,用于相關生理生化指標的測定。
于2023年4月19日,在各試材枝條露紅期采集枝條并插入花泥中以此提供枝條所需水分,帶回實驗室并進行水培,用于子房過冷卻點測定。幼果采于盛花期7 d后,測定過冷卻點及結冰點。
1.3 材料處理
將采集的4個蘋果1年生休眠枝條帶回實驗室后剪去頂部5 cm,先后用自來水、蒸餾水沖洗3遍,均勻分成7組,分別在4 ℃、-10 ℃、-20 ℃、-25 ℃、-30 ℃、-35 ℃、-40 ℃冰箱中進行冷凍處理。降溫(5 ℃·h-1)至設定溫度后持續(xù)24 h后將各低溫脅迫的樣品進行解凍;以4 ℃作為對照,用于生理指標測定。
將露紅期采集的枝條水培至開花,根據(jù)通遼發(fā)生霜凍時溫度變化情況,以室溫做對照,共設置-1 ℃、-2 ℃、-3 ℃、-4 ℃、-5 ℃、-6 ℃等6個低溫處理。模擬霜箱先預冷至10 ℃左右之后以1.5 ℃·h-1速度降溫至4 ℃左右,再以2 ℃·h-1的速度緩慢降溫到設定溫度,持續(xù)2 h后,以2 ℃·h-1速度升至室內溫度,測定各供試材料過冷卻點與結冰點。
1.4 生理指標的測定方法
參照金明麗[17]、楊雪[18]、張鋼[19]的方法測定相對電導率(REC)。采用硫代巴比妥酸(TBA)法測定丙二醛(MDA)含量,采用四唑氮藍光還原法測定超氧化物歧化酶(SOD)活性,采用愈創(chuàng)木酚法測定過氧化物酶(POD)活性,采用考馬斯亮藍G-250染色法測定可溶性蛋白(SP)含量[20]。
1.5 過冷卻點測定方法
過冷卻現(xiàn)象指植物體溫下降至0 ℃以下時,植物器官組織內水分未結冰仍保持液態(tài)的現(xiàn)象。結冰現(xiàn)象是隨著外界溫度持續(xù)降低而低于植物組織自身能抵御的最低溫度時,組織釋放潛熱,溫度變化曲線出現(xiàn)峰值跳躍,該峰的起點溫度就是過冷卻點(T1),回升到一定溫度后,冰晶核形成,溫度不再上升,晶體增長,放熱與吸熱處于平衡狀態(tài),此時溫度即結冰點(T2)。
采用MSX-2F型模擬霜箱系統(tǒng)(精度為±0.5 ℃),以4份試材的子房及幼果為測定部位,測定過冷卻點和結冰點。將蘋果枝條置于人工霜箱內,再將熱電偶溫度傳感器探頭安置在待測部位上[11]。溫度傳感器與數(shù)據(jù)采集系統(tǒng)和微機連接,每10 s自動掃描1次,連續(xù)記錄數(shù)據(jù)、分析組織表面溫度變化,繪制溫度變化曲線。
1.6 數(shù)據(jù)處理與分析
采用模糊隸屬函數(shù)法,用公式(1)和(2)[21]計算4個供試材料抗寒指標的隸屬函數(shù)值,用公式(3)計算供試材料的抗寒性綜合評價值(Di)。用SPSS 22進行數(shù)據(jù)統(tǒng)計與分析,并用Excel繪圖。
u(Xij)=(Xij-Xmin)/(Xmax-Xmin)(與抗寒性呈正相關指標);? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (1)
u(Xij)=1-(Xij-Xmin)/(Xmax-Xmin)(與抗寒性呈負相關指標);? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (2)
Di=∑u(Xij)/n。? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3)
式中,u(Xij)為i樣品j性狀的隸屬函數(shù)值,Xij為i樣品j性狀的實測值,Xmax和Xmin分別為該指標的最大值和最小值;Di為i材料的平均隸屬函數(shù)值,n為測定指標數(shù),Di值越大,表明抗寒性越強。
2 結果與分析
2.1 不同低溫處理對相對電導率的影響
利用電導率法來評價植物的耐寒能力是一種相對直觀的手段,已在多個領域得到廣泛應用[22]。當相對電導率達到50%時,這個溫度可以被視為枝條的半致死溫度[23]。如圖1所示,TL0092、TL0099、龍豐和岳艷在-35 ℃、-40 ℃、-35 ℃、-35 ℃的溫度下,它們的相對電導率分別達到了55.76%、57.35%、49.99%、48.06%。這些數(shù)據(jù)表明TL0092、TL0099、龍豐和岳艷的半致死溫度在-35 ℃、-40 ℃、-35 ℃、-35 ℃左右。不同品種枝條電解質滲出率均隨著低溫的脅迫,呈“S”形變化趨勢。從整體上看,在4 ℃、-10 ℃、-20 ℃、-25 ℃、-30 ℃處理時,各供試材料的電導率增加速率較為緩慢。在-35 ℃處理時,龍豐、TL0092枝條相對電導率迅速升高。TL0099枝條相對電導率則在-40 ℃處理時驟增,且與其他試材相比對照至-40 ℃躍升值為18.96%,變化較為平緩,說明TL0099細胞膜系統(tǒng)受害程度低于其他試材,抗寒性較強。4個蘋果休眠枝條的電導率均在-40 ℃處理下達到峰值。
2.2 不同低溫處理下MDA含量的變化
MDA是膜脂過氧化作用的產物,植物在逆境脅迫時其含量的增加會破壞細胞膜系統(tǒng),嚴重時導致細胞的死亡[24]。如圖2所示,在不同低溫脅迫下,親本和后代植株的MDA含量變化并不完全一致。TL0092的MDA含量在-10 ℃~-30 ℃時,差異不顯著,且在-25 ℃時與龍豐無顯著差異。TL0099在4 ℃、-10 ℃、-20 ℃時,MDA含量變化趨于穩(wěn)定,而在-25 ℃處理下驟增,達到峰值。親本岳艷的MDA含量隨著溫度的下降而升高,在-25 ℃時達高峰,而后又急劇降低。-35 ℃低溫處理下,子代TL0092、TL0099與親本岳艷差異不顯著。-40 ℃低溫處理下,優(yōu)系TL0099與親本龍豐無顯著差異。
2.3 不同低溫處理下POD活性的變化
POD是植物體內酶促防御系統(tǒng)的重要組成部分[25]。隨著處理溫度的降低,親本與優(yōu)系POD活性變化如圖3所示,親本龍豐與岳艷的POD活性均在處理溫度為-25 ℃時達到峰值。親本龍豐、岳艷在整個過程中呈N形變化趨勢。在處理溫度為-30 ℃時,子代TL0092的POD活性達到峰值;TL0099則在4 ℃、-10 ℃、-20 ℃、-30 ℃時POD活性顯著高于其他供試材料。TL0092在整個低溫脅迫過程中呈升-降-升-降-升的雙峰曲線變化趨勢,而TL0099呈升-降-升的單峰曲線變化趨勢,且在-20 ℃~-30 ℃低溫處理下變化較為平緩。
2.4 不同低溫處理下SOD活性的變化
SOD在抗氧化酶系統(tǒng)中扮演重要的角色,在植物體內普遍存在,過氧化氫的產生與SOD活性直接相關。穩(wěn)定且較高水平的SOD活性能夠高效清除細胞內因低溫脅迫產生的活性氧物質,進一步保證細胞內環(huán)境的穩(wěn)態(tài)[26]。如圖4所示,不同低溫脅迫的各供試材料中,2個親本枝條SOD活性分別在-25 ℃、-30 ℃低溫處理時達到峰值,而2個優(yōu)系枝條SOD活性分別在-35 ℃、-40 ℃低溫處理時達到峰值。在-10 ℃處理下,TL0092、龍豐SOD活性極顯著高于岳艷和TL0099,且岳艷與優(yōu)系TL0099在-10 ℃、-20 ℃、-25 ℃處理下SOD活性差異不顯著。TL0092在-30 ℃、-35 ℃處理時SOD活性顯著高于其他供試材料。在整個低溫處理過程中,TL0092、龍豐、岳艷SOD活性呈M形雙峰曲線變化趨勢、而TL0099枝條SOD含量呈降-升-降-升的變化趨勢。
2.5 不同低溫處理對SP含量的影響
SP通過降低植物細胞冰點,減小低溫結冰傷害致死概率,是植物體內重要的有機滲透調節(jié)物質[27]。由圖5可知,除岳艷外,其他3份材料SP含量呈升-降-升-降-升的變化趨勢,且均在-20 ℃低溫處理時達到峰值,達到一定低溫后,SP含量開始下降。在-25 ℃低溫處理下,TL0092、TL0099、龍豐SP含量下降,在-30 ℃時再次上升,呈M形變化趨勢。岳艷亦在-20 ℃低溫下,SP含量達到峰值后呈持續(xù)降低趨勢,而優(yōu)系TL0092在-20 ℃~-30 ℃低溫處理時變化較平緩。
2.6 各蘋果子房、幼果過冷卻點
不同試材霜降后過冷卻點不同,且幼果過冷卻點高于子房過冷卻點(見表2、圖6、圖7),龍豐盛花期(子房)的過冷卻點范圍為-2.6 ℃~-4 ℃,幼果過冷卻點范圍為-2.6 ℃~-3.0 ℃。岳艷盛花期(子房)的過冷卻點范圍為-2.5 ℃~-3.4 ℃,幼果過冷卻點范圍為-2.4 ℃~-2.8 ℃。TL0092盛花期(子房)的過冷卻點范圍為-2.7 ℃~-4.0 ℃,幼果過冷卻點范圍為-2.4 ℃~-3.3 ℃。TL0099盛花期(子房)的過冷卻點范圍為-2.7 ℃~-5.6 ℃,幼果過冷卻點范圍為-2.8 ℃~-3.3 ℃。各供試材料幼果過冷卻點均比子房過冷卻點高,說明蘋果幼果抗寒性不如子房。
2.7 蘋果品種抗寒性的綜合評價
植物抗寒性是由多種綜合作用的累加結果,受多因素的影響和制約,用某單一指標評價植物的抗寒性不具有代表性。而多元統(tǒng)計方法中的隸屬函數(shù)法可將多種指標綜合起來,因此,采用隸屬函數(shù)法綜合多個指標評價植物的抗寒性較為可靠[23]。根據(jù)上述所測得的與蘋果抗寒性相關的指標數(shù)據(jù),運用隸屬函數(shù)法得出4份供試材料的隸屬函數(shù)平均值,隸屬函數(shù)值越大,品種抗寒性越強,按照大小依次排序,得出龍豐、岳艷、TL0092、TL0099抗寒性的強弱綜合排名。從表3可以得出,4個蘋果1年生休眠枝抗寒性強弱的綜合排名依次為:TL0099>TL0092>龍豐>岳艷。
參照陶雅[28]的方法,對4個蘋果進行分級,其中TL0099、TL0092為Ⅱ級抗寒品系;龍豐為Ⅲ級中抗品種;岳艷為Ⅳ級低抗品種。
3 討 論
在本試驗中,人工模擬低溫脅迫的方式雖與自然環(huán)境條件下的凍害存在差異,但所有供試材料在同一條件下進行測定,能夠反映不同供試材料間抗寒能力的強弱[29]。
3.1 低溫脅迫與膜穩(wěn)定性的關系
相對電導率的大小是植物抗寒性強弱的重要指標。在不同低溫脅迫下,各品種電導率均隨溫度的下降而增加,抗寒性強的品種相對電導率增幅較小且相對電導率值較低[30]。在本研究中,4個蘋果品種(系)1年生休眠枝的相對電導率隨溫度的降低呈“S”形變化趨勢。TL0099電導率升高的速度相對平緩,且與其他供試材料相比,對照至-40 ℃增長率最低,說明TL0099細胞膜系統(tǒng)受害程度低于TL0092、龍豐與岳艷。MDA作為膜脂過氧化的重要產物,是衡量細胞膜受損害程度的重要指標[31-33]。植株體內MDA大量積聚后,與蛋白質結合引起膜蛋白的變性,從而導致生理代謝紊亂,嚴重時導致植株死亡[34]。4份供試材料1年生休眠枝條MDA含量在-25 ℃~-30 ℃低溫條件下顯著降低,這可能是由于超過了植株所能承受的低溫范圍,從而使細胞遭到破壞,影響低溫脅迫下的正常生理反應。而岳艷在對照、-10 ℃、-20 ℃、-25 ℃低溫條件下,MDA釋放量較高,說明低溫加劇細胞膜脂過氧化程度,導致生物膜受損較嚴重。
3.2 低溫脅迫與抗氧化系統(tǒng)的關系
POD、SOD是保護植物酶系統(tǒng)的重要酶類[35-36]。低溫脅迫影響植物細胞膜的穩(wěn)定性,隨著低溫脅迫程度的增大對植物造成的傷害也隨之加重[37]。本研究表明,POD活性隨著低溫的脅迫加重,呈先升后降的趨勢,達到一定低溫后,POD活性開始降低,這表明保護酶系統(tǒng)能及時響應低溫脅迫,與閆忠業(yè)等[38]報道的結果一致。范宗民等[39]在葡萄砧木的抗寒性研究中發(fā)現(xiàn),SOD活性隨著溫度的降低,其活性不穩(wěn)定,呈現(xiàn)M形的變化趨勢。本研究中各供試材料SOD活性變化呈M形趨勢的有岳艷、龍豐、TL0092,POD活性在-35 ℃之后開始降低,可能表明在-40 ℃低溫下已無法及時響應過氧化脅迫,氧自由基含量超過了保護酶系統(tǒng)的清除能力。
3.3 低溫脅迫與滲透調節(jié)物質的關系
SP含量與抗寒性呈正相關,SP大量積累,幫助細胞維持較低的滲透勢,增強細胞的耐脫水能力,從而減緩低溫傷害。SP是植物體內重要的滲透調節(jié)物質[40],并且抗寒性強的品種SP含量較高。本試驗各蘋果供試材料SP含量到達峰值的溫度均在-20 ℃,達到峰值后,各供試材料SP含量不再上升,開始下降,可能是因為-20 ℃低溫時各蘋果枝條體內滲透調節(jié)代謝系統(tǒng)遭到破壞。
3.4 低溫脅迫與過冷卻點的關系
過冷卻點溫度是植物組織器官生理適應的低溫下限,過冷點越低,抗寒性越強[41]。通過測定各供試材料子房、幼果過冷卻點以及結冰點得出數(shù)據(jù),并發(fā)現(xiàn)同試材同器官的過冷卻點和結冰點都有范圍,這與廖咸康等[42]在8種草本地被植物細胞溶液中的研究結果一致。影響生物體過冷卻點及抗寒性的因素較多,如植株體含水量、植株體抗凍物質含量、降溫速度等[43-45]。各供試材料幼果過冷卻點均比子房過冷卻點高,說明蘋果幼果抗寒性不如子房。4個蘋果子房、幼果受凍溫度范圍為-5.6 ℃~-2.4 ℃,說明當溫度低于-5.6 ℃時,各供試材料花朵子房及幼果將可能全部受凍。
筆者在本試驗中發(fā)現(xiàn),在低溫脅迫處理中,單個指標試驗結果與最終的隸屬函數(shù)法計算得出的綜合結果略有差異,MDA、SOD、SP 3個指標測定結果表明,子代TL0092、TL0099抗寒力均強于親本龍豐、岳艷。因此僅用單一指標來判定蘋果耐寒性比較片面,應結合多項指標綜合判定各品種抗寒性強弱,避免因單個指標的片面性造成誤差,采用隸屬函數(shù)法可以更全面、準確地反映果樹的實際抗寒能力。
4 結 論
通過人工模擬低溫環(huán)境,測定4個蘋果品種(系)枝條生理指標相對電導率、MDA含量、SP含量、POD活性、SOD活性,結合花期霜凍試驗,通過隸屬函數(shù)法計算各項指標的平均隸屬度,結果表明,4個蘋果品種(系)枝條的抗寒性由強到弱依次為:TL0099>TL0092>龍豐>岳艷。子代抗寒性較強于親本。TL0092、TL0099為Ⅱ級抗寒品系,可嘗試在較寒冷的地區(qū)推廣種植。4個蘋果品種(系)的子房、幼果受凍溫度范圍為-5.6 ℃~-2.4 ℃。
參考文獻 References:
[1] 周江濤,趙德英,陳艷輝,康國棟,程存剛. 中國蘋果產區(qū)變動分析[J]. 果樹學報,2021,38(3):372-384.
ZHOU Jiangtao,ZHAO Deying,CHEN Yanhui,KANG Guodong,CHENG Cungang. Analysis of apple producing area changes in China[J]. Journal of Fruit Science,2021,38(3):372-384.
[2] 徐功勛,周佳,呂德國,秦嗣軍. 4個蘋果品種的抗寒性評價[J]. 果樹學報,2023,40(4):669-679.
XU Gongxun,ZHOU Jia,L? Deguo,QIN Sijun. Cold resistance evaluation of four apple varieties[J]. Journal of Fruit Science,2023,40(4):669-679.
[3] 陳學森,伊凱,王寶俠,張宇明,王楠,張宗營,毛志泉,胡大剛,姜遠茂. 果樹科技面向國家重大需求Ⅳ:寒地蘋果助力東北振興[J]. 中國果樹,2023(4):1-6.
CHEN Xuesen,YI Kai,WANG Baoxia,ZHANG Yuming,WANG Nan,ZHANG Zongying,MAO Zhiquan,HU Dagang,JIANG Yuanmao. Fruit tree technology facing major national demand Ⅳ:Cold-terra apple helps the revitalization of Northeast China[J]. China Fruits,2023(4):1-6.
[4] 于林霞. 氣候因素對黃土高原區(qū)蘋果生產技術效率的影響研究[D]. 楊凌:西北農林科技大學,2018.
YU Linxia. Research on the effect of climatic factors on the apple productive technique efficiency in the Loess Plateau region[D]. Yangling:Northwest A & F University,2018.
[5] 郭佳,張寶林,高聚林,彭健,羅瑞林. 氣候變化對中國農業(yè)氣候資源及農業(yè)生產影響的研究進展[J]. 北方農業(yè)學報,2019,47(1):105-113.
GUO Jia,ZHANG Baolin,GAO Julin,PENG Jian,LUO Ruilin. Advances on the impacts of climate change on agro-climatic resources and agricultural production in China[J]. Journal of Northern Agriculture,2019,47(1):105-113.
[6] 陳學森,王楠,張宗營,吳樹敬,毛志泉,尹承苗,姜遠茂,葛順峰,朱占玲,姜翰,由春香,胡大剛,李媛媛,王小非. 果樹科技面向國家重大需求Ⅰ:果樹種質資源與遺傳育種研究的四個堅持和四個面向[J]. 中國果樹,2023(1):1-4.
CHEN Xuesen,WANG Nan,ZHANG Zongying,WU Shujing,MAO Zhiquan,YIN Chengmiao,JIANG Yuanmao,GE Shunfeng,ZHU Zhanling,JIANG Han,YOU Chunxiang,HU Dagang,LI Yuanyuan,WANG Xiaofei. Fruit tree technology faces major national needs Ⅰ:Four persistence and four faces in the research of fruit germplasm resources and genetic breeding[J]. China Fruits,2023(1):1-4.
[7] 劉興祿,王紅平,孫文泰,董鐵,牛軍強,馬明. 5個砧木蘋果枝條的抗寒性評價[J]. 果樹學報,2021,38(8):1264-1274.
LIU Xinglu,WANG Hongping,SUN Wentai,DONG Tie,NIU Junqiang,MA Ming. Cold resistance evaluation of the shoots of 5 apple rootstocks[J]. Journal of Fruit Science,2021,38(8):1264-1274.
[8] 井俊麗,劉銘瀟,魏欣,徐繼忠,李中勇,張學英,周莎莎. 幾種蘋果中間砧的抗寒性評價[J]. 果樹學報,2022,39(6):970-981.
JING Junli,LIU Mingxiao,WEI Xin,XU Jizhong,LI Zhongyong,ZHANG Xueying,ZHOU Shasha. Evaluation of cold hardiness of several apple interstocks[J]. Journal of Fruit Science,2022,39(6):970-981.
[9] 李榮富,王麗雪,張華. 果樹抗寒性的細胞生物學研究進展[J]. 北京農學院學報,1996,11(2):79-84.
LI Rongfu,WANG Lixue,ZHANG Hua. Progress in cell biology research on cold resistance of fruit trees[J]. Journal of Beijing Agricultural College,1996,11(2):79-84.
[10] 叢日征,張吉利,王思瑤,于宏影,閆曉娜,裴曉娜,何山. 植物抗寒性鑒定及其生理生態(tài)機制研究進展[J]. 溫帶林業(yè)研究,2020,3(1):27-33.
CONG Rizheng,ZHANG Jili,WANG Siyao,YU Hongying,YAN Xiaona,PEI Xiaona,HE Shan. Research progress of plant cold resistance identification and its physiological and ecological mechanism[J]. Journal of Temperate Forestry Research,2020,3(1):27-33.
[11] 李曉龍,褚燕南,張磊,陳仁偉,張曉煜,岳海英,賈永華,王芳. 蘋果花期抗寒能力判定指標解析[J]. 果樹學報,2022,39(10):1935-1944.
LI Xiaolong,CHU Yannan,ZHANG Lei,CHEN Renwei,ZHANG Xiaoyu,YUE Haiying,JIA Yonghua,WANG Fang. Analysis of evaluation indexes of cold resistance of apple trees at flowering stage[J]. Journal of Fruit Science,2022,39(10):1935-1944.
[12] 孫魯龍,樊娟,王翠翠,李鳳龍,劉振中,趙政陽. 不同矮化中間砧對瑞雪蘋果花抗霜凍能力的影響[J]. 中國果樹,2023(8):12-16.
SUN Lulong,F(xiàn)AN Juan,WANG Cuicui,LI Fenglong,LIU Zhenzhong,ZHAO Zhengyang. Effects of different dwarfing interstocks on frost resistance of ‘Ruixue apple flowers[J]. China Fruits,2023(8):12-16.
[13] 袁嘉瑋,梁宇卿,梁哲軍,張健,王璐. 運城市主要果樹花期凍害指標研究[J]. 干旱區(qū)資源與環(huán)境,2021,35(2):143-148.
YUAN Jiawei,LIANG Yuqing,LIANG Zhejun,ZHANG Jian,WANG Lu. Study on freezing indexes of main fruit trees at flowering stage in Yuncheng[J]. Journal of Arid Land Resources and Environment,2021,35(2):143-148.
[14] 張振. 雜交育種在新品種培育中的優(yōu)缺點[J]. 北京農業(yè),2014(36):31.
ZHANG Zhen. The advantages and disadvantages of hybrid breeding in the cultivation of new varieties[J]. Beijing Agriculture,2014(36):31.
[15] 胡穎慧,于文全,劉暢,顧廣軍,卜海東,楊悅,程顯敏,孫曉環(huán). 寒地蘋果品種龍豐的品質與應用研究現(xiàn)狀[J]. 黑龍江農業(yè)科學,2022(5):125-128.
HU Yinghui,YU Wenquan,LIU Chang,GU Guangjun,BU Haidong,YANG Yue,CHENG Xianmin,SUN Xiaohuan. Research status of quality and application of A cold resistant apple variety ‘Longfeng[J]. Heilongjiang Agricultural Sciences,2022(5):125-128.
[16] 劉暢,王昆,安萌萌,梅闖,曹陽,于文全,卜海東,程顯敏,顧廣軍,孟祥海,董雪梅,程存剛. 寒地蘋果主栽品種果實品質及香氣組分[J]. 新疆農業(yè)科學,2019,56(10):1846-1859.
LIU Chang,WANG Kun,AN Mengmeng,MEI Chuang,CAO Yang,YU Wenquan,BU Haidong,CHENG Xianmin,GU Guangjun,MENG Xianghai,DONG Xuemei,CHENG Cungang. Study on fruit quality and aroma components of main apple varieties in cold region[J]. Xinjiang Agricultural Sciences,2019,56(10):1846-1859.
[17] 金明麗. 蘋果砧木實生后代抗寒性鑒定[D]. 保定:河北農業(yè)大學,2011.
JIN Mingli. Identification of cold resistant of apple seedling rootstocks[D]. Baoding:Hebei Agricultural University,2011.
[18] 楊雪. 蘋果和梨不同品種的抗寒性比較[D]. 保定:河北農業(yè)大學,2014.
YANG Xue. Comparative on frost hardiness of several varieties of pear and apple trees[D]. Baoding:Hebei Agricultural University,2014.
[19] 張鋼. 國外木本植物抗寒性測定方法綜述[J]. 世界林業(yè)研究,2005,18(5):14-20.
ZHANG Gang. Review on methods for measuring frost hardiness in woody plants abroad[J]. World Forestry Research,2005,18(5):14-20.
[20] 李合生. 植物生理生化實驗原理和技術[M]. 北京:高等教育出版社,2000.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.
[21] 孫世航. 獼猴桃抗寒性評價體系的建立與應用[D]. 北京:中國農業(yè)科學院,2018.
SUN Shihang. Establishment and application of evaluation method of freezing tolerance in Actinidia[D]. Beijing:Chinese Academy of Agricultural Sciences,2018.
[22] 李彥慧,佟愛民,劉冬云,周懷軍,楊敏生,佟榮喜. 廊坊楊抗寒性研究[J]. 河北農業(yè)大學學報,2005,28(4):23-26.
LI Yanhui,TONG Aimin,LIU Dongyun,ZHOU Huaijun,YANG Minsheng,TONG Rongxi. Studies on cold-resistance of popular Langfang[J]. Journal of Agricultural University of Hebei,2005,28(4):23-26.
[23] 王紅平,董鐵,劉興祿,尹曉寧,孫文泰,牛軍強,馬明. 5個蘋果砧木品種枝條的低溫半致死溫度及耐寒性評價[J]. 果樹學報,2020,37(4):495-501.
WANG Hongping,DONG Tie,LIU Xinglu,YIN Xiaoning,SUN Wentai,NIU Junqiang,MA Ming. A study on the cold resistance and the semi-lethal temperatures for branches of five apple rootstock cultivars[J]. Journal of Fruit Science,2020,37(4):495-501.
[24] 陳新華,郭婧,祁雷,曹丹丹,趙斌,郭寶林. 低溫脅迫對甜櫻桃一年生枝條的影響[J]. 果樹學報,2014,31(S1):124-128.
CHEN Xinhua,GUO Jing,QI Lei,CAO Dandan,ZHAO Bin,GUO Baolin. Resistance of different sweet cherry varieties to the cold stress[J]. Journal of Fruit Science,2014,31(S1):124-128.
[25] 蘇丹,李紅麗,董智,張曉曉,賈淑友. 鹽脅迫對白榆無性系抗氧化酶活性及丙二醛的影響[J]. 中國水土保持科學,2016,14(2):9-16.
SU Dan,LI Hongli,DONG Zhi,ZHANG Xiaoxiao,JIA Shuyou. Effects of salt stress on activities of antioxidant enzymes and MDA of elm clones[J]. Science of Soil and Water Conservation,2016,14(2):9-16.
[26] 高拖弟. 6個不同鮮食棗品種抗寒性研究[D]. 榆林:榆林學院,2023.
GAO Tuodi. The study on cold resistance of six different fresh-enble jujube varieties[D]. Yulin:Yulin University,2023.
[27] 亓春宇,劉鳳歧,劉杰淋,朱瑞芬,唐鳳蘭. 低溫脅迫下紫花苜蓿雜交代抗氧化酶及可溶性蛋白的動態(tài)聚類分析[J]. 中國草地學報,2017,39(2):53-58.
QI Chunyu,LIU Fengqi,LIU Jielin,ZHU Ruifen,TANG Fenglan. Cluster analysis of antioxidant enzymes and soluble protein of alfalfa hybrid under low temperature stress[J]. Chinese Journal of Grassland,2017,39(2):53-58.
[28] 陶雅. 22個國內外苜蓿品種抗寒性評價[D]. 北京:中國農業(yè)科學院,2008.
TAO Ya. The cold-resistance evaluation of twenty-two alfalfa varieties at home and abroad[D]. Beijing:Chinese Academy of Agricultural Sciences,2008.
[29] 王瑾,陳淑英,秦德明,盧磊,尚振江. 5個蘋果矮化砧木品種的抗寒性測定[J]. 北方果樹,2020(2):9-11.
WANG Jin,CHEN Shuying,QIN Deming,LU Lei,SHANG Zhenjiang. Determination of cold resistance of 5 apple dwarf rootstock varieties[J]. Northern Fruits,2020(2):9-11.
[30] 章敏. 八仙花品種資源繁殖與評價研究[D]. 北京:北京林業(yè)大學,2021.
ZHANG Min. Propagation and evaluation of Hydrangea cultivars[D]. Beijing:Beijing Forestry University,2021.
[31] 鄒琦. 植物生理學實驗指導[M]. 北京:中國農業(yè)出版社,2000.
ZOU Qi. Experimental guidance on plant physiology[M]. Beijing:China Agriculture Press,2000.
[32] 石雪暉,劉昆玉,楊國順,呂長平,王淑英,羅川蕙. 低溫脅迫對柑橘離體葉片質膜透性和MDA及V-C含量的影響[J]. 湖南農業(yè)大學學報,1997,23(1):36-40.
SHI Xuehui,LIU Kunyu,YANG Guoshun,L? Changping,WANG Shuying,LUO Chuanhui. Influences of low temperature stress on the permeability of plasma membrane,the contents of MDA and V-C of citrus excised leaves[J]. Journal of Hunan Agricultural University,1997,23(1):36-40.
[33] 李冰,張敬敬,高秀瑞,史宇凡,潘秀清,武彥榮. 低溫脅迫下不同基因型西瓜抗寒性綜合評價[J]. 中國瓜菜,2019,32(4):16-19.
LI Bing,ZHANG Jingjing,GAO Xiurui,SHI Yufan,PAN Xiuqing,WU Yanrong. Comprehensive evaluation of cold resistance of different watermelon under low temperature stress[J]. China Cucurbits and Vegetables,2019,32(4):16-19.
[34] 王以柔,李平,劉鴻先,曾韶西,陳德峰,郭俊彥. 低溫對不同耐寒力的黃瓜幼苗子葉的各細胞器中NAD+-蘋果酸脫氫酶的影響[J]. 植物生理學報,1985,11(2):147-154.
WANG Yirou,LI Ping,LIU Hongxian,ZENG Shaoxi,CHEN Defeng,GUO Junyan. The effect of low temperature on malate dehydrogenase in various organelles of cucumber seedling cotyledons with different cold tolerance[J]. Physiology and Molecular Biology of Plants,1985,11(2):147-154.
[35] 趙媛媛,劉明國,趙偉浩. 3種外來樹種抗寒性生理指標的比較[J]. 安徽農業(yè)科學,2007,35(5):1298-1299.
ZHAO Yuanyuan,LIU Mingguo,ZHAO Weihao. Study on cold tolerance of foreign trees[J]. Journal of Anhui Agricultural Sciences,2007,35(5):1298-1299.
[36] 陳鈺,郭愛華,姚月俊,姚延梼. 休眠期內不同杏品種枝條中SOD、POD酶活性的變化[J]. 山西農業(yè)大學學報(自然科學版),2008,28(1):48-50.
CHEN Yu,GUO Aihua,YAO Yuejun,YAO Yantao. Study on the relationship of enzyme activity of SOD and POD of different almonds and their tolerance to cold in dormant period[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2008,28(1):48-50.
[37] 李建設,耿廣東,程智慧. 低溫脅迫對茄子幼苗抗寒性生理生化指標的影響[J]. 西北農林科技大學學報(自然科學版),2003,31(1):90-92.
LI Jianshe,GENG Guangdong,CHENG Zhihui. Effects of chilling stress on chill-resistance physiological and biochemical indexes of eggplant seedlings[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry,2003,31(1):90-92.
[38] 閆忠業(yè),呂天星,王冬梅,楊鋒,劉志,伊凱. 蘋果品種抗寒性評價[C]//第四屆全國果樹種質資源研究與開發(fā)利用學術研討會論文匯編. 北京:中國園藝學會,2010:79-82.
YAN Zhongye,L? Tianxing,WANG Dongmei,YANG Feng,LIU Zhi,YI Kai. ppraisal of cold hardness in apple cultivars[C]//Compilation of papers at the fourth national symposium on fruit tree germplasm resources research and development. Beijing: Chinese Horticultural Society,2010:79-82.
[39] 范宗民,孫軍利,趙寶龍,劉懷鋒,于坤,章智鈞,劉晶晶. 不同砧木‘赤霞珠葡萄枝條抗寒性比較[J]. 果樹學報,2020,37(2):215-225.
FAN Zongmin,SUN Junli,ZHAO Baolong,LIU Huaifeng,YU Kun,ZHANG Zhijun,LIU Jingjing. Evaluation of cold resistance of one-year shoots from ‘Cabernet Sauvignon grape vine grafted on different rootstocks[J]. Journal of Fruit Science,2020,37(2):215-225.
[40] 王力源,麻蕓嬌,李文杰,劉興菊,梁海永. 不同榆樹無性系對低溫脅迫的生理響應及抗寒性評價[J]. 林業(yè)與生態(tài)科學,2020,35(2):144-152.
WANG Liyuan,MA Yunjiao,LI Wenjie,LIU Xingju,LIANG Haiyong. Physiological response and cold resistance of different Ulmus clones to low temperature stress[J]. Forestry and Ecological Sciences,2020,35(2):144-152.
[41] 王晨冰,王發(fā)林,萬信,趙秀梅,牛茹萱. 低溫脅迫下桃子房和幼果的過冷卻點及生理響應[J]. 甘肅農業(yè)科技,2020(9):18-22.
WANG Chenbing,WANG Falin,WAN Xin,ZHAO Xiumei,NIU Ruxuan. Supercooling point of peach ovary and young fruit under low temperature stress and its physiological response[J]. Gansu Agricultural Science and Technology,2020(9):18-22.
[42] 廖咸康,苗思遠,鐘劍,楊晨,馬玥,譚欽. 8種草本地被植物細胞溶液過冷卻點及結冰點的研究[J]. 現(xiàn)代園藝,2018(11):31-32.
LIAO Xiankang,MIAO Siyuan,ZHONG Jian,YANG Chen,MA Yue,TAN Qin. A study on the supercooling point and freezing point of cell solutions of 8 grass local cover Plants[J]. Contemporary Horticulture,2018(11):31-32.
[43] 王靜,張曉煜,楊洋,李紅英,衛(wèi)建國,朱永寧,田磊. 寧夏主要果樹花器官及幼果霜凍臨界溫度比較研究[J]. 北方園藝,2015(7):9-13.
WANG Jing,ZHANG Xiaoyu,YANG Yang,LI Hongying,WEI Jianguo,ZHU Yongning,TIAN Lei. Comparative study of critical temperature suffering frost of floral organs and young fruit of the main fruit trees in Ningxia[J]. Northern Horticulture,2015(7):9-13.
[44] 張瑞,馬紀. 昆蟲過冷卻點的影響因素概述[J]. 天津農業(yè)科學,2013,19(11):76-84.
ZHANG Rui,MA Ji. Insect supercooling point and its influence factors[J]. Tianjin Agricultural Sciences,2013,19(11):76-84.
[45] MOHAMMADZADEH M,IZADI H. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle,Trogoderma granarium Everts fourth instar larvae (Coleoptera:Dermestidae)[J]. Journal of Thermal Biology,2018,71:24-31.
收稿日期:2023-10-20 接受日期:2023-12-18
基金項目:內蒙古自治區(qū)科技計劃項目(2021GG0034)
作者簡介:包俊宏,女,在讀碩士研究生,研究方向為果樹抗逆性。E-mail:2670874142@qq.com
*通信作者 Author for correspondence. E-mail:2008yarong@163.com;E-mail:hyh20012008@imau.edu.cn