徐宸宇 唐啟正 劉慧宇 吳巨勛 伊華林
DOI:10.13925/j.cnki.gsxb.20230462
摘? ? 要:【目的】探究不同雜交授粉組合馬家柚果實(shí)營(yíng)養(yǎng)成分特征性狀,綜合評(píng)價(jià)雜交果實(shí)品質(zhì),為選擇適宜的馬家柚授粉父本提供數(shù)據(jù)支撐。【方法】通過品質(zhì)指標(biāo)變異系數(shù)分析、相關(guān)性分析和主成分分析對(duì)2020年廣豐地區(qū)6個(gè)雜交組合馬家柚果實(shí)樣品共18項(xiàng)品質(zhì)性狀指標(biāo)進(jìn)行綜合評(píng)價(jià)?!窘Y(jié)果】單果質(zhì)量、果皮厚度、蔗糖含量、檸檬酸含量等在內(nèi)的共18項(xiàng)品質(zhì)性狀指標(biāo)間差異顯著,變異系數(shù)為6.35%~114.45%。通過主成分分析提取到5個(gè)主成分,累積貢獻(xiàn)率可達(dá)85.001%,分別反映了果實(shí)糖酸、色澤、營(yíng)養(yǎng)、外觀、香氣及苦味品質(zhì)指標(biāo)。其中,果實(shí)可溶性糖和有機(jī)酸各組分含量以及甜度值為評(píng)價(jià)雜交授粉馬家柚果實(shí)品質(zhì)的重要因子?!窘Y(jié)論】主成分因子得分及排序表明雞尾葡萄柚為馬家柚的最佳授粉父本。
關(guān)鍵詞:柑橘;馬家柚;雜交授粉;主成分分析;品質(zhì)提升
中圖分類號(hào):S666.3 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)02-0282-12
Comprehensive evaluation on fruit quality of six hybrid pollination combinations of Majiayou based on the principal component analysis
XU Chenyu, TANG Qizheng, LIU Huiyu, WU Juxun, YI Hualin*
(College of Horticulture & Forestry Sciences of Huazhong Agricultural University/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, Hubei, China)
Abstract: 【Objective】 Different hybrid pollination combinations show significant differences in fruit quality of Majiayou. However, research on cross pollination of Majiayou mainly focuses on the evaluation and analysis of conventional quality. There are few studies that comprehensively evaluate the secondary metabolites such as important flesh color indicators like lycopene, flavor indicators like naringin, and aroma substances based on variety characteristics. In order to provide valuable information and evaluation tools for breeders, a total of 18 pomelo fruit quality traits were used for comprehensive evaluation to select suitable male parents for pollination and provide data support for production. 【Methods】 The fruit setting rate, important secondary metabolites like lycopene and naringin, and major volatile substances of six hybrid pollination combinations of Majiayou were examined, and then the early data on 18 quality traits including single fruit weight, peel thickness, number of seeds, soluble solids, titratable acid, sucrose, glucose, fructose, citric acid, malic acid and sweetness value were used for coefficient of variation (CV) analysis, correlation analysis, principal component analysis (PCA), and comprehensive score ranking to evaluate the fruit quality traits of different hybrid pollination combinations in Majiayou. 【Results】 There were significant differences in the 18 quality traits of fruit among different hybrid pollinated combinations of pomelo, with a coefficient of variation ranging from 6.35% to 114.45%. Among them, the highest fruit setting rate hybrid combination was Majiayou × Tuyou No. 4 (T4) of 55.3%, while Majiayou × Cocktail grapefruit (JW) had the lowest fruit setting rate of 22.9%. The contents of lycopene, naringin, and volatile substances in the juice cells of different hybrid pollination combinations of pomelo were measured. The results showed that different male parents had a significant impact on the secondary metabolites in the juice cells of Majiayou. Among them, the contents of lycopene in Majiayou × Tuyou No. 1 (T1), Majiayou × Tuyou No. 2 (T2) and T4 treatments were significantly higher than those in natural pollination (control), while there was no significant difference between Majiayou × Tuyou No.3 (T3), Majiayou × HB pummelo (HB), and JW treatments and control. In terms of naringin content, HB treatment significantly reduced the naringin content in the fruit, being only 4.05 mg·g-1, and there was no significant difference between other treatments and control. The composition and proportion of volatile substances in fruits of different hybrid pollination combinations were as follows: the volatile substances in the juice cells of naturally pollinated Majiayou were mainly sesquiterpenoids, accounting for 44%; next were monoterpenoids, accounting for 24%; Aromatic hydrocarbons accounted for 13%; Other volatile substances (aldehydes, acids, esters and aldehydes) accounted for a total of 20%. Compared to control, there were significant differences in the proportion of main volatile substances of different hybrid pollination combinations, specifically manifested as an increase in the proportion of sesquiterpenoids and a decrease in the proportion of monoterpenes. The proportion of sesquiterpenoids of T1 increased to 60%, which was 16% higher than that of control; Monoterpenoids only accounted for 4%, a decrease of 20% compared to control. Except for T3, the proportion of volatile substances of the hybrid combinations was significantly different, while the proportion of various substances of other four male parents (T2, T4, JW and HB) was similar to that of T1. With T3 combination, the proportion of sesquiterpenoids and monoterpenes decreased to 34% and 9%, respectively, compared to control; Aromatic hydrocarbon substances increased to 16%. The proportion of other volatile substances increased to a certain extent, with aldehydes, acids, esters and aldehydes increasing by 11%, 5%, 5% and 1%, respectively. Analyzing the specific main volatile substances, T3 treatment with the highest content of gemacrene D. significantly reduced the content of gemacrene D in fruits, being only 11.71 μg·g-1compared to control, the decrease was 64.1%, and there was no significant difference in the fruits of the other five hybrid pollination combinations. The correlation between different indexes was analyzed. The quality traits of different hybrid pollination combinations were different, and the coefficient of variation ranged from 6.35% to 114.45%. Correlation analysis results showed there were extremely significant or significant correlations among them. The correlation analysis results indicated that there was a highly significant or significant correlation between similar indicators like sugar and acid components. In terms of appearance quality, there was a significant negative correlation between the number of seeds and the thickness of the fruit peel. In terms of nutritional color and flavor, ascorbic acid was significantly and positively correlated with fructose, glucose and malic acid, while naringin was significantly and positively correlated with ascorbic acid. The correlation results reflected consistency and also reflected differences in some indicators like fruit appearance and internal quality due to different parental choices. Principal component analysis was conducted on 18 standardized trait indicators, and a total of 5 principal components were extracted from the 18 quality indicators. The cumulative contribution rate of these 5 principal components reached 85.001%, indicating that the first 5 principal components had already covered most of the fruit quality trait information. The contribution rate of the first principal component was 30.416%, including soluble sugar, organic acid and sweetness value components: fructose (0.930), sucrose (0.832), glucose (0.938), citric acid (0.753), malic acid (0.722) and quinic acid (0.674) and those indicators had higher positive eigenvalues in PC1, indicating that as the contribution rate of the first principal component increased, the contents of sugar and acid related indicators increased. Finally we ranked the scores of the 5 top principal components based on their variance contribution rates. Among them, JW had the highest comprehensive quality score of 1.39, T1 had a comprehensive quality score of 1.18, ranking second. The hybrid pollination treatments T3, T4, T2 and HB ranked 3-6 in sequence, and control ranked last, in which the comprehensive quality of the fruit was the worst. 【Conclusion】 The principal component factor score and ranking indicated that Cocktail grapefruit was the best male pollinator for Majiayou, followed by local resource Tuyou No. 1.
Key words: Citrus; Majiayou; Cross pollination; Principal component analysis; Quality improvement
雜交授粉是目前植物生產(chǎn)中解決部分品種自花不結(jié)實(shí)或坐果率低問題、改善現(xiàn)有品種性狀、提質(zhì)增產(chǎn)的有效栽培措施[1]。蕓香科柑橘屬中柚類品種多數(shù)自交不親和,同時(shí)部分柚品種因缺乏單性結(jié)實(shí)能力導(dǎo)致坐果率較低[2]。標(biāo)準(zhǔn)化建園的單一無性系馬家柚成年結(jié)果園中果實(shí)全部無籽,而混栽其他柚類品種或本地實(shí)生土柚的馬家柚園區(qū)中果實(shí)則部分有籽。雖然無籽果實(shí)因食用便利廣受消費(fèi)者青睞,但研究發(fā)現(xiàn)無籽馬家柚普遍存在果皮偏厚、果實(shí)?;土寻曷瘦^高以及果實(shí)風(fēng)味不足等一系列不利于馬家柚產(chǎn)業(yè)健康發(fā)展的問題[3-6]。雜交授粉可有效提升果實(shí)品質(zhì),受異源花粉影響,馬家柚經(jīng)雜交授粉后在單果質(zhì)量、果皮厚度、固酸比和抗壞血酸含量等綜合品質(zhì)方面相較于無籽果實(shí)均有一定程度的改善,同時(shí)坐果率也得到了顯著提升[7]。這種因外源花粉進(jìn)入母本而影響雜交果實(shí)及種子的現(xiàn)象被稱為花粉直感[8-10],即父本可直接決定后代果實(shí)品質(zhì)優(yōu)劣[11]。在實(shí)際生產(chǎn)中,種植人員往往通過栽種授粉樹或人工輔助方式使單一無性系的無籽馬家柚產(chǎn)生一定數(shù)量的種子,進(jìn)而實(shí)現(xiàn)果實(shí)產(chǎn)量和品質(zhì)的提升。
前人陸續(xù)開展了針對(duì)不同雜交組合的馬家柚果實(shí)品質(zhì)差異研究。其中,以枳殼為父本時(shí)馬家柚坐果率僅為2.0%,同時(shí)果肉中的可溶性固形物含量也顯著低于自然傳粉馬家柚;以沙田柚為父本時(shí)馬家柚縱橫徑增大、果肉質(zhì)量和種子數(shù)均顯著增加;江壩柚授粉顯著提升了馬家柚的可滴定酸、可溶性固形物、抗壞血酸含量等內(nèi)在品質(zhì),有效改善了果實(shí)風(fēng)味[12]。但目前關(guān)于馬家柚適宜授粉材料的篩選與研究較少,在父本選擇上也多為盲目性與隨機(jī)性,授粉材料大都選自目前主栽柑橘品種,未充分發(fā)掘馬家柚原產(chǎn)地周邊的柚類資源。這不僅不利于當(dāng)?shù)罔仲Y源的收集與保存,還可能導(dǎo)致地方優(yōu)良種質(zhì)資源的流失。此外,目前主栽柑橘品種對(duì)于柚品種特征次生代謝物的改良與提升仍十分有限。因此,針對(duì)性地改良馬家柚果實(shí)關(guān)鍵次生代謝物質(zhì)(番茄紅素、柚皮苷和香氣成分等),提升風(fēng)味和營(yíng)養(yǎng)品質(zhì)并充分利用地方性柚類資源,對(duì)探究馬家柚不同雜交授粉組合是極具現(xiàn)實(shí)意義的。
主成分分析法(PCA)被廣泛用于園藝植物品質(zhì)分析評(píng)價(jià),基于數(shù)據(jù)降維方法,PCA可使繁多的原始變量濃縮至幾個(gè)綜合變量,這些主要變量涵蓋了原始變量中的大部分信息,最后通過計(jì)算主成分得分,對(duì)客觀性狀指標(biāo)進(jìn)行科學(xué)評(píng)價(jià)與歸納。王思威等[13]利用相關(guān)性分析和主成分分析的方法對(duì)28份白糖罌荔枝樣品的共20個(gè)品質(zhì)指標(biāo)進(jìn)行綜合評(píng)價(jià),得到了4個(gè)貢獻(xiàn)率高的主成分,表明了可滴定酸含量、抗壞血酸含量和甜度等指標(biāo)是評(píng)價(jià)白糖罌荔枝果實(shí)品質(zhì)的重要因子,分析結(jié)果可為荔枝育種和果品評(píng)級(jí)提供參考。王小龍等[14]對(duì)父本美樂和抗寒性母本華葡1號(hào)的12株雜交后代株系的百粒質(zhì)量及糖酸、總酚、黃烷醇和總黃酮含量等15項(xiàng)綜合品質(zhì)指標(biāo)進(jìn)行主成分分析,以篩選高豐產(chǎn)性和抗寒性的釀酒葡萄雜交株系。15個(gè)品質(zhì)指標(biāo)共劃分為4個(gè)主成分,累積貢獻(xiàn)率可達(dá)84.59%,分別反映了雜交株系的籽酚類、皮酚類物質(zhì)含量以及果實(shí)大小和可溶性固形物含量指標(biāo),綜合得分表明株系XC8綜合表現(xiàn)最佳,適宜在東北及西北地區(qū)進(jìn)行推廣。
筆者以4個(gè)廣豐地區(qū)本地土柚、HB柚和雞尾葡萄柚為父本與馬家柚進(jìn)行雜交授粉試驗(yàn),測(cè)定雜交授粉馬家柚特征次生代謝物質(zhì)含量,并結(jié)合相關(guān)性分析和主成分分析的方法綜合評(píng)價(jià)雜交果實(shí)品質(zhì),旨在篩選適宜馬家柚的授粉父本,同時(shí)挖掘廣豐周邊地區(qū)具有利用潛力的柚類資源,提升果實(shí)綜合品質(zhì),為消費(fèi)者提供更優(yōu)質(zhì)的果品。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)選取江西省上饒市廣豐縣湖豐鎮(zhèn)沁園山莊園區(qū)中樹勢(shì)一致且無明顯病蟲害的9年生馬家柚成年結(jié)果樹作為母本樹,株行距為4 m×5 m。父本分別位于母本樹周邊地區(qū)(湖豐鎮(zhèn)回樹村、大南鎮(zhèn)三排村等)的4株樹勢(shì)強(qiáng)旺的本地土柚,均為自然實(shí)生樹,平均樹高6 m,部分風(fēng)味和果形較優(yōu),依次命名為土柚1號(hào)、土柚2號(hào)、土柚3號(hào)和土柚4號(hào)(處理編號(hào)為T1、T2、T3、T4),以及華中農(nóng)業(yè)大學(xué)柑橘種質(zhì)資源圃中的HB柚(處理編號(hào)為HB)與雞尾葡萄柚(處理編號(hào)為JW),對(duì)照組(Control)為自然傳粉馬家柚。單株為1個(gè)生物學(xué)重復(fù),3次重復(fù)。
1.2 試驗(yàn)方法
1.2.1? ? 花粉的收集與制備? ? 于2020年4月20日采集父本單株上尚未完全開放的花朵,分別收集裝入自封袋內(nèi)帶回實(shí)驗(yàn)室。剝離花瓣并只留下花藥置于干凈濾紙上,放入26~28 ℃烘箱內(nèi)干燥約48 h,待花藥完全干燥后分別裝入2 mL離心管中,于-20 ℃冰箱中保存?zhèn)溆谩?/p>
1.2.2? ? 雜交授粉? ? 于馬家柚盛花期(5月1日)進(jìn)行雜交授粉試驗(yàn)。選擇樹冠中下部外圍的健壯結(jié)果枝,疏除枝上已經(jīng)開放、未成熟的花以及畸形花。用鑷子小心將花瓣及花藥剝離,只留下柱頭,再用小號(hào)毛筆蘸取離心管內(nèi)的干燥花粉點(diǎn)在柱頭上,套袋并于授粉枝末端掛牌。
1.2.3? ? 坐果率和果實(shí)品質(zhì)測(cè)定? ? 授粉時(shí)記錄各雜交組合點(diǎn)授花朵數(shù),并于完成授粉后的3~5 d內(nèi)摘袋。于第2次生理落果期后統(tǒng)計(jì)坐果數(shù),計(jì)算不同雜交授粉組合的馬家柚坐果率。
各處理于每單株樹的中下部的不同方位隨機(jī)選取3個(gè)大小均一的成熟果實(shí),每個(gè)處理共采集9個(gè)果實(shí)進(jìn)行后續(xù)品質(zhì)指標(biāo)測(cè)定[15]。
1.2.4? ? 番茄紅素及柚皮苷含量測(cè)定? ? 參考姜啟航[16]的方法提取番茄紅素。流動(dòng)相的配制:A相,乙腈∶甲醇=3∶1(每1000 mL加入三乙胺500 μL),含0.01% 2,6-二叔丁基-4-甲基苯酚(BHT);B相,100%甲基叔丁基醚(MTBE)(含0.01% BHT),超聲脫氣30 min。色譜檢測(cè)系統(tǒng):Waters 1525,2996二級(jí)陣列檢測(cè)器,717自動(dòng)進(jìn)樣器,YMC C30類胡蘿卜素專用色譜柱(4.6 mm×150 mm,5 μm),流速1 mL·min-1,進(jìn)樣量20 μL,柱溫箱30 ℃。所用試劑均為色譜級(jí)。
參考丁帆[17]的方法提取柚皮苷。流動(dòng)相的配制:A相,0.3%甲酸(超純水配制);B相,甲醇,超聲脫氣20~30 min。色譜柱:C18(150 mm×4.6 mm,5 μm),流速1 mL·min-1,進(jìn)樣量20 μL,柱溫箱溫度35 ℃。柚皮苷標(biāo)準(zhǔn)品購(gòu)自上海源葉生物科技有限公司,所用試劑均為色譜級(jí)。
1.2.5? ? 揮發(fā)性物質(zhì)含量測(cè)定? ? 參考劉翠華[18]的方法提取和檢測(cè)揮發(fā)性物質(zhì)含量,并做略微調(diào)整。取液氮凍存的馬家柚汁胞組織研磨后加入500 μL ddH2O和含有1 μg·mL-1壬酸甲酯(純度≥99.8%,Sigma公司,美國(guó))的MTBE(HPLC級(jí),F(xiàn)isher美國(guó))渦旋混勻,置于超聲波清洗儀(SB-5200D,寧波新芝)中低溫萃取40 min,10 000 r·min-1離心收集上層有機(jī)相,過0.22 μm濾膜后注射至帶有內(nèi)插管的棕色進(jìn)樣瓶?jī)?nèi),待上機(jī)檢測(cè)。色譜柱為TRACE TR-5 MS柱(30 m×0.25 mm,0.25 μm,Thermo Scientific,Bellefonte,PA,USA)。載氣為高純氦氣(99. 999%),分流比30∶1,恒流模式,流速為1 mL·min-1。進(jìn)樣口、離子源和傳輸線的溫度分別為250 ℃、260 ℃和280 ℃。
GC的升溫程序如下:40 ℃保持3 min,然后以2 ℃·min-1的速度升溫至160 ℃并保留l min,然后以5 ℃·min-1的速度升溫至200 ℃并保留1 min,最后以8 ℃·min-1的速度升溫至240 ℃并保留3 min。MS的條件如下:EI(電子轟擊)離子源,電子轟擊能量70 eV,正離子掃描模式,質(zhì)量掃描范圍45~400 m·z-1,3 min后開始采集質(zhì)譜數(shù)據(jù)[19]。
1.3 數(shù)據(jù)統(tǒng)計(jì)與分析
試驗(yàn)數(shù)據(jù)采用Excel 2016軟件進(jìn)行統(tǒng)計(jì)與作圖,采用SPSS 26軟件進(jìn)行差異顯著性分析、相關(guān)性分析和主成分分析。
參考Zhang等[20]的方法計(jì)算甜度值,并略有調(diào)整,果糖、蔗糖、葡萄糖甜度分別為175、100和75,本研究中山梨醇不計(jì)算在內(nèi)。甜度值/(g·L-1)=(蔗糖含量×100+果糖含量×175+葡萄糖含量×75)/1000。
2 結(jié)果與分析
2.1 不同授粉組合馬家柚坐果率分析
由表1可以看出,除雞尾葡萄柚處理外,其余雜交授粉組合的坐果率均高于48%,與雞尾葡萄柚處理呈顯著差異,其中T4處理的坐果率最高,為55.3%,其次是T2處理,而雞尾葡萄柚處理的坐果率僅為22.9%。
2.2 6個(gè)雜交授粉組合對(duì)馬家柚果實(shí)番茄紅素和柚皮苷含量的影響
馬家柚是典型的紅肉柚類,果肉中富含的番茄紅素和柚皮苷是評(píng)價(jià)馬家柚營(yíng)養(yǎng)價(jià)值的重要組分,其中柚皮苷味苦,對(duì)果實(shí)風(fēng)味構(gòu)成起著至關(guān)重要的作用[21]。如圖1所示,不同雜交授粉組合果實(shí)番茄紅素含量與自然傳粉相比存在差異,其中,T1、T2、T4處理番茄紅素含量均顯著高于自然傳粉,而T3、HB柚和雞尾葡萄柚處理與自然傳粉均無顯著差異。在柚皮苷含量方面,HB柚處理顯著降低了柚皮苷含量(僅為4.05 mg·g-1),其他處理與自然傳粉均無顯著差異。
2.3 6個(gè)雜交授粉組合對(duì)馬家柚果實(shí)主要揮發(fā)性物質(zhì)種類及含量的影響
揮發(fā)性物質(zhì)組成了果實(shí)特殊的風(fēng)味,不同雜交授粉組合果實(shí)揮發(fā)性物質(zhì)組成及占比情況如圖2所示,自然傳粉馬家柚果實(shí)汁胞中的揮發(fā)性物質(zhì)以倍半萜類物質(zhì)為主,占比44%;其次為單萜類物質(zhì),占比24%;芳香烴類物質(zhì)占比13%;其他揮發(fā)性物質(zhì)(醛、酸、酯、醛)共占比19%。相較于自然傳粉馬家柚,不同雜交授粉組合果實(shí)汁胞中的主要揮發(fā)性物質(zhì)占比均產(chǎn)生了明顯差異,具體表現(xiàn)為倍半萜類物質(zhì)占比提升和單萜類物質(zhì)占比降低。以馬家柚×土柚1號(hào)為例,授粉后果實(shí)汁胞中倍半萜類物質(zhì)占比提升至60%,與自然傳粉相比提升了16個(gè)百分點(diǎn);單萜類物質(zhì)僅占比4%,相較于自然傳粉降低了20個(gè)百分點(diǎn)。除馬家柚×土柚3號(hào)雜交果實(shí)揮發(fā)性物質(zhì)占比與其余雜交組合存在明顯不同外,其他4個(gè)父本(T2、T4、雞尾葡萄柚、HB柚)與馬家柚雜交果實(shí)汁胞中各物質(zhì)組成占比與馬家柚×土柚1號(hào)中基本一致。以土柚3號(hào)為父本授粉后汁胞中倍半萜和單萜類物質(zhì)占比相較于自然傳粉果實(shí)分別降至34%和9%;芳香烴類物質(zhì)增加至16%;其他揮發(fā)物質(zhì)占比均有一定提升,醛、酸、酯、醛占比分別增加了11%、5%、5%和1%。
對(duì)揮發(fā)性物質(zhì)中占比較高的倍半萜、單萜、芳香烴和醛類物質(zhì)進(jìn)行含量測(cè)定分析,結(jié)果如圖3所示,主要揮發(fā)性物質(zhì)中以倍半萜類物質(zhì)(吉馬烯)含量最高。土柚3號(hào)為父本授粉的果實(shí)吉馬烯含量顯著降低,僅為11.71 μg·g-1,相較于自然傳粉顯著降低64.1%,除土柚4號(hào)處理外,其他4個(gè)雜交授粉組合的果實(shí)吉馬烯含量較自然傳粉果實(shí)無顯著差異。自然傳粉果實(shí)汁胞中的主要單萜類物質(zhì)D-檸檬烯含量為18.12 μg·g-1,與對(duì)照相比,6個(gè)雜交授粉組合的D-檸檬烯含量均顯著降低。在芳香烴類物質(zhì)方面,處理果實(shí)汁胞中乙苯含量較自然傳粉果實(shí)無顯著差異,而對(duì)二甲苯含量則均表現(xiàn)為顯著降低。在醛類物質(zhì)方面,對(duì)照和處理汁胞中的3-己烯醛含量無顯著差異,以土柚2號(hào)和HB柚為父本時(shí)較自然傳粉顯著降低了汁胞中的正己醛含量。
2.4 6個(gè)雜交授粉組合馬家柚果實(shí)品質(zhì)變異系數(shù)分析
變異系數(shù)直接反映了個(gè)體受不同父本處理后的品質(zhì)性狀變異程度。6個(gè)雜交授粉組合的果實(shí)共18個(gè)品質(zhì)性狀[21]包含了外觀(單果質(zhì)量、果皮厚度和種子數(shù))、甜酸(可溶性固形物、可滴定酸、固酸比、蔗糖、檸檬酸含量和甜度值等)、色澤營(yíng)養(yǎng)(番茄紅素、抗壞血酸、柚皮苷含量)和香氣(D-檸檬烯、吉馬烯含量)。18個(gè)性狀指標(biāo)間變異程度明顯,變異系數(shù)介于6.35%~114.45%之間,其中D-檸檬烯變異系數(shù)最大,為114.45%;其次為種子數(shù),變異系數(shù)為57.21%。以上數(shù)據(jù)表明雜交授粉后果實(shí)揮發(fā)性物質(zhì)和種子數(shù)受不同父本影響程度較大。單果質(zhì)量、果皮厚度、抗壞血酸和可溶性固形物含量指標(biāo)的變異系數(shù)為18個(gè)性狀指標(biāo)的后四名,均低于10%,表明上述4個(gè)性狀指標(biāo)受雜交授粉影響較小(表2)。
2.5 相關(guān)性分析
18個(gè)品質(zhì)性狀指標(biāo)標(biāo)準(zhǔn)化后,建立完整的評(píng)價(jià)體系。由表3可知,不同指標(biāo)間存在顯著相關(guān)性:外觀品質(zhì)中,種子數(shù)與果皮厚度呈顯著負(fù)相關(guān)。甜酸方面,可滴定酸含量與固酸比呈極顯著負(fù)相關(guān);葡萄糖、果糖與蔗糖含量三者間呈極顯著正相關(guān);檸檬酸與可溶性固形物和可滴定酸含量呈顯著正相關(guān);蘋果酸與果糖含量呈顯著正相關(guān);奎尼酸與蔗糖和葡萄糖含量呈極顯著正相關(guān),與果糖含量呈顯著正相關(guān);甜度值與蔗糖、果糖、葡萄糖和奎尼酸含量呈極顯著正相關(guān)。營(yíng)養(yǎng)色澤及風(fēng)味方面,抗壞血酸與果糖和蘋果酸含量呈顯著正相關(guān),與葡萄糖含量呈極顯著正相關(guān);柚皮苷與抗壞血酸含量呈顯著正相關(guān);主要揮發(fā)性物質(zhì)D-檸檬烯含量與種子數(shù)和3種可溶性糖含量及甜度值呈顯著負(fù)相關(guān)。由此可以發(fā)現(xiàn),不同雜交授粉組合品質(zhì)指標(biāo)間存在諸多相關(guān)性,并非完全獨(dú)立。此外,表3中顯示種子數(shù)與果皮厚度呈顯著負(fù)相關(guān);固酸比又分別與果皮厚度呈顯著負(fù)相關(guān),與種子數(shù)呈顯著正相關(guān),這表明外觀品質(zhì)與內(nèi)在品質(zhì)間也存在著一定的關(guān)聯(lián)性。
2.6 主成分分析
對(duì)18個(gè)標(biāo)準(zhǔn)化的性狀指標(biāo)進(jìn)行主成分分析,結(jié)果如表4所示。以特征值>1為標(biāo)準(zhǔn),選取各因子載荷絕對(duì)值>0.650作為解釋變量,18個(gè)品質(zhì)指標(biāo)共提取出5個(gè)主成分,這5個(gè)主成分累積貢獻(xiàn)率可達(dá)85.001%,表明前5個(gè)主成分已經(jīng)涵蓋了大部分的果實(shí)品質(zhì)性狀信息,可代表原本的18個(gè)品質(zhì)指標(biāo)進(jìn)行評(píng)價(jià)。
第1主成分貢獻(xiàn)率為30.416%,其中果糖含量(0.930)、蔗糖含量(0.832)、葡萄糖含量(0.938)、檸檬酸含量(0.753)、蘋果酸含量(0.722)、奎尼酸含量(0.674)為PC1中正向特征值較高的指標(biāo),主要是可溶性糖、有機(jī)酸和甜度值各組分,表明當(dāng)?shù)?主成分貢獻(xiàn)率升高時(shí),糖酸相關(guān)指標(biāo)含量隨之增加。馬家柚為高糖高酸型柚類,較高的單糖含量構(gòu)成了其主要的糖酸風(fēng)味,第1主成分可概括為果實(shí)糖酸風(fēng)味指標(biāo)。第2主成分貢獻(xiàn)率為20.122%,主要正向特征指標(biāo)為固酸比(0.792)、可溶性固形物含量(0.661)、抗壞血酸含量(0.735),負(fù)向指標(biāo)為可滴定酸含量(-0.654)和D-檸檬烯含量(-0.897)。PC2主要反映了雜交授粉果實(shí)甜酸及營(yíng)養(yǎng)品質(zhì),該指標(biāo)是表征馬家柚綜合品質(zhì)的關(guān)鍵指標(biāo)。第3主成分貢獻(xiàn)率為17.575%,主要涵蓋了單果質(zhì)量(-0.669)、果皮厚度(0.737)、種子數(shù)(-0.815)等果實(shí)外觀品質(zhì)以及番茄紅素含量(0.767)在內(nèi)的色澤品質(zhì)指標(biāo),可概括為果實(shí)外觀及色澤指標(biāo)。第4主成分貢獻(xiàn)率為8.888%,吉馬烯含量(-0.877)有較大的負(fù)向特征值,對(duì)PC4產(chǎn)生負(fù)向影響,可概括為果實(shí)香氣指標(biāo)。第5主成分貢獻(xiàn)率為8.000%,柚皮苷含量(-0.936)對(duì)PC5產(chǎn)生主要的負(fù)向影響,可概括為苦味指標(biāo)。
2.7 6個(gè)雜交授粉組合果實(shí)品質(zhì)綜合得分及排序
以各主成分方差貢獻(xiàn)率為權(quán)重,對(duì)前5個(gè)主成分進(jìn)行得分以及相應(yīng)權(quán)重線性加權(quán)求和并代入計(jì)算公式F=Wi×Yi/Wi總,得到果實(shí)品質(zhì)綜合得分F=(0.304 16 PC1+0.201 22 PC2+0.175 75 PC3+0.088 88 PC4+0.080 00 PC5)/0.850 01。由表5可知,依據(jù)自然傳粉果實(shí)及6個(gè)雜交授粉組合果實(shí)品質(zhì)各主成分的得分系數(shù),綜合前5個(gè)主成分得分后計(jì)算出各處理的綜合得分F值。其中,馬家柚×雞尾葡萄柚果實(shí)綜合品質(zhì)得分最高為1.39,該雜交組合分別在第1主成分(糖酸風(fēng)味指標(biāo))、第3主成分(果實(shí)外觀及色澤指標(biāo))和第5主成分(果實(shí)苦味指標(biāo))中得分最高。馬家柚×土柚1號(hào)綜合品質(zhì)得分為1.18,排名第二,該雜交組合在第2主成分——甜酸及營(yíng)養(yǎng)指標(biāo)中得分最高。雜交授粉處理T3、T4、T2、HB依次排名3~6名,自然傳粉排名最后,果實(shí)綜合品質(zhì)最差。
雜交授粉組合馬家柚×雞尾葡萄柚的果實(shí)綜合品質(zhì)排名最高,其次為馬家柚×土柚1號(hào)。作為對(duì)照的自然傳粉果實(shí)品質(zhì)評(píng)分最低,符合預(yù)期結(jié)果。上述結(jié)果證實(shí)了利用主成分分析方法能真實(shí)評(píng)估不同雜交授粉組合對(duì)馬家柚果實(shí)品質(zhì)的影響,同時(shí)也表明了雜交授粉可有效改善馬家柚果實(shí)的綜合品質(zhì)。
3 討 論
主成分分析可將原始數(shù)據(jù)個(gè)數(shù)較多、數(shù)據(jù)間交叉冗余且彼此間具有較高相關(guān)性的果實(shí)品質(zhì)性狀指標(biāo)降維成為幾個(gè)涵蓋絕大部分?jǐn)?shù)據(jù)信息的成分[13],筆者通過PCA將18個(gè)品質(zhì)性狀指標(biāo)轉(zhuǎn)化為5個(gè)互相獨(dú)立的綜合指標(biāo),其累積貢獻(xiàn)率達(dá)到85.001%,已涵蓋大部分的品質(zhì)信息。5個(gè)主成分分別反映了雜交授粉馬家柚的糖酸、外觀、風(fēng)味營(yíng)養(yǎng)、香氣及苦味品質(zhì),其中,前3個(gè)主成分將生產(chǎn)中重點(diǎn)關(guān)注的關(guān)鍵性品質(zhì)指標(biāo)集中體現(xiàn)。例如第1主成分為果實(shí)的可溶性糖含量、有機(jī)酸含量和甜度值指標(biāo),符合馬家柚典型的“高糖高酸”品種特性。固酸比作為第2主成分的主要正向特征指標(biāo),雞尾葡萄柚處理的因子得分為-0.96(表5),以雞尾葡萄柚為父本相較于其他雜交處理組合均顯著提高了馬家柚果實(shí)的檸檬酸含量,但授粉后可溶性糖各組分含量與T1處理差異不顯著,該因素直接導(dǎo)致雞尾葡萄柚處理果實(shí)固酸比提升不顯著[22]。此外,馬家柚所特有的高番茄紅素與高抗壞血酸含量以及特殊的香氣被集中反映在第2和第3主成分內(nèi)。筆者利用主成分分析有效避免了因人為因素導(dǎo)致的品質(zhì)性狀概括不全、造成主觀判斷不客觀等情況,分析所得出的馬家柚×雞尾葡萄柚和馬家柚×土柚1號(hào)2個(gè)雜交組合可有效滿足馬家柚品質(zhì)差異化育種需求,為育種者提供更多有針對(duì)性的品質(zhì)改良方法,有效優(yōu)化了品種雜交配置和選擇的方案。
雜交授粉后的果實(shí)坐果率因授粉親本間親緣關(guān)系的遠(yuǎn)近產(chǎn)生明顯差異。例如,以臍紅獼猴桃為母本、中華獼猴桃的不同品種(HX-2和JX-X與母本間親緣關(guān)系間存在差異)為父本授粉后坐果率相差28%;以不同品種的軟棗獼猴桃(R-X)、黑蕊獼猴桃(HR-X)和滿天星獼猴桃(M-X)雄株授粉后的坐果率同樣差異較大。即父母本間親緣關(guān)系較近,授粉后坐果率高;親緣關(guān)系較遠(yuǎn),坐果率隨之降低[23]。這一結(jié)論于本研究中得到了很好的驗(yàn)證,以雞尾葡萄柚為父本時(shí)的馬家柚坐果率為22.9%;本地土柚和HB柚為父本時(shí),坐果率則普遍介于48%~56%之間。其中,馬家柚與廣豐及周邊地區(qū)部分土柚親緣關(guān)系極近,與HB柚(相似系數(shù)0.827)親緣關(guān)系較近,而雞尾葡萄柚(相似系數(shù)0.617)與馬家柚親緣關(guān)系則較遠(yuǎn)[24]。
不同授粉組合的馬家柚種子數(shù)同樣受親本遺傳關(guān)系影響。以馬家柚近緣系的土柚與HB柚為父本授粉后果實(shí)種子數(shù)200粒左右;而遠(yuǎn)緣系的雞尾葡萄柚授粉后果實(shí)種子數(shù)僅為60余粒,該結(jié)果與楊海健[7]探究馬家柚不同雜交授粉組合對(duì)后代影響的研究結(jié)果相一致。通常因無籽馬家柚增加至百余粒種子后會(huì)降低食用便利性,易受到消費(fèi)者詬病。但筆者研究發(fā)現(xiàn),雜交授粉后馬家柚可食率與自然傳粉果實(shí)相比并無明顯差異。與柑、橘類種子散亂分布于果實(shí)內(nèi)部不同,柚類種子均緊密分布于中心柱周圍,更易于直接剝離。此外,種子數(shù)增加的同時(shí)顯著提升了單果質(zhì)量并降低了果皮厚度,有效彌補(bǔ)了馬家柚的品質(zhì)缺陷。在實(shí)際生產(chǎn)中,馬家柚果實(shí)內(nèi)的種子會(huì)因與授粉樹距離的遠(yuǎn)近而表現(xiàn)出數(shù)量和形態(tài)的差異,即兩者間距離越遠(yuǎn),種子數(shù)相應(yīng)減少并出現(xiàn)癟籽等現(xiàn)象。因此,對(duì)于馬家柚授粉樹的不同配置方式如何影響雜交果實(shí)種子還有待進(jìn)一步深入研究。同時(shí)后續(xù)還需要進(jìn)一步擴(kuò)大父本株系選擇范圍,期望找到產(chǎn)生較少種子數(shù),并能有效提升馬家柚綜合品質(zhì)的最優(yōu)雜交組合。
相關(guān)研究表明,雜交授粉后的果實(shí)品質(zhì)表現(xiàn)出明顯的花粉直感現(xiàn)象,即雜交果實(shí)品質(zhì)性狀普遍介于父母本之間[25]。例如,番茄紅素、柚皮苷和揮發(fā)性物質(zhì)作為構(gòu)成馬家柚色澤和風(fēng)味品質(zhì)的重要次生代謝物[16],其在果實(shí)中的含量直接決定了馬家柚營(yíng)養(yǎng)成分含量的高低。本研究中多數(shù)本地土柚授粉后的馬家柚果肉中的番茄紅素含量顯著高于自然傳粉馬家柚,而以雞尾葡萄柚為父本時(shí)則無顯著變化。筆者推測(cè)這可能是由于與馬家柚親緣關(guān)系較近的土柚在長(zhǎng)期的自然繁育過程中保持了紅肉性狀,即雜交父本果肉中的番茄紅素含量始終維持在較高水平;而作為非紅肉類型的雞尾葡萄柚,則會(huì)使授粉后的馬家柚番茄紅素含量維持與母本相同水平。此外,作為柚類主要的苦味來源,柚皮苷含量過高會(huì)直接導(dǎo)致柚口感苦澀而無法食用。本研究的6個(gè)雜交授粉組合中也僅有馬家柚×HB柚的果實(shí)柚皮苷含量顯著低于自然傳粉。但因消費(fèi)者日益多樣化的果品需求與柚皮苷獨(dú)有的抗炎保健功效,柚皮苷含量的減少在一定程度上也導(dǎo)致了馬家柚營(yíng)養(yǎng)品質(zhì)的降低[26]。因此,后續(xù)還可進(jìn)一步通過感官風(fēng)味評(píng)價(jià)衡量馬家柚苦味閾值,用以輔助馬家柚品質(zhì)改良。綜合本研究通過主成分分析篩選出的2個(gè)品質(zhì)性狀互有區(qū)分的雜交授粉組合,可供育種人員針對(duì)于不斷變化的市場(chǎng)需求與品質(zhì)親好性有目的性地實(shí)現(xiàn)馬家柚授粉組合的差異化配置。
4 結(jié) 論
通過對(duì)6個(gè)雜交授粉組合馬家柚果實(shí)色澤和風(fēng)味關(guān)鍵次生代謝物進(jìn)行測(cè)定,結(jié)合品質(zhì)性狀進(jìn)行相關(guān)性分析和主成分分析,對(duì)馬家柚雜交果實(shí)品質(zhì)進(jìn)行綜合評(píng)價(jià)。通過主成分分析提取到5個(gè)主成分,累積貢獻(xiàn)率可達(dá)85.001%,分別反映了果實(shí)糖酸、色澤、營(yíng)養(yǎng)、外觀、香氣及苦味品質(zhì)指標(biāo)。雜交授粉組合馬家柚×雞尾葡萄柚的果實(shí)綜合品質(zhì)排名最高,其次為馬家柚×土柚1號(hào)。研究結(jié)果為馬家柚雜交授粉后果實(shí)內(nèi)在營(yíng)養(yǎng)物質(zhì)代謝規(guī)律提供依據(jù),也為生產(chǎn)中馬家柚雜交親本的選擇提供參考。
參考文獻(xiàn) References:
[1] DUNG C D,WALLACE H M,BAI S H,OGBOURNE S M,TRUEMAN S J. Cross-pollination affects fruit colour,acidity,firmness and shelf life of self-compatible strawberry[J]. PLoS One,2021,16(9):e0256964.
[2] LIANG M,CAO Z H,ZHU A D,LIU Y L,TAO M Q,YANG H Y,XU Q,WANG S H,LIU J J,LI Y P,CHEN C W,XIE Z Z,DENG C L,YE J L,GUO W W,XU Q,XIA R,LARKIN R M,DENG X X,BOSCH M,F(xiàn)RANKLIN-TONG V E,CHAI L J. Evolution of self-compatibility by a mutant Sm-RNase in citrus[J]. Nature Plants,2020,6(2):131-142.
[3] 徐宸宇. 馬家柚優(yōu)系遺傳鑒定及提高品質(zhì)技術(shù)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2021.
XU Chenyu. Genetic identification of superiority and quality improvement technology research of Majia pomelo[D]. Wuhan:Huazhong Agricultural University,2021.
[4] 劉冬峰,林紹生,陳巍,朱祝軍,宋洋,郭秀珠,李發(fā)勇. 異花授粉對(duì)柚果實(shí)代謝產(chǎn)物的影響及其與內(nèi)裂的關(guān)系[J]. 核農(nóng)學(xué)報(bào),2021,35(2):271-279.
LIU Dongfeng,LIN Shaosheng,CHEN Wei,ZHU Zhujun,SONG Yang,GUO Xiuzhu,LI Fayong. Effect of cross-pollination on metabolites and its relationship with fruit inner-cracking in pomelo[J]. Journal of Nuclear Agricultural Sciences,2021,35(2):271-279.
[5] 羅友進(jìn),陳霞,胡佳羽,程玥晴,王武,謝永紅. 柑橘枯水發(fā)生機(jī)制研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(1):31-34.
LUO Youjin,CHEN Xia,HU Jiayu,CHENG Yueqing,WANG Wu,XIE Yonghong. Research progress of mechanism of citrus section-drying[J]. Jiangsu Agricultural Sciences,2019,47(1):31-34.
[6] 姚海磷. 異花授粉對(duì)‘琯溪蜜柚果實(shí)品質(zhì)及有機(jī)酸組分的影響[D]. 福州:福建農(nóng)林大學(xué),2015.
YAO Hailin. The effects of cross-pollination on fruit quality and organic acid components in ‘Guanximiyou pummelo (Citrus grandis)[D]. Fuzhou:Fujian Agriculture and Forestry University,2015.
[7] 楊海健. 柑橘有性雜交創(chuàng)造新種質(zhì)及授粉對(duì)馬家柚和HB柚果實(shí)品質(zhì)的影響研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2012.
YANG Haijian. The study of creating citrus new germplasm by sexual hybridization and the hybridization influence on the fruit quality of Majiayou and HB pomelo[D]. Wuhan:Huazhong Agricultural University,2012.
[8] TRUEMAN S J,K?MPER W,NICHOLS J,OGBOURNE S M,HAWKES D,PETERS T,BAI S H,WALLACE H M. Pollen limitation and xenia effects in a cultivated mass-flowering tree,Macadamia integrifolia (Proteaceae)[J]. Annals of Botany,2022,129(2):135-146.
[9] WANG S H,LONG C R,LIU H M,PAN L,YANG S Z,ZHAO J,JIANG Y,BEI X J. Comparative physiochemical and transcriptomic analysis reveals the influences of cross-pollination on ovary and fruit development in pummelo (Citrus maxima)[J]. Scientific Reports,2023,13:19081.
[10] 洪俊彥,黃仁,黃春穎,王建華,徐一帆,李佩佩,胡淵淵,黃堅(jiān)欽,李巖. 植物花粉直感的研究進(jìn)展及展望[J]. 植物生理學(xué)報(bào),2020,56(2):151-162.
HONG Junyan,HUANG Ren,HUANG Chunying,WANG Jianhua,XU Yifan,LI Peipei,HU Yuanyuan,HUANG Jianqin,LI Yan. Research progress and prospects of xenia[J]. Plant Physiology Journal,2020,56(2):151-162.
[11] 毛桑隱,路志浩,張祥,葉俊麗,伊華林,柴利軍,鄧秀新,吳方方,徐強(qiáng). 花粉直感對(duì)馬家柚果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2023,40(11):2391-2402.
MAO Sangyin,LU Zhihao,ZHANG Xiang,YE Junli,YI Hualin,CHAI Lijun,DENG Xiuxin,WU Fangfang,XU Qiang. Effect of xenia on fruit quality of Majiayou[J]. Journal of Fruit Science,2023,40(11):2391-2402.
[12] 靳瑞霞. 馬家柚不同授粉組合果實(shí)品質(zhì)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013.
JIN Ruixia. Study effect of different pollination combanition on fruit quality of Majia pummelo[D]. Wuhan:Huazhong Agricultural University,2013.
[13] 王思威,孫海濱,常虹,鐘聲,趙俊生,王瀟楠. 基于主成分分析綜合評(píng)價(jià)白糖罌荔枝果實(shí)品質(zhì)[J]. 果樹學(xué)報(bào),2022,39(4):610-620.
WANG Siwei,SUN Haibin,CHANG Hong,ZHONG Sheng,ZHAO Junsheng,WANG Xiaonan. Comprehensive evaluation of fruit quality of Baitangying litchi based on principal component analysis[J]. Journal of Fruit Science,2022,39(4):610-620.
[14] 王小龍,史祥賓,冀曉昊,王寶亮,張藝燦,王海波. 基于主成分分析的釀酒葡萄雜交后代果實(shí)品質(zhì)評(píng)價(jià)[J]. 中外葡萄與葡萄酒,2021(5):8-13.
WANG Xiaolong,SHI Xiangbin,JI Xiaohao,WANG Baoliang,ZHANG Yican,WANG Haibo. Fruit evaluation of hybrid progeny of wine grape based on principal component analysis[J]. Sino-Overseas Grapevine & Wine,2021(5):8-13.
[15] 范素杰. 汁用甜橙品種品質(zhì)的綜合分析[D]. 武漢:華中農(nóng)業(yè)大學(xué),2010.
FAN Sujie. Comprehensive analysis of quality of orange juice processing cultivars[D]. Wuhan:Huazhong Agricultural University,2010.
[16] 姜啟航. 套袋對(duì)柚果實(shí)類胡蘿卜素代謝和品質(zhì)的影響[D]. 武漢:華中農(nóng)業(yè)大學(xué),2019.
JIANG Qihang. Studies on the effects of bagging on carotenoid biogenesis and quality of pummelo fruits[D]. Wuhan:Huazhong Agricultural University,2019.
[17] 丁帆. 柑橘中幾種苦味物質(zhì)的檢測(cè)及評(píng)價(jià)[D]. 武漢:華中農(nóng)業(yè)大學(xué),2009.
DING Fan. Determination and evaluation of naringin,limonin and nomilin in Citrus[D]. Wuhan:Huazhong Agricultural University,2009.
[18] 劉翠華. 莽山野柑果實(shí)特征香氣及花粉直感效應(yīng)的解析[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014.
LIU Cuihua. Analysis of the characteristic aroma and pollen direct sensation effect of Mangshanyegan (Citrus nobilis Lauriro)[D]. Wuhan:Huazhong Agricultural University,2014.
[19] 施要強(qiáng),張海朋,劉翠華,蔣友武,王振華,謝宗周,曾繼吾,徐娟. 不同發(fā)育時(shí)期莽山野柑果皮中揮發(fā)性物質(zhì)代謝譜的變化[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,39(1):34-43.
SHI Yaoqiang,ZHANG Haipeng,LIU Cuihua,JIANG Youwu,WANG Zhenhua,XIE Zongzhou,ZENG Jiwu,XU Juan. Changes of volatile profile in Mangshanyegan fruit peels at different development stages[J]. Journal of Huazhong Agricultural University,2020,39(1):34-43.
[20] ZHANG L T. The Sweetness of sugars[J]. Journal of South China University of Technology,2002,30(1):89-91.
[21] 張海朋,彭昭欣,石梅艷,溫歡,張紅艷,徐娟. 柑橘果實(shí)風(fēng)味組學(xué)研究進(jìn)展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,40(1):32-39.
ZHANG Haipeng,PENG Zhaoxin,SHI Meiyan,WEN Huan,ZHANG Hongyan,XU Juan. Advances on citrus flavoromics[J]. Journal of Huazhong Agricultural University,2021,40(1):32-39.
[22] 徐宸宇,曹立新,唐啟正,吳巨勛,伊華林. 馬家柚遺傳來源鑒定與適宜授粉品種篩選[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,41(2):124-135.
XU Chenyu,CAO Lixin,TANG Qizheng,WU Juxun,YI Hualin. Identification of Majia pomelo germplasm and screening of varieties with suitable pollination[J]. Journal of Huazhong Agricultural University (Natural Science Edition),2022,41(2):124-135.
[23] 成紅梅. ‘臍紅獼猴桃花粉直感效應(yīng)的試驗(yàn)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.
CHENG Hongmei. The experiment of xenia effect on red-fleshed kiwifruit ‘Qihong[D]. Yangling:Northwest A & F University,2017.
[24] 曹立新. 江西省廣豐縣柚資源調(diào)查與馬家柚起源分析[D]. 武漢:華中農(nóng)業(yè)大學(xué),2012.
CAO Lixin. The investigation of pummelo germplasms and the origin analysis of Majiayou in Guangfeng,Jiangxi Province[D]. Wuhan:Huazhong Agricultural University,2012.
[25] SAPIR G,BARAS Z,AZMON G,GOLDWAY M,SHAFIR S,ALLOUCHE A,STERN E,STERN R A. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination,seed number and fruit size[J]. Scientia Horticulturae,2017,219:107-117.
[26] KARN A. 基于體外發(fā)酵的柑橘黃酮與人體腸道菌群相互作用研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2020.
KARN A. In vitro study of interactions between citrus flavonoids and gut microbiota[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.
收稿日期:2023-11-09 接受日期:2023-12-17
基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)(柑橘)產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-26);撫州市揭榜掛帥項(xiàng)目 (XMBH00091)
作者簡(jiǎn)介:徐宸宇,男,在讀博士研究生,研究方向?yàn)楦涕俪R?guī)雜交育種與品質(zhì)調(diào)控。E-mail:798636860@qq.com
*通信作者 Author for correspondence. Tel:027-87284008,E-mail:yihualin@mail.hzau.edu.cn