• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and simulation of an accelerometer based on NV center spin–strain coupling

    2024-01-25 07:11:12LuMinJi季魯敏LiYeZhao趙立業(yè)andYuHaiWang王裕海
    Chinese Physics B 2024年1期
    關(guān)鍵詞:立業(yè)

    Lu-Min Ji(季魯敏), Li-Ye Zhao(趙立業(yè)), and Yu-Hai Wang(王裕海)

    Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,Department of Instrument Science and Engineering,Southeast University,Nanjing 210096,China

    Keywords: nitrogen-vacancy(NV)accelerometer,spin–strain,diamond

    1.Introduction

    From fundamental physics to quantum metrology and quantum information processing, quantum systems have attracted a surge of interest recently.[1–3]Meanwhile, the development of nanofabrication technology has facilitated the fabrication of high-quality mechanical oscillators.[4–6]Benefiting from the diversity of interactions between oscillator motion and quantum systems,[5]quantum hybrid systems(QHSs) with different materials, structures, and principles combining their advantages have been widely explored, including conducting devices, ultracold atoms, and solid-state qubits.[7–12]They have stood out as strong candidates to replace conventional quantum and micro-electromechanical systems (MEMSs) for realizing high-precision magnetic field, acceleration, displacement, and other physical quantity sensing.[13–18]

    After studying the influence of strain, electric and magnetic fields on the ground state and excited state of the negatively charged nitrogen-vacancy (NV) center (hereafter referred to as NV center),[19,20]the verification of the NV spin oscillator systems paves the way for its intensive research in the field of precision measurement.[21–24]These QHSs based on NV realize the coupling of spin and mechanical oscillator through magnetic field gradient or the electric field introduced by strain.[22]The mechanical motion provides a coherent control method of the quantum system which in turn can be sensed as a signal source through spin state readout.[5]Owing to the atomic size of the center and the well-established quantum manipulation technology,they have been proven to be a powerful tool to achieve high-resolution measurement of the spin state phase.[25,26]In addition, the high Young’s modulus and low internal dissipation of diamond entail the possibility of production of the NV spin-oscillators with high frequency and strength.[5,13,27–29]

    However,the field fluctuations induced by the indispensable component including the magnetic tip or the cavity in the NV QHS using magnetic coupling or optical radiation force coupling respectively cannot be ignored.[5,10,27]To obtain systems that are less susceptible to ambient thermal noise and produce fewer stray fields,[23,30,31]researchers have shown a grown emphasis on the NV strain based QHS in which the coupling is intrinsic in the crystal and the simple monolithic structure does not require precise alignment of additional components.[13]University of California Santa Barbara demonstrated that the strain sensitivity of 3×10?6strain/and the displacement resolution of 7 nm could be achieved utilizing the designed diamond membrane.[30]University of Basel quantified the NV strain coupling constants and estimated the sensitivity of 76 MHz/μm using their cantilever beam.[32]Australian National University presented a diamond nanopillar structure and optimized the static force sensitivity to 100

    So far, previous studies have been conducted to consistently show that the NV strain based QHSs are capable of being burgeoning and leading platforms in the field of metrology,such as vibrometry and pressure sensing.However,what is not yet understood is the feasibility of applying NV spinstrain systems to the measurement of acceleration.In this paper, a MEMS accelerometer based on NV strain QHS is proposed.Compared with traditional piezoelectric or capacitive accelerometers,it does not need additional circuit connection and has the advantages of low power consumption,small size,high bandwidth, and satisfactory sensitivity.This research offers a new way of acceleration sensing in biomedicine, vibrometry,and inertial navigation fields.

    2.Principle

    The acceleration measurement device based on the NV spin-oscillator is shown in Fig.1(a).The mechanical oscillator fixed at both ends is a diamond membrane containing NV centers.The structural coordinate system(CS)is defined asXYZ, and the view along theZaxis of the structural CS is shown in Fig.1(b).The total lengthL, total widthWand heightDare along the directions ofX,YandZaxes, respectively.The effective sensitive unit is a cuboid in the middle of the whole structure with lengthL0and widthW0.When acceleration as shown is applied along theZaxis direction, the diamond structure generates strain under the action of inertial force.

    For this NV spin-strain coupling QHS, the NV electron spin states are initialized by laser pumping at 532 nm with non-radiative transition process and controlled by microwave sequences.The optical readout is realized by the dependence of photoluminescence on spin states.The strain generated by the diamond mechanical oscillator under acceleration changes the intensity and contrast of photoluminescence, thus providing a way to measure the external physical quantity.

    The crystal CS is defined asX0Y0Z0, and the four NV CSs in the crystal are defined asxyzm,m ∈{NV1,NV2,NV3,NV4}.The four internuclear NV axes corresponding to NV1, NV2, NV3, NV4 are along the direction ofin the crystal,which are thezaxes of the four NV CSs,respectively.The relationship between the crystal CS and the four internal NV CSs is shown in Fig.2(a).The strain that contributes to atomic displacement and electron density change in the diamond crystal can be regarded as an additional local electric field action on the NV centers.The Hamiltonian can be described by[20,34]

    whereD0= 2.87 GHz is the zero field splitting constant.γ=geμB/h=2.8 MHz/Gs is the electron gyromagnetic ratio.μBis the Bohr magnet.ge=2.0023 is the electrongfactor.Bis the applied magnetic field.Sx,SyandSzare the Pauli matrixes of spin 1.The normal strain components in the NV CS are represented byεxx,εyyandεzz.The ground state strain coupling constants parallel to and perpendicular to the NV axis are respectivelyd‖andd⊥.[32]

    Fig.1.Diamond-spin-oscillator acceleration sensor: (a) schematic diagram of the overall setup; (b) structure diagram of the diamond mechanical oscillator in structure CS.

    Considering that the diamond structure explored here is still a beam with a high aspect ratio, the shear strain components of the structure can be approximately ignored.The optimal lattice cutting direction is selected to minimize the coupling degree between the lateral components of the normal strain and the NV spin.In the NV CS (shown in Fig.2(b)),the strainε‖=εzzparallel to the NV axis causes the contraction and elongation of the nitrogen bond without changing theC3Vsymmetry of the NV center,which can be seen as a linear correction to the zero field splittingD0.[23]The strainperpendicular to the NV axis causes deformation of the carbon bond,destroying the rotational symmetry and breaking the degeneracy of the statems=±1,resulting in a spin mixing state.[30]The energy level of the NV spin state is presented in Fig.2(c).

    Fig.2.Schematic diagram of NV spin-strain coupling mechanism.(a) Schematic diagram of the relationship between 4 NV CSs and the crystal CS.(b)Normal strain components in parallel and vertical directions.(c)Energy levels of NV ground state in the presence of strain and magnetic field.

    Ramsey sequence can be utilized for acceleration measurement in this scheme.Applying a microwave field with an effective intensity ofB1and a frequency ofD0?γBz, the Hamiltonian of the ground spin state under rotating wave approximation is

    The axial magnetic fieldBzis assumed to be large enough to ignore the effect of the lateral strain coupling termThe subspace of state?1 and state 0 is used as two energy levels approximation.After the evolution processπ/2–τ–π/2, the two-level system will accumulate phaseΦ(τ)=d‖ε‖τbetween the two states.Considering the attenuation caused by the dephasing effect, the probability of the electronic spin state remaining in the state can be expressed as, thus the phase information could be obtained through the radiation fluorescence measurement.

    Mechanical oscillators can be classified by the geometry of the structure shape and the number of fixed ends.Typical oscillators include singly-clamped structures (e.g.,‘U’-shaped and cantilever) and doubly-clamped structures(e.g.,bridge).[35]For the general strip diamond structure with double-clamped ends,the vibration of the bridge with a length larger than the cross-section scale can be described by Euler–Bernoulli’s theory according to the elastic theory.[29,30]The eigenfrequency can be expressed as

    whereEis Young’s modulus of the material,ρis the density,Ais the cross-section area,landdare the length and height,respectively.Iis the moment of inertia,ωdnis thenth order eigenfrequency,andκnis the constant depending on the fixed way and order.[36]As the vibration frequency of the longitudinal mode is much higher than that of the transverse mode,the longitudinal mode is ignored here and only the fundamental mode is analyzed.

    3.Simulation results and analysis

    3.1.Sensitivity analysis

    Assuming that the NV axial strain of the diamond mechanical oscillator caused by the external accelerationaisε‖,the scale factor determined by the diamond structure and cutting orientation can be expressed asε‖/a.Considering that the interrogation time determined by the quantum manipulation sequence isτ, for the Ramsey and spin echo sequences,τcan be taken as the dephasing time and coherence time,i.e.,τ ≤T?2andτ ≤T2.A general sensitivity expression for the acceleration measurement can be obtained,In addition, the sensitivity of an NV spin-strain QHS is related to spin projection noise, photon shot noise, and overhead time.[37]Therefore, for the system here using Ramsey sequences,the noise determined acceleration sensing sensitivity can be expressed as follows:

    whereCis the fluorescence collection efficiencyC=0.3.[38]pcan be 1, 2, 3, andp=2 is taken here.tpolandtroare the initialization time and readout time, respectively, which can be ignored.Therefore,τis taken asτ=T?2/2 to obtain the optimal sensitivity.The number of effective spins is taken as a quarter of the total number of centersN=nV/4.The nitrogen density is about 1018cm?3,thus the NV center density isn=1017cm?3with NV center conversion ratio 0.1.[38]T?2is taken as 10μs,Vis the effective sensing volume,d‖is taken as 13.3 GHz.[33]Therefore, the sensitivity of acceleration measurement is expressed as

    3.2.Optimization of diamond crystal cutting orientation

    The structural strain tensor needs to be converted into the NV CSs to calculate the effective strain.Therefore, the cutting direction of the diamond crystal is optimized to reduce the coupling of transverse strain with the NV axis.TheXaxis in the structure CS can be chosen to be along[100],[110]or[111]direction with a great degree of symmetry in the crystal,[39]which is denoted asXYZk k∈{1,2,3}corresponding to the above three cases.Without loss of generality,the orientations of the three structure CSsXYZkand the four NV CSsxyzmin the crystal CS are assumed in Table 1.According to the rotation matrixLmkof thekth structure CS to themth NV CS,the strain tensorεxyzm=LεXYZLTin the NV CS can be obtained.The strain tensor forms in the structure CS and the NV CS are respectively shown below:

    The strain components in the corresponding CS satisfyεij=εji,i,j∈{X,Y,Z},i/=jandεpq=εqp,pq∈{x,y,z},p/=q.

    Table 1.Representation of 3 structure CSs and 4 NV CSs in the crystal CS.

    A finite element analysis software is used to obtain the strain distribution of the diamond structure under the action of acceleration along the?Zaxis.Poisson ratio, Young’s modulus, and density of diamond are 0.069, 1220 GPa, and 3.515 g/cm3, respectively.[33,36]In Figs.3(a)–3(c), the strain is concentrated at the sensitive unit and the fixed ends of the overall structure.In the length direction of the oscillator (Xaxis in the structure CS),the strain at the sensitive unit is relatively high.In the height direction(Zaxis), the strain at the sensitive element gradually decreases from the surface to the middle.It is apparent from Fig.3(d)that in the sensitive unit,εXZandεYZare significantly smaller among the shear components of the strain tensor,and about one order of magnitude lower thanεXY.Similarly,εXXis the maximum among the normal strain, one order of magnitude higher thanεXXandεYY.This result can be explained by the fact that the structure is overall beam-shaped and the acceleration is input along theZdirection.Meanwhile,the shear strain components,which can be ignored,are more than two orders of magnitude lower than the normal strain components.

    Fig.3.Mechanical simulation of the spin–strain coupling oscillator.(a)The log-normalized effective strain distribution of the diamond structure on the surface parallel to the XOY plane under acceleration.The effective strain distribution along the length(b)and height(c)directions of the structure is shown in(a).(d)Schematic diagram of the components of the log-normalized strain on the surface of the structure parallel to the plane XOY.

    The influence of different diamond cutting orientations on the sensing performance can be analyzed according to the above simulation results.The effective strain transformation results are calculated for three different diamond cut orientations in four NV CSs shown in Table 1.The effective strain componentsε‖are present in Table 2.Considering that the influence of the normal strain components perpendicular to the NV axis on the energy splitting between 0 and 1 states can be approximated asd2⊥((εxxm)2+(εyym)2)/(2γB)according to Eq.(6), we can ignore the normal strain componentε⊥and shear strain in the NV CS,and takeε‖as the effective strain.For the normalization of the normal strain tensor of the structure,εXX,εYYandεZZcan be expressed as 1,0.1,0.1.It can be concluded that theXaxis along[110]or[111]could achieve a 19.3%improvement of the effective strain than being along[100] direction.In addition, the effective strain of NV1 and NV2 is equal,which increases the number of the effective NV centers twice and optimizes the sensitivity of the ensemble NV measurement scheme of acceleratitimes.The results of this investigation show that the[110]direction is better because there is no energy level difference in this direction NV3 and NV4,so the energy level splitting can be easier to identify.

    Table 1.Normal strain component parallel to the NV axis in the NV CS.

    3.3.Structural parameters influence on sensing performance

    To characterize the sensing performance of the spin-strain coupling system,simulations are conducted from the perspectives of sensitivity, power, and size.Based on the analysis above,the diamond cutting orientationX‖[110]and effective NV axis of NV1 and NV2 are applied in the simulation,with the corresponding effective strainε‖=εXX.

    First of all, the influence of the sensitive unit size on the sensitivity is simulated when the overall size of the structure is determined.We chooseL=1000 μm,W=100 μm,D=1 μm, and length-height ratio to be 1000.[40]The single NV center is in the center of the sensitive unit surface to avoid strain upheaval points for a single NV scheme.For the ensemble NV scheme,the effective center is taken as the whole sensitive unit containing centers.The lengthL0and widthW0are adjusted with the optimization principle:D ≤L0≤L,D ≤W0≤W.So the variation ranges ofL0andW0are respectively[1μm, 1000μm]and[1μm, 100μm].

    The results of sensitivity change with the size of the sensitive unit are shown in Figs.4(a)and 4(b).Points A,marked with circles,and points B,marked with asterisks,indicate the best and worst sensitivity simulation results,respectively.Evidently, the sensitivity of the ensemble NV center-based system is considerably better than that of the single NV centerbased system.Optimal sensitivities are 6.7×10?5(L0=30 μm,W0=1 μm) and 0.068(L0=1 μm,W0=1μm),respectively.If the length and width of the sensitive unit are equal to the length and width of the overall structure, respectively, the structure is a simple Euler–Bernoulli beam.The corresponding sensitivity and power consumption are not optimal, which verifies the effectiveness of the proposed structure in this work.In addition, the obvious difference between the two measurement methods is that for the multi-spin scheme, the structural parameters leading to relatively good performance correspond to the length and width of the sensitive element being synchronous large and small.While for the single-spin scheme,they only correspond to the length and width being small at the same time.Reducing the overall size of the sensitive unit can increase the effective mass and decrease the system’s stiffness for both single and ensemble center based schemes.When the length and width are increasing simultaneously, the sensitivity is excellent for the muti-spin scheme,which benefits from the increase in the number of effective NV centers.Through this structure optimization,the sensitivity of the single spin and multi-spin measurement schemes can be respectively improved by 2.4 and 1.6 orders of magnitude.

    Fig.4.The comprehensive effect of the length and width of the sensitive unit in(a)single NV and(b)ensemble NV center based schemes on the sensitivity of acceleration measurement.Points A and B represent the best and worst simulation results in both figures.(c)The influence of excited light power on the sensitivity of the ensemble NV center based sensor.Point A represents the best simulation result.

    Considering that the sensitivity optimization procedures for a multi-spin system have different requirements on the excitation light power, we analyze the effect of laser power on the sensitivity of acceleration measurements later.The black line through(L0min,W0min)and(L0max,W0max),the red line through(L0max,W0min)and(L0max/2,W0max/2), the yellow line through (L0min,W0max) and (L0max/2,W0max/2) in Fig.4(a)are chosen to calculate the power consumption.Assume that each NV center requires three excited photons of 532 nm to achieve optical polarization, then the laser power expression is

    wherehis Planck’s constant,cis the speed of light, and the 532 nm light wavelengthλis taken.As can be seen from the black curve in Fig.4(c),with the increase of the available power,the curve shows a trend of decreasing,increasing,and then decreasing.This phenomenon can be attributed to the counterbalance between the system response and the effective color number.When the length and width of the sensitive unit vary by the same multiple, the system performance is optimized at a certain intermediate value,as indicated by point A marked with a circle.The corresponding moderate power is only 1.1μW,which is three orders of magnitude less than the maximum power,and better sensitivity can be obtained.It can be concluded from the red and yellow lines in Fig.4(c) that the sensitivity nearly shows a monotonically improving trend with the increase of provided power.Starting from that point,the sensitivity of increasing the length is slightly better than that of increasing the width with a fixed power consumption.Moreover,for the optimal sensitivity of the multi-spin scheme aforementioned, the power required is only 0.69 μW, on the sub-μW scale.

    Then we explore the influence of the structure heightDon sensitivity,and setW=1000μm,L=100μm,L0=W0=10μm,1μm<D <10μm.As shown in Fig.5,the sensitivity improvement is less than one order magnitude(about 3 times)when the height changes by 10 times,indicating that the thickness has a limited effect on the performance under the current parameters.

    Fig.5.The influence of the overall structure height on the sensitivity.

    Finally, the frequency response caused by the change in the overall length of the structure with other parameters being constant (W= 100 μm,L0= 30 μm,W0= 1 μm, andD= 1 μm) is investigated.As shown in Fig.6(a), if the lengthLincreases from 100μm to 1000μm,the corresponding resonant frequency will decrease from the order of 1 MHz to the order of 10 kHz.It can be inferred from the inset of Fig.6(b) that the eigenfrequency of the system and the total lengthLare negatively correlated, and can be fitted byy= 5.03×106/x1.97.This relationship, which is approximatelyw1∝1/L2,is similar to that of the Eulbernoulli beam.

    What’s more,the relationship between the sensitivity and the bandwidth is simulated in Fig.6(b).When the length is increased by one order of magnitude,the corresponding bandwidth, from 790 kHz to 10 kHz, is decreased by nearly two orders of magnitude,and the sensitivity is improved by nearly three orders of magnitude.The simulation result represents a trade-off between bandwidth and sensitivity.For the frequency of acceleration lower than 3 kHz, a better sensitivity can be obtained whenLis chosen to be sufficiently large,e.g.,1000μm.For a high-frequency signal(hundreds of kHz)sensing,a smallerLis preferred to obtain a larger working range.

    Fig.6.Influence of different overall lengths L on sensor performance.(a) Different frequency responses of effective strain.(b) The relationship between bandwidth and sensitivity.The inset shows the impact of L on the eigenfrequency.

    4.Discussion

    The performance compared with other types of MEMS accelerometers is shown in Table 3.Compared with traditional accelerometers, the superiority of the MEMS accelerometer proposed in this paper is reflected in its flexibility,versatility,and integrated potential.With its fine sensitivity, wide bandwidth, and non-contact measurement properties, this sensor has broad prospects in inertial navigation,[41]seismology,and bioscience in the future.

    Table 3.Main performance comparisons of this work and other MEMS accelerometers.

    In general,although the NV strain based system does not require the precise alignment of spin and oscillator,the precise positioning of the NV center in the single NV center scheme is necessary, which is still challenging.This problem can be weakened by using the ensemble NV system.However, the noise calculation method described here,which does not fully consider the impact of impurities in ensemble samples,cannot be ignored in practical application.[5]To further improve sensor performance, optimization could be conducted from the following perspectives in the future.The Ramsey sequence could be replaced with spin echo with longer interrogation time to improve the sensitivity by abouttimes.Similarly,a more complex dynamic decoupling sequence can further increase the interrogation time at the cost of bandwidth loss.[38,45]Considering the sensitivity of the ensemble NV based system related to the number of effective NV centers,a scheme with an array of small-volume diamond oscillators could be investigated with the development of nanoelectromechanical systems(NEMS)fabrication technology.The method of coupling the oscillator with the NV spin excited state to improve the coupling strength is also worth further exploring.[36]

    5.Conclusion

    In summary, this work proposes a diamond based spinstrain coupling scheme for acceleration measurement and characterizes its performance.The effective strain under acceleration applied along three symmetrical crystal directions is analyzed through the transformation between the structure,crystal, and NV CSs.The measurement bandwidth ranges from 3 kHz to hundreds of kHz with structure optimization.The sensitivity can reach 6.7×10?5withμm level effective size and sub-μW power consumption.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.62071118) and the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3).

    猜你喜歡
    立業(yè)
    GRU-DNN改進的行人導(dǎo)航零速檢測方法
    先安居,后立業(yè) 畢業(yè)季租房的這些問題,我們幫你一一解答
    上海工運(2020年8期)2020-12-14 03:11:50
    壓力均勻性對軟包電池模組一致性影響分析
    北京汽車(2020年1期)2020-05-07 06:35:28
    成家立業(yè)之我見
    青年生活(2020年6期)2020-03-28 01:25:37
    以品質(zhì)立業(yè),以專注強業(yè)——訪寧波恒隆車業(yè)有限公司總經(jīng)理胡如科
    訪鴿子王潘光偉
    天然氣處理站的管線配管
    擷英園
    特別健康(2017年6期)2017-07-19 10:52:54
    廉潔咨詢是立業(yè)之本
    兩個兒子怎比優(yōu)劣?“雙面膠”父親喲釀命案
    成人漫画全彩无遮挡| 又爽又黄a免费视频| 欧美高清成人免费视频www| 波野结衣二区三区在线| 亚洲乱码一区二区免费版| 亚洲精品乱久久久久久| 亚洲av电影在线观看一区二区三区 | 国产精品1区2区在线观看.| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影| 亚洲最大成人av| 国产精品嫩草影院av在线观看| 成年av动漫网址| 成人欧美大片| 久久久亚洲精品成人影院| 国产精品国产三级国产av玫瑰| 国产av国产精品国产| 青春草国产在线视频| 成年女人在线观看亚洲视频 | 在线观看一区二区三区| 卡戴珊不雅视频在线播放| 日本黄色片子视频| 国产淫语在线视频| 身体一侧抽搐| 高清av免费在线| 丰满少妇做爰视频| 成年av动漫网址| 日本熟妇午夜| 欧美日韩在线观看h| 一级毛片电影观看| 最近的中文字幕免费完整| 天堂影院成人在线观看| 国产成人精品福利久久| 日韩强制内射视频| 简卡轻食公司| 可以在线观看毛片的网站| 免费观看av网站的网址| 美女国产视频在线观看| 精品久久久精品久久久| 日本一本二区三区精品| av.在线天堂| 精品久久久久久电影网| 一级毛片我不卡| 亚洲av不卡在线观看| 91狼人影院| 亚洲精品自拍成人| 淫秽高清视频在线观看| 人妻系列 视频| 久久这里有精品视频免费| 精品一区二区三区人妻视频| 热99在线观看视频| 亚洲精品国产av成人精品| 日本三级黄在线观看| 久久久久国产网址| 热99在线观看视频| 亚洲国产精品成人综合色| 男人狂女人下面高潮的视频| 精品酒店卫生间| 美女大奶头视频| 18禁在线播放成人免费| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看| 街头女战士在线观看网站| a级毛片免费高清观看在线播放| 亚洲va在线va天堂va国产| 日本三级黄在线观看| 免费无遮挡裸体视频| 久久精品国产自在天天线| 一个人免费在线观看电影| 国产视频内射| 亚洲精华国产精华液的使用体验| 少妇人妻一区二区三区视频| 免费大片18禁| 亚洲欧美清纯卡通| av专区在线播放| ponron亚洲| 亚洲内射少妇av| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| av.在线天堂| 国产精品人妻久久久影院| 久久国内精品自在自线图片| 大又大粗又爽又黄少妇毛片口| 高清午夜精品一区二区三区| 九色成人免费人妻av| 在线免费十八禁| 青春草视频在线免费观看| 亚洲av日韩在线播放| 日韩大片免费观看网站| 精品人妻熟女av久视频| 国产又色又爽无遮挡免| 美女大奶头视频| 成人午夜高清在线视频| 国产亚洲av片在线观看秒播厂 | 视频中文字幕在线观看| 欧美成人午夜免费资源| 国产有黄有色有爽视频| 高清av免费在线| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜添av毛片| 日韩av在线免费看完整版不卡| 亚洲最大成人av| 久久精品久久久久久久性| 国产成人一区二区在线| 亚洲欧美精品专区久久| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 婷婷六月久久综合丁香| 久久久色成人| 久久亚洲国产成人精品v| 精品人妻视频免费看| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看| 久久99热这里只有精品18| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 国产乱人视频| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线播| 国产黄片美女视频| 有码 亚洲区| 欧美xxxx性猛交bbbb| 日韩成人伦理影院| 99久久精品热视频| 水蜜桃什么品种好| 久久久久国产网址| 国产亚洲91精品色在线| 国产亚洲一区二区精品| 人体艺术视频欧美日本| 国产精品人妻久久久影院| 能在线免费观看的黄片| 不卡视频在线观看欧美| 日韩大片免费观看网站| 99热6这里只有精品| 特级一级黄色大片| 亚洲欧洲国产日韩| 简卡轻食公司| 日韩国内少妇激情av| 少妇丰满av| 一区二区三区免费毛片| av专区在线播放| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 免费观看精品视频网站| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 欧美变态另类bdsm刘玥| 26uuu在线亚洲综合色| 嫩草影院入口| 18+在线观看网站| 国产精品无大码| 日韩av在线大香蕉| 免费人成在线观看视频色| 2022亚洲国产成人精品| 精品久久久久久久末码| 天堂网av新在线| 久久久亚洲精品成人影院| 观看美女的网站| 亚洲国产精品国产精品| 亚洲精品自拍成人| av国产久精品久网站免费入址| 99热这里只有是精品50| 免费观看a级毛片全部| 美女内射精品一级片tv| 赤兔流量卡办理| 黄片无遮挡物在线观看| 禁无遮挡网站| 日韩国内少妇激情av| 免费av毛片视频| 熟女人妻精品中文字幕| 成人国产麻豆网| 春色校园在线视频观看| 国产伦一二天堂av在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人中文| 天堂√8在线中文| 欧美丝袜亚洲另类| 插逼视频在线观看| 深爱激情五月婷婷| 国产一区有黄有色的免费视频 | 禁无遮挡网站| 18+在线观看网站| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 国产一区二区三区综合在线观看 | ponron亚洲| 亚洲av一区综合| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 精品一区在线观看国产| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| 18禁在线无遮挡免费观看视频| 国产综合懂色| 国产精品福利在线免费观看| 精品欧美国产一区二区三| 亚洲欧美成人精品一区二区| 亚州av有码| 青春草国产在线视频| 国产男女超爽视频在线观看| 偷拍熟女少妇极品色| 精品人妻一区二区三区麻豆| 91aial.com中文字幕在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲丝袜综合中文字幕| 亚洲国产精品专区欧美| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 国产老妇女一区| 色综合站精品国产| 国产精品麻豆人妻色哟哟久久 | 九九爱精品视频在线观看| 国产精品一区二区性色av| 国产综合精华液| 国产综合懂色| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 日韩大片免费观看网站| 成年免费大片在线观看| 久久久久久久久久人人人人人人| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品视频女| 久久韩国三级中文字幕| 亚洲欧美成人精品一区二区| 久久久国产一区二区| 男人狂女人下面高潮的视频| 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 欧美日本视频| 久久人人爽人人爽人人片va| 91精品国产九色| 永久免费av网站大全| 日日摸夜夜添夜夜爱| 99久久精品一区二区三区| 日韩精品有码人妻一区| 美女高潮的动态| 肉色欧美久久久久久久蜜桃 | 干丝袜人妻中文字幕| 国产成人精品久久久久久| 日本免费a在线| 国产色爽女视频免费观看| 人人妻人人澡欧美一区二区| 中文乱码字字幕精品一区二区三区 | 精品午夜福利在线看| 久久草成人影院| 纵有疾风起免费观看全集完整版 | 波多野结衣巨乳人妻| 精华霜和精华液先用哪个| 一个人免费在线观看电影| 亚洲成人一二三区av| 国产伦一二天堂av在线观看| 草草在线视频免费看| 天天躁日日操中文字幕| 观看免费一级毛片| av网站免费在线观看视频 | 人妻少妇偷人精品九色| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 亚洲av一区综合| 嘟嘟电影网在线观看| 日韩国内少妇激情av| 免费观看a级毛片全部| 两个人视频免费观看高清| 亚洲精品国产av蜜桃| 女人久久www免费人成看片| 久久久久精品久久久久真实原创| 国内精品宾馆在线| 久久久欧美国产精品| 只有这里有精品99| 免费观看性生交大片5| 十八禁国产超污无遮挡网站| 日韩制服骚丝袜av| 久热久热在线精品观看| av播播在线观看一区| 99久国产av精品国产电影| 亚洲国产日韩欧美精品在线观看| 男人舔女人下体高潮全视频| 边亲边吃奶的免费视频| 亚洲综合色惰| 国产片特级美女逼逼视频| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂 | 人妻夜夜爽99麻豆av| 国产 一区精品| 亚洲国产精品专区欧美| av国产久精品久网站免费入址| 免费人成在线观看视频色| 国产黄色免费在线视频| 国产免费视频播放在线视频 | 国产爱豆传媒在线观看| 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 亚洲精品亚洲一区二区| 在线观看免费高清a一片| 又爽又黄a免费视频| 国产精品一区二区性色av| 国产精品爽爽va在线观看网站| 婷婷色av中文字幕| 岛国毛片在线播放| 九九久久精品国产亚洲av麻豆| 少妇猛男粗大的猛烈进出视频 | 美女脱内裤让男人舔精品视频| 2022亚洲国产成人精品| 日韩强制内射视频| 极品教师在线视频| 午夜福利在线观看免费完整高清在| 舔av片在线| 成人亚洲精品av一区二区| 九九在线视频观看精品| 亚洲av成人av| 男人狂女人下面高潮的视频| 少妇高潮的动态图| 成人漫画全彩无遮挡| 久久久精品免费免费高清| 亚洲精品色激情综合| 99久久人妻综合| 五月伊人婷婷丁香| 中文字幕亚洲精品专区| 男女下面进入的视频免费午夜| 啦啦啦啦在线视频资源| 2021天堂中文幕一二区在线观| 国产精品美女特级片免费视频播放器| 欧美精品一区二区大全| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 欧美xxxx性猛交bbbb| 国产高潮美女av| 免费观看的影片在线观看| av天堂中文字幕网| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 69av精品久久久久久| 久久精品国产亚洲av涩爱| 噜噜噜噜噜久久久久久91| 日韩一区二区视频免费看| 国产精品一区二区三区四区久久| 夜夜爽夜夜爽视频| 亚洲av福利一区| 国产色爽女视频免费观看| 久久久久久久久大av| 欧美成人午夜免费资源| 免费av毛片视频| 精品亚洲乱码少妇综合久久| 日韩制服骚丝袜av| 国产大屁股一区二区在线视频| 国产精品久久久久久精品电影| 别揉我奶头 嗯啊视频| 在线观看一区二区三区| 亚洲av在线观看美女高潮| 看非洲黑人一级黄片| 晚上一个人看的免费电影| 97人妻精品一区二区三区麻豆| 国产精品一二三区在线看| 午夜日本视频在线| 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| 非洲黑人性xxxx精品又粗又长| 22中文网久久字幕| 久久久久性生活片| 少妇人妻一区二区三区视频| 亚洲精品国产av蜜桃| 日韩伦理黄色片| 晚上一个人看的免费电影| 欧美日韩精品成人综合77777| 欧美成人精品欧美一级黄| av国产免费在线观看| 一级av片app| 亚洲成人精品中文字幕电影| 免费看日本二区| 亚洲国产精品sss在线观看| 亚洲精品456在线播放app| 亚洲精品日韩av片在线观看| 成年av动漫网址| 婷婷六月久久综合丁香| 丝袜喷水一区| 国产男人的电影天堂91| 成人欧美大片| 乱人视频在线观看| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 夫妻性生交免费视频一级片| 午夜福利视频1000在线观看| 国产高潮美女av| 国产美女午夜福利| 只有这里有精品99| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 亚洲美女搞黄在线观看| 国产成人免费观看mmmm| 国产成人a区在线观看| 黑人高潮一二区| 国产大屁股一区二区在线视频| 爱豆传媒免费全集在线观看| 成人一区二区视频在线观看| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 欧美性感艳星| 国产精品一区二区三区四区免费观看| 最后的刺客免费高清国语| 国产av码专区亚洲av| 日本欧美国产在线视频| av网站免费在线观看视频 | 亚洲电影在线观看av| 老司机影院成人| 国产乱人视频| 欧美3d第一页| 草草在线视频免费看| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 国产又色又爽无遮挡免| 免费观看性生交大片5| 国产黄片美女视频| 国产精品熟女久久久久浪| 久久久久久九九精品二区国产| 午夜激情欧美在线| 亚洲国产精品sss在线观看| 干丝袜人妻中文字幕| 久久热精品热| 成人av在线播放网站| 亚洲激情五月婷婷啪啪| 午夜激情欧美在线| 久久久久久九九精品二区国产| 一本一本综合久久| 男女边摸边吃奶| 干丝袜人妻中文字幕| 久久久久精品久久久久真实原创| 男女那种视频在线观看| 亚洲国产欧美人成| 搞女人的毛片| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 国产成人午夜福利电影在线观看| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 国产免费一级a男人的天堂| 免费黄色在线免费观看| 看非洲黑人一级黄片| 乱码一卡2卡4卡精品| 久久久国产一区二区| 欧美高清成人免费视频www| 69人妻影院| 久久久久久久久久久免费av| 老司机影院成人| 午夜福利在线在线| 九九爱精品视频在线观看| 日韩三级伦理在线观看| 亚洲欧美成人精品一区二区| 91精品伊人久久大香线蕉| 国产午夜福利久久久久久| 国产黄色视频一区二区在线观看| 国产精品久久视频播放| 亚洲av日韩在线播放| 一级黄片播放器| 日本午夜av视频| 亚洲精品一区蜜桃| 少妇的逼好多水| 高清视频免费观看一区二区 | 两个人的视频大全免费| 色视频www国产| 少妇丰满av| 国产精品麻豆人妻色哟哟久久 | 看十八女毛片水多多多| 在线 av 中文字幕| 日韩欧美精品v在线| 伊人久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 中文资源天堂在线| 亚洲精品影视一区二区三区av| 三级国产精品欧美在线观看| 免费看av在线观看网站| 高清日韩中文字幕在线| 国产成人午夜福利电影在线观看| 一个人观看的视频www高清免费观看| 亚洲第一区二区三区不卡| 欧美xxxx性猛交bbbb| 日韩中字成人| 国产成人精品一,二区| a级毛片免费高清观看在线播放| 亚洲最大成人中文| 一本一本综合久久| 91aial.com中文字幕在线观看| 尤物成人国产欧美一区二区三区| 色哟哟·www| 国产一区二区三区综合在线观看 | h日本视频在线播放| 国产老妇伦熟女老妇高清| 国产精品国产三级专区第一集| 亚洲精品国产av蜜桃| 亚洲av免费在线观看| 欧美高清成人免费视频www| 少妇猛男粗大的猛烈进出视频 | 夫妻午夜视频| 少妇高潮的动态图| av女优亚洲男人天堂| 久久国产乱子免费精品| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 全区人妻精品视频| 色视频www国产| 亚洲av男天堂| 国产成人午夜福利电影在线观看| 亚洲精品影视一区二区三区av| 成人毛片a级毛片在线播放| 国产v大片淫在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 美女内射精品一级片tv| 亚洲精品乱码久久久久久按摩| 精品久久久久久成人av| 国产一区二区亚洲精品在线观看| 九草在线视频观看| 久久久久精品性色| 国内揄拍国产精品人妻在线| 久久久精品免费免费高清| 一二三四中文在线观看免费高清| 午夜福利网站1000一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲av福利一区| 免费看光身美女| 男人和女人高潮做爰伦理| 久久99蜜桃精品久久| 久久久a久久爽久久v久久| 欧美性感艳星| 天堂中文最新版在线下载 | 在线观看人妻少妇| 国产精品女同一区二区软件| 欧美三级亚洲精品| 嘟嘟电影网在线观看| 中文精品一卡2卡3卡4更新| 欧美激情国产日韩精品一区| 在现免费观看毛片| 91av网一区二区| 免费观看精品视频网站| 亚洲aⅴ乱码一区二区在线播放| 欧美精品一区二区大全| 熟妇人妻不卡中文字幕| 亚洲欧洲日产国产| av福利片在线观看| 国产视频内射| 日韩三级伦理在线观看| 天天一区二区日本电影三级| 国产精品久久久久久精品电影小说 | 不卡视频在线观看欧美| 成年人午夜在线观看视频 | 久久精品久久久久久久性| 日韩欧美三级三区| 国产成人freesex在线| 在现免费观看毛片| 婷婷色综合大香蕉| 大又大粗又爽又黄少妇毛片口| 亚洲aⅴ乱码一区二区在线播放| 国内少妇人妻偷人精品xxx网站| 久久久久久久大尺度免费视频| 亚洲国产欧美人成| 在线a可以看的网站| 久久人人爽人人片av| 亚洲综合色惰| 欧美激情国产日韩精品一区| 国产淫片久久久久久久久| 亚洲欧洲国产日韩| 亚洲欧美成人精品一区二区| 禁无遮挡网站| 黄片wwwwww| a级一级毛片免费在线观看| 欧美xxxx黑人xx丫x性爽| 自拍偷自拍亚洲精品老妇| 亚洲av成人精品一区久久| 嫩草影院新地址| 一区二区三区高清视频在线| 99久久人妻综合| 成人漫画全彩无遮挡| 日本黄大片高清| 熟妇人妻不卡中文字幕| 最近视频中文字幕2019在线8| 国产午夜福利久久久久久| 亚洲av电影不卡..在线观看| 91久久精品国产一区二区三区| 国产精品久久久久久久电影| 晚上一个人看的免费电影| 色综合站精品国产| 高清午夜精品一区二区三区| 国产精品蜜桃在线观看| 91久久精品国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 91精品一卡2卡3卡4卡| 好男人视频免费观看在线| 日产精品乱码卡一卡2卡三| 久久久久久久亚洲中文字幕| 九色成人免费人妻av| 国产男女超爽视频在线观看| 女人被狂操c到高潮| 亚洲av成人av| 国产精品1区2区在线观看.| 色视频www国产| 国产国拍精品亚洲av在线观看| 色综合色国产| a级毛色黄片| 国产国拍精品亚洲av在线观看| 夫妻性生交免费视频一级片| 婷婷色av中文字幕| 国国产精品蜜臀av免费| 国产老妇女一区| 欧美 日韩 精品 国产|