• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and simulation of an accelerometer based on NV center spin–strain coupling

    2024-01-25 07:11:12LuMinJi季魯敏LiYeZhao趙立業(yè)andYuHaiWang王裕海
    Chinese Physics B 2024年1期
    關(guān)鍵詞:立業(yè)

    Lu-Min Ji(季魯敏), Li-Ye Zhao(趙立業(yè)), and Yu-Hai Wang(王裕海)

    Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,Department of Instrument Science and Engineering,Southeast University,Nanjing 210096,China

    Keywords: nitrogen-vacancy(NV)accelerometer,spin–strain,diamond

    1.Introduction

    From fundamental physics to quantum metrology and quantum information processing, quantum systems have attracted a surge of interest recently.[1–3]Meanwhile, the development of nanofabrication technology has facilitated the fabrication of high-quality mechanical oscillators.[4–6]Benefiting from the diversity of interactions between oscillator motion and quantum systems,[5]quantum hybrid systems(QHSs) with different materials, structures, and principles combining their advantages have been widely explored, including conducting devices, ultracold atoms, and solid-state qubits.[7–12]They have stood out as strong candidates to replace conventional quantum and micro-electromechanical systems (MEMSs) for realizing high-precision magnetic field, acceleration, displacement, and other physical quantity sensing.[13–18]

    After studying the influence of strain, electric and magnetic fields on the ground state and excited state of the negatively charged nitrogen-vacancy (NV) center (hereafter referred to as NV center),[19,20]the verification of the NV spin oscillator systems paves the way for its intensive research in the field of precision measurement.[21–24]These QHSs based on NV realize the coupling of spin and mechanical oscillator through magnetic field gradient or the electric field introduced by strain.[22]The mechanical motion provides a coherent control method of the quantum system which in turn can be sensed as a signal source through spin state readout.[5]Owing to the atomic size of the center and the well-established quantum manipulation technology,they have been proven to be a powerful tool to achieve high-resolution measurement of the spin state phase.[25,26]In addition, the high Young’s modulus and low internal dissipation of diamond entail the possibility of production of the NV spin-oscillators with high frequency and strength.[5,13,27–29]

    However,the field fluctuations induced by the indispensable component including the magnetic tip or the cavity in the NV QHS using magnetic coupling or optical radiation force coupling respectively cannot be ignored.[5,10,27]To obtain systems that are less susceptible to ambient thermal noise and produce fewer stray fields,[23,30,31]researchers have shown a grown emphasis on the NV strain based QHS in which the coupling is intrinsic in the crystal and the simple monolithic structure does not require precise alignment of additional components.[13]University of California Santa Barbara demonstrated that the strain sensitivity of 3×10?6strain/and the displacement resolution of 7 nm could be achieved utilizing the designed diamond membrane.[30]University of Basel quantified the NV strain coupling constants and estimated the sensitivity of 76 MHz/μm using their cantilever beam.[32]Australian National University presented a diamond nanopillar structure and optimized the static force sensitivity to 100

    So far, previous studies have been conducted to consistently show that the NV strain based QHSs are capable of being burgeoning and leading platforms in the field of metrology,such as vibrometry and pressure sensing.However,what is not yet understood is the feasibility of applying NV spinstrain systems to the measurement of acceleration.In this paper, a MEMS accelerometer based on NV strain QHS is proposed.Compared with traditional piezoelectric or capacitive accelerometers,it does not need additional circuit connection and has the advantages of low power consumption,small size,high bandwidth, and satisfactory sensitivity.This research offers a new way of acceleration sensing in biomedicine, vibrometry,and inertial navigation fields.

    2.Principle

    The acceleration measurement device based on the NV spin-oscillator is shown in Fig.1(a).The mechanical oscillator fixed at both ends is a diamond membrane containing NV centers.The structural coordinate system(CS)is defined asXYZ, and the view along theZaxis of the structural CS is shown in Fig.1(b).The total lengthL, total widthWand heightDare along the directions ofX,YandZaxes, respectively.The effective sensitive unit is a cuboid in the middle of the whole structure with lengthL0and widthW0.When acceleration as shown is applied along theZaxis direction, the diamond structure generates strain under the action of inertial force.

    For this NV spin-strain coupling QHS, the NV electron spin states are initialized by laser pumping at 532 nm with non-radiative transition process and controlled by microwave sequences.The optical readout is realized by the dependence of photoluminescence on spin states.The strain generated by the diamond mechanical oscillator under acceleration changes the intensity and contrast of photoluminescence, thus providing a way to measure the external physical quantity.

    The crystal CS is defined asX0Y0Z0, and the four NV CSs in the crystal are defined asxyzm,m ∈{NV1,NV2,NV3,NV4}.The four internuclear NV axes corresponding to NV1, NV2, NV3, NV4 are along the direction ofin the crystal,which are thezaxes of the four NV CSs,respectively.The relationship between the crystal CS and the four internal NV CSs is shown in Fig.2(a).The strain that contributes to atomic displacement and electron density change in the diamond crystal can be regarded as an additional local electric field action on the NV centers.The Hamiltonian can be described by[20,34]

    whereD0= 2.87 GHz is the zero field splitting constant.γ=geμB/h=2.8 MHz/Gs is the electron gyromagnetic ratio.μBis the Bohr magnet.ge=2.0023 is the electrongfactor.Bis the applied magnetic field.Sx,SyandSzare the Pauli matrixes of spin 1.The normal strain components in the NV CS are represented byεxx,εyyandεzz.The ground state strain coupling constants parallel to and perpendicular to the NV axis are respectivelyd‖andd⊥.[32]

    Fig.1.Diamond-spin-oscillator acceleration sensor: (a) schematic diagram of the overall setup; (b) structure diagram of the diamond mechanical oscillator in structure CS.

    Considering that the diamond structure explored here is still a beam with a high aspect ratio, the shear strain components of the structure can be approximately ignored.The optimal lattice cutting direction is selected to minimize the coupling degree between the lateral components of the normal strain and the NV spin.In the NV CS (shown in Fig.2(b)),the strainε‖=εzzparallel to the NV axis causes the contraction and elongation of the nitrogen bond without changing theC3Vsymmetry of the NV center,which can be seen as a linear correction to the zero field splittingD0.[23]The strainperpendicular to the NV axis causes deformation of the carbon bond,destroying the rotational symmetry and breaking the degeneracy of the statems=±1,resulting in a spin mixing state.[30]The energy level of the NV spin state is presented in Fig.2(c).

    Fig.2.Schematic diagram of NV spin-strain coupling mechanism.(a) Schematic diagram of the relationship between 4 NV CSs and the crystal CS.(b)Normal strain components in parallel and vertical directions.(c)Energy levels of NV ground state in the presence of strain and magnetic field.

    Ramsey sequence can be utilized for acceleration measurement in this scheme.Applying a microwave field with an effective intensity ofB1and a frequency ofD0?γBz, the Hamiltonian of the ground spin state under rotating wave approximation is

    The axial magnetic fieldBzis assumed to be large enough to ignore the effect of the lateral strain coupling termThe subspace of state?1 and state 0 is used as two energy levels approximation.After the evolution processπ/2–τ–π/2, the two-level system will accumulate phaseΦ(τ)=d‖ε‖τbetween the two states.Considering the attenuation caused by the dephasing effect, the probability of the electronic spin state remaining in the state can be expressed as, thus the phase information could be obtained through the radiation fluorescence measurement.

    Mechanical oscillators can be classified by the geometry of the structure shape and the number of fixed ends.Typical oscillators include singly-clamped structures (e.g.,‘U’-shaped and cantilever) and doubly-clamped structures(e.g.,bridge).[35]For the general strip diamond structure with double-clamped ends,the vibration of the bridge with a length larger than the cross-section scale can be described by Euler–Bernoulli’s theory according to the elastic theory.[29,30]The eigenfrequency can be expressed as

    whereEis Young’s modulus of the material,ρis the density,Ais the cross-section area,landdare the length and height,respectively.Iis the moment of inertia,ωdnis thenth order eigenfrequency,andκnis the constant depending on the fixed way and order.[36]As the vibration frequency of the longitudinal mode is much higher than that of the transverse mode,the longitudinal mode is ignored here and only the fundamental mode is analyzed.

    3.Simulation results and analysis

    3.1.Sensitivity analysis

    Assuming that the NV axial strain of the diamond mechanical oscillator caused by the external accelerationaisε‖,the scale factor determined by the diamond structure and cutting orientation can be expressed asε‖/a.Considering that the interrogation time determined by the quantum manipulation sequence isτ, for the Ramsey and spin echo sequences,τcan be taken as the dephasing time and coherence time,i.e.,τ ≤T?2andτ ≤T2.A general sensitivity expression for the acceleration measurement can be obtained,In addition, the sensitivity of an NV spin-strain QHS is related to spin projection noise, photon shot noise, and overhead time.[37]Therefore, for the system here using Ramsey sequences,the noise determined acceleration sensing sensitivity can be expressed as follows:

    whereCis the fluorescence collection efficiencyC=0.3.[38]pcan be 1, 2, 3, andp=2 is taken here.tpolandtroare the initialization time and readout time, respectively, which can be ignored.Therefore,τis taken asτ=T?2/2 to obtain the optimal sensitivity.The number of effective spins is taken as a quarter of the total number of centersN=nV/4.The nitrogen density is about 1018cm?3,thus the NV center density isn=1017cm?3with NV center conversion ratio 0.1.[38]T?2is taken as 10μs,Vis the effective sensing volume,d‖is taken as 13.3 GHz.[33]Therefore, the sensitivity of acceleration measurement is expressed as

    3.2.Optimization of diamond crystal cutting orientation

    The structural strain tensor needs to be converted into the NV CSs to calculate the effective strain.Therefore, the cutting direction of the diamond crystal is optimized to reduce the coupling of transverse strain with the NV axis.TheXaxis in the structure CS can be chosen to be along[100],[110]or[111]direction with a great degree of symmetry in the crystal,[39]which is denoted asXYZk k∈{1,2,3}corresponding to the above three cases.Without loss of generality,the orientations of the three structure CSsXYZkand the four NV CSsxyzmin the crystal CS are assumed in Table 1.According to the rotation matrixLmkof thekth structure CS to themth NV CS,the strain tensorεxyzm=LεXYZLTin the NV CS can be obtained.The strain tensor forms in the structure CS and the NV CS are respectively shown below:

    The strain components in the corresponding CS satisfyεij=εji,i,j∈{X,Y,Z},i/=jandεpq=εqp,pq∈{x,y,z},p/=q.

    Table 1.Representation of 3 structure CSs and 4 NV CSs in the crystal CS.

    A finite element analysis software is used to obtain the strain distribution of the diamond structure under the action of acceleration along the?Zaxis.Poisson ratio, Young’s modulus, and density of diamond are 0.069, 1220 GPa, and 3.515 g/cm3, respectively.[33,36]In Figs.3(a)–3(c), the strain is concentrated at the sensitive unit and the fixed ends of the overall structure.In the length direction of the oscillator (Xaxis in the structure CS),the strain at the sensitive unit is relatively high.In the height direction(Zaxis), the strain at the sensitive element gradually decreases from the surface to the middle.It is apparent from Fig.3(d)that in the sensitive unit,εXZandεYZare significantly smaller among the shear components of the strain tensor,and about one order of magnitude lower thanεXY.Similarly,εXXis the maximum among the normal strain, one order of magnitude higher thanεXXandεYY.This result can be explained by the fact that the structure is overall beam-shaped and the acceleration is input along theZdirection.Meanwhile,the shear strain components,which can be ignored,are more than two orders of magnitude lower than the normal strain components.

    Fig.3.Mechanical simulation of the spin–strain coupling oscillator.(a)The log-normalized effective strain distribution of the diamond structure on the surface parallel to the XOY plane under acceleration.The effective strain distribution along the length(b)and height(c)directions of the structure is shown in(a).(d)Schematic diagram of the components of the log-normalized strain on the surface of the structure parallel to the plane XOY.

    The influence of different diamond cutting orientations on the sensing performance can be analyzed according to the above simulation results.The effective strain transformation results are calculated for three different diamond cut orientations in four NV CSs shown in Table 1.The effective strain componentsε‖are present in Table 2.Considering that the influence of the normal strain components perpendicular to the NV axis on the energy splitting between 0 and 1 states can be approximated asd2⊥((εxxm)2+(εyym)2)/(2γB)according to Eq.(6), we can ignore the normal strain componentε⊥and shear strain in the NV CS,and takeε‖as the effective strain.For the normalization of the normal strain tensor of the structure,εXX,εYYandεZZcan be expressed as 1,0.1,0.1.It can be concluded that theXaxis along[110]or[111]could achieve a 19.3%improvement of the effective strain than being along[100] direction.In addition, the effective strain of NV1 and NV2 is equal,which increases the number of the effective NV centers twice and optimizes the sensitivity of the ensemble NV measurement scheme of acceleratitimes.The results of this investigation show that the[110]direction is better because there is no energy level difference in this direction NV3 and NV4,so the energy level splitting can be easier to identify.

    Table 1.Normal strain component parallel to the NV axis in the NV CS.

    3.3.Structural parameters influence on sensing performance

    To characterize the sensing performance of the spin-strain coupling system,simulations are conducted from the perspectives of sensitivity, power, and size.Based on the analysis above,the diamond cutting orientationX‖[110]and effective NV axis of NV1 and NV2 are applied in the simulation,with the corresponding effective strainε‖=εXX.

    First of all, the influence of the sensitive unit size on the sensitivity is simulated when the overall size of the structure is determined.We chooseL=1000 μm,W=100 μm,D=1 μm, and length-height ratio to be 1000.[40]The single NV center is in the center of the sensitive unit surface to avoid strain upheaval points for a single NV scheme.For the ensemble NV scheme,the effective center is taken as the whole sensitive unit containing centers.The lengthL0and widthW0are adjusted with the optimization principle:D ≤L0≤L,D ≤W0≤W.So the variation ranges ofL0andW0are respectively[1μm, 1000μm]and[1μm, 100μm].

    The results of sensitivity change with the size of the sensitive unit are shown in Figs.4(a)and 4(b).Points A,marked with circles,and points B,marked with asterisks,indicate the best and worst sensitivity simulation results,respectively.Evidently, the sensitivity of the ensemble NV center-based system is considerably better than that of the single NV centerbased system.Optimal sensitivities are 6.7×10?5(L0=30 μm,W0=1 μm) and 0.068(L0=1 μm,W0=1μm),respectively.If the length and width of the sensitive unit are equal to the length and width of the overall structure, respectively, the structure is a simple Euler–Bernoulli beam.The corresponding sensitivity and power consumption are not optimal, which verifies the effectiveness of the proposed structure in this work.In addition, the obvious difference between the two measurement methods is that for the multi-spin scheme, the structural parameters leading to relatively good performance correspond to the length and width of the sensitive element being synchronous large and small.While for the single-spin scheme,they only correspond to the length and width being small at the same time.Reducing the overall size of the sensitive unit can increase the effective mass and decrease the system’s stiffness for both single and ensemble center based schemes.When the length and width are increasing simultaneously, the sensitivity is excellent for the muti-spin scheme,which benefits from the increase in the number of effective NV centers.Through this structure optimization,the sensitivity of the single spin and multi-spin measurement schemes can be respectively improved by 2.4 and 1.6 orders of magnitude.

    Fig.4.The comprehensive effect of the length and width of the sensitive unit in(a)single NV and(b)ensemble NV center based schemes on the sensitivity of acceleration measurement.Points A and B represent the best and worst simulation results in both figures.(c)The influence of excited light power on the sensitivity of the ensemble NV center based sensor.Point A represents the best simulation result.

    Considering that the sensitivity optimization procedures for a multi-spin system have different requirements on the excitation light power, we analyze the effect of laser power on the sensitivity of acceleration measurements later.The black line through(L0min,W0min)and(L0max,W0max),the red line through(L0max,W0min)and(L0max/2,W0max/2), the yellow line through (L0min,W0max) and (L0max/2,W0max/2) in Fig.4(a)are chosen to calculate the power consumption.Assume that each NV center requires three excited photons of 532 nm to achieve optical polarization, then the laser power expression is

    wherehis Planck’s constant,cis the speed of light, and the 532 nm light wavelengthλis taken.As can be seen from the black curve in Fig.4(c),with the increase of the available power,the curve shows a trend of decreasing,increasing,and then decreasing.This phenomenon can be attributed to the counterbalance between the system response and the effective color number.When the length and width of the sensitive unit vary by the same multiple, the system performance is optimized at a certain intermediate value,as indicated by point A marked with a circle.The corresponding moderate power is only 1.1μW,which is three orders of magnitude less than the maximum power,and better sensitivity can be obtained.It can be concluded from the red and yellow lines in Fig.4(c) that the sensitivity nearly shows a monotonically improving trend with the increase of provided power.Starting from that point,the sensitivity of increasing the length is slightly better than that of increasing the width with a fixed power consumption.Moreover,for the optimal sensitivity of the multi-spin scheme aforementioned, the power required is only 0.69 μW, on the sub-μW scale.

    Then we explore the influence of the structure heightDon sensitivity,and setW=1000μm,L=100μm,L0=W0=10μm,1μm<D <10μm.As shown in Fig.5,the sensitivity improvement is less than one order magnitude(about 3 times)when the height changes by 10 times,indicating that the thickness has a limited effect on the performance under the current parameters.

    Fig.5.The influence of the overall structure height on the sensitivity.

    Finally, the frequency response caused by the change in the overall length of the structure with other parameters being constant (W= 100 μm,L0= 30 μm,W0= 1 μm, andD= 1 μm) is investigated.As shown in Fig.6(a), if the lengthLincreases from 100μm to 1000μm,the corresponding resonant frequency will decrease from the order of 1 MHz to the order of 10 kHz.It can be inferred from the inset of Fig.6(b) that the eigenfrequency of the system and the total lengthLare negatively correlated, and can be fitted byy= 5.03×106/x1.97.This relationship, which is approximatelyw1∝1/L2,is similar to that of the Eulbernoulli beam.

    What’s more,the relationship between the sensitivity and the bandwidth is simulated in Fig.6(b).When the length is increased by one order of magnitude,the corresponding bandwidth, from 790 kHz to 10 kHz, is decreased by nearly two orders of magnitude,and the sensitivity is improved by nearly three orders of magnitude.The simulation result represents a trade-off between bandwidth and sensitivity.For the frequency of acceleration lower than 3 kHz, a better sensitivity can be obtained whenLis chosen to be sufficiently large,e.g.,1000μm.For a high-frequency signal(hundreds of kHz)sensing,a smallerLis preferred to obtain a larger working range.

    Fig.6.Influence of different overall lengths L on sensor performance.(a) Different frequency responses of effective strain.(b) The relationship between bandwidth and sensitivity.The inset shows the impact of L on the eigenfrequency.

    4.Discussion

    The performance compared with other types of MEMS accelerometers is shown in Table 3.Compared with traditional accelerometers, the superiority of the MEMS accelerometer proposed in this paper is reflected in its flexibility,versatility,and integrated potential.With its fine sensitivity, wide bandwidth, and non-contact measurement properties, this sensor has broad prospects in inertial navigation,[41]seismology,and bioscience in the future.

    Table 3.Main performance comparisons of this work and other MEMS accelerometers.

    In general,although the NV strain based system does not require the precise alignment of spin and oscillator,the precise positioning of the NV center in the single NV center scheme is necessary, which is still challenging.This problem can be weakened by using the ensemble NV system.However, the noise calculation method described here,which does not fully consider the impact of impurities in ensemble samples,cannot be ignored in practical application.[5]To further improve sensor performance, optimization could be conducted from the following perspectives in the future.The Ramsey sequence could be replaced with spin echo with longer interrogation time to improve the sensitivity by abouttimes.Similarly,a more complex dynamic decoupling sequence can further increase the interrogation time at the cost of bandwidth loss.[38,45]Considering the sensitivity of the ensemble NV based system related to the number of effective NV centers,a scheme with an array of small-volume diamond oscillators could be investigated with the development of nanoelectromechanical systems(NEMS)fabrication technology.The method of coupling the oscillator with the NV spin excited state to improve the coupling strength is also worth further exploring.[36]

    5.Conclusion

    In summary, this work proposes a diamond based spinstrain coupling scheme for acceleration measurement and characterizes its performance.The effective strain under acceleration applied along three symmetrical crystal directions is analyzed through the transformation between the structure,crystal, and NV CSs.The measurement bandwidth ranges from 3 kHz to hundreds of kHz with structure optimization.The sensitivity can reach 6.7×10?5withμm level effective size and sub-μW power consumption.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.62071118) and the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3).

    猜你喜歡
    立業(yè)
    GRU-DNN改進的行人導(dǎo)航零速檢測方法
    先安居,后立業(yè) 畢業(yè)季租房的這些問題,我們幫你一一解答
    上海工運(2020年8期)2020-12-14 03:11:50
    壓力均勻性對軟包電池模組一致性影響分析
    北京汽車(2020年1期)2020-05-07 06:35:28
    成家立業(yè)之我見
    青年生活(2020年6期)2020-03-28 01:25:37
    以品質(zhì)立業(yè),以專注強業(yè)——訪寧波恒隆車業(yè)有限公司總經(jīng)理胡如科
    訪鴿子王潘光偉
    天然氣處理站的管線配管
    擷英園
    特別健康(2017年6期)2017-07-19 10:52:54
    廉潔咨詢是立業(yè)之本
    兩個兒子怎比優(yōu)劣?“雙面膠”父親喲釀命案
    国产精品1区2区在线观看.| 日日摸夜夜添夜夜添av毛片 | 亚洲av一区综合| 精品99又大又爽又粗少妇毛片 | 亚洲中文字幕一区二区三区有码在线看| xxxwww97欧美| 人人妻人人澡欧美一区二区| a在线观看视频网站| 成人国产麻豆网| 免费电影在线观看免费观看| 一区二区三区四区激情视频 | 搡女人真爽免费视频火全软件 | 啦啦啦观看免费观看视频高清| 久久久久久久亚洲中文字幕| 看十八女毛片水多多多| 一级a爱片免费观看的视频| 男女边吃奶边做爰视频| 51国产日韩欧美| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 日韩欧美精品v在线| 欧美性猛交黑人性爽| 99久久精品国产国产毛片| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区| 亚洲精品一区av在线观看| 美女高潮喷水抽搐中文字幕| 久久亚洲真实| 日韩欧美三级三区| 亚洲中文字幕日韩| 丰满人妻一区二区三区视频av| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 亚洲av成人av| 成年人黄色毛片网站| 午夜久久久久精精品| 网址你懂的国产日韩在线| av天堂在线播放| 精品久久久久久久久av| 国产美女午夜福利| 在线播放无遮挡| 亚洲精品亚洲一区二区| 亚洲av一区综合| 麻豆av噜噜一区二区三区| 在线观看舔阴道视频| 亚洲av中文av极速乱 | 日日夜夜操网爽| 日本-黄色视频高清免费观看| 最新中文字幕久久久久| 午夜福利在线观看吧| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 免费电影在线观看免费观看| 成人av在线播放网站| 国产精品一区二区免费欧美| ponron亚洲| 免费高清视频大片| 久久久国产成人免费| av在线老鸭窝| 精品人妻偷拍中文字幕| 欧美性猛交黑人性爽| 在线免费观看不下载黄p国产 | 久久久久久久精品吃奶| 日本在线视频免费播放| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站在线播放欧美日韩| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 九色国产91popny在线| 久久香蕉精品热| 免费电影在线观看免费观看| 18禁黄网站禁片午夜丰满| 人人妻人人看人人澡| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 国产精品1区2区在线观看.| 亚洲综合色惰| 亚洲av免费高清在线观看| 男女那种视频在线观看| 日本-黄色视频高清免费观看| 欧美精品国产亚洲| 很黄的视频免费| 色综合婷婷激情| 免费看a级黄色片| 欧美一区二区亚洲| 内地一区二区视频在线| 国内精品美女久久久久久| 国产男人的电影天堂91| 99精品久久久久人妻精品| 欧美潮喷喷水| 欧美+亚洲+日韩+国产| 黄色视频,在线免费观看| 麻豆av噜噜一区二区三区| 人妻制服诱惑在线中文字幕| 国产免费av片在线观看野外av| videossex国产| 九色国产91popny在线| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 女的被弄到高潮叫床怎么办 | 春色校园在线视频观看| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 亚洲av一区综合| 午夜福利成人在线免费观看| 熟女电影av网| 欧美日韩中文字幕国产精品一区二区三区| 免费看日本二区| 成人国产综合亚洲| 精品午夜福利在线看| 国产真实乱freesex| 18+在线观看网站| 村上凉子中文字幕在线| 亚洲精品影视一区二区三区av| 最近最新中文字幕大全电影3| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 人妻制服诱惑在线中文字幕| 亚洲av成人av| 久久精品国产99精品国产亚洲性色| 看十八女毛片水多多多| 国产亚洲91精品色在线| 一级黄片播放器| 国产精品亚洲美女久久久| www日本黄色视频网| 中国美女看黄片| 天堂网av新在线| 嫩草影视91久久| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 永久网站在线| 天美传媒精品一区二区| 免费黄网站久久成人精品| 久久香蕉精品热| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 少妇猛男粗大的猛烈进出视频 | 日韩欧美在线二视频| 国产午夜福利久久久久久| 成年女人永久免费观看视频| 久久草成人影院| 精品福利观看| 午夜爱爱视频在线播放| 九九爱精品视频在线观看| 免费观看在线日韩| 嫩草影院新地址| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 床上黄色一级片| 国产精华一区二区三区| 91狼人影院| 18禁黄网站禁片免费观看直播| 午夜福利在线观看吧| 精品国内亚洲2022精品成人| 国产精品无大码| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清在线视频| 波多野结衣高清无吗| 欧美黑人欧美精品刺激| 在现免费观看毛片| 亚洲欧美日韩东京热| 久久久成人免费电影| 男人和女人高潮做爰伦理| 久久久久久久久中文| 国产不卡一卡二| 国产精华一区二区三区| 韩国av一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 久久6这里有精品| 亚洲在线观看片| 人人妻人人澡欧美一区二区| 国产精品嫩草影院av在线观看 | 99热只有精品国产| 国产真实乱freesex| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 一区二区三区高清视频在线| 一夜夜www| 最近最新中文字幕大全电影3| 亚洲精品亚洲一区二区| 国产精华一区二区三区| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 久久国产精品人妻蜜桃| 少妇人妻一区二区三区视频| 可以在线观看的亚洲视频| 亚洲va日本ⅴa欧美va伊人久久| 91麻豆精品激情在线观看国产| 能在线免费观看的黄片| 国产亚洲精品久久久久久毛片| 久久久久久久午夜电影| 国产在视频线在精品| 日韩欧美国产一区二区入口| 亚洲欧美清纯卡通| 两性午夜刺激爽爽歪歪视频在线观看| 美女高潮喷水抽搐中文字幕| 又爽又黄无遮挡网站| 亚洲专区国产一区二区| 日韩强制内射视频| 十八禁国产超污无遮挡网站| 男人舔女人下体高潮全视频| 两人在一起打扑克的视频| 亚洲专区国产一区二区| 噜噜噜噜噜久久久久久91| 精品99又大又爽又粗少妇毛片 | 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区亚洲| 免费观看精品视频网站| 在线观看一区二区三区| x7x7x7水蜜桃| 永久网站在线| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| 精品99又大又爽又粗少妇毛片 | 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app | 国产亚洲91精品色在线| 亚洲自拍偷在线| 美女黄网站色视频| 三级毛片av免费| 人人妻人人看人人澡| 午夜福利18| 日本爱情动作片www.在线观看 | 免费一级毛片在线播放高清视频| 嫩草影视91久久| 在线观看美女被高潮喷水网站| 精品午夜福利视频在线观看一区| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app | 亚洲精品色激情综合| 一级毛片久久久久久久久女| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 美女大奶头视频| 舔av片在线| 麻豆av噜噜一区二区三区| 免费看光身美女| 少妇丰满av| 亚洲精品国产成人久久av| 亚洲欧美日韩高清专用| 国产高清三级在线| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 欧美色视频一区免费| 成人综合一区亚洲| 神马国产精品三级电影在线观看| 少妇猛男粗大的猛烈进出视频 | 无遮挡黄片免费观看| 69av精品久久久久久| 国产在视频线在精品| 免费观看在线日韩| 亚洲内射少妇av| 毛片一级片免费看久久久久 | 免费观看在线日韩| 一级a爱片免费观看的视频| 一级毛片久久久久久久久女| 国产亚洲精品久久久com| 亚洲中文日韩欧美视频| 波多野结衣高清无吗| 国产高清有码在线观看视频| 成人亚洲精品av一区二区| 欧美最新免费一区二区三区| 午夜a级毛片| 啪啪无遮挡十八禁网站| 老师上课跳d突然被开到最大视频| 91久久精品电影网| 变态另类丝袜制服| 久久精品国产99精品国产亚洲性色| 国语自产精品视频在线第100页| 国产不卡一卡二| 亚洲五月天丁香| 桃红色精品国产亚洲av| 精品午夜福利视频在线观看一区| 午夜福利高清视频| 最新中文字幕久久久久| 在线观看午夜福利视频| 精品久久久久久久久久久久久| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 搡女人真爽免费视频火全软件 | 88av欧美| 亚洲人成伊人成综合网2020| 亚洲成av人片在线播放无| 99久久中文字幕三级久久日本| 久久久久久久精品吃奶| 久久国产精品人妻蜜桃| 麻豆久久精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 日韩亚洲欧美综合| 少妇高潮的动态图| 深夜精品福利| 一进一出抽搐动态| 国内精品一区二区在线观看| 美女高潮喷水抽搐中文字幕| 国产成人av教育| 免费观看精品视频网站| 亚洲美女视频黄频| 91久久精品国产一区二区成人| av在线老鸭窝| 国产三级在线视频| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 婷婷丁香在线五月| 亚洲av五月六月丁香网| 欧美性猛交╳xxx乱大交人| 亚洲不卡免费看| 91久久精品电影网| 制服丝袜大香蕉在线| 女人被狂操c到高潮| 赤兔流量卡办理| 亚洲欧美日韩无卡精品| 久久亚洲真实| 亚洲av中文字字幕乱码综合| 亚洲精品色激情综合| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 亚洲av美国av| 亚洲欧美激情综合另类| 又紧又爽又黄一区二区| 久久99热这里只有精品18| 国产亚洲欧美98| 99视频精品全部免费 在线| 麻豆国产97在线/欧美| 美女高潮的动态| 久久香蕉精品热| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 自拍偷自拍亚洲精品老妇| 国国产精品蜜臀av免费| 亚洲在线自拍视频| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 赤兔流量卡办理| 美女免费视频网站| 亚洲欧美清纯卡通| 国产精品乱码一区二三区的特点| 床上黄色一级片| 99久久成人亚洲精品观看| 成年女人看的毛片在线观看| 亚洲av成人av| 午夜老司机福利剧场| 中文字幕久久专区| 国产av在哪里看| 亚洲欧美日韩高清专用| 不卡视频在线观看欧美| 床上黄色一级片| 亚洲不卡免费看| 国产av在哪里看| 精品久久久久久久末码| 国内精品久久久久精免费| 搡老岳熟女国产| 亚洲国产色片| 久久久久久久久久成人| 九色成人免费人妻av| 亚洲图色成人| 亚洲精品在线观看二区| 欧美在线一区亚洲| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱| 男女视频在线观看网站免费| 在线国产一区二区在线| 久久久成人免费电影| 久久久色成人| 中国美白少妇内射xxxbb| 十八禁网站免费在线| 久久精品国产亚洲网站| 欧美最新免费一区二区三区| 亚洲国产欧洲综合997久久,| 国产人妻一区二区三区在| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 日韩欧美国产在线观看| 亚洲精品在线观看二区| 1024手机看黄色片| 伦理电影大哥的女人| 一级毛片久久久久久久久女| 中文字幕久久专区| 日韩精品有码人妻一区| 欧美3d第一页| 日本黄色视频三级网站网址| 日本免费a在线| 日日摸夜夜添夜夜添小说| 午夜a级毛片| 成人av在线播放网站| 欧美最新免费一区二区三区| 少妇裸体淫交视频免费看高清| 蜜桃久久精品国产亚洲av| 国产精品福利在线免费观看| 国产精华一区二区三区| 伦精品一区二区三区| 少妇的逼好多水| 国产单亲对白刺激| 亚洲天堂国产精品一区在线| 亚洲精品成人久久久久久| 亚洲欧美日韩高清专用| 老熟妇乱子伦视频在线观看| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 可以在线观看毛片的网站| 午夜免费成人在线视频| 成人无遮挡网站| av专区在线播放| 五月伊人婷婷丁香| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 国模一区二区三区四区视频| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 午夜福利成人在线免费观看| 日本色播在线视频| 麻豆av噜噜一区二区三区| 日本黄大片高清| 欧美日韩乱码在线| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 九九在线视频观看精品| 男女边吃奶边做爰视频| 亚洲天堂国产精品一区在线| 热99在线观看视频| 欧美中文日本在线观看视频| 国产女主播在线喷水免费视频网站 | 如何舔出高潮| 日韩精品青青久久久久久| 一区二区三区免费毛片| 欧美绝顶高潮抽搐喷水| 免费高清视频大片| 亚洲男人的天堂狠狠| 国产精品福利在线免费观看| 一进一出抽搐动态| 日韩人妻高清精品专区| 亚洲内射少妇av| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 亚洲av熟女| 一个人看的www免费观看视频| 丝袜美腿在线中文| 国产精品99久久久久久久久| 亚洲内射少妇av| 久久人妻av系列| eeuss影院久久| 国产中年淑女户外野战色| 91午夜精品亚洲一区二区三区 | 久久久久久久久久成人| 日日撸夜夜添| 欧美另类亚洲清纯唯美| 3wmmmm亚洲av在线观看| 如何舔出高潮| 欧美日本亚洲视频在线播放| 成人av在线播放网站| 国产爱豆传媒在线观看| 亚洲最大成人手机在线| 久久久久免费精品人妻一区二区| АⅤ资源中文在线天堂| 又爽又黄无遮挡网站| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 久久香蕉精品热| 欧美成人一区二区免费高清观看| 成年版毛片免费区| 嫩草影院入口| 又紧又爽又黄一区二区| 啪啪无遮挡十八禁网站| 国内精品一区二区在线观看| 啪啪无遮挡十八禁网站| 国产伦在线观看视频一区| 日韩强制内射视频| 亚洲精华国产精华液的使用体验 | 国产精品嫩草影院av在线观看 | 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区| av在线老鸭窝| 亚洲综合色惰| 亚洲人成网站高清观看| 美女黄网站色视频| 99热这里只有是精品50| 亚州av有码| 99精品在免费线老司机午夜| 99久久中文字幕三级久久日本| 日本三级黄在线观看| 午夜福利18| 免费在线观看成人毛片| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 伦理电影大哥的女人| 日本a在线网址| 午夜免费男女啪啪视频观看 | 亚洲国产精品成人综合色| 国产亚洲精品av在线| 舔av片在线| 国产成人一区二区在线| 深爱激情五月婷婷| 在线国产一区二区在线| 国产一区二区亚洲精品在线观看| 成人综合一区亚洲| 亚洲熟妇中文字幕五十中出| av在线老鸭窝| 国产成年人精品一区二区| 欧美成人免费av一区二区三区| 日韩中字成人| 一卡2卡三卡四卡精品乱码亚洲| www日本黄色视频网| 国产精品久久电影中文字幕| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 国产精品永久免费网站| 一级a爱片免费观看的视频| 精品日产1卡2卡| 午夜福利欧美成人| 亚洲av不卡在线观看| av国产免费在线观看| 国产v大片淫在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 美女cb高潮喷水在线观看| 熟女电影av网| 美女cb高潮喷水在线观看| av.在线天堂| 亚洲av免费高清在线观看| 不卡一级毛片| 午夜福利在线观看吧| 亚洲专区国产一区二区| 亚洲黑人精品在线| 国产精品乱码一区二三区的特点| 嫩草影院精品99| 尾随美女入室| 亚洲精品粉嫩美女一区| 成人综合一区亚洲| 欧美性猛交黑人性爽| 国产亚洲精品综合一区在线观看| 琪琪午夜伦伦电影理论片6080| 麻豆一二三区av精品| 日本免费a在线| 麻豆久久精品国产亚洲av| 色av中文字幕| 哪里可以看免费的av片| 精品福利观看| 久久久久性生活片| 搡老岳熟女国产| 窝窝影院91人妻| 国内毛片毛片毛片毛片毛片| 国内精品美女久久久久久| 人妻久久中文字幕网| 国产一区二区激情短视频| av天堂中文字幕网| 最新在线观看一区二区三区| 亚洲熟妇中文字幕五十中出| 成年版毛片免费区| 免费在线观看成人毛片| 深夜精品福利| 老熟妇乱子伦视频在线观看| 很黄的视频免费| 97超视频在线观看视频| 国内精品一区二区在线观看| 51国产日韩欧美| 我的女老师完整版在线观看| 日韩国内少妇激情av| 国产精品一区www在线观看 | 午夜精品一区二区三区免费看| 亚洲av熟女| 国产精品久久久久久亚洲av鲁大| 真实男女啪啪啪动态图| 免费观看人在逋| 日本黄大片高清| 欧洲精品卡2卡3卡4卡5卡区| 听说在线观看完整版免费高清| 不卡一级毛片| 国产久久久一区二区三区| 国国产精品蜜臀av免费| 亚洲最大成人中文| 男人的好看免费观看在线视频| 97碰自拍视频| 亚洲av美国av| 国产精品永久免费网站| 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| 亚洲av一区综合| 欧美区成人在线视频| 国产精华一区二区三区| 三级国产精品欧美在线观看| 97超级碰碰碰精品色视频在线观看| 少妇被粗大猛烈的视频| 亚洲国产精品sss在线观看| 久久精品国产鲁丝片午夜精品 | 国产精品久久久久久久久免| 他把我摸到了高潮在线观看| 大又大粗又爽又黄少妇毛片口| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 男人的好看免费观看在线视频| 91午夜精品亚洲一区二区三区 | 少妇人妻一区二区三区视频| av黄色大香蕉|