• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    2016-05-16 02:41:56WANGJinweiZOUZojin
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:冰體冰區(qū)破冰船

    WANG Jin-wei,ZOU Zo-jin,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    WANG Jian-weia,ZOU Zao-jiana,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical simulation of an icebreaker advancing in level ice is carried out by using the nonlinear finite element method.An ice material model is verified by comparing the simulation results with experimental data.Using the ice material model,the dynamic response of the ship during icebreaking in level ice of different thicknesses at different speeds is numerically studied.The deformations of level ice,the magnitudes of ice force,the changes of ice deformation energy and kinetic energy during the icebreaking process are presented,and the influences of the ship speed and level ice thickness on the icebreaking resistance are analyzed.The results have a certain reference value for analyzing the dynamic response of an icebreaker in level ice.

    icebreaker;level ice;icebreaking resistance;nonlinear FEM; numerical simulation

    0 Introduction

    Due to the climate change,the melting speed of ice in Arctic region has been accelerating,which makes the marine transportation in Arctic region possible.In these waters,merchant ships need to clear channel with the help of icebreakers to ensure a successful navigation. Besides,since the global economy is developing rapidly,the resource requirements have been increasing.As the land resources being exhausted,the exploitation of energy in ocean and polar becomes urgent,and the scientific investigation of polar energy is only possible by means of icebreaking.Nowadays,a new generation of icebreaker is under researching and developing all over the world;to accurately predict the dynamic performance of an icebreaker in level ice is of particular importance for icebreaker design,and relevant researches have a practical significance.

    In recent years,some researchers have studied icebreaking resistance of polar ships.Wang et al[1]used two commercial finite element codes(ANSYS and LS-DYNA)to present numerical results of resistance prediction for an icebreaker in level ice.Park et al[2]applied three methods including empirical analysis,numerical analysis and physical model experiments toobtain icebreaking resistance of three ore carriers that have different hull forms under the same ship speed and ice thickness.Considering the coupling between continuous ice forces and ship motions,Su et al[3]used a numerical method to simulate ship maneuvers in level ice and solved the equation of three degree-of-freedom rigid body surge,sway and yaw motions.Some other researchers have studied the issues related to structural response of ship-ice collision.Wang et al[4]developed a collision model for nonlinear dynamic finite element analysis on a LNG ship and crushable ice using commercial code DYTRAN.Lee et al[5]established the finite element model of Arctic LNG carriers and predicted impact loadings from ship and iceberg collision. Liu[6]studied the numerical model of ice materials and applied it to dynamic analysis of shipiceberg collision.Kim et al[7]used finite element model and scale model test to investigate the resistance performance of an icebreaking cargo vessel in pack ice conditions.Yang et al[8]adopted the method of fluid-structure interaction and established the nonlinear finite element model of collision between ship and ocean platform by taking sea ice as medium.They simulated the collision process numerically,compared the results of collision under conditions with and without sea ice medium and analyzed the influence of the range of sea ice on platform. Zhang et al[9-10]performed a numerical simulation of ship-ice collision by using a nonlinear finite element method.

    This paper conducts a numerical simulation study on the dynamic response of an icebreaker in level ice by using the commercial software LS-DYNA based on the nonlinear finite element method.The reliability of the proposed ice material model is firstly verified;the 3D finite element models of ship and level ice are established.The deformation of level ice,the ice force and the ice deformation energy and kinetic energy during the icebreaking process are predicted by numerical simulation,and the influences of ship speed and ice thickness on the icebreaking resistance are analyzed.

    1 Mathematical model

    In the finite element method,the motion equation of ship in level ice can be described as

    where M is the mass matrix,C is the damping matrix,K is the stiffness matrix,x is the displacement vector,and Fextis the external load vector.

    It is assumed that the acceleration remains the same in one time step.The explicit central difference method is used to discretize the motion equation,and the solving formula can be derived as

    2 Numerical modeling of ice material

    Tab.1 Ice model characteristics

    In order to verify the ice material,the reaction generated from the extrusion on ice cone by steel plate is calculated.The finite element model is shown in Fig.1.The fixed boundary condition(fixed B.C.)is applied at ice cone bottom to implement the conditions attached to the testing machine.A steel plate attached on the top of the testing machine is moving downwards at a specified velocity v.Two body contact simulation is performed.The material property of the steel plate is taken as a rigid body,because the plate is thick enough to be considered as rigid.The characteristics of the steel material model are shown in Tab.2.

    Fig.1 FE model of ice cone and steel plate

    Tab.2 Steel material model characteristics

    The numerical simulation model developed in this study is verified by comparing the results of numerical simulation with the test results of Ref.[11].An ice cone with 10cm diameter and 120°coning angle is chosen for the test.The main focus of developing a numerical simulation model is to create a model that can be directly applied to a diverse condition such asdifferent strain-rate or ice size.In other words,the aim is to create a numerical simulation model that can be used in multiple conditions without any modification of ice material properties or simulation conditions.The application of the ice material model under different strainrate conditions are investigated firstly,setting steel plate speed v=1 mm/s and 100 mm/s respectively.The comparison of the ice force-displacement curves at different steel plate speeds is shown in Fig.2.

    Fig.2 Comparison of ice force-displacement curves at different steel plate speeds,case 1

    From Fig.2 it can be seen that the numerical and experimental results agree well to a certain extent and the error at low speed is smaller than that at high speed.No matter at low speed or at high speed,the calculated results exhibit the correct growth trend of ice force with displacement.The ice force fluctuates at some displacement,because that as the steel plate is pressing the ice body,the phenomenon of broken occurs,causing immediately the drastic changes of ice force.

    In order to verify the reliability of the ice material model further,it is applied to a larger ice cone with 25 cm diameter and 130°coning angle.The numerical and experimental results of ice force-displacement curves at the steel plate speed 1 mm/s and 100 mm/s are compared in Fig.3.From this figure it can be seen that the growth trends of the calculated and experimental ice forces agree well,and they both show the fluctuation generated from the ice body’s fracture.The higher the steel plate speed is,the larger the fluctuation amplitude is.These results indicate that the ice material model selected in this paper can be used for numerical sim-ulation of the collisions between ship and ice.

    Fig.3 Comparison of ice force-displacement curves at different steel plate speeds,case 2

    3 Numerical simulation of ship in level ice

    3.1 3D finite element model of an icebreaker

    An icebreaker is selected in this paper,whose particulars are listed in Tab.3.

    For the real ship,high-strength steel is used in ship bow,whose deformation can be ignored during the icebreaking process.Therefore,in order to simplify the model,the hull plate is regarded as rigid and the internal structure is ignored in the numerical simulation.For the motion states of the ship, regardless of the influence on ship motion in icebreaking process,the ship is set to move forward at a constant speed,and the other five degrees of freedom of motionare constrained.

    3.2 3D finite element model of level ice

    During the icebreaking process,the mechanical properties of level ice are internal factors which affect fracture of level ice and are the basis of study on icebreaking resistance. During the process of ship-ice collision,ice will be broken when the ice stress reaches a certain value.The interaction between ice and ship will show different damage forms,which immediately influence the ice load on ship.In general,there are four forms of ice failure,including crushing failure,buckling failure,shear failure and bending failure[12].

    For establishing 3D finite element model of level ice,solid element is used considering the ice thickness and generation as well as extension of cracks.There are two methods to simulate the generation and extension of cracks.One is that cracks are generated in the structure by element failure;the other one is that cracks are generated by defining the failure of constraint nodes.The first method requires that there is a dense grid in cracks of the model;the shortcomings of the second method is that the process of establishing the model is relatively complex[13].In this paper,the first method is chosen to establish the model.When the stress and strain of the finite element model exceed a certain value,the element will be of failure, and the element will be deleted from the model.Cracks occur when numerous elements are deleted from a path.That is why the grids of level ice should be divided densely.In this paper,the size of the solid element is 125 mm×125 mm×125 mm.

    The icebreaking resistance when the ship sails in infinite level ice is studied.Different from floating ice,infinite level ice can be regarded as fixed.Limited by the conditions of numerical simulation,size of the level ice cannot be established infinitely.In this paper,the length of the level ice along the longitudinal direction(X-direction)is taken as 40 m,and the length perpendicular to the longitudinal direction(Y-direction)is 80 m.The boundary that collides with the ship is the free end.The influence of the collision area on far-field of the level ice is so small that it can be neglected;hence the far-field boundary is simplified as rigid fixed.

    Tab.3 Ship characteristics

    3.3 Application of fluid-structure interaction

    In the icebreaking process,the buoyancy and gravity of ice need to be considered.Gravity is loaded through body force and the gravitational acceleration is 9.81 N/kg.The load of buoyancy is realized by utilizing fluid-structure interaction.

    There are three basic algorithms about 3D finite element in LS-DYNA.They are Lagrange, Euler and ALE(Arbitrary Lagrange-Euler)formulations.Solid structures usually adopt Lagrange formulation,whose element is attached to the material and is deformed with the change of the structure’s form.As for fluid-structure interaction,the flow of material may result in serious deform of finite element.Thus it may cause the difficulty of numerical simulation and end the operation of the program.Euler formulation can be understood as the fact that two layers of mesh overlap with each other.One layer is fixed in the space and the other one is attached to the material;it flows in the space grid with the material and is achieved through the following two steps:The material grid firstly performs a Lagrange step,and then the state variables of Lagrange elements are reflected in or transported to the fixed space grid.This grid is always fixed and indeformable,just as material flowing in the grid.Like the Euler formulation,in ALE the space grid can be interpreted as two layers of grids overlapping.But it can freely flow in the space.ALE and Euler formulations can overcome the difficulty of numerical simulation caused by serious deforms of element and implement the dynamic analysis of fluid-structure interaction.

    This paper simulates the dynamic process of fluid-structure interaction with LS-DYNA and ALE formulation.Through the load of gravity on water and air,pressure gradient is generated in the vertical direction and the buoyancy on the ice is simulated.

    Fluid materials in the numerical model include water and air.In the finite element model,these two materials have the same nodes.The length and width of water and air are the same as those of level ice.However,the height of water is 4 times of the draft and the height of air is 1.5 times of the draft.

    Both of water and air adopt null material model to simulate the materials having fluid behaviors and linear polynomial state equation,whose pressure is calculated as

    where ci(i=0,1,2,…6)are the coefficients;E is the internal energy of unit volume, V is the relative volume.

    3.4 Ship-ice contact model

    There are a lot of contact models in LS-DYNA,including node-to-surface contact,surface-to-surface contact and single-surface contact.Considering the failure of ice material and the penetration phenomenon generated during the collision,this paper adopts eroding-surfaceto-surface contact model.This model is very useful and is generally applied in the contacts of various shapes and large contact areas.

    4 Results and analysis of numerical simulation

    As shown in Fig.4,the water plane of the level ice is consistent with that of the ship.In the simulation,the ship speed is 2 m/s.The distance between the ship and the level ice is 0.1 m before simulation and simulation time is 8.0 s.

    Fig.4 FE model of ship icebreaking in level ice

    4.1 Results of numerical simulation of icebreaking process

    The deformations of the level ice at 2.0 s,4.0 s,6.0 s and 8.0 s are shown in Fig.5.It can be seen in Fig.5 that the deformation mainly occurs in the area of ice contacting and colliding with the icebreaker.After colliding with the ship,the ice failure occurs when the failure pressure is reached.The cracks are generated by elements deleted for failure.During the icebreaking process,because of the brittleness of the ice material,some ices are separated from the level ice and flow in the water.

    Fig.5 Deformation of the level ice

    Fig.6 Time history of ice force on ship in Y direction

    Fig.7 Time history of ice force on ship in Z direction

    The time histories of ice force on the ship in Y direction and Z direction are shown in Fig.6 and Fig.7,respectively.From these figures it can be seen that during the whole period, the ice force presents highly nonlinear characteristics and changes violently with time,with a general rising trend.From the analysis of the time histories of ice force in Fig.6 and Fig.7 and the deformation of level ice in Fig.5,it is known that the unloading phenomenon is generated by ice failure as the ship moves in the level ice.

    4.2 Influence of ship speed

    In order to study the influence of ship speed on the icebreaking resistance,numerical simulation is carried out for the ship sailing in the level ice of thickness 0.5 m at the speed 2 m/s,3 m/s and 4 m/s.

    The time histories of the icebreaking resistance at different ship speeds are shown in Fig.8.It can be seen that the ship speed has a significant influence on the icebreaking resistance and the amplitude and peak value of icebreaking resistance increase with the ship speed. The common point of the time histories at different ship speeds is that as the icebreaking resistance rises,it will suddenly drop.It shows an unloading phenomenon during the icebreaking process because of the ice element failure.

    Fig.8 Time histories of the icebreaking resistance at different ship speeds

    The time histories of the level ice deformation energy and kinetic energy at different ship speeds are shown in Fig.9.It can be seen that the level ice deformation energy and kinetic energy increase with the ship speed.

    Fig.9 Time histories of level ice deformation energy and kinetic energy at different ship speeds

    4.3 Influence of ice thickness

    In order to study the influence of ice thickness on the icebreaking resistance,numerical simulation is carried out for the ship sailing at the speed of 2 m/s in the level ice of thickness 0.25 m,0.50 m,0.75 m.The time histories of icebreaking resistance under different ice thicknesses are shown in Fig.10.It can be seen that the peak value of icebreaking resistance increases with the ice thickness.Besides,the time histories show the different degrees of fluctuation for the level ice with different thicknesses.It also shows the unloading phenomenon in icebreaking resistance during the icebreaking process because of the ice element failure.

    Fig.10 Time histories of the icebreaking resistance under different ice thicknesses

    The time histories of level ice deformation energy and kinetic energy under different ice thicknesses are shown in Fig.11.It can be seen that the level ice deformation energy and kinetic energy increase with the ice thicknesses.

    Fig.11 Time histories of level ice deformation energy and kinetic energy under different ice thicknesses

    5 Conclusions

    This paper carries out a numerical simulation study on the dynamic response of an icebreaker during icebreaking process in level ice by using finite element method.The ice material model used in the numerical simulation is firstly verified.Systematic numerical simulationis are then carried out for the icebreaker at different forward speeds in the level ice of different thicknesses.The following conclusions can be drawn from this study:

    (1)The ice material model proposed in this paper is used in numerical simulation underdifferent conditions.The validity of the model is verified by comparing the simulation results with those of experiment.It is shown that the material model can be applied in numerical simulation of icebreaking process;

    (2)Keeping the ice thickness unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ship speed;

    (3)Keeping the ship speed unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ice thicknesses;

    The results of this study can provide a certain reference for the design of icebreakers to be served as icebreaking in level ice.

    [1]Wang J,Derradji-Aouat A.Numerical prediction for resistance of Canadian icebreaker CCGS Terry Fox in level ice[C]// ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:9-15.

    [2]Park K D,Chung Y K,Jang Y S,et al.Development of hull forms for a 190,000 DWT icebreaking ore carrier[C]// OMAE2011,30th International Conference on Ocean,Offshore and Arctic Engineering.Rotterdam,the Netherlands, 2011,1:949-955.

    [3]Su B,Riska K,Moan T.A numerical method for the prediction of ship performance in level ice[J].Cold Regions Science and Technology,2010,60(3):177-188.

    [4]Wang B,Yu H C,Basu R.Ship and ice collision modeling and strength evaluation of LNG ship structure[C]//OMAE2008, 27th International Conference on Offshore Mechanics and Arctic Engineering.Estoril,Portugal,2008,3:911-918.

    [5]Lee S G,Lee J S,Baek Y H,et al.Structural safety assessment in membrane-type CCS in LNGC under iceberg collisions [C]//ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:69-81.

    [6]Liu Z.Analytical and numerical analysis of iceberg collisions with ship structures[D].Trondheim:Norwegian University of Science and Technology,2011.

    [7]Kim M C,Lee S K,Lee W J,et al.Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J].International Journal of Naval Architecture and Ocean Engineering,2013, 5(1):116-131.

    [8]Yang L,Ma J.Numerical simulation analysis for the collision between offshore platform under the sea ice medium[J].China Offshore Platform,2008,23(2):29-33.(in Chinese)

    [9]Zhang J,Wan Z Q,Chen C.Research on structure dynamic response of bulbous bow in ship-ice collision load[J].Journal of Ship Mechanics,2014,18(1):106-114.(in Chinese)

    [10]Zhang J,Zhang M R,Wan Z Q,et al.Research on ice material model applied in numerical simulation of ship structure response under iceberg Collision[J].Shipbuilding of China,2013(4):100-108.(in Chinese)

    [11]Kim H.Simulation of compressive‘cone-shaped’ice specimen experiments using LS-DYNA[C]//13th International LSDYNA Users Conference.Detroit,America,2014.

    [12]Wei W D,Ning J G.Critical load between sea ice and sea structure[J].Journal of Glaciology and Geocryology,2003,25 (3):351-354.

    [13]Bai Z J.Theoretical basis and example analysis of LS-DYNA3D[M].Beijing:Science Press,2005.(in Chinese)

    基于非線性有限元法的船舶冰區(qū)破冰數(shù)值模擬

    王健偉a,鄒早建a,b

    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國家重點實驗室,上海200240)

    應(yīng)用非線性有限元法進行了破冰船冰區(qū)破冰數(shù)值模擬。通過比較數(shù)值模擬結(jié)果和試驗結(jié)果,對冰體材料模型進行了驗證;采用該冰體材料模型,對破冰船以不同航速在不同厚度的層冰中破冰航行時的動態(tài)響應(yīng)進行了數(shù)值研究,給出了破冰過程中層冰的變形、冰力的大小以及冰的變形能和動能變化,分析了船速、冰層厚度對破冰阻力的影響。該研究結(jié)果對分析破冰船在層冰中破冰時的動態(tài)響應(yīng)特性具有一定的參考價值。

    破冰船;層冰;破冰阻力;非線性有限元法;數(shù)值模擬

    U661.4

    A

    王健偉(1989-),男,上海交通大學(xué)碩士;鄒早建(1956-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    U661.4 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.008

    1007-7294(2016)12-1584-11

    Received date:2016-08-24

    Biography:WANG Jian-wei(1989-),male,master of Shanghai Jiao Tong University,E-mail:wangjianweime@163.com; ZOU Zao-jian(1956-),professor/tutor of Shanghai Jiao Tong University,E-mail:zjzou@sjtu.edu.cn.

    猜你喜歡
    冰體冰區(qū)破冰船
    “怪獸號”破冰船
    照亮回家的路
    我國高校首艘破冰船“中山大學(xué)極地”號成功開展冰區(qū)試航
    珠江水運(2023年3期)2023-03-04 16:28:28
    重覆冰區(qū)220kV雙回路窄基鋼管塔設(shè)計及試驗研究
    吉林電力(2022年1期)2022-11-10 09:20:48
    彈體高速侵徹冰體研究
    冰區(qū)船舶壓載艙防凍方案研究
    能源工程(2022年2期)2022-05-23 13:51:44
    高速彈體侵徹冰材料過程數(shù)值模擬研究
    世界最大破冰船
    冰體質(zhì)量和撞擊角度對船首結(jié)構(gòu)碰撞性能的影響
    基于船-水-冰耦合技術(shù)的撞擊參數(shù)對船冰碰撞性能的影響
    性色av一级| 国产在线男女| 天堂中文最新版在线下载| 国产精品国产三级专区第一集| 我的女老师完整版在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲精品中文字幕在线视频 | 韩国av在线不卡| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 黄色配什么色好看| 亚洲熟女精品中文字幕| 国产国拍精品亚洲av在线观看| 丰满少妇做爰视频| 久久精品国产鲁丝片午夜精品| 99re6热这里在线精品视频| 制服丝袜香蕉在线| 一级毛片 在线播放| 99久久综合免费| 超碰97精品在线观看| 亚洲精品一二三| 男女边摸边吃奶| 日韩大片免费观看网站| 国语对白做爰xxxⅹ性视频网站| 免费黄网站久久成人精品| 内射极品少妇av片p| 国产精品国产三级专区第一集| 欧美另类一区| 青春草国产在线视频| av在线app专区| 精品亚洲乱码少妇综合久久| 亚洲成人一二三区av| 国产黄色视频一区二区在线观看| 日日啪夜夜爽| 一级毛片aaaaaa免费看小| 亚洲精品一二三| 国产一区二区三区综合在线观看 | 亚洲丝袜综合中文字幕| 99热这里只有精品一区| 直男gayav资源| 99久久精品一区二区三区| 国产精品不卡视频一区二区| 国产探花极品一区二区| 小蜜桃在线观看免费完整版高清| 日本黄色日本黄色录像| 亚洲国产精品999| 亚洲欧美日韩东京热| 亚洲精品自拍成人| 哪个播放器可以免费观看大片| 永久网站在线| 日本黄色日本黄色录像| 国产精品人妻久久久久久| 精品熟女少妇av免费看| 色哟哟·www| 麻豆成人午夜福利视频| 中文资源天堂在线| 久久久午夜欧美精品| 免费av中文字幕在线| 丰满少妇做爰视频| 亚洲精品国产av成人精品| 成人影院久久| 五月玫瑰六月丁香| av国产免费在线观看| 成人国产麻豆网| 国产精品国产三级国产av玫瑰| 97在线视频观看| 成人18禁高潮啪啪吃奶动态图 | 日本欧美视频一区| 亚洲无线观看免费| 老司机影院毛片| 久久久亚洲精品成人影院| 18禁裸乳无遮挡动漫免费视频| 高清欧美精品videossex| 在线观看人妻少妇| 精品熟女少妇av免费看| 一级毛片电影观看| 日本黄色片子视频| 国产白丝娇喘喷水9色精品| 日韩不卡一区二区三区视频在线| 18禁在线无遮挡免费观看视频| av黄色大香蕉| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 国产v大片淫在线免费观看| 亚洲久久久国产精品| 免费观看a级毛片全部| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 七月丁香在线播放| 乱系列少妇在线播放| 国产成人午夜福利电影在线观看| 美女主播在线视频| 国模一区二区三区四区视频| 亚洲av中文字字幕乱码综合| 欧美日韩视频精品一区| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 九九在线视频观看精品| 国产精品欧美亚洲77777| 女性被躁到高潮视频| 精品久久久精品久久久| 在线天堂最新版资源| 大话2 男鬼变身卡| 在线观看av片永久免费下载| 高清日韩中文字幕在线| 久久久精品94久久精品| 一区二区三区免费毛片| 亚洲精品456在线播放app| 乱码一卡2卡4卡精品| 亚洲伊人久久精品综合| 日本午夜av视频| 国产高清国产精品国产三级 | 男人爽女人下面视频在线观看| 三级国产精品片| 丝袜喷水一区| 国产探花极品一区二区| 亚洲成色77777| 欧美日韩视频精品一区| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 热99国产精品久久久久久7| 少妇人妻精品综合一区二区| 国产69精品久久久久777片| 美女高潮的动态| 久热久热在线精品观看| a级一级毛片免费在线观看| 男女啪啪激烈高潮av片| av卡一久久| 国产久久久一区二区三区| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 肉色欧美久久久久久久蜜桃| 国产真实伦视频高清在线观看| 国产成人精品婷婷| 国产在视频线精品| 亚洲国产成人一精品久久久| 日韩电影二区| 在线天堂最新版资源| 一区二区av电影网| 久久ye,这里只有精品| 国产精品一区www在线观看| 最近最新中文字幕大全电影3| 午夜免费男女啪啪视频观看| 国产精品一区二区性色av| 十分钟在线观看高清视频www | 网址你懂的国产日韩在线| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 国产黄色视频一区二区在线观看| 久久国产精品男人的天堂亚洲 | 只有这里有精品99| 亚洲精品国产色婷婷电影| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| h日本视频在线播放| 自拍偷自拍亚洲精品老妇| 国产成人精品婷婷| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 永久免费av网站大全| 777米奇影视久久| 插阴视频在线观看视频| 97精品久久久久久久久久精品| 国产精品久久久久成人av| 亚洲欧美一区二区三区国产| 高清在线视频一区二区三区| 免费看光身美女| 欧美亚洲 丝袜 人妻 在线| 国产亚洲91精品色在线| 好男人视频免费观看在线| 午夜精品国产一区二区电影| 中国美白少妇内射xxxbb| 亚洲精品乱码久久久久久按摩| 大片电影免费在线观看免费| 一本久久精品| 国产久久久一区二区三区| 国产精品一区二区三区四区免费观看| 91aial.com中文字幕在线观看| 国产高清国产精品国产三级 | 欧美精品一区二区大全| 一级二级三级毛片免费看| 亚洲图色成人| 欧美亚洲 丝袜 人妻 在线| 欧美成人a在线观看| 精品视频人人做人人爽| 美女主播在线视频| 免费黄色在线免费观看| 免费观看av网站的网址| 高清不卡的av网站| 午夜免费男女啪啪视频观看| 久久久久视频综合| 中文字幕亚洲精品专区| 亚洲欧美精品自产自拍| 久久韩国三级中文字幕| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 国产乱人视频| 久久国产亚洲av麻豆专区| 观看免费一级毛片| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 国产在线免费精品| 噜噜噜噜噜久久久久久91| 日日啪夜夜爽| 成人黄色视频免费在线看| 国内精品宾馆在线| 夫妻性生交免费视频一级片| 青青草视频在线视频观看| 又黄又爽又刺激的免费视频.| 国产精品成人在线| 国语对白做爰xxxⅹ性视频网站| 日韩成人伦理影院| 午夜激情久久久久久久| 中文在线观看免费www的网站| 午夜福利在线在线| 国产淫片久久久久久久久| 国产在线视频一区二区| 舔av片在线| av黄色大香蕉| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 亚洲欧美日韩东京热| 九色成人免费人妻av| 久久久久久久大尺度免费视频| 亚洲av日韩在线播放| 嫩草影院新地址| 青春草视频在线免费观看| 最黄视频免费看| 亚洲国产色片| 肉色欧美久久久久久久蜜桃| av卡一久久| 91精品一卡2卡3卡4卡| 成人国产av品久久久| 人人妻人人看人人澡| 成人亚洲欧美一区二区av| 国产爱豆传媒在线观看| 黄色怎么调成土黄色| 国产久久久一区二区三区| 欧美日韩综合久久久久久| 午夜激情久久久久久久| 久久久久国产精品人妻一区二区| 国产一区有黄有色的免费视频| 涩涩av久久男人的天堂| 国产在线视频一区二区| 国产永久视频网站| 久久久国产一区二区| 最近的中文字幕免费完整| 日韩成人伦理影院| 22中文网久久字幕| 有码 亚洲区| 美女cb高潮喷水在线观看| 韩国高清视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 国产欧美亚洲国产| 久久精品人妻少妇| 国产精品爽爽va在线观看网站| 一本一本综合久久| 青春草视频在线免费观看| 日本与韩国留学比较| 亚洲国产精品一区三区| 欧美成人一区二区免费高清观看| 99热这里只有是精品在线观看| 亚洲无线观看免费| 久久久久久久久大av| 一二三四中文在线观看免费高清| 简卡轻食公司| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 色婷婷av一区二区三区视频| 国产黄色视频一区二区在线观看| 国产av一区二区精品久久 | 一区二区三区精品91| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 国产成人精品一,二区| 天堂中文最新版在线下载| 日韩伦理黄色片| 国产精品精品国产色婷婷| 久久 成人 亚洲| 亚洲人成网站在线播| 人妻 亚洲 视频| 身体一侧抽搐| 欧美日韩视频精品一区| 97在线视频观看| 国产乱来视频区| 欧美高清成人免费视频www| 男女边摸边吃奶| 久久青草综合色| 国产中年淑女户外野战色| 国产精品麻豆人妻色哟哟久久| av.在线天堂| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 夜夜爽夜夜爽视频| 亚洲一区二区三区欧美精品| 国产综合精华液| 又爽又黄a免费视频| 欧美精品人与动牲交sv欧美| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | 一区二区三区精品91| 久久国产亚洲av麻豆专区| 内地一区二区视频在线| 国产av一区二区精品久久 | 97在线视频观看| 99热全是精品| 亚洲国产日韩一区二区| 国产伦精品一区二区三区视频9| 99久国产av精品国产电影| 亚洲,欧美,日韩| 99热网站在线观看| 在线免费十八禁| 欧美激情国产日韩精品一区| 一本—道久久a久久精品蜜桃钙片| 人妻系列 视频| av福利片在线观看| a级毛片免费高清观看在线播放| 99热6这里只有精品| 免费看光身美女| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 亚洲av成人精品一区久久| 亚洲欧美精品自产自拍| 国产亚洲91精品色在线| 国产亚洲一区二区精品| 久久精品国产亚洲av涩爱| 国产精品秋霞免费鲁丝片| 亚洲综合精品二区| 中文字幕久久专区| 婷婷色综合大香蕉| 老司机影院成人| 看免费成人av毛片| 国产国拍精品亚洲av在线观看| 亚洲成人一二三区av| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 一区在线观看完整版| 麻豆成人午夜福利视频| 伊人久久精品亚洲午夜| 99热国产这里只有精品6| 一区二区三区乱码不卡18| 精品视频人人做人人爽| 五月伊人婷婷丁香| 婷婷色综合www| 亚洲人成网站在线观看播放| 日本与韩国留学比较| 毛片一级片免费看久久久久| 涩涩av久久男人的天堂| 久久久亚洲精品成人影院| 欧美日韩视频高清一区二区三区二| 内地一区二区视频在线| 免费观看在线日韩| 高清av免费在线| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 欧美3d第一页| 一级毛片黄色毛片免费观看视频| 亚洲成人av在线免费| 中国三级夫妇交换| 国产亚洲一区二区精品| 成人亚洲欧美一区二区av| a级毛片免费高清观看在线播放| 直男gayav资源| 国产精品国产三级专区第一集| 18禁在线无遮挡免费观看视频| 99久久精品一区二区三区| 日韩精品有码人妻一区| 久久久久性生活片| 人体艺术视频欧美日本| 噜噜噜噜噜久久久久久91| 色视频www国产| kizo精华| 在线观看一区二区三区| 天美传媒精品一区二区| 久热久热在线精品观看| 天堂中文最新版在线下载| 激情 狠狠 欧美| av黄色大香蕉| 免费高清在线观看视频在线观看| 性色avwww在线观看| 亚洲国产精品999| 亚洲一级一片aⅴ在线观看| 韩国高清视频一区二区三区| 欧美精品一区二区大全| av不卡在线播放| 久久久久久久久久成人| 亚洲精品色激情综合| 久久精品久久久久久久性| av在线蜜桃| 国精品久久久久久国模美| 成人午夜精彩视频在线观看| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 国产女主播在线喷水免费视频网站| 毛片一级片免费看久久久久| 国产精品人妻久久久久久| 中国三级夫妇交换| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| 国产成人一区二区在线| 亚洲国产欧美在线一区| 国产乱人偷精品视频| 亚洲美女黄色视频免费看| 久热久热在线精品观看| 亚洲国产av新网站| 久久久久久久亚洲中文字幕| 高清av免费在线| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| 亚洲av二区三区四区| 午夜老司机福利剧场| 亚洲欧美精品自产自拍| 亚洲精品成人av观看孕妇| 欧美精品一区二区免费开放| av线在线观看网站| 亚洲精品色激情综合| 国产伦精品一区二区三区四那| 久久久久人妻精品一区果冻| 日本黄色日本黄色录像| 国产精品久久久久久av不卡| 亚洲欧美精品自产自拍| 99热全是精品| 26uuu在线亚洲综合色| 亚洲av在线观看美女高潮| 黑人高潮一二区| 人妻 亚洲 视频| 深爱激情五月婷婷| 女人久久www免费人成看片| 国产免费一区二区三区四区乱码| 国产成人精品久久久久久| 狂野欧美激情性bbbbbb| 深夜a级毛片| 内地一区二区视频在线| 中文精品一卡2卡3卡4更新| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 成人亚洲精品一区在线观看 | 精品视频人人做人人爽| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 能在线免费看毛片的网站| 日韩国内少妇激情av| 大片免费播放器 马上看| 国产精品久久久久久久电影| 黄色视频在线播放观看不卡| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 免费不卡的大黄色大毛片视频在线观看| 男女无遮挡免费网站观看| 中国国产av一级| 国产成人精品福利久久| 男人和女人高潮做爰伦理| 这个男人来自地球电影免费观看 | 97精品久久久久久久久久精品| 深夜a级毛片| 久久精品国产鲁丝片午夜精品| 亚洲av福利一区| 久久久欧美国产精品| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 国产精品一区www在线观看| 国产精品福利在线免费观看| 日日啪夜夜爽| 国国产精品蜜臀av免费| 亚洲国产日韩一区二区| 久久国内精品自在自线图片| 国产极品天堂在线| av线在线观看网站| 国产精品三级大全| 99re6热这里在线精品视频| videossex国产| 欧美精品人与动牲交sv欧美| 欧美成人精品欧美一级黄| 久久久久久久久大av| 人妻 亚洲 视频| 啦啦啦中文免费视频观看日本| 99精国产麻豆久久婷婷| 亚洲欧美日韩另类电影网站 | 青春草国产在线视频| 国内揄拍国产精品人妻在线| 成人综合一区亚洲| 日韩强制内射视频| 人人妻人人澡人人爽人人夜夜| 国产淫片久久久久久久久| 国产精品无大码| 精品亚洲成a人片在线观看 | 国产精品.久久久| 在现免费观看毛片| 国产一区二区三区av在线| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx在线观看| 亚洲中文av在线| 在线 av 中文字幕| 免费观看a级毛片全部| 国产高清三级在线| 国产精品女同一区二区软件| 在线天堂最新版资源| 一级黄片播放器| 日本wwww免费看| 人妻 亚洲 视频| 啦啦啦视频在线资源免费观看| 免费观看在线日韩| 妹子高潮喷水视频| 中国三级夫妇交换| 国产伦在线观看视频一区| 精品久久久精品久久久| 国产精品国产三级专区第一集| 丝瓜视频免费看黄片| 夫妻午夜视频| 网址你懂的国产日韩在线| 精品人妻熟女av久视频| 在线观看一区二区三区| 联通29元200g的流量卡| 免费观看无遮挡的男女| 午夜福利高清视频| 成年av动漫网址| 国产精品三级大全| 久久久久久久久久久免费av| 水蜜桃什么品种好| 国产精品av视频在线免费观看| h视频一区二区三区| 久久国产亚洲av麻豆专区| 欧美精品一区二区大全| 中文字幕免费在线视频6| 国产亚洲欧美精品永久| 国产欧美亚洲国产| 国产 精品1| 久久久久精品久久久久真实原创| 国产伦精品一区二区三区四那| 久久国产亚洲av麻豆专区| 国产爱豆传媒在线观看| 国产深夜福利视频在线观看| 日韩强制内射视频| 在线天堂最新版资源| 美女高潮的动态| 日韩三级伦理在线观看| 免费看光身美女| 国产淫片久久久久久久久| 亚洲精品日韩av片在线观看| 日韩电影二区| 在线观看免费高清a一片| 色视频在线一区二区三区| 亚洲国产高清在线一区二区三| 国产精品国产三级国产专区5o| 菩萨蛮人人尽说江南好唐韦庄| 久久毛片免费看一区二区三区| 成人无遮挡网站| 只有这里有精品99| 国产日韩欧美亚洲二区| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 亚洲精品第二区| www.色视频.com| 亚洲无线观看免费| 久久久色成人| 成人国产麻豆网| 久久精品熟女亚洲av麻豆精品| 啦啦啦中文免费视频观看日本| 亚洲av欧美aⅴ国产| 欧美成人午夜免费资源| 一级a做视频免费观看| 伦理电影大哥的女人| 国产人妻一区二区三区在| 日韩精品有码人妻一区| av视频免费观看在线观看| 欧美xxxx黑人xx丫x性爽| 日本与韩国留学比较| 夜夜爽夜夜爽视频| 国产成人a∨麻豆精品| 亚洲精品久久久久久婷婷小说| 新久久久久国产一级毛片| 国产亚洲最大av| 国产成人精品福利久久| 国产中年淑女户外野战色| 国产一区二区在线观看日韩| 久久毛片免费看一区二区三区| 欧美xxxx黑人xx丫x性爽| 两个人的视频大全免费| 亚洲图色成人| 青青草视频在线视频观看| 午夜福利网站1000一区二区三区| 精品99又大又爽又粗少妇毛片| 久久ye,这里只有精品| 人体艺术视频欧美日本| 91精品国产九色| 中文精品一卡2卡3卡4更新| 黄色一级大片看看| 51国产日韩欧美| 97超视频在线观看视频| 岛国毛片在线播放| 一级黄片播放器| 一本色道久久久久久精品综合| www.av在线官网国产| 免费在线观看成人毛片| 亚洲av男天堂| 久久鲁丝午夜福利片| 人妻少妇偷人精品九色| 日韩精品有码人妻一区| av视频免费观看在线观看| 高清欧美精品videossex| 在线观看一区二区三区| 午夜免费男女啪啪视频观看| 亚洲四区av| 亚洲欧美成人综合另类久久久| 国产伦在线观看视频一区|