• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    2016-05-16 02:41:56WANGJinweiZOUZojin
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:冰體冰區(qū)破冰船

    WANG Jin-wei,ZOU Zo-jin,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    WANG Jian-weia,ZOU Zao-jiana,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical simulation of an icebreaker advancing in level ice is carried out by using the nonlinear finite element method.An ice material model is verified by comparing the simulation results with experimental data.Using the ice material model,the dynamic response of the ship during icebreaking in level ice of different thicknesses at different speeds is numerically studied.The deformations of level ice,the magnitudes of ice force,the changes of ice deformation energy and kinetic energy during the icebreaking process are presented,and the influences of the ship speed and level ice thickness on the icebreaking resistance are analyzed.The results have a certain reference value for analyzing the dynamic response of an icebreaker in level ice.

    icebreaker;level ice;icebreaking resistance;nonlinear FEM; numerical simulation

    0 Introduction

    Due to the climate change,the melting speed of ice in Arctic region has been accelerating,which makes the marine transportation in Arctic region possible.In these waters,merchant ships need to clear channel with the help of icebreakers to ensure a successful navigation. Besides,since the global economy is developing rapidly,the resource requirements have been increasing.As the land resources being exhausted,the exploitation of energy in ocean and polar becomes urgent,and the scientific investigation of polar energy is only possible by means of icebreaking.Nowadays,a new generation of icebreaker is under researching and developing all over the world;to accurately predict the dynamic performance of an icebreaker in level ice is of particular importance for icebreaker design,and relevant researches have a practical significance.

    In recent years,some researchers have studied icebreaking resistance of polar ships.Wang et al[1]used two commercial finite element codes(ANSYS and LS-DYNA)to present numerical results of resistance prediction for an icebreaker in level ice.Park et al[2]applied three methods including empirical analysis,numerical analysis and physical model experiments toobtain icebreaking resistance of three ore carriers that have different hull forms under the same ship speed and ice thickness.Considering the coupling between continuous ice forces and ship motions,Su et al[3]used a numerical method to simulate ship maneuvers in level ice and solved the equation of three degree-of-freedom rigid body surge,sway and yaw motions.Some other researchers have studied the issues related to structural response of ship-ice collision.Wang et al[4]developed a collision model for nonlinear dynamic finite element analysis on a LNG ship and crushable ice using commercial code DYTRAN.Lee et al[5]established the finite element model of Arctic LNG carriers and predicted impact loadings from ship and iceberg collision. Liu[6]studied the numerical model of ice materials and applied it to dynamic analysis of shipiceberg collision.Kim et al[7]used finite element model and scale model test to investigate the resistance performance of an icebreaking cargo vessel in pack ice conditions.Yang et al[8]adopted the method of fluid-structure interaction and established the nonlinear finite element model of collision between ship and ocean platform by taking sea ice as medium.They simulated the collision process numerically,compared the results of collision under conditions with and without sea ice medium and analyzed the influence of the range of sea ice on platform. Zhang et al[9-10]performed a numerical simulation of ship-ice collision by using a nonlinear finite element method.

    This paper conducts a numerical simulation study on the dynamic response of an icebreaker in level ice by using the commercial software LS-DYNA based on the nonlinear finite element method.The reliability of the proposed ice material model is firstly verified;the 3D finite element models of ship and level ice are established.The deformation of level ice,the ice force and the ice deformation energy and kinetic energy during the icebreaking process are predicted by numerical simulation,and the influences of ship speed and ice thickness on the icebreaking resistance are analyzed.

    1 Mathematical model

    In the finite element method,the motion equation of ship in level ice can be described as

    where M is the mass matrix,C is the damping matrix,K is the stiffness matrix,x is the displacement vector,and Fextis the external load vector.

    It is assumed that the acceleration remains the same in one time step.The explicit central difference method is used to discretize the motion equation,and the solving formula can be derived as

    2 Numerical modeling of ice material

    Tab.1 Ice model characteristics

    In order to verify the ice material,the reaction generated from the extrusion on ice cone by steel plate is calculated.The finite element model is shown in Fig.1.The fixed boundary condition(fixed B.C.)is applied at ice cone bottom to implement the conditions attached to the testing machine.A steel plate attached on the top of the testing machine is moving downwards at a specified velocity v.Two body contact simulation is performed.The material property of the steel plate is taken as a rigid body,because the plate is thick enough to be considered as rigid.The characteristics of the steel material model are shown in Tab.2.

    Fig.1 FE model of ice cone and steel plate

    Tab.2 Steel material model characteristics

    The numerical simulation model developed in this study is verified by comparing the results of numerical simulation with the test results of Ref.[11].An ice cone with 10cm diameter and 120°coning angle is chosen for the test.The main focus of developing a numerical simulation model is to create a model that can be directly applied to a diverse condition such asdifferent strain-rate or ice size.In other words,the aim is to create a numerical simulation model that can be used in multiple conditions without any modification of ice material properties or simulation conditions.The application of the ice material model under different strainrate conditions are investigated firstly,setting steel plate speed v=1 mm/s and 100 mm/s respectively.The comparison of the ice force-displacement curves at different steel plate speeds is shown in Fig.2.

    Fig.2 Comparison of ice force-displacement curves at different steel plate speeds,case 1

    From Fig.2 it can be seen that the numerical and experimental results agree well to a certain extent and the error at low speed is smaller than that at high speed.No matter at low speed or at high speed,the calculated results exhibit the correct growth trend of ice force with displacement.The ice force fluctuates at some displacement,because that as the steel plate is pressing the ice body,the phenomenon of broken occurs,causing immediately the drastic changes of ice force.

    In order to verify the reliability of the ice material model further,it is applied to a larger ice cone with 25 cm diameter and 130°coning angle.The numerical and experimental results of ice force-displacement curves at the steel plate speed 1 mm/s and 100 mm/s are compared in Fig.3.From this figure it can be seen that the growth trends of the calculated and experimental ice forces agree well,and they both show the fluctuation generated from the ice body’s fracture.The higher the steel plate speed is,the larger the fluctuation amplitude is.These results indicate that the ice material model selected in this paper can be used for numerical sim-ulation of the collisions between ship and ice.

    Fig.3 Comparison of ice force-displacement curves at different steel plate speeds,case 2

    3 Numerical simulation of ship in level ice

    3.1 3D finite element model of an icebreaker

    An icebreaker is selected in this paper,whose particulars are listed in Tab.3.

    For the real ship,high-strength steel is used in ship bow,whose deformation can be ignored during the icebreaking process.Therefore,in order to simplify the model,the hull plate is regarded as rigid and the internal structure is ignored in the numerical simulation.For the motion states of the ship, regardless of the influence on ship motion in icebreaking process,the ship is set to move forward at a constant speed,and the other five degrees of freedom of motionare constrained.

    3.2 3D finite element model of level ice

    During the icebreaking process,the mechanical properties of level ice are internal factors which affect fracture of level ice and are the basis of study on icebreaking resistance. During the process of ship-ice collision,ice will be broken when the ice stress reaches a certain value.The interaction between ice and ship will show different damage forms,which immediately influence the ice load on ship.In general,there are four forms of ice failure,including crushing failure,buckling failure,shear failure and bending failure[12].

    For establishing 3D finite element model of level ice,solid element is used considering the ice thickness and generation as well as extension of cracks.There are two methods to simulate the generation and extension of cracks.One is that cracks are generated in the structure by element failure;the other one is that cracks are generated by defining the failure of constraint nodes.The first method requires that there is a dense grid in cracks of the model;the shortcomings of the second method is that the process of establishing the model is relatively complex[13].In this paper,the first method is chosen to establish the model.When the stress and strain of the finite element model exceed a certain value,the element will be of failure, and the element will be deleted from the model.Cracks occur when numerous elements are deleted from a path.That is why the grids of level ice should be divided densely.In this paper,the size of the solid element is 125 mm×125 mm×125 mm.

    The icebreaking resistance when the ship sails in infinite level ice is studied.Different from floating ice,infinite level ice can be regarded as fixed.Limited by the conditions of numerical simulation,size of the level ice cannot be established infinitely.In this paper,the length of the level ice along the longitudinal direction(X-direction)is taken as 40 m,and the length perpendicular to the longitudinal direction(Y-direction)is 80 m.The boundary that collides with the ship is the free end.The influence of the collision area on far-field of the level ice is so small that it can be neglected;hence the far-field boundary is simplified as rigid fixed.

    Tab.3 Ship characteristics

    3.3 Application of fluid-structure interaction

    In the icebreaking process,the buoyancy and gravity of ice need to be considered.Gravity is loaded through body force and the gravitational acceleration is 9.81 N/kg.The load of buoyancy is realized by utilizing fluid-structure interaction.

    There are three basic algorithms about 3D finite element in LS-DYNA.They are Lagrange, Euler and ALE(Arbitrary Lagrange-Euler)formulations.Solid structures usually adopt Lagrange formulation,whose element is attached to the material and is deformed with the change of the structure’s form.As for fluid-structure interaction,the flow of material may result in serious deform of finite element.Thus it may cause the difficulty of numerical simulation and end the operation of the program.Euler formulation can be understood as the fact that two layers of mesh overlap with each other.One layer is fixed in the space and the other one is attached to the material;it flows in the space grid with the material and is achieved through the following two steps:The material grid firstly performs a Lagrange step,and then the state variables of Lagrange elements are reflected in or transported to the fixed space grid.This grid is always fixed and indeformable,just as material flowing in the grid.Like the Euler formulation,in ALE the space grid can be interpreted as two layers of grids overlapping.But it can freely flow in the space.ALE and Euler formulations can overcome the difficulty of numerical simulation caused by serious deforms of element and implement the dynamic analysis of fluid-structure interaction.

    This paper simulates the dynamic process of fluid-structure interaction with LS-DYNA and ALE formulation.Through the load of gravity on water and air,pressure gradient is generated in the vertical direction and the buoyancy on the ice is simulated.

    Fluid materials in the numerical model include water and air.In the finite element model,these two materials have the same nodes.The length and width of water and air are the same as those of level ice.However,the height of water is 4 times of the draft and the height of air is 1.5 times of the draft.

    Both of water and air adopt null material model to simulate the materials having fluid behaviors and linear polynomial state equation,whose pressure is calculated as

    where ci(i=0,1,2,…6)are the coefficients;E is the internal energy of unit volume, V is the relative volume.

    3.4 Ship-ice contact model

    There are a lot of contact models in LS-DYNA,including node-to-surface contact,surface-to-surface contact and single-surface contact.Considering the failure of ice material and the penetration phenomenon generated during the collision,this paper adopts eroding-surfaceto-surface contact model.This model is very useful and is generally applied in the contacts of various shapes and large contact areas.

    4 Results and analysis of numerical simulation

    As shown in Fig.4,the water plane of the level ice is consistent with that of the ship.In the simulation,the ship speed is 2 m/s.The distance between the ship and the level ice is 0.1 m before simulation and simulation time is 8.0 s.

    Fig.4 FE model of ship icebreaking in level ice

    4.1 Results of numerical simulation of icebreaking process

    The deformations of the level ice at 2.0 s,4.0 s,6.0 s and 8.0 s are shown in Fig.5.It can be seen in Fig.5 that the deformation mainly occurs in the area of ice contacting and colliding with the icebreaker.After colliding with the ship,the ice failure occurs when the failure pressure is reached.The cracks are generated by elements deleted for failure.During the icebreaking process,because of the brittleness of the ice material,some ices are separated from the level ice and flow in the water.

    Fig.5 Deformation of the level ice

    Fig.6 Time history of ice force on ship in Y direction

    Fig.7 Time history of ice force on ship in Z direction

    The time histories of ice force on the ship in Y direction and Z direction are shown in Fig.6 and Fig.7,respectively.From these figures it can be seen that during the whole period, the ice force presents highly nonlinear characteristics and changes violently with time,with a general rising trend.From the analysis of the time histories of ice force in Fig.6 and Fig.7 and the deformation of level ice in Fig.5,it is known that the unloading phenomenon is generated by ice failure as the ship moves in the level ice.

    4.2 Influence of ship speed

    In order to study the influence of ship speed on the icebreaking resistance,numerical simulation is carried out for the ship sailing in the level ice of thickness 0.5 m at the speed 2 m/s,3 m/s and 4 m/s.

    The time histories of the icebreaking resistance at different ship speeds are shown in Fig.8.It can be seen that the ship speed has a significant influence on the icebreaking resistance and the amplitude and peak value of icebreaking resistance increase with the ship speed. The common point of the time histories at different ship speeds is that as the icebreaking resistance rises,it will suddenly drop.It shows an unloading phenomenon during the icebreaking process because of the ice element failure.

    Fig.8 Time histories of the icebreaking resistance at different ship speeds

    The time histories of the level ice deformation energy and kinetic energy at different ship speeds are shown in Fig.9.It can be seen that the level ice deformation energy and kinetic energy increase with the ship speed.

    Fig.9 Time histories of level ice deformation energy and kinetic energy at different ship speeds

    4.3 Influence of ice thickness

    In order to study the influence of ice thickness on the icebreaking resistance,numerical simulation is carried out for the ship sailing at the speed of 2 m/s in the level ice of thickness 0.25 m,0.50 m,0.75 m.The time histories of icebreaking resistance under different ice thicknesses are shown in Fig.10.It can be seen that the peak value of icebreaking resistance increases with the ice thickness.Besides,the time histories show the different degrees of fluctuation for the level ice with different thicknesses.It also shows the unloading phenomenon in icebreaking resistance during the icebreaking process because of the ice element failure.

    Fig.10 Time histories of the icebreaking resistance under different ice thicknesses

    The time histories of level ice deformation energy and kinetic energy under different ice thicknesses are shown in Fig.11.It can be seen that the level ice deformation energy and kinetic energy increase with the ice thicknesses.

    Fig.11 Time histories of level ice deformation energy and kinetic energy under different ice thicknesses

    5 Conclusions

    This paper carries out a numerical simulation study on the dynamic response of an icebreaker during icebreaking process in level ice by using finite element method.The ice material model used in the numerical simulation is firstly verified.Systematic numerical simulationis are then carried out for the icebreaker at different forward speeds in the level ice of different thicknesses.The following conclusions can be drawn from this study:

    (1)The ice material model proposed in this paper is used in numerical simulation underdifferent conditions.The validity of the model is verified by comparing the simulation results with those of experiment.It is shown that the material model can be applied in numerical simulation of icebreaking process;

    (2)Keeping the ice thickness unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ship speed;

    (3)Keeping the ship speed unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ice thicknesses;

    The results of this study can provide a certain reference for the design of icebreakers to be served as icebreaking in level ice.

    [1]Wang J,Derradji-Aouat A.Numerical prediction for resistance of Canadian icebreaker CCGS Terry Fox in level ice[C]// ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:9-15.

    [2]Park K D,Chung Y K,Jang Y S,et al.Development of hull forms for a 190,000 DWT icebreaking ore carrier[C]// OMAE2011,30th International Conference on Ocean,Offshore and Arctic Engineering.Rotterdam,the Netherlands, 2011,1:949-955.

    [3]Su B,Riska K,Moan T.A numerical method for the prediction of ship performance in level ice[J].Cold Regions Science and Technology,2010,60(3):177-188.

    [4]Wang B,Yu H C,Basu R.Ship and ice collision modeling and strength evaluation of LNG ship structure[C]//OMAE2008, 27th International Conference on Offshore Mechanics and Arctic Engineering.Estoril,Portugal,2008,3:911-918.

    [5]Lee S G,Lee J S,Baek Y H,et al.Structural safety assessment in membrane-type CCS in LNGC under iceberg collisions [C]//ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:69-81.

    [6]Liu Z.Analytical and numerical analysis of iceberg collisions with ship structures[D].Trondheim:Norwegian University of Science and Technology,2011.

    [7]Kim M C,Lee S K,Lee W J,et al.Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J].International Journal of Naval Architecture and Ocean Engineering,2013, 5(1):116-131.

    [8]Yang L,Ma J.Numerical simulation analysis for the collision between offshore platform under the sea ice medium[J].China Offshore Platform,2008,23(2):29-33.(in Chinese)

    [9]Zhang J,Wan Z Q,Chen C.Research on structure dynamic response of bulbous bow in ship-ice collision load[J].Journal of Ship Mechanics,2014,18(1):106-114.(in Chinese)

    [10]Zhang J,Zhang M R,Wan Z Q,et al.Research on ice material model applied in numerical simulation of ship structure response under iceberg Collision[J].Shipbuilding of China,2013(4):100-108.(in Chinese)

    [11]Kim H.Simulation of compressive‘cone-shaped’ice specimen experiments using LS-DYNA[C]//13th International LSDYNA Users Conference.Detroit,America,2014.

    [12]Wei W D,Ning J G.Critical load between sea ice and sea structure[J].Journal of Glaciology and Geocryology,2003,25 (3):351-354.

    [13]Bai Z J.Theoretical basis and example analysis of LS-DYNA3D[M].Beijing:Science Press,2005.(in Chinese)

    基于非線性有限元法的船舶冰區(qū)破冰數(shù)值模擬

    王健偉a,鄒早建a,b

    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國家重點實驗室,上海200240)

    應(yīng)用非線性有限元法進行了破冰船冰區(qū)破冰數(shù)值模擬。通過比較數(shù)值模擬結(jié)果和試驗結(jié)果,對冰體材料模型進行了驗證;采用該冰體材料模型,對破冰船以不同航速在不同厚度的層冰中破冰航行時的動態(tài)響應(yīng)進行了數(shù)值研究,給出了破冰過程中層冰的變形、冰力的大小以及冰的變形能和動能變化,分析了船速、冰層厚度對破冰阻力的影響。該研究結(jié)果對分析破冰船在層冰中破冰時的動態(tài)響應(yīng)特性具有一定的參考價值。

    破冰船;層冰;破冰阻力;非線性有限元法;數(shù)值模擬

    U661.4

    A

    王健偉(1989-),男,上海交通大學(xué)碩士;鄒早建(1956-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    U661.4 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.008

    1007-7294(2016)12-1584-11

    Received date:2016-08-24

    Biography:WANG Jian-wei(1989-),male,master of Shanghai Jiao Tong University,E-mail:wangjianweime@163.com; ZOU Zao-jian(1956-),professor/tutor of Shanghai Jiao Tong University,E-mail:zjzou@sjtu.edu.cn.

    猜你喜歡
    冰體冰區(qū)破冰船
    “怪獸號”破冰船
    照亮回家的路
    我國高校首艘破冰船“中山大學(xué)極地”號成功開展冰區(qū)試航
    珠江水運(2023年3期)2023-03-04 16:28:28
    重覆冰區(qū)220kV雙回路窄基鋼管塔設(shè)計及試驗研究
    吉林電力(2022年1期)2022-11-10 09:20:48
    彈體高速侵徹冰體研究
    冰區(qū)船舶壓載艙防凍方案研究
    能源工程(2022年2期)2022-05-23 13:51:44
    高速彈體侵徹冰材料過程數(shù)值模擬研究
    世界最大破冰船
    冰體質(zhì)量和撞擊角度對船首結(jié)構(gòu)碰撞性能的影響
    基于船-水-冰耦合技術(shù)的撞擊參數(shù)對船冰碰撞性能的影響
    丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 丝袜在线中文字幕| av网站免费在线观看视频| 男人的好看免费观看在线视频 | 欧美黄色片欧美黄色片| 亚洲五月天丁香| 最近最新中文字幕大全免费视频| 亚洲,欧美精品.| 男女午夜视频在线观看| 午夜福利高清视频| 亚洲熟女毛片儿| 手机成人av网站| 久久久国产成人精品二区| 好男人在线观看高清免费视频 | 久久性视频一级片| 亚洲五月婷婷丁香| 国产国语露脸激情在线看| 久久九九热精品免费| 久久久国产欧美日韩av| 午夜福利欧美成人| 久久天堂一区二区三区四区| 亚洲久久久国产精品| 国产三级黄色录像| 制服丝袜大香蕉在线| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| 两个人视频免费观看高清| av超薄肉色丝袜交足视频| 久久久久九九精品影院| 在线观看免费日韩欧美大片| 在线观看免费午夜福利视频| 成人手机av| 制服丝袜大香蕉在线| 国产高清有码在线观看视频 | 亚洲精品国产一区二区精华液| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品亚洲一级av第二区| 亚洲 欧美 日韩 在线 免费| 午夜视频精品福利| 最好的美女福利视频网| 国产真人三级小视频在线观看| 岛国视频午夜一区免费看| 国产精品精品国产色婷婷| 日本a在线网址| 午夜免费激情av| 99在线视频只有这里精品首页| 香蕉国产在线看| tocl精华| 后天国语完整版免费观看| 99国产综合亚洲精品| 999久久久精品免费观看国产| 一级毛片高清免费大全| 亚洲国产高清在线一区二区三 | 精品国产一区二区三区四区第35| 999久久久国产精品视频| 国产午夜福利久久久久久| 午夜免费成人在线视频| av欧美777| 亚洲成人国产一区在线观看| 久久久久久大精品| 国产精品av久久久久免费| 亚洲一码二码三码区别大吗| 两性夫妻黄色片| 成人三级做爰电影| 色综合欧美亚洲国产小说| 女人被狂操c到高潮| 亚洲情色 制服丝袜| 搡老熟女国产l中国老女人| 久久精品亚洲精品国产色婷小说| 色老头精品视频在线观看| 国产高清视频在线播放一区| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 欧美人与性动交α欧美精品济南到| 50天的宝宝边吃奶边哭怎么回事| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 免费久久久久久久精品成人欧美视频| 国产精品国产高清国产av| 国产不卡一卡二| 久久久久久久精品吃奶| √禁漫天堂资源中文www| 女人爽到高潮嗷嗷叫在线视频| 美女午夜性视频免费| 亚洲国产毛片av蜜桃av| 国产精品 国内视频| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费视频日本深夜| 精品久久久久久,| 日日干狠狠操夜夜爽| 91国产中文字幕| 国产aⅴ精品一区二区三区波| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 久久久国产成人免费| 国产成人免费无遮挡视频| 日韩免费av在线播放| 岛国视频午夜一区免费看| tocl精华| 一区二区三区国产精品乱码| 成人国产一区最新在线观看| 亚洲七黄色美女视频| 性少妇av在线| 美女国产高潮福利片在线看| 久久中文看片网| 制服诱惑二区| 精品久久久久久久人妻蜜臀av | 大陆偷拍与自拍| 人人妻人人澡人人看| 久久 成人 亚洲| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 国产精品久久久久久亚洲av鲁大| 久久久久久久精品吃奶| 啦啦啦韩国在线观看视频| 色哟哟哟哟哟哟| 亚洲av成人av| 大码成人一级视频| 黄色成人免费大全| 人人妻人人爽人人添夜夜欢视频| 国内精品久久久久久久电影| 久久久久国产精品人妻aⅴ院| 国产主播在线观看一区二区| 99香蕉大伊视频| 欧美日本视频| 午夜福利一区二区在线看| 午夜免费激情av| 国产精品野战在线观看| 丁香欧美五月| 久久性视频一级片| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 国产成人精品久久二区二区免费| 亚洲片人在线观看| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区二区三区在线观看| 日韩有码中文字幕| 一本大道久久a久久精品| 国产xxxxx性猛交| 国产精品 国内视频| 国内精品久久久久精免费| 伊人久久大香线蕉亚洲五| 亚洲av第一区精品v没综合| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 99国产精品免费福利视频| 18禁黄网站禁片午夜丰满| 两性午夜刺激爽爽歪歪视频在线观看 | 在线十欧美十亚洲十日本专区| 精品一品国产午夜福利视频| 国产精品秋霞免费鲁丝片| 欧美 亚洲 国产 日韩一| 亚洲片人在线观看| 老司机午夜十八禁免费视频| 亚洲av五月六月丁香网| 国产精品日韩av在线免费观看 | 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| 亚洲一区中文字幕在线| 99热只有精品国产| 亚洲成国产人片在线观看| 黄色成人免费大全| 嫩草影院精品99| 桃色一区二区三区在线观看| 麻豆成人av在线观看| 日韩欧美三级三区| 中出人妻视频一区二区| 88av欧美| 极品人妻少妇av视频| 岛国在线观看网站| 琪琪午夜伦伦电影理论片6080| 精品欧美一区二区三区在线| 99久久久亚洲精品蜜臀av| 国产一区二区三区在线臀色熟女| 成人18禁在线播放| 成人av一区二区三区在线看| 免费高清在线观看日韩| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| 制服人妻中文乱码| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 超碰成人久久| 视频区欧美日本亚洲| 色综合欧美亚洲国产小说| 不卡一级毛片| 啪啪无遮挡十八禁网站| 欧美乱码精品一区二区三区| 长腿黑丝高跟| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕| 18禁黄网站禁片午夜丰满| 日韩精品中文字幕看吧| 90打野战视频偷拍视频| 法律面前人人平等表现在哪些方面| 亚洲三区欧美一区| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 国产男靠女视频免费网站| 91av网站免费观看| 我的亚洲天堂| 夜夜看夜夜爽夜夜摸| 18禁国产床啪视频网站| 极品人妻少妇av视频| 九色亚洲精品在线播放| www.999成人在线观看| 国产麻豆成人av免费视频| 欧美 亚洲 国产 日韩一| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 婷婷精品国产亚洲av在线| 欧美成人一区二区免费高清观看 | 国产亚洲精品久久久久5区| 亚洲在线自拍视频| 在线永久观看黄色视频| 人妻久久中文字幕网| 亚洲精品国产区一区二| cao死你这个sao货| 欧美乱色亚洲激情| 日本精品一区二区三区蜜桃| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久久毛片| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| 欧美日韩黄片免| 淫秽高清视频在线观看| 国产精品一区二区免费欧美| 一区福利在线观看| 亚洲欧美激情综合另类| 欧美一区二区精品小视频在线| 亚洲欧美一区二区三区黑人| 一级毛片精品| 国产免费av片在线观看野外av| 日本vs欧美在线观看视频| 日本黄色视频三级网站网址| 日韩av在线大香蕉| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 高清在线国产一区| 巨乳人妻的诱惑在线观看| 国产亚洲av嫩草精品影院| 亚洲自偷自拍图片 自拍| 91精品三级在线观看| 国产精品久久电影中文字幕| 亚洲自拍偷在线| 午夜精品在线福利| av免费在线观看网站| 亚洲av电影在线进入| 久久人人爽av亚洲精品天堂| 一区福利在线观看| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| av福利片在线| 夜夜看夜夜爽夜夜摸| 天天添夜夜摸| 中文字幕久久专区| 精品乱码久久久久久99久播| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 午夜亚洲福利在线播放| 精品久久久久久久人妻蜜臀av | 老司机福利观看| 黑人巨大精品欧美一区二区蜜桃| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 国内毛片毛片毛片毛片毛片| netflix在线观看网站| 久久精品国产清高在天天线| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片 | 久久国产乱子伦精品免费另类| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 国产成人精品在线电影| 精品高清国产在线一区| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 欧美黄色片欧美黄色片| 国产日韩一区二区三区精品不卡| 久久精品国产清高在天天线| 伦理电影免费视频| 亚洲片人在线观看| 欧美中文综合在线视频| 国产主播在线观看一区二区| www.精华液| 97人妻精品一区二区三区麻豆 | 精品久久久久久成人av| 丁香欧美五月| 中出人妻视频一区二区| 免费少妇av软件| 97超级碰碰碰精品色视频在线观看| 妹子高潮喷水视频| 欧美乱妇无乱码| 精品少妇一区二区三区视频日本电影| 电影成人av| 欧美精品啪啪一区二区三区| 日本免费a在线| 国产精品野战在线观看| 国产一区二区激情短视频| 欧美大码av| 婷婷六月久久综合丁香| 亚洲第一电影网av| 亚洲视频免费观看视频| 国内久久婷婷六月综合欲色啪| 在线视频色国产色| 欧美丝袜亚洲另类 | 老司机午夜福利在线观看视频| 悠悠久久av| 这个男人来自地球电影免费观看| 国产精品一区二区精品视频观看| 日本 欧美在线| 精品久久久精品久久久| 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 9色porny在线观看| 亚洲久久久国产精品| 久久国产精品人妻蜜桃| 国产一卡二卡三卡精品| 久久热在线av| 国产精品免费一区二区三区在线| 久久午夜综合久久蜜桃| 在线永久观看黄色视频| 欧美黄色片欧美黄色片| 久久久久久久久免费视频了| 欧美激情 高清一区二区三区| 精品欧美一区二区三区在线| 美女午夜性视频免费| 国产单亲对白刺激| 色在线成人网| 婷婷丁香在线五月| avwww免费| 老司机午夜福利在线观看视频| 国产三级在线视频| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 日韩有码中文字幕| 久久久久亚洲av毛片大全| 欧美人与性动交α欧美精品济南到| 亚洲 欧美 日韩 在线 免费| 后天国语完整版免费观看| 在线观看www视频免费| 一级,二级,三级黄色视频| 亚洲一区二区三区不卡视频| av有码第一页| 啦啦啦观看免费观看视频高清 | 韩国av一区二区三区四区| 国产一卡二卡三卡精品| 九色国产91popny在线| 国产精品免费一区二区三区在线| 淫妇啪啪啪对白视频| 99re在线观看精品视频| 精品久久久久久成人av| 精品国产美女av久久久久小说| 老司机福利观看| 99re在线观看精品视频| 欧美国产日韩亚洲一区| 亚洲激情在线av| 国产精品 欧美亚洲| 国产精品香港三级国产av潘金莲| 国产精品久久电影中文字幕| 久久天堂一区二区三区四区| 国产在线精品亚洲第一网站| 黄色视频不卡| 欧美最黄视频在线播放免费| 啦啦啦 在线观看视频| 一级毛片精品| av在线天堂中文字幕| 女人爽到高潮嗷嗷叫在线视频| av在线天堂中文字幕| 午夜福利影视在线免费观看| 大型av网站在线播放| 国产精品乱码一区二三区的特点 | 一边摸一边做爽爽视频免费| 制服诱惑二区| 97碰自拍视频| 久久精品国产99精品国产亚洲性色 | 亚洲人成77777在线视频| 真人做人爱边吃奶动态| 免费看美女性在线毛片视频| 色老头精品视频在线观看| 免费搜索国产男女视频| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 激情视频va一区二区三区| 午夜福利视频1000在线观看 | 亚洲成国产人片在线观看| 亚洲第一av免费看| 美女扒开内裤让男人捅视频| 日韩欧美一区二区三区在线观看| 国产成人av激情在线播放| 久久久水蜜桃国产精品网| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 9191精品国产免费久久| 两个人视频免费观看高清| 亚洲色图av天堂| 1024视频免费在线观看| 亚洲国产高清在线一区二区三 | 中出人妻视频一区二区| 国产免费av片在线观看野外av| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 丝袜美足系列| 免费观看人在逋| 国产精品国产高清国产av| 久久精品91无色码中文字幕| 久久精品91蜜桃| 国产精华一区二区三区| 国产高清视频在线播放一区| 老司机午夜十八禁免费视频| 日韩 欧美 亚洲 中文字幕| 欧美国产日韩亚洲一区| www.999成人在线观看| 麻豆一二三区av精品| 天堂√8在线中文| 午夜成年电影在线免费观看| 欧美黑人精品巨大| 最近最新中文字幕大全电影3 | 日本欧美视频一区| 国产高清videossex| 国产精品一区二区三区四区久久 | 国产精品乱码一区二三区的特点 | 18禁观看日本| 十分钟在线观看高清视频www| 午夜福利欧美成人| 国产精品一区二区免费欧美| 午夜福利免费观看在线| 亚洲熟女毛片儿| 亚洲av第一区精品v没综合| 久久久久久久久中文| 免费在线观看完整版高清| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 十八禁人妻一区二区| 欧美日本视频| АⅤ资源中文在线天堂| 欧美国产日韩亚洲一区| 巨乳人妻的诱惑在线观看| 国产欧美日韩综合在线一区二区| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 亚洲国产精品999在线| 男人操女人黄网站| 手机成人av网站| 大陆偷拍与自拍| 久久久久久久久中文| АⅤ资源中文在线天堂| av天堂久久9| 国产精品久久久av美女十八| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华精| 无限看片的www在线观看| av在线天堂中文字幕| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 精品不卡国产一区二区三区| 人人妻人人澡人人看| 国产又爽黄色视频| 淫妇啪啪啪对白视频| 亚洲人成77777在线视频| 欧美不卡视频在线免费观看 | 亚洲av日韩精品久久久久久密| 久久精品亚洲熟妇少妇任你| 91国产中文字幕| 人人妻,人人澡人人爽秒播| 亚洲精品国产一区二区精华液| 欧美黑人欧美精品刺激| 丝袜美足系列| 亚洲五月天丁香| 国产高清视频在线播放一区| 大码成人一级视频| 亚洲成av片中文字幕在线观看| 91在线观看av| 亚洲一码二码三码区别大吗| 久久久久国产精品人妻aⅴ院| 日韩视频一区二区在线观看| 人人澡人人妻人| 免费高清视频大片| 我的亚洲天堂| 国产精品二区激情视频| 人人妻人人澡人人看| 一进一出抽搐gif免费好疼| 99在线视频只有这里精品首页| 不卡一级毛片| 国产熟女午夜一区二区三区| 亚洲成人久久性| av福利片在线| 亚洲专区中文字幕在线| 精品一区二区三区四区五区乱码| 国产99白浆流出| 成年人黄色毛片网站| 国产精品国产高清国产av| 满18在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 可以免费在线观看a视频的电影网站| 最好的美女福利视频网| 99久久精品国产亚洲精品| 日韩精品青青久久久久久| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 免费在线观看亚洲国产| 波多野结衣av一区二区av| 亚洲欧美精品综合久久99| 亚洲片人在线观看| svipshipincom国产片| 他把我摸到了高潮在线观看| 制服人妻中文乱码| 国产精品免费一区二区三区在线| 两个人看的免费小视频| 精品国产美女av久久久久小说| 免费久久久久久久精品成人欧美视频| 久久精品国产清高在天天线| 国产人伦9x9x在线观看| 精品国产一区二区三区四区第35| 国产成人欧美在线观看| 午夜免费成人在线视频| 一本久久中文字幕| 亚洲国产高清在线一区二区三 | 亚洲成人精品中文字幕电影| 国产熟女午夜一区二区三区| 亚洲欧美精品综合一区二区三区| 一级片免费观看大全| 天天一区二区日本电影三级 | 欧美激情久久久久久爽电影 | 超碰成人久久| 大型av网站在线播放| 变态另类成人亚洲欧美熟女 | 99国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av电影在线进入| 亚洲专区字幕在线| 久久精品国产亚洲av高清一级| 一边摸一边抽搐一进一出视频| 中亚洲国语对白在线视频| 一区二区三区激情视频| 一个人观看的视频www高清免费观看 | 伦理电影免费视频| 变态另类丝袜制服| 久久久久久久久中文| 久久久国产精品麻豆| 麻豆成人av在线观看| 桃色一区二区三区在线观看| 日本精品一区二区三区蜜桃| 女性被躁到高潮视频| 久久性视频一级片| 巨乳人妻的诱惑在线观看| 国产精品电影一区二区三区| 日本 欧美在线| 99国产极品粉嫩在线观看| 最新美女视频免费是黄的| 日本免费a在线| 悠悠久久av| 日本三级黄在线观看| 成人亚洲精品一区在线观看| 国产伦一二天堂av在线观看| 99在线视频只有这里精品首页| 一区福利在线观看| 黑人操中国人逼视频| 午夜福利免费观看在线| 欧美精品啪啪一区二区三区| 女警被强在线播放| 在线永久观看黄色视频| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 国产在线观看jvid| 脱女人内裤的视频| 久久久久久久久久久久大奶| 人人妻人人澡欧美一区二区 | 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 国内精品久久久久久久电影| 美女午夜性视频免费| 成人18禁高潮啪啪吃奶动态图| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 欧美日韩亚洲综合一区二区三区_| 熟妇人妻久久中文字幕3abv| 一夜夜www| 老熟妇乱子伦视频在线观看| 精品免费久久久久久久清纯| 日韩精品中文字幕看吧| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 欧美成人一区二区免费高清观看 | 久久久国产欧美日韩av| 日本在线视频免费播放| 日本精品一区二区三区蜜桃| 久久 成人 亚洲| av视频在线观看入口| 亚洲色图av天堂| 青草久久国产| 伊人久久大香线蕉亚洲五| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频 | 9191精品国产免费久久| 夜夜爽天天搞| 少妇粗大呻吟视频| 精品久久蜜臀av无|