• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sparse-Sensor-Based Real-Time Evaluation of Underwater Noise Radiation

    2016-05-16 02:42:02CHENGGuoHELinXURongwu
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:線譜研究所噪聲

    CHENG Guo,HE Lin,XU Rong-wu

    (a.National Key Laboratory on Ship Vibration&Noise;b.Institute of Noise and Vibration, Naval University of Engineering,Wuhan 430033,China)

    Sparse-Sensor-Based Real-Time Evaluation of Underwater Noise Radiation

    CHENG Guoa,b,HE Lina,b,XU Rong-wua,b

    (a.National Key Laboratory on Ship Vibration&Noise;b.Institute of Noise and Vibration, Naval University of Engineering,Wuhan 430033,China)

    Aiming at real-time evaluation of the underwater noise radiated by complex structures,a theoretical model is proposed based on the operational transfer path analysis for signals with line spectra.The number of required sensors is reduced,and the joint application of operational condition classification and this model also improve the accuracy of noise radiation evaluation.This model is verified by numerical simulation and validated by a lake experiment.The results show that the proposed model is simple and effective:the errors of noise radiation evaluation in most frequency bands are less than 2 dB,and the errors at most peak frequencies are less than 2.5 dB.This study may be useful to ship noise evaluation.

    sparse sensors;radiated noise;line spectrum;transfer path

    0 Introduction

    Real-time evaluation of the underwater noise radiated by complex structures,such as ships,is important in theoretical research and engineering applications.The methods of evaluation can be classified into two categories:numerical calculation and experimental measurement.For the same requirement of accuracy,numerical calculation is more time-consuming, so experimental measurement is dominantly adopted in practical applications[1-2].

    A commonly used experimental approach is the model of transfer path analysis(TPA), which can evaluate the radiated noise in real time based on the pre-measured transfer functions of different sound sources and the signals detected by the sensors mounted on the structures[3-4].However,it is often difficult to obtain the transfer functions because actuation inside the structures or disassembly of device is required.Hence the model of operational transfer path analysis(OTPA)was proposed,which only requires to measure the response signals under varied operation conditions before a structural-acoustic transfer matrix can be established if the principle of linear superposition is satisfied[5-6].Compared with the TPA method,the OTPA is simpler and suits for evaluating the noise radiated by complex structures.

    However,the OTPA requires a large number of sensors:the number of sensors on the structure should not be less than the number of sound sources[7].Inside complex structures such as ships,a large number of sources exist,and this requirement is hard to be satisfied.

    Therefore in this paper,a modified line-spectrum model of operational transfer path analysis is proposed to reduce the number of required sensors in ship applications.Firstly,the theoretical basis of the model is introduced.Secondly,an improved method of operational classification is proposed and then simulation is conducted with reconstructed actuating signals. Thirdly,the model is validated in a lake experiment.Lastly,the conclusions of this study are drawn.

    1 Basic theory

    1.1 Operational transfer path analysis

    Assume that there are L numbers of sources,M numbers of reference points and N numbers of observation points in a linear system.The influences of the sources on the reference points and the observation points can be described with the transfer functions hlmand hln,so each response signal at the reference point can be expressed as:

    where Slis the actuating signal of the source of No.l.

    Likewise,each response signal at the observation point can be expressed as:

    For the convenience of discussion,the above relation can be expressed in the matrix form:

    where W is the total number of different operations.Since the source signals cannot be measured directly,they are obtained with Eq.(3):

    Note that to definitely determine the source matrix,the number of reference points M should not be smaller than the number of sources L.Combining Eq.(3)with Eq.(4)yields

    If GW×Ncan be determined via definite number of measurements,then the signalsat observation points under an arbitrary condition of operation can be evaluated in real time based on the signals at the reference points

    In practical evaluation of the noise radiated by ship,owing to the large number of sound sources in the ship,the number of sensors is always smaller than the number of sources,so Eq.(7)is just the optimal approximation under the condition of sparse sensors.

    1.2 Background noise correction

    Background noise is inevitable in practical ship noise tests.The influences of background noise on the results of operational transfer path analysis can be divided into two parts:the error caused by signal coupling and the error caused by the inverse of ill-posed matrix.

    The error caused by signal coupling is introduced during the measurement stage.When the signal-to-noise ratio is deficient in the training or evaluation operating modes,assume that the background noise at the referential points isand the background noise at the observation points isin the training operating modes.If the sound field of the testing environment is time-invariant,thenandhave the same row vectors.

    Eq.(3)can also be expressed as:

    Eqs.(5)and(6)then become:

    Substituting Eqs.(6-10)into Eq.(12)yields

    The error in the inverse of ill-posed matrix is introduced in deriving GM×Nbased on the data in acquired in the training modes.Depending on the normal modes of the system,the dataobtained at the reference points for different training modes may be correlated;however,perfect correlation is impossible in practice owing to the background noise.Consequently,in the singular-value decomposition of matrix RW×M,zero singular value will not appear;instead,random small singular values will appear,becoming large reciprocals in matrix inverse and magnifying the error of measurement.

    Hence regularization is applied to eliminate the ill-posed error.The commonly used methods include the Tikhonov regularization,frequency range truncation,partial optimization,and so on[8].

    It is usually considered that the regularization is inessential when the condition number of the matrix is less than 100;and is necessary when the condition number is more than 1 000. Number 800 is selected as a threshold in this paper.When the condition number is over 800, the regularization is applied.According to the accuracy and computation cost of the methods, the partial optimization is selected[9].Firstly,define a breakpoint with the threshold of the condition number.Than keep the singular values which are before the breakpoint,and revise the singular values which are after the breakpoint with Tikhonov regularization method.The regularization parameter is defined as the singular value at the breakpoint.Illustrated by the case of RW×M,the singular-value decomposition is shown as:

    If the number q( q≤K)and 800dq≤d1≤800dq-1are exist,the partial optimization will be essential for the matrix.The regularization parameter is dqand the element tkis shown as:

    1.3 Generalization for signals with line-spectra

    Most devices in ship,such as pumps and shafts, are operating at one or more frequencies[10].Their vibration signals feature line spectra,and Fig.1 shows such a spectrum directly detected near a typical ship device.

    Reconsider Eq.(4)in the frequency domain.For a signal with frequency f,it can be expressed as

    Fig.1 The acceleration signal of a pump in a ship

    Although a large number of devices exist in aship,only a small number of devices generate noise with characteristic frequency f.In fact, high-resolution analysis of the spectra shows that it is hard to find two devices with identical line spectra,so some elements in SW×L(f)approximate to zero,compared with the other elements.Assume that the number of the devices with characteristic frequency f isand Eq.(14)becomes

    The number of reference points is required to satisfy‘M≥Kmax(f)’,where Kmax(f)is the maximum of K(f)for all characteristics frequencies([f]).In this case,Eq.(7)is not only the optimal approximation under the sparse-sensor condition,but also the exact solution at some characteristic frequencies.

    2 Numerical simulations

    2.1 Problem statement and simulation procedure

    Based on the noise signals of real ship devices,the simulation data are constructed.For the convenience of discussion,assume that there are 3 devices in a ship.The actuating signals caused by these devices are composed of the background noise, white noise(1-1 600 Hz),low-frequency wide-band noise(300-1 000 Hz)and stochastic line-spectrum signals.Fig.2 shows the radiated noise signal when a device operates solely.

    Two well separated reference points are selected at the center of the ship body,and two hydrophones are mounted there to record the sound pressure responses under internal actuation.A hydrophone array is placed 25 m away from the ship for recording the average sound pressure radiation under the excitation of devices inside the ship.For the convenience of discussion,the sampling frequency is set as 4 096 Hz for the signals collected by both hydrophones.

    The operating modes generated in the simulation are shown in Tab.1.The sound pressure data at reference points and the radiated noise in the combination of different operating modes are obtained by superposition of the data when the devices operate individually.In Tab.1,the symbol‘%’means that the device is operating.

    Fig.2 The radiated sound pressure signal of the simulated device 2#

    Tab.1 The simulated devices in different operating modes

    2.2 Simulation result

    The validity of the proposed model is verified first.The transfer matrix is derived with the data of the operating modes from Nos.2 to 4.The radiated noise in the No.1 operating mode is then evaluated based on the derived transfer matrix and the sound pressures data at the reference points in the No.1 operating mode.

    Fig.3 The evaluation result of the radiated sound pressure in the simulation (training operation:Nos.2 to 4 operating modes)

    In order to display the adaptability of the evaluation model in narrowband and wideband frequency analysis,the evaluation errors of the radiated noise are assessed in line spectrum and third-octave spectrum.Fig.3(a)shows that at most frequency points,including the characteristic frequency points shown in Fig.2,the errors are less than 3 dB.Only at minor part of the frequency points,the errors are large.The third octave spectrum in Fig.3(b)shows that the evaluation errors are less than 1 dB in mostly frequency bands,except for the band centered at 40 Hz,where larger error is found.

    The transfer matrix is also derived with the data of the operating modes from No.5 to No.7, and based on this transfer matrix,the noise radiated in the No.1 operating mode is also evaluated and the results are shown in Fig.4.

    Fig.4 The evaluation result of the radiated sound pressure in the simulation (training operation:Nos.5 to 7 operating modes)

    The noise radiation in the No.1 operating mode evaluated with the latter derived transfer matrix(based on the Nos.5 to 7 operating modes)is more accurate.Fig.4 shows that except for the band centered at 50 Hz,the error is less than 1 dB in each third octave frequency band.The errors at most frequencies are less than 2 dB in the sound pressure spectrum,and the larger errors are still smaller than the errors of the former evaluation results based on the data of the operating modes from Nos.2 to 4.

    The smaller evaluation error is very likely because the Nos.5-7 operating modes are more similar to the No.1 mode,compared with the Nos.2-4 modes,so the error introduced by signal coupling is smaller.Therefore,to reduce the error of noise evaluation in engineering applications,the training operations can be classified first before further calculation.

    3 Experimental validations

    3.1 Experimental setup and procedure

    The proposed model is also validated by experiments conducted in the Thousand Islands Lake.The experiment site is located in an inlet, and the water waves and background noise in the inlet are negligible.Fig.5 shows the model structure used in the experiment.

    The tested structure is a 2.05-m-long cylinder with double-layer shell.The outer shell has 1.78 m diameter,and is 2 mm thick;the diameter of its inner shell is 1.46 m,and the thickness is 8 mm.The shell is supported by four equally spaced annular plates.The shell is airtight with 25-mm-thick stainless steel plates at both ends,and water is filled in the space between the inner and outer shells.In the interior of the inner shell, an 8-mm thick plate is fixed,on which a small air compressor(whose inlet and outlet valves are both open)and an actuator are mounted.A reference accelerometer is also mounted inside the shell,and a power cable and two signal cables come out of the cylinder through three holes on an end plate.

    The cylinder shell is suspended underwater by a crane on the bank.Four hydrophones are fixed to a boat anchored in 5.7-m distance away from the shell.

    The following procedure is designed and implemented in the experiments:

    (1)Suspend the cylinder shell underwater,start the air compressor,and record and analyze the acceleration signal recorded by the accelerometer in the shell and the radiated sound pressure at the location of the boat.

    (2)Keep the air compressor to operate and activate the actuator in the shell using powered signal with line-spectrum superposed by white noise.Record and analyze the signals listed in step(1).

    Fig.5 The model structure used in the experiment

    (3)Stop the air compressor,and only activate the actuator.Record and analyze the signals as at step(2).

    3.2 Experimental results

    Based on the above theory,the data obtained at any two steps introduced in the experimental procedure and the acceleration signal at the reference point of at the step left can be used to estimate the noise radiated noise at the step left.Without loss of generality,the transfer matrix is generated with the data acquired at steps(1)and(3),and the radiated noise at step (2)is evaluated.

    Fig.6 shows the acceleration signal at the reference point and the radiated noise signal when the air compressor is operating solely.The characteristic frequencies of the air compressor are located in 700-800 Hz,the level of vibration is about 100-110 dB,and the level of the radiated noise is about 115-125 dB.

    Fig.6 The signals of the air compressor

    Fig.7 The signals of the actuator

    Fig.7 shows the acceleration signal at the reference point and the radiated noise signal for step(3)when the actuator is operating solely.The characteristic frequencies of the actuator are widely distributed in the entire analysis frequency range.The level of vibration is about 90-110 dB,and the level of radiated noise is about 110-125 dB;both are equivalent to theactuating intensity of the air compressor.

    Based on the transfer matrix derived with the data obtained at steps(1)and(3),and along with the acceleration signal at the reference point of step(2),the noise radiated at step(2)is evaluated.Comparison of the evaluated and the measured sound pressure is shown in Fig.8.

    Fig.8 The evaluation result of the radiated sound pressure

    Fig.8(a)shows that the errors are less than 2.5 dB at most frequencies,including the characteristic frequencies.Only at a small number of frequencies,the errors are between 2.5 dB to 5 dB,and at three frequencies,the errors are larger than 5 dB.The third octave spectrum in Fig.8(b)shows that except for the error of 4 dB in the band centered at 200 Hz,the errors in most frequency bands are less than 2 dB.

    4 Conclusions

    For the real-time evaluation of ship radiated noise based on the operational transfer path analysis for signals with line-spectra,a modified model is proposed to reduce the number of required sensors.Numerical verification and experimental validation of the proposed model show that:

    (1)The proposed model is simple,effective,and the number of sensors is reduced in evaluating the noise radiated by ship.

    (2)For the radiated noise evaluated with the proposed model,the errors in most third octave frequency bands are less than 2 dB,and the errors at most characteristic line-spectrum frequencies are less than 2.5 dB.

    (3)In evaluating the noise radiation at different operating conditions,selecting the training modes closer to the operating modes and generating the transfer matrix separately would help to improve the evaluation accuracy.

    [1]Zou Mingsong,Wu Wenwei,Sun Jiangang,Li Zecheng.A semianalytical solution for free vibration of a cylindrical shell with two end plates[J].Journal of Ship Mechanics,2012,16(11):1306-1313.

    [2]Zhu X,Li T Y,Zhao Y,Yan J.Vibrational power flow analysis of thin cylindrical shell with a circumferential surface crack[J].Journal of Sound and Vibration,2007,302:332-349.

    [3]Elliott A S,Moorhouse A T,Huntley T,Tate S.In-situ source path contribution analysis of structure borne road noise[J]. Journal of Sound and Vibration,2013,332:6276-6295.

    [4]Zhang Lei,Cao Yueyun,Yang Zichun,He Yuanan.Vibration-acoustic transfer path analysis of a submerged cylindrical double-shell[J].Journal of Ship Mechanics,2015,19(4):462-469.

    [5]DeKlerk D,Ossipov A.Operational transfer path analysis:Theory,guidelines and tire noise application[J].Mechanical Systems and Signal Processing,2010,24:1950-1962.

    [6]Sandiera C,Leclerea Q,Roozen N B.Operational transfer path analysis:Theoretical aspects and experimental validation [C].ACOUSTICS,2012.

    [7]Zhou Junwei,He Lin,Xü Rongwu,Cui Lilin.Practical application and experimental verification of transmissibility function in ship mechanical noise prediction[J].Journal of Vibration and Shock,2014,33(22):78-82.

    [8]Sanchez J,Benaroya H.Review of force reconstruction techniques[J].Journal of Sound and Vibration,2014,333:2999-3018.

    [9]Lu Dingding,He Lin,Cheng Guo,Nie Yongfa.Research on pseudo-forces method used in characterization of machine force[J].Journal of Ship Mechanics,2013,17(10):1169-1175.

    [10]Li Yan,He Lin,Shuai Changgeng,Ma Jianguo,Wang Fei,Liu Yong.Active control of low-frequency sinusoidal vibration transmission of ship machinery[J].Journal of Ship Mechanics,2015,19(12):1549-1563.

    基于少量測(cè)點(diǎn)的水下輻射噪聲評(píng)估模型

    程果a,b,何琳a,b,徐榮武a,b

    (海軍工程大學(xué)a.船舶振動(dòng)噪聲國(guó)家重點(diǎn)實(shí)驗(yàn)室;b.振動(dòng)與噪聲研究所,武漢430033)

    文章針對(duì)復(fù)雜結(jié)構(gòu)的水下輻射噪聲實(shí)時(shí)評(píng)估問(wèn)題,提出了一套基于工況傳遞路徑法的線譜條件下理論模型,在確保輻射噪聲評(píng)估準(zhǔn)確性的同時(shí),減少了傳感器的使用數(shù)量。模型與工況分類相結(jié)合,提高了輻射噪聲的評(píng)估精度。之后對(duì)該模型進(jìn)行了數(shù)值仿真和湖上試驗(yàn)驗(yàn)證,結(jié)果表明,提出的模型簡(jiǎn)單有效。頻段輻射噪聲評(píng)估誤差小于2 dB,多數(shù)線譜峰值頻率處誤差小于2.5 dB。該研究對(duì)船舶噪聲評(píng)估具有參考意義。

    少量測(cè)點(diǎn);輻射噪聲;線譜;傳遞路徑

    O429

    A

    程果(1988-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所博士研究生;何琳(1957-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所教授,博士生導(dǎo)師;徐榮武(1980-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所副研究員,通訊作者。

    O429 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.012

    1007-7294(2016)12-1626-10

    Received date:2016-06-21

    Biography:CHENG Guo(1988-),male,Ph.D.candidate of Naval University of Engineering,E-mail:stunicorn@126.com; HE Lin(1957-),male,professor/tutor,E-mail:helin202@vip.sina.com;XU Rong-wu(1980-),male,associate researcher,corresponding author,E-mail:rongwu_xu@126.com.

    猜你喜歡
    線譜研究所噪聲
    UUV慣導(dǎo)系統(tǒng)多線譜振動(dòng)抑制研究
    睡眠研究所·Arch
    睡眠研究所民宿
    未來(lái)研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    噪聲可退化且依賴于狀態(tài)和分布的平均場(chǎng)博弈
    控制噪聲有妙法
    “”維譜在艦船輻射噪聲線譜提取中的應(yīng)用
    一種基于白噪聲響應(yīng)的隨機(jī)載荷譜識(shí)別方法
    基于隱馬爾可夫模型的線譜跟蹤技術(shù)
    車內(nèi)噪聲傳遞率建模及計(jì)算
    久久精品亚洲av国产电影网| 久久久亚洲精品成人影院| 欧美最新免费一区二区三区| 美女脱内裤让男人舔精品视频| 深夜精品福利| 亚洲国产日韩一区二区| 宅男免费午夜| 午夜免费男女啪啪视频观看| 中文字幕人妻丝袜一区二区 | 免费黄网站久久成人精品| 18禁动态无遮挡网站| 18禁观看日本| 久久精品国产a三级三级三级| 丝瓜视频免费看黄片| 久久久a久久爽久久v久久| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久av不卡| www日本在线高清视频| 自线自在国产av| 国产欧美亚洲国产| 亚洲欧洲国产日韩| 男男h啪啪无遮挡| 免费黄色在线免费观看| 热99久久久久精品小说推荐| 只有这里有精品99| 国产一区二区 视频在线| 狂野欧美激情性bbbbbb| 久久毛片免费看一区二区三区| 亚洲一码二码三码区别大吗| 97在线视频观看| 丝袜脚勾引网站| 精品国产一区二区三区四区第35| 国产福利在线免费观看视频| 国产男女内射视频| 亚洲精品第二区| h视频一区二区三区| 在线看a的网站| 中文字幕色久视频| 美女国产高潮福利片在线看| 男人添女人高潮全过程视频| 午夜福利网站1000一区二区三区| 日韩av免费高清视频| 欧美国产精品va在线观看不卡| videos熟女内射| 亚洲人成77777在线视频| 精品国产乱码久久久久久小说| 日韩成人av中文字幕在线观看| 亚洲成人一二三区av| a级片在线免费高清观看视频| 麻豆av在线久日| 国产亚洲午夜精品一区二区久久| 亚洲五月色婷婷综合| 秋霞伦理黄片| 国产黄色免费在线视频| 久久99热这里只频精品6学生| 性色av一级| 国产毛片在线视频| 最黄视频免费看| 中文字幕av电影在线播放| 狠狠精品人妻久久久久久综合| 捣出白浆h1v1| 国产极品粉嫩免费观看在线| 免费观看无遮挡的男女| 少妇精品久久久久久久| 永久网站在线| 一级毛片电影观看| 久久久久久免费高清国产稀缺| 人妻一区二区av| 91aial.com中文字幕在线观看| 午夜免费鲁丝| 亚洲精品一区蜜桃| 免费观看在线日韩| 精品一区在线观看国产| 亚洲国产欧美日韩在线播放| 国产av精品麻豆| 亚洲av男天堂| 老司机亚洲免费影院| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 国产精品免费大片| 狂野欧美激情性bbbbbb| 欧美人与善性xxx| 国产一区二区三区av在线| 综合色丁香网| 18禁观看日本| 高清黄色对白视频在线免费看| 欧美精品国产亚洲| 韩国av在线不卡| 少妇的逼水好多| 视频在线观看一区二区三区| 久久久久人妻精品一区果冻| 欧美 日韩 精品 国产| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 中文乱码字字幕精品一区二区三区| 日韩欧美一区视频在线观看| 两性夫妻黄色片| 色视频在线一区二区三区| 国产精品久久久久久久久免| 国产免费现黄频在线看| 黄片播放在线免费| 女人被躁到高潮嗷嗷叫费观| 99精国产麻豆久久婷婷| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影 | 人妻人人澡人人爽人人| 日韩精品免费视频一区二区三区| 波多野结衣一区麻豆| 免费观看无遮挡的男女| 午夜影院在线不卡| 超色免费av| 天美传媒精品一区二区| 在线亚洲精品国产二区图片欧美| 欧美激情高清一区二区三区 | 曰老女人黄片| 精品少妇黑人巨大在线播放| 桃花免费在线播放| 国产精品99久久99久久久不卡 | 黄片无遮挡物在线观看| av国产久精品久网站免费入址| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人 | 免费大片黄手机在线观看| 少妇人妻 视频| 一本久久精品| 国产不卡av网站在线观看| 国产精品一国产av| av卡一久久| 国产亚洲精品第一综合不卡| 色网站视频免费| 亚洲精品,欧美精品| 亚洲av.av天堂| 天堂8中文在线网| 侵犯人妻中文字幕一二三四区| 国产日韩欧美在线精品| 久久久国产精品麻豆| 成人手机av| 制服人妻中文乱码| 人妻少妇偷人精品九色| 亚洲三级黄色毛片| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 亚洲精品日韩在线中文字幕| 99久久综合免费| 国产一区有黄有色的免费视频| 久久99一区二区三区| 伦理电影免费视频| 97在线人人人人妻| 亚洲精品,欧美精品| 毛片一级片免费看久久久久| 久久毛片免费看一区二区三区| 国产熟女午夜一区二区三区| 国产在视频线精品| a级片在线免费高清观看视频| 亚洲色图 男人天堂 中文字幕| 亚洲综合色网址| 毛片一级片免费看久久久久| 亚洲三区欧美一区| 日韩一区二区视频免费看| 久久99一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产精品蜜桃在线观看| 久久精品国产亚洲av高清一级| 激情五月婷婷亚洲| 精品99又大又爽又粗少妇毛片| 国产有黄有色有爽视频| 91久久精品国产一区二区三区| 国产精品蜜桃在线观看| 精品福利永久在线观看| 啦啦啦在线免费观看视频4| 国产精品麻豆人妻色哟哟久久| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 亚洲国产看品久久| 黄片无遮挡物在线观看| 国产精品熟女久久久久浪| 国产毛片在线视频| 少妇的丰满在线观看| 丝袜脚勾引网站| h视频一区二区三区| 这个男人来自地球电影免费观看 | 男人舔女人的私密视频| 欧美精品一区二区大全| 男男h啪啪无遮挡| 日韩精品免费视频一区二区三区| 成人国产麻豆网| 亚洲国产色片| 成人免费观看视频高清| 97在线视频观看| 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 春色校园在线视频观看| 精品人妻熟女毛片av久久网站| 国产成人免费观看mmmm| 少妇人妻精品综合一区二区| 精品酒店卫生间| 一级片'在线观看视频| 亚洲国产欧美日韩在线播放| 久久免费观看电影| 91精品伊人久久大香线蕉| 亚洲国产看品久久| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 久久女婷五月综合色啪小说| 久久影院123| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠久久av| 美女福利国产在线| 欧美老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 黄色 视频免费看| 免费女性裸体啪啪无遮挡网站| 天堂8中文在线网| 午夜影院在线不卡| 免费观看a级毛片全部| 免费日韩欧美在线观看| av有码第一页| 国产日韩一区二区三区精品不卡| 日本欧美视频一区| 久久久久精品久久久久真实原创| 少妇人妻精品综合一区二区| 寂寞人妻少妇视频99o| 我的亚洲天堂| 秋霞伦理黄片| 成人国产av品久久久| av在线app专区| 麻豆av在线久日| 咕卡用的链子| 99re6热这里在线精品视频| 中文字幕色久视频| 亚洲精品一区蜜桃| 日韩中字成人| 国产精品一二三区在线看| 日本免费在线观看一区| 午夜福利视频精品| 尾随美女入室| 亚洲精品国产一区二区精华液| 欧美成人午夜免费资源| 午夜av观看不卡| 99久国产av精品国产电影| 在线精品无人区一区二区三| 成年女人毛片免费观看观看9 | 欧美精品国产亚洲| 亚洲图色成人| 日本午夜av视频| a 毛片基地| 久久女婷五月综合色啪小说| 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 日韩三级伦理在线观看| 久久精品国产a三级三级三级| 亚洲精品久久久久久婷婷小说| 中文字幕精品免费在线观看视频| 国产在线免费精品| 综合色丁香网| 亚洲精华国产精华液的使用体验| 熟女少妇亚洲综合色aaa.| 免费黄网站久久成人精品| 丝袜人妻中文字幕| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 熟妇人妻不卡中文字幕| 亚洲美女黄色视频免费看| 女性被躁到高潮视频| 国产探花极品一区二区| 青青草视频在线视频观看| 国产xxxxx性猛交| 亚洲美女视频黄频| 午夜精品国产一区二区电影| 永久免费av网站大全| 美女福利国产在线| 在线天堂中文资源库| 亚洲欧洲精品一区二区精品久久久 | 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 国产免费一区二区三区四区乱码| 黄色一级大片看看| 黄色怎么调成土黄色| 日韩一区二区视频免费看| 色吧在线观看| av在线app专区| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o| 高清黄色对白视频在线免费看| 色播在线永久视频| 亚洲国产日韩一区二区| 久久久久久久精品精品| 热99久久久久精品小说推荐| 欧美中文综合在线视频| 日韩电影二区| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| 麻豆av在线久日| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 亚洲男人天堂网一区| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 久久久久精品久久久久真实原创| 啦啦啦啦在线视频资源| 免费人妻精品一区二区三区视频| 97精品久久久久久久久久精品| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 日韩,欧美,国产一区二区三区| 成人影院久久| 另类亚洲欧美激情| 97在线视频观看| 美女午夜性视频免费| 色吧在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 亚洲国产av影院在线观看| 国产一级毛片在线| 美女主播在线视频| 中文字幕制服av| 久久99精品国语久久久| 麻豆精品久久久久久蜜桃| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 成年美女黄网站色视频大全免费| 亚洲av免费高清在线观看| 亚洲成人av在线免费| 久久韩国三级中文字幕| 性高湖久久久久久久久免费观看| 在线观看免费高清a一片| 久久精品国产亚洲av涩爱| 欧美精品av麻豆av| a级片在线免费高清观看视频| 欧美另类一区| 1024香蕉在线观看| 亚洲情色 制服丝袜| 国产精品国产av在线观看| 男女边吃奶边做爰视频| 国产午夜精品一二区理论片| 男女高潮啪啪啪动态图| 18禁国产床啪视频网站| 亚洲精品国产色婷婷电影| 午夜福利一区二区在线看| 日本猛色少妇xxxxx猛交久久| 欧美在线黄色| 欧美中文综合在线视频| 国产午夜精品一二区理论片| 青春草亚洲视频在线观看| 18+在线观看网站| 欧美中文综合在线视频| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 欧美人与善性xxx| 青青草视频在线视频观看| 国产毛片在线视频| 日本爱情动作片www.在线观看| 亚洲成av片中文字幕在线观看 | 人妻 亚洲 视频| 一级片'在线观看视频| 欧美97在线视频| 国产成人精品婷婷| 午夜福利一区二区在线看| 97在线视频观看| 久热这里只有精品99| 国产精品免费大片| h视频一区二区三区| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 成年人免费黄色播放视频| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 久久久久久久久久久免费av| 精品国产国语对白av| 老司机影院毛片| 亚洲婷婷狠狠爱综合网| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| 精品人妻偷拍中文字幕| 韩国av在线不卡| 亚洲精品,欧美精品| 啦啦啦啦在线视频资源| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡| av网站在线播放免费| 一区福利在线观看| 在线观看国产h片| 亚洲精华国产精华液的使用体验| 黄色怎么调成土黄色| 久久久久国产网址| 美女福利国产在线| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 亚洲av中文av极速乱| 一区二区三区激情视频| 日韩中字成人| 国产亚洲精品第一综合不卡| 高清av免费在线| 国产av一区二区精品久久| 丰满乱子伦码专区| 亚洲国产精品999| 国产成人av激情在线播放| 日本黄色日本黄色录像| 亚洲成人手机| 男女免费视频国产| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 如何舔出高潮| 国产一区二区在线观看av| 日日啪夜夜爽| 啦啦啦在线观看免费高清www| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 深夜精品福利| 大片免费播放器 马上看| 精品国产乱码久久久久久男人| 免费日韩欧美在线观看| 亚洲精品久久久久久婷婷小说| 超碰97精品在线观看| 一区在线观看完整版| 久久久久久人妻| 菩萨蛮人人尽说江南好唐韦庄| 99久久人妻综合| 免费不卡的大黄色大毛片视频在线观看| 精品视频人人做人人爽| 成人漫画全彩无遮挡| 亚洲久久久国产精品| 一区二区三区四区激情视频| 大陆偷拍与自拍| 在线 av 中文字幕| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 国产熟女午夜一区二区三区| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 熟女av电影| 啦啦啦在线免费观看视频4| 国产av精品麻豆| 久久久久网色| 免费人妻精品一区二区三区视频| 亚洲精品在线美女| 日韩制服骚丝袜av| 国产免费又黄又爽又色| 黑人欧美特级aaaaaa片| 午夜福利在线免费观看网站| 久久精品国产综合久久久| 国产成人精品无人区| 久久精品夜色国产| 免费观看a级毛片全部| 伊人久久国产一区二区| 国产精品免费大片| 国产探花极品一区二区| 最近手机中文字幕大全| a级毛片在线看网站| 日韩一区二区三区影片| 欧美日韩一级在线毛片| 亚洲第一av免费看| 国产一区二区 视频在线| 电影成人av| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美| 一本色道久久久久久精品综合| 久久久精品免费免费高清| 久久久久久久精品精品| 一级毛片黄色毛片免费观看视频| 日韩 亚洲 欧美在线| 波多野结衣一区麻豆| 男女午夜视频在线观看| 精品一区在线观看国产| 看十八女毛片水多多多| 亚洲国产色片| 男人操女人黄网站| 新久久久久国产一级毛片| 国产亚洲欧美精品永久| 深夜精品福利| 天天躁日日躁夜夜躁夜夜| 母亲3免费完整高清在线观看 | 亚洲精品日韩在线中文字幕| 成年av动漫网址| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一青青草原| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版| 热re99久久精品国产66热6| 亚洲伊人久久精品综合| 成人午夜精彩视频在线观看| av在线播放精品| 制服丝袜香蕉在线| 天堂俺去俺来也www色官网| 精品国产一区二区久久| 日韩欧美一区视频在线观看| 日日爽夜夜爽网站| 成人毛片60女人毛片免费| 国产精品一二三区在线看| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 嫩草影院入口| 男女边摸边吃奶| 午夜精品国产一区二区电影| 2018国产大陆天天弄谢| www.av在线官网国产| 99久久精品国产国产毛片| 国产黄色免费在线视频| 精品亚洲乱码少妇综合久久| 多毛熟女@视频| 美女高潮到喷水免费观看| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| tube8黄色片| 国产高清国产精品国产三级| 大陆偷拍与自拍| 亚洲精品成人av观看孕妇| 国产极品粉嫩免费观看在线| 久久这里有精品视频免费| 日日摸夜夜添夜夜爱| 亚洲精品aⅴ在线观看| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线观看免费高清www| 亚洲精品美女久久久久99蜜臀 | 国产成人a∨麻豆精品| 国产成人精品久久二区二区91 | 久久国产精品男人的天堂亚洲| 久久综合国产亚洲精品| 亚洲第一区二区三区不卡| 久久久精品区二区三区| 亚洲一级一片aⅴ在线观看| 欧美老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 大香蕉久久成人网| tube8黄色片| 国产成人av激情在线播放| 狠狠婷婷综合久久久久久88av| 国产亚洲一区二区精品| 一本色道久久久久久精品综合| 国产成人一区二区在线| 欧美人与性动交α欧美软件| 青草久久国产| tube8黄色片| 黄色怎么调成土黄色| 高清黄色对白视频在线免费看| 晚上一个人看的免费电影| 在线观看三级黄色| 黄色配什么色好看| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久小说| 在线观看免费视频网站a站| 一二三四中文在线观看免费高清| 久久久亚洲精品成人影院| 乱人伦中国视频| 亚洲欧洲精品一区二区精品久久久 | 日韩在线高清观看一区二区三区| 性色avwww在线观看| 超色免费av| 久久久国产欧美日韩av| 亚洲精品久久午夜乱码| 人成视频在线观看免费观看| 午夜精品国产一区二区电影| 欧美少妇被猛烈插入视频| 99精国产麻豆久久婷婷| 免费看av在线观看网站| 中文字幕色久视频| 国产欧美亚洲国产| 狂野欧美激情性bbbbbb| 日日撸夜夜添| 国产探花极品一区二区| 黄色视频在线播放观看不卡| 搡女人真爽免费视频火全软件| 赤兔流量卡办理| 午夜福利影视在线免费观看| 波多野结衣一区麻豆| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 久久精品亚洲av国产电影网| 国产色婷婷99| 久久韩国三级中文字幕| 亚洲人成电影观看| 亚洲第一av免费看| 久久韩国三级中文字幕| 超色免费av| 日本欧美视频一区| 少妇猛男粗大的猛烈进出视频| 一级,二级,三级黄色视频| 涩涩av久久男人的天堂| 亚洲精品久久午夜乱码| 日韩人妻精品一区2区三区| 亚洲精品一区蜜桃| 国产成人av激情在线播放| 精品福利永久在线观看| 亚洲少妇的诱惑av| 国产精品女同一区二区软件| 国产女主播在线喷水免费视频网站| 亚洲图色成人| 天堂8中文在线网| 伊人亚洲综合成人网| 久久精品国产鲁丝片午夜精品| 丰满迷人的少妇在线观看| 国产成人精品久久久久久| 欧美成人午夜免费资源| 9色porny在线观看| 人成视频在线观看免费观看| 日日啪夜夜爽| av国产精品久久久久影院| 午夜日本视频在线| 国产精品麻豆人妻色哟哟久久| 国产成人免费无遮挡视频| av在线观看视频网站免费| 免费少妇av软件| 王馨瑶露胸无遮挡在线观看| 成人黄色视频免费在线看|